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In short-fiber reinforced polymers, fatigue damage is typically characterized by measuring the dynamic stiffness and its
degradation under cyclic loading. Computational homogenization methods may be used to characterize the fatigue behavior
of the composite via numerical predictions. Such an approach may reduce the experimental effort significantly. In the previous
works, the authors proposed an elastic fatigue damage model for predicting the relative stiffness degradation of short-fiber
reinforced materials. However, the absolute value of the dynamic stiffness within the first cycle showed deviations from
the expected elastic material behavior. Thus, the effect of viscoelastic polymer behavior as well as different microstructure
descriptors on the dynamic stiffness is studied in the work at hand.
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1 Introduction

The stiffness properties of short-fiber reinforced polymers are influenced by a vast number of factors. Of primary impor-
tance is the underlying microstructure of the composite material. Commonly used statistical descriptors of the underlying
microstructure of a short-fiber reinforced polymer (SFRP) are the fiber volume content, the fiber aspect ratio as well as the
fiber orientation state, typically encoded by the second-order Advani-Tucker fiber orientation tensor [2].

Additionally, polymer and polymer-based materials are well-known to exhibit viscoelastic effects [10, 12]. The dynamic
mechanical analysis (DMA) is a standard testing procedure to characterize the viscoelastic properties of the material and has
been applied to both pure thermoplastics as well as reinforced thermoplastics to characterize the frequency dependent dynamic
stiffness properties [14]. Under fatigue loading, the dynamic modulus serves as the quantity of interest when characterizing
fatigue damage by experimental means. In a one-dimensional setting, it is defined as the secant between the extremal stress σ
and strain ε in the direction of loading

Edyn =
σmax − σmin
εmax − εmin

. (1)

We assume the matrix behavior under fatigue loading to be linear viscoelastic and aim to study the effect of different loading
frequencies on the dynamic stiffness of the reinforced material behavior at high loading cycles. The fiber inclusions are
considered to be linear elastic. We apply computational homogenization methods to predict the effective properties of a fiber
structure. In a first step, we generate realizations of a layered fiber structure. Then, the material behavior of the constituents
is prescribed. For viscoelastic materials, different approaches exist to derive the macroscale behavior [5, 9]. A convenient
and computationally efficient method to predict the dynamic stiffness of a short-fiber reinforced structure is the approximate
method introduced in Magino et al. [17]. It is based on assigning effective dynamic properties to the constituents of the
material and deriving the composite behavior from elastic computations. We will refer to the approach as single elastic
computation (SEC) approach in the remainder of this work.

2 Reference fiber structure and material

Experimental characterizations using µCT scans [11] of a commercially used polybutylene terephthalate (PBT) reinforced
by short glass fibers and injected into a test plate with a depth of 2 mm are characterized by a layered fiber structure with
fiber orientations as shown in Fig. 1. The fiber orientation is described by the components of the second order Advani-Tucker
tensor A in its eigensystem. We use this layered structure as the reference for our sensitivity study. The fiber volume content
in the specimen is known to be 17.8% on average. A constant fiber volume content over the depth of the specimen and a fixed
aspect ratio of 29 is assumed for reference. The generated fiber structure is shown in Fig. 2.
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Fig. 1: Measured fiber orientation Fig. 2: Realization of the layered fiber structure

3 Investigations on the influence of various factors on the dynamic stiffness

3.1 Influence of frequency

First, we shortly discuss the matrix and fiber material model in a three-dimensional setting, which is subsequently used to
derive the long-term dynamic behavior of the composite is derived. Assuming the material behavior of the matrix to be linear
viscoelastic, the stress-strain relation may be written in integral form as

σ(x, t) =

∫ t

0

C(x, t− u) :
∂ε(x, u)

∂u
du, (2)

where σ represents the stress tensor, ε denotes the strain tensor and C(x, t) refers to the material function of the material. The
stress state at σ(x, 0) is assumed to be zero and current stress state is obtained via integration over the time u up to the current
time t. For the generalized Maxwell model [7], the latter assumes the form

C(x, t) = C0(x) +
N∑

j=1

Cj(x) exp (−βjt) , (3)

where Ci for i ∈ {0, . . . , N} and βj for j ∈ {1, . . . , N} are quantities which depend on the underlying phase, i.e., they are
different for fiber and matrix. For both fiber and matrix material, an universal Poisson’s ratios ν independent of the index i is
assumed, i.e., the tensors are given by

Ci = Ei

(
ν

(1 + ν) (1− 2 ν)
I⊗ I+ ν

(1 + ν)
Is
)
, (4)

where Ei denotes the Young’s modulus of every tensor Ci and ν refers to the Poisson’s ratio of the material. Here, I is
the second-order identity tensor and Is denotes the symmetric part of the fourth-order identity tensor. For the elastic fiber
material, the Young’s moduli with i ≥ 1 are set to zero. Additionally, the relaxation times τi are defined as the inverse of βi,
i.e., τi = 1/βi.

