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The article considers the optimization of eigenvalues in electromagnetic cavities by means of shape variations. The field
distribution and its frequency in a radio-frequency cavity are governed by Maxwell’s eigenvalue problem. To this end, we
utilize a mixed formulation by Kikuchi (1987) and a mixed finite element discretization by means of Nédélec and Lagrange
elements. The shape optimization is based on the method of mappings, where a Piola transformation is utilized to assert
conformity of the mapped spaces. We derive the derivatives by the use of adjoint calculus for the constraining Maxwell
eigenvalue problem. In two numerical examples, we demonstrate the functionality of this method.
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1 Introduction

Simulations of particle accelerator components are challenging due to high accuracy requirements. One important component
is the superconducting radio-frequency cavity which is responsible for the acceleration of the particles. Cavities excite elec-
tromagnetic fields of various frequencies and for each frequency the corresponding electric field, so-called eigenmode, varies
in its shape. The goal of a superconducting cavity is to achieve an acceleration mode to accelerate the particles forward. The
most relevant acceleration eigenmode is the fundamental Transverse Magnetic (TM) mode, shown in Figure 1. For a detailed
description of such a cavity as well as its associated components, we refer to the paper about Superconducting TESLA cavities
by Aune et al. [2].

Fig. 1: Electric field of the TM010, also called π-mode

The field distribution and its frequency are governed by Maxwell’s eigenvalue problem

∇× (∇× u) = λu in Ω,

∇ · u = 0 in Ω,

n× u = 0 on ∂Ω,

∥u∥2 = 1.

In this work, we introduce a mixed variational formulation of Maxwell’s eigenvalue problem by Kikuchi [8], which excludes
the arising of so-called spurious modes (see also, e.g., Boffi [3]). The shape optimization is based on the method of mappings,
where the physical domain Ωq is given by a deformation q : Ω̂ → Rd, d ∈ {2, 3}, on a reference domain Ω̂ ⊂ Rd. To
obtain suitable function spaces and equations on the reference domain suitable transformation rules need to be obeyed, e.g.,
for the function space H0(curl; Ω̂) a Piola transformation is utilized to assert the conformity of the mapped spaces. The
properties of the function spaces and corresponding mappings in detail are well explained by Monk [9]. For the resulting
mixed variational formulation, we consider a computational domain given by a discretization of the space by using a mixed
finite element method with Lagrange and Nédélec elements. The latter guarantees a correct subspace of H0(curl; Ω), see e.g.
Monk [9]. We derive the derivatives by using adjoint calculus for the constraining Maxwell eigenvalue problem. The idea of
using adjoint calculus to derive eigenvalue derivatives bases on Heuveline and Rannacher [7] and Rannacher, Westenberger
and Wollner [10], where this approach is developed for elliptic eigenvalue problems. This article applies this approach to
Maxwell’s eigenvalue problem to achieve a free-form optimization for electromagnetic cavities.
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2 Mapping

Since we consider two different function spaces, we must distinguish between them with respect to the mapping to assert
conformity of the mapped spaces. For details we refer to Monk [9] and Cohen [4], wherein the function spaces H1

0 (Ω) and
H0(curl; Ω) are well-explained in detail. In the following, we consider Ωq, Ω̂ as two bounded domains in Rd, with d ∈ {2, 3},
where x, x̂ denote coordinates on Ωq and Ω̂. The deformation Fq(x̂) is a mapping from Ω̂ to Ωq given by

x = Fq(x̂) = q(x̂) + x̂.

In addition, it holds that

dx = det(DFq)dx̂,

where DFq is the Jacobian matrix of the displacement Fq , see Monk [9].
A scalar function p̂ ∈ H1

0 (Ω̂) is then transformed to a scalar function p ∈ H1
0 (Ωq) by

p ◦ Fq = p̂.

Then it holds for p ∈ H1
0 (Ω̂) and p̂ ∈ H1

0 (Ω̂) that

grad p = DF−T
q grad p̂. (1)

Furthermore, to transform vector functions in H0(curl;Ω), we apply a H0(curl; Ω)-conforming mapping to ensure tangen-
tial continuity. Therefore, we suppose û ∈ H0(curl; Ω̂) and an to û associated function u ∈ H0(curl; Ωq). For transforming
û to u we use the so called covariant Piola mapping

u ◦ Fq = DF−T
q û.

