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Typical thin-walled structures are found in applications like aircraft, spacecraft and marine vessels. For this type of structure,
stability behaviour is crucial. The better this behaviour is understood, the better the full lightweight potential can be exploited.
For composite structures especially, new fast analysis tools for preliminary design are required to address this issue. Therefore,
the local postbuckling of omega-stringer-stiffened composite panels is the subject of a new computational model. The analysis
method is computationally highly efficient because it is based on a closed-form analytical approach. The explicit solution is
derived based on the principle of the minimum of the total elastic potential. Furthermore, the solution assumes that the initial
eigenform does not substantially change in the early postbuckling regime. In this way, the plates of the skin and stringer can
be included explicitly in the analysis. Compared to finite element analysis and a closed-form computational model found in
the literature, the new analysis tool is assessed. The results indicate excellent agreement for panels, where the bay plate is
the most critical element of the panel. The new computational model promises to be a highly efficient tool in the preliminary
design framework.
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1 Introduction

Especially in the context of preliminary design, the computational efficiency of analysis methods is essential. For the ex-
ploitation of the full lightweight potential in thin-walled structures typically employed in applications like aircraft, spacecraft,
and marine vessels, numerous parameter studies and optimisations are necessary, resulting in a high number of function eval-
uations for the different aspects investigated in the analysis. One of these aspects is the stability behaviour of thin-walled
structures, which is critical in the design.

The present work deals with the stability behaviour of an omega-stringer-stiffened panel made of composite material. It
is representative of a panel in a more extensive fuselage section and sketched in Figure 1. In a), the individual plates in the
panel assembly are introduced and the loading condition is indicated in b). Therefore, the panel is loaded by a prescribed
displacement leading to uniaxial compression in the longitudinal direction. It is important to note that the longitudinal edges
of these panels are considered with periodic boundary conditions introducing the influence of sourrounding fuselage sections.
Additionally, the panel is considered simply supported along loaded edges for a conservative approximation. Generally, the
local buckling and postbuckling behaviour are of interest, which assumes that the individual plates show no deflection along
adjacent edges.

a) b)

Fig. 1: a) Omega-stringer-stiffened panel with the structural model for the closed-form analysis [1]; b) Loading conditions of the omega-
stringer-stiffened panel [1].

This behaviour can be assessed using different computational methods. The highest computational efficiency can be
achieved by utilising closed-form analytical approaches compared to finite element, finite strip, and semi-analytical methods.
The work of Schilling and Mittelstedt [1] gives an overview of relevant literature and concludes that highly computationally
efficient methods are still rare for the analysis of omega-stringer-stiffened panels. The reader is referred to the mentioned
reference, as the present paper is its abbreviated version.
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The present work introduces a new closed-form analytical approximate solution to the buckling and postbuckling problem
of uniaxially compressed omega-stringer-stiffened panels addressing the lack of highly efficient computational methods. The
solution is derived based on the principle of the minimum of the total elastic potential. Therefore, the two Marguerre equa-
tions are utilised to incorporate the geometric nonlinear behaviour of the deformations and imperfections in the case of the
postbuckling analysis. First, a buckling analysis is performed to obtain information about the eigenform, which is the basis
for the closed-form analytical postbuckling analysis. The approach to the buckling analysis is based on previous work by the
authors concerning the buckling of omega-stringer-stiffened panels [3,4]. The idealised model for the analysis is presented in
Figure 2, with dimensions in a) and the indication of boundary and interface conditions in b). Because of the periodic bound-
ary conditions, the idealised model can be reduced to a four-plate model utilising symmetry conditions. Finally, the results are
compared to finite element analyses and the implementation of the model by Vescovini and Bisagni [2] that assumes a single
plate reinforced by elastic restraints along the longitudinal edges.

a) b)

Fig. 2: Idealized model of the omega-stringer-stiffened panel used for the derivation of the buckling and postbuckling analysis: a) dimen-
sions, b) boundary conditions.

2 Methods

2.1 Introduction

As mentioned in the introduction, the governing equations are based on the two Marguerre-type equations. The first is the
equilibrium equation given in Eq. (1). Therein, Dij are the bending stiffnesses according to the classical laminated plate
theory (CLPT). The deflection w0 is the deflection of the plate considered and wi is the initial imperfection in the form of
a deflection. In order to achieve the formulation using only two partial differential equations, the Airy stress function ψ is
introduced.
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The second is the compatibility equation making sure that the in-plane strains due to bending and stretching are compatible
(Eq. (2)). Here, the membrane stiffnesses Aij according to the CLPT are introduced.
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Both equations are formulated based on von Kármán strains. Detailed descriptions of the strains, constitutive relations and
the governing equations can be found in various textbooks like the textbooks by Mittelstedt and Becker [5], Reddy [6], and
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Jones [7]. The present computational model is only derived for a specific type of composite material. The analysis approach
enables to analyse omega-stringer-stiffened panels made of symmetric cross-ply laminates.