For the long-term dynamic behavior of the composite material under periodic stress driven macroscopic loading,

σ(t) = σa cos(ωt), (5)

with the macroscopic stress amplitude σa and the angular frequency ω. Assuming small phase shifts of the matrix, the
effective strain may be approximated in the form

ε(t) = Seff : σa cos(ωt− δ) (6)

with high accuracy as discussed in Magino et al. [17]. This formulation enables extending the one-dimensional definition
for the dynamic stiffness (1) to a three-dimensional dynamic stiffness tensor. The approximation for the effective dynamic
stiffness is based on the homogenization of an elastic material via the SEC approach. This enables us to efficiently estimate
the frequency-dependent dynamic stiffness of the composite material at high cycles.
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Element i Ematr
i in GPa τmatri in s νmatri Efiber

i in GPa νfiberi

0 2.475 - 0.4 72 0.22
1 0.582 2.4× 10−3 0.4
2 0.430 2.4× 10−2 0.4
3 0.316 2.2× 10−1 0.4
4 0.233 1.9 0.4

Table 1: Material parameters for Maxwell element number i of PBT matrix and glass fibers [17]
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Fig. 3: Frequency dependence of the dynamic stiffness

The material parameters used are listed in Tab. 1 for matrix and fiber material.
In Fig. 3, the frequency dependence of the material is shown. The dynamic stiffness at high cycles depends significantly

on the frequency. Indeed, it increases from 9.3 GPa at a frequency f = 0.01 Hz to 11.0 GPa at a frequency of f = 100.0 Hz,
which is a relative increase of 18%. Thus, when modeling the dynamic stiffness of a short-fiber reinforced material, the
frequency dependence is not to be neglected. Note that for further increasing frequencies the temperature increase in the test
specimen becomes non-negligible. Hence, when investigating a broad range of frequencies, temperature effects should also
be taken into account [1, 16].

3.2 Influence of fiber aspect ratio distribution

The dynamic stiffness dependent on the fiber aspect ratio distribution at a frequency of 1 Hz is evaluated. The average fiber
aspect ratio ra of the specimen is fixed to 29. However, due to manufacturing of components via an injection molding process,
the aspect ratio may vary within the specimen. To study the effect of different fiber aspect ratios in every layer of an injection
molded plate, we assume the aspect ratios to follow the distribution over the specimen thickness as shown in Fig. 4a. The
fiber aspect ratio in every of the five layers of the structure is constant, but the aspect ratio between the different layers is
different. The average aspect ratio throughout the whole specimen (averaged over the five layers) is kept at ra = 29. In two of
the distributions, labeled as −4 and −2 in Fig. 4a, the aspect ratio in the center is below average by −4 and −2, respectively.
In two other distributions, labeled as +4 and +2 in Fig. 4a, the aspect ratio in the center exceeds the average by +4 and +2,
respectively. For each of the distributions, three fiber structures were realized and their dynamic modulus in x-direction is
shown in Fig. 4b. Each computed dynamic stiffness is marked with a purple dot and the average over the three realizations for
every aspect ratio is indicated by the black line.

The dependence of the dynamic modulus on the fiber aspect ratio is rather insignificant. Thus, this effect is assumed to be
negligible.

3.3 Influence of fiber volume content distribution

The dynamic stiffness dependent on the fiber volume fraction distribution at a frequency of 1 Hz is evaluated. The average
fiber volume fraction ϕ of the specimen is fixed to 17.8%. However, due to manufacturing of components via an injection
molding process, the volume fraction may vary within the specimen. To study the effect of different fiber aspect ratios in
every layer of an injection molded plate, we assume the fiber volume fraction to follow the distribution over the specimen
thickness shown in Fig. 5a. The fiber volume fraction throughout the whole specimen (averaged over the five layers) is kept
at ϕ = 17.8%. In two of the distributions, labeled as −4% and −2% in Fig. 5a, the volume fraction in the center is below
average by −4% and −2%, respectively. In two other distributions, labeled as +4% and +2% in Fig. 5a, the volume fraction
in the center exceeds the average by +4% and +2%, respectively.
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(a) Aspect ratio ra over specimen thickness
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Fig. 4: Aspect ratio dependence of dynamic stiffness
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Fig. 5: Fiber volume content dependence of dynamic stiffness

For each of the discussed aspect ratio distributions, a realization is generated and its dynamic modulus in x-direction
is evaluated and shown in Fig. 5b. One realization is assumed to be enough to show the trend of the fiber volume effect.
The dependence of the evaluated dynamic stiffness on the fiber volume fraction distribution is significant. Compared to the
structure with a 4% decreased fiber volume content in the center layer and a dynamic stiffness of 10.0 GPa, it decreases to
9.7 GPa for a by 4% increased fiber volume content in the center layer. Thus, within the examined range of volume fraction
variations, we observe a relative deviation of 3%.