Then for u ∈ H0(curl; Ωq) and û ∈ H0(curl; Ω̂), it holds that in the three-dimensional case

curl u ◦ Fq =
1

det(DFq)
DFq curl û.

In the two-dimensional case it holds that

curl u =
1

det(DFq)
curl û.

In addition to that, we ensure that the determinant of the deformation gradient det(DFq), which describes the volume ratio,
has to be strictly larger than zero to satisfy physical properties.

3 Shape Optimization Problem

We consider a simply connected Lipschitz domain Ω̂ ⊂ Rd (d = 2, 3) with a control q ∈ Qad, where Qad is a vector-valued
H1-space and restrict the deformation tensor to

∞ > det(DFq) > 0.

The associated physical domain Ωq = Fq(Ω̂) is given by the mapping described in Section 2. The shape optimization
problem of Maxwell’s eigenvalue problem is defined as the following: Find a particular eigenvalue λ ∈ R and corresponding
eigenvector 0 ̸= u ∈ H0(curl; Ωq) as solution of the problem

min
(λ,u,q)

J(q, (λ, u)) :=
1

2
|λ− λ∗|2 +

α

2

(
∥q∥2 + ∥∇q∥2

)
− β ln(det(DFq))

s.t.

∇× (∇× u) = λu in Ωq

∇ · u = 0 in Ωq

n× u = 0 on ∂Ωq

∥u∥2Ωq
= 1,

where ∥ · ∥ is the usual L2 norm on Ω̂ while an index Ωq refers to the respective norm on Ωq , n is the outer unit normal vector
to the boundary ∂Ωq , λ∗ ∈ R the reference eigenvalue and α, β ∈ R.
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We consider the variational formulation of Maxwell’s eigenvalue problem introduced by Kikuchi [8] (, also seen in [3]):
Find λ ∈ R and 0 ̸= u ∈ H0(curl; Ωq) such that, for some ψ ∈ H1

0 (Ωq)

(curl u, curl v)Ωq
+ (grad ψ, v)Ωq

= λ(u, v)Ωq
∀ v ∈ H0(curl;Ωq)

(u, grad φ)Ωq = 0 ∀ φ ∈ H1
0 (Ωq)

(2)

with the function spaces

H0(curl; Ωq) =
{
v ∈ (L2(Ωq))

d : curl v ∈ (L2(Ωq))
n; v × n = 0 on ∂Ωq

}
,

H1
0 (Ωq) = {v ∈ H1(Ωq) : v = 0 on ∂Ωq},

where n = 1 for d = 2 and n = 3 for d = 3.
We remind tha reader that, in the two-dimensional case, the curl operator is defined as a scalar, namely,

curl v =
∂v2
∂x1

− ∂v1
∂x2

.

We consider problem (2) on the reference domain Ω̂ and use the mapping, introduced in the previous section, to transform
equations, e.g., for d = 3 to

(curl u, curl v)Ωq
=

(
1

det(DFq)
DFq curl û, DFq curl v̂

)

Ω̂

,

(grad ψ, v)Ωq
=

(
det(DFq)DF

−T
q grad ψ̂,DF−T

q v̂
)
Ω̂
,

(u, grad φ)Ωq
=

(
det(DFq)DF

−T
q û, DF−T

q grad φ̂
)
Ω̂
,

(u, v)Ωq
=

(
det(DFq)DF

−T
q û, DF−T

q v̂
)
Ω̂
.

In d = 2, the mapping of the curl-equation is given by

(curl u, curl v)Ωq
=

(
1

det(DFq)
curl û, curl v̂

)

Ω̂

.

4 Eigenvalue Derivatives with Adjoint Calculus

For the calculation of the eigenvalue derivatives, we utilize the method of adjoint calculus inspired by a work of Heuveline and
Rannacher [7] and Rannacher, Westenberger and Wollner [10], where this approach is applied to a posteriori error estimation
for elliptic eigenvalue problems.

In the following, we assume the particular eigenvalue λ to be simple. Further, we assume that u = u(q) and ψ = ψ(q),
because of the dependency of the control q to the mapping. For the calculation of eigenvalue derivative, we formulate the
Lagrangian of the eigenvalue optimization problem

min
(λ,q)

J(q, (λ, u))

(curl u, curl v)Ωq + (grad ψ, v)Ωq = λ(u, v)Ωq ∀ v ∈ H0(curl;Ωq)

(u, grad φ)Ωq
= 0 ∀ φ ∈ H1

0 (Ωq)

χ
(
(u, u)Ωq

− 1
)
= 0 ∀ χ ∈ R.