The derivation of the closed-form analytical solution begins with selecting suitable buckling shape functions that can
reproduce the deformation of the omega-stringer-stiffened panel in case of buckling. In the present, the deflection of each sub-
plate k, numbered according to the idealized model in Figure 2, is expressed by Equation (3). The variables A0 and B0 are
unknown variational constants equivalent to Ritz-constants that are determined in the course of the analysis by the principle
of the minimum of the total elastic potential. The initial imperfections are assumed to be of the same form and thus also based
on the polynomial functions wA, k and wB, k. Here, the variables Ai and Bi are the amplitudes of the assumed imperfections.

wk, 0 = A0 wA, k (x, yk) +B0 wB, k (x, yk) (3)

wk, i = Ai wA, k (x, yk) +Bi wB, k (x, yk) (4)

The polynomial functions wA, k and wB, k are presented in Equations (5) and (6). To achieve high-quality results using the
approximate computational model, the two polynomial functions must fulfil the boundary and interface conditions presented
in Figure 2 b). Therefore, the cofactors cAi, k and cBi, k are determined based on the boundary and interface conditions.
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Only the terms for i = 0 corresponding to the variational constants A0 and B0 are prescribed based on the definition given in
Equation (7).

cA0, k = [1, 0, 0, 0] cB0, k = [0, 1, 0, 0] (7)

With the defined deflection wk, 0 and imperfection wk, i, the next step is the definition of the Airy stress function before the
total elastic potential is computed.

2.2 Airy stress function

The Airy stress function is generally defined to fulfil the relations given in Equation (8), so that the resultant forces N0
xx, k,

N0
yy, k, and N0

xy, k are expressed depending on the Airy stress function ψk.
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In the present approach, the solution for the Airy stress function is built of three separate parts as given in Equation (9).
It consists of the particular solution ψp, k and two homogeneous solutions ψh, 1, k and ψh, 2, k. The solution is obtained by
ensuring that the compatibility equation given in Equation (2) is fulfilled.

ψk = ψh, 1, k + ψh, 2, k + ψp, k (9)

For brevity, the reader is referred to Ref. [1] for the derivation of the particular solution, ensuring that the left-hand and right-
hand sides of the mentioned partial differential equation are compatible. Also, the detailed derivation of the homogeneous
solutions is presented in Ref. [1] and omitted here. The homogeneous solutions can be finally obtained in the following form
(Eq. (10) and (11)). Therein, the cofactors C1, k, C2, k, C3, k, C4, k, C5, k, and Cu, k are determined by utilizing the in-plane
boundary conditions of the individual plates.
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Consequently, the two homogeneous solutions are necessary to include the in-plane boundary conditions in the analysis. The
in-plane boundary conditions for the longitudinal edges of the sub-plates are given in Equations (12) and (13). They require
the vanishing of shear force resultants and that the edges remain straight.
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With these conditions the cofactors C1, k, C2, k, C3, k, and C4, k are determined. The remaining cofactors C5, k and Cu, k

are obtained by evaluating the prescribed displacement along the transverse edges of the sub-plates. Here it is required that
the displacement uk is equal to the prescribed displacement U and additionally that the displacement is uniform, meaning
independent of the transverse coordinate yk.

2.3 Total elastic potential

The total elastic potential is computed with the definition of the deflection, imperfection and the Airy stress function. The for-
mulation for the contributions of the individual sub-plates is expressed in Equations (14) and (15), which are the contributions
due to the membrane Πm, k and the bending Πb, k behaviour of the sub-plates.
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The individual contributions are then summed to obtain the total elastic potential Π(A0, B0) that is now only depending on
the two variational constants. With this, the solution of the linear buckling problem and then the postbuckling problem is
obtained.

2.4 Buckling analysis

In order to obtain the critical eigenform of the linear buckling problem, the total elastic potential is first simplified. Therefore,
the constants Ai, A0

4, A0
3, Bi, B0

4, B0
3, A0

2B0
2 are omitted.

It is now possible to utilise the principle of the minimum of the total elastic potential to perform the eigenvalue analysis.
As a result, the critical displacement is obtained in an explicit, closed-form analytical fashion. Thus, the eigenform of the
buckled panel can be determined.
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For the variables Kq for q = 1, 2, 3, . . . , 14 the expressions are presented in Ref. [1] and not reprinted here for brevity.
From the solution of the linear eigenvalue problem the ratio δB/A between the amplitudes B0 and A0 is obtained and

an important input for the postbuckling analysis (Eq. (17)). Also, the critical half-wave number m is obtained. Thus, the
eigenform is obtained qualitatively.
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With the obtained ration the constants B0 and Bi can be expressed as follows in Equations (18).