4 Implications for the upscaling technique

In recent years, FFT-based methods have been established as powerful tools for computational micromechanics. They make
computational prediction of large fiber volume elements feasible [4,13]. However, when dealing with the prediction of a whole
component, a direct coupling of micro- and macroscale still leads to excessively large computational costs. Thus, model order
reduction methods may used to further decrease the computational effort in the online-phase.

The database method developed and applied to the prediction of the dynamic stiffness evolution in previous works [15, 18,
19] employs an NTFA approach and consists of the following steps:

1. discretization of the fiber orientation triangle into a finite set of orientations [9]

2. generation of a representative volume element (RVE) for the fatigue damage material law for each of the fiber orienta-
tions [8]

3. precomputation of several load cases on each of the RVEs [15, 18]

4. sampling of stress and damage solution fields for each of the structures

5. extraction of stress and damage modes via proper orthogonal decomposition for each of the structures

6. computation and storage of system matrices from the extracted modes.

Based on the precomputed and stored system matrices, an efficient and accurate online simulation of an engineering component
based on an NTFA approach [3, 6] becomes feasible.

In the context of the viscoelastic fatigue damage model, the precomputed system matrices depend on the moduli and the
Poisson’s ratio as well as the loading frequency. In the case of matrix and fiber material sharing the same Poisson’s ratio,
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Fig. 6: Interpolation scheme

the effective moduli can be extracted from the material equations and a model order reduction based on a fiber interpolation
scheme is possible. Otherwise the macroscopic potential depends on frequency dependent system matrices. Additionally, the
system matrices strongly depend on the microstructure of the precomputed cells. Thus, incorporating a dependency of the
fiber volume content increases the dimension of the space of considered microstructure characteristics. To be more specific,
the number of parameters in the microstructure computations which cannot be explicitly extracted on the computation of the
system matrices increases. For every of these parameters, a new dimension is added to the space of necessary precomputations.

The studies conducted in section 3 showed a non-negligible frequency and fiber volume content dependence of the com-
posite material. Thus, the orginal two-dimensional interpolation concept based on the two largest eigenvalues of the fiber
orientation needs to be extended to a multiple dimensional interpolation approach. This significantly increases the computa-
tional effort of the reduced order model as shown in Fig. 6. Here, the fiber orientation interpolation is shown for the elastic
damage model discussed in previous works [18, 19] which was assume to solely depend on the fiber orientation in blue. The
material response of any fiber orientation characterized by the eigenvalues λ1 and λ2 lying within the blue area can be pre-
dicted using an interpolation scheme built upon the three edges of the triangle. Thus, the prediction of the damage evolution at
any fiber orientation requires the computation of three database points. In contrast, for increased dimensions of the parameter
space, e.g., due to the choice of a viscoelastic material model, the effective model becomes dependent on an increasing num-
ber of precomputed structures. As shown in red in Fig. 6, to predict the material degradation at arbitrary frequencies (or any
other additionally introduced parameter dimension), an interpolation between the six edges of the triangular prism needs to be
applied, thus doubling the computational effort in the online computations. The computational effort increases prohibitively
with the increase of parameter dependencies.

As a possible alternative, other interpolation schemes may be employed, e.g., using a tetrahedron. In that case the question
on how to chose the four edges in the interpolation scheme arises. As a third option, a nearest neighbor approach may be
employed. This approach is advantageous over the interpolation scheme in its computational effort in the online phase as the
evaluation of only one fiber orientation is assumed to be sufficient for the prediction, in contrast to six orientations that need
to computed in the interpolation approach. However, to meet a sufficient accuracy of the reduced order model, the number of
fiber orientations necessary to precompute is expected to increase in comparison to the interpolation approach.

5 Conclusion

We studied the dependence of the dynamic stiffness of a short-fiber reinforced component on the frequency as well as the
microstructural properties via computational means. We observed that the effective dynamic stiffness depends significantly on
the frequency and the distribution of the fiber volume content, while the distribution of the aspect ratio has a less pronounced
effect on the overall properties of the layered structure under investigation. This result gives guidance for further experimental
and computational investigations on the dynamic stiffness of short-fiber reinforced polymers.
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