(3)

The state variables are

(λ, (u, ψ)) ∈ R× (H0(curl; Ω;Rd)×H1
0 (Ω,Rd)).

We define the corresponding adjoint variables with

(µ, (z, ϕ)) ∈ R× (H0(curl; Ω;Rd)×H1
0 (Ω,Rd)).

Further, we simplify problem (3) by defining the equations

k(q, (u, ψ))(z, ϕ) = (curl u, curl z)Ωq
+ (grad ψ, z)Ωq

+ (u, grad ϕ)Ωq
,

m(q, (u, ψ))(z, ϕ) = (u, z)Ωq .
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Fig. 2: Geometry of 1-cell TESLA cavity.

Table 1: Geometry data for the reference and de-
formed cavity

reference cavity deformed cavity
[B. Aune et al., 2000]

geometry (mm)
Req 43.44542 45.00
Riris 16.5627 16.5627
a1 3.2 3.2
b1 3.0592 3.0592
a2 23.82353 23.82353
b2 23.82352 23.82352
L 25.18 25.18

Table 2: Numerical solution of the first eigenvalues
for the reference and deformed cavity

reference cavity deformed cavity
λ0 1801.85 1679.74

With that, we define the Lagrangian for the admissible set Qad

L : Qad × (R× (H0(curl; Ω;Rd)×H1
0 (Ω,Rd)))× (R× (H0(curl; Ω;Rd)×H1

0 (Ω,Rd)))

of problem (3) by

L(q, (λ, (u, ψ)), (µ, (z, ϕ))) =J(q, (λ, u))−k(q, (u, ψ))(z, ϕ) + λm(q, (u, ψ))(z, ϕ)

+ µ (m(q, (u, ψ))(u, ψ)− 1) .

By that, we define an optimality system of (3) which has the following form

L′
(λ,(u,ψ))(q, (λ, (u, ψ)), (µ, (z, ϕ)))(χ, (v, φ)) = 0 ∀χ, (v, φ) ∈ R× (H0(curl; Ω;Rd)×H1

0 (Ω,Rd)),

L′
q(q, (λ, (u, ψ)), (µ, (z, ϕ)))δq = 0 ∀ δq ∈ Qad,

L′
(µ,(z,ϕ))(q, (λ, (u, ψ)), (µ, (z, ϕ)))(χ, (v, φ)) = 0 ∀χ, (v, φ) ∈ R× (H0(curl; Ω;Rd)×H1

0 (Ω,Rd)).

5 Discretization

For the discretization of the function spaces we apply the finite element method. We distinguish between the discretization of
the function spaces H1

0 (Ω) and H0(curl; Ω). We achieve the subspace Ph ⊂ H1
0 (Ω) by using node-based Lagrange elements.

A discrete subspace Vh ⊂ H0(curl; Ω), which ensures tangential continuity on the edges, is given by a discretization with
edge-based Nédélec elements. For more details to finite elements and their properties, we refer to, e.g., Monk [9] and Boffi [3].

6 Numerical Examples

In this section, we present two numerical examples of the eigenvalue optimization of Maxwell’s eigenvalue problem. For the
optimization, we use the C++ library DOpElib [6] which is based on the finite element library deal.II [1]. For both examples,
we consider the domain of a two-dimensional planar model, inspired by a 1-cell TESLA cavity, where the geometry is shown
in Figure 2.

The Figure shows a quarter of the axis symmetrical model which is described by two radii, Req and Riris, which are called
radius of the equator and radius of the iris, as well as a length L and by two ellipses, defined by their axes. The ellipse next
to the radius of the iris is defined by a horizontal half axis a1 and a vertical half axis b1, and the ellipse next to the equator
is defined by a horizontal half axis a2 and a vertical half axis b2. The outer boundaries of the complete two-dimensional
geometry are along the radius of the irises and along the boundaries of the ellipses.