B0 = δB/AA0 Bi = δB/AAi (18)

2.5 Postbuckling analysis

Using the eigenform of the linear buckling analysis, the total elastic potential introduced in Section 2.3 is simplified. The
relations of Equations (18) are introduced and the constants B0 and Bi substituted. Therefore, the total elastic potential for
the postbuckling problem only depends on the variational constant A0. If the principle of the minimum of the total elastic
potential is used, only one Ritz-equation is obtained. It is presented in Equation (19).
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The solution for the variational constant A0, which is now equivalent to a postbuckling amplitude, scales the deformation
initially obtained as the eigenform in the linear buckling analysis. Note that only the real root of the three solutions gives
plausible results. Therefore, only the relevant root is reprinted here in Equation (20).
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The postbuckling amplitude A0 enables a quantitative description of the local postbuckling behaviour of omega-stringer-
stiffened panels in the early postbuckling range. This includes the deformation but also stresses and resultant forces and
moments, as well as postbuckling parameters such as the effective width. The closed-form analytical method is limited to the
proximity of the initial buckling because no mode changes are detected. This is, however, well within the requirements of
preliminary design. The results presented in the next section show the capabilities of the closed-form analytical method.

3 Results and discussion

The results obtained with the computational model introduced in the previous section are evaluated compared to finite element
analyses and an implementation of the model described by Vescovini and Bisagni [2]. The length of the investigated panel a is
600mm, the spacing bs is 200mm, the angle α is 25◦, and the ratio b4/h is 1.833. For the results presented in the following, a
symmetric cross-ply laminate is used for all four sub-plates. The stacking sequence is [0◦/90◦/0◦/90◦]s, with a ply thickness
of 0.184mm. The material properties are E1 = 157 000MPa, E2 = 8500MPa, G12 = 4200MPa and ν12 = 0.35.

Since the postbuckling analysis depends on the eigenform of the linear buckling analysis, it is interesting to look at the
results for the critical displacement Ucr. This leads to a first impression of the quality of the present computational model. If it
performs with high accuracy for buckling, it can be assumed that high-quality results are obtained for the early postbuckling
range. In Figure 3 a), the critical displacement is plotted versus the ratio b4/(b1+b4), which scales the size of the stringer keeping
the dimensions as introduced in the previous paragraph. The results show that for typical stringer-stiffened panels, where the
bay plate is larger in width than the floor plate of the stringer, the present and the referenced closed-form analytical models
achieve very good agreement. The agreement of the present method is hereby superior to the simpler model of Vescovini
and Bisagni [2] denoted as CFVB12. In the following results, the ratio b4/(b1+b4) = 0.25 is considered representative for a

a) b)

Fig. 3: Results obtained by the present model CFpresent, the model of Ref. [2] CFVB12 and the FEA: a) Critical displacement Ucr for different
ratios b4/(b1+b4) [1]; b) Force-displacement relationship for all four sub-plates for the ratio b4/(b1+b4) = 0.25 [1].

typical omega-stringer-stiffened panel. In Figure 3 b) the load-displacement curves are plotted. They include the results for
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the four sub-plates obtained by the FEA and the present model CFpresent. The model CFVB12 can only predict the postbuckling
behaviour of a single plate at once. Consequently, the results for the bay plate show suitable agreement. As before, the present
model performs with a very good agreement and reproduces the typical postbuckling behaviour of a stiffened panel, where the
stringer continues to carry load even though the bay plate is buckled and shows a loss of stiffness.

This is also reflected in Figure 4 a), where the load distribution for different stages in the postbuckling range is given for all
four plates. The load-carrying capability of the stringer plates is only slightly changing, whereas the bay plate is significantly

a) b)

Fig. 4: Results obtained by the present model CFpresent and the FEA for the ratio b4/(b1+b4) = 0.25: a) Load distribution Nxx (yk) for
different ratios b4/(b1+b4) [1]; b) Effective width beff for the bay plate with varied imperfection wi [1].

weakened with progressing compression. The present model predicts the load distributions with good agreement. In the
previously discussed results the imperfection wi is set to 2×10−3 mm. However, in Figure 4 b), the size of the imperfection is
varied to show the influence of the imperfection on the effective width for increasing compression of the panel. This influence
is only shown for the bay plate, as a significant reduction of the effective width occurs here, corresponding to the previously
discussed load distributions within the four sub-plates. Notably, the imperfection’s size directly influences the loss of effective
width, especially in the early postbuckling range. A loss of effective width can even occur before the critical displacement is
reached.

The results showed that the new closed-form analytical model achieves very good agreement in analysing the local stability
behaviour of omega-stringer-stiffened panels. However, it is limited to symmetric cross-ply laminates and the early postbuck-
ling range. Mode changes are not detected, as the postbuckling analysis depends on the eigenform of the linear buckling
analysis. The analysis approach enables the characterisation of the individual sub-plates of the stiffened panel and is not
limited to one plate as alternative models that assume a single plate with elastic restraints. For a more detailed derivation and
discussion of results, the reader is referred to Ref. [1]. The present computational model offers a novel, highly efficient tool
for the preliminary design of this type of thin-walled structure.
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