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A guide for experimentalists 
 
The ideal sound parameters for monolayer annealing are dependent on the applied setup.  They 
change with varying resonance conditions of the beaker and thus its diameter and the quantity of 
water it contains. The speaker type also plays an important role for excitement of sufficiently 
strong waves. As the particle movement can be observed visually when the right lighting 
conditions are applied (illumination should be placed on the interface and observation performed 
in specular reflection of this illuminated light), the acoustic parameters required to induce grain 
growth can be easily determined for arbitrary geometries, system sizes and equipment. In order 
to find the right annealing conditions for a given speaker-beaker-particle combination, it is 
advisable to take the following defined steps. As frequency and amplitude of the speaker both 
influence the motion of the interface, one parameter (preferably the frequency) should be fixed 
first before varying the others. The frequency should be chosen in so that a variation of amplitude 
results in a transition of almost no visible motion of the interface in the respective setup to a 
gentle motion and finally a splashing of water out of the beaker at the highest amplitude. Next, 
the surface coverage is probed, as it is the least sensitive parameter