For the reference geometry, we use the cavity data given in [2] and shown in Table 1 in the first column. For the discretiza-
tion of the function spaces we are using the finite element discretization as mentioned before. To be more precise, we solve
the optimization problem with Lagrange elements of order 1 and lowest order Nédélec elements. For the control the number
of degree of freedom is 1122 and for the state the number of degree of freedom is 1633. The optimization problem is solved
with a gradient descent algorithm which is implemented in the DOpElib library [6].
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Table 3: Results of the last 5 iterations of example
1.

it J rel. Res. λ0
28 1.43594e+01 1.09840e-03 1801.80
29 1.43580e+01 8.64373e-04 1801.77
30 1.43575e+01 7.04101e-04 1801.75
31 1.43574e+01 6.02989e-04 1801.73
32 1.43574e+01 5.46530e-04 1801.73

Table 4: Results of the last 5 iterations of example
2.

it J rel. Res. λ0
35 3.12750e-04 2.40884e-04 1801.82
36 1.95372e-04 1.90140e-04 1801.83
37 1.22239e-04 1.50085e-04 1801.83
38 7.66714e-05 1.18469e-04 1801.83
39 7.66714e-05 9.35124e-05 1801.84

Fig. 3: Example 1: fixed iris. Deformation with scaling
factor 5.

Fig. 4: Example 2: fixed iris and axes at iris. Deformation
with scaling factor 5.

In these examples, we consider the optimization of the first (smallest) eigenvalue λ0. We optimize on the known reference
cavity, where the geometry parameters are mentioned in the first column of Table 1 and the numerically obtained first eigen-
value is λ0 = 1801.85 (shown in the first column of Table 2). In the next step, we deform the cavity by increasing the radius
of the equator (Req) from 43.44542mm to 45.00mm, see in the second column of Table 1. The corresponding numerically
obtained value of the first eigenvalue is now λ0 = 1679.74, see also the second column of Table 2.

The goal of this free-form optimization is to re-deform the deformed cavity to the reference geometry. Therefore, we
consider two different examples:

In the first example, we fix the boundary on the irises (the part which is labeled with Riris in Figure 2). The reduced
gradient algorithm terminates after 32 iterations with the cost functional J = 14.3574 and a relative residual of 5.46530·10−4.
Furthermore, the eigenvalue λ0 converges to λ0 = 1801.73. The cost functionals J , relative residua and the first eigenvalue
λ0 after each iteration are shown in Table 3. The resulting deformation of the cavity with a scaling factor of 5 is shown in
Figure 3. Although with fixing the boundary at the irises, the algorithm converges to the reference eigenvalue λ∗ = 1801.85
but the original shape of the cavity cannot be exactly reconstructed. In this setting, the radius of the equator decreases and the
shape of the ellipses at the equator as well as the ones at the irises deform, see Figure 3.

In the second example, we fix again the boundary on the irises and, in addition, we fix the boundary curve given by the
first ellipse (a1, b1) to ensure no deformation at those. The reduced gradient algorithm terminates after 39 iterations with the
cost functional J = 7.66714 · 10−5 and the relative residual of 9.35124 · 10−5. Furthermore, the eigenvalue λ0 converges to
λ0 = 1801.84. In this setting, we ensure that the deformation of the geometry has just influence in the radius of the equator
(Req) which was desired. The resulting deformation of the cavity with a scaling factor of 5 is shown in Figure 4. The cost
functionals J , relative residua and the first eigenvalue λ0 after each iteration are shown in Table 4.

7 Conclusion and Outlook

We have derived an optimization problem for Maxwell’s eigenvalue problem for simple eigenvalues inspired by particle ac-
celerator cavity design. In the cost functional, we considered the optimization of one particular eigenvalue. For the numerical
approach, we introduced a mixed finite element method by means of Nédélec and Lagrange elements and for the optimization
itself, we introduced the first eigenvalue derivatives derived with adjoint calculus. In the numerical examples, we showed the
convergence of the optimization problem for two examples on a two-dimensional cavity domain.

There are still some open tasks. Because we are interested in a real-world simulation of these cavities, it is quite obvious
that we need a more realistic model of the considered problem. First, an extension to a multi-cell cavity is natural, mentioned
in [5]. Thereby, a cost functional with respect to the corresponding eigenvector of the particular eigenvalue will be relevant to
also optimize the flatness of the model. So far the two-dimensional examples are also only considered in plane. An area of
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interest is the extension of the formulation of a three-dimensional Maxwell’s eigenvalue problem which is either possibly by
extending the domain itself to 3D or by taking the advantage of rotation symmetry of the two-dimensional geometry.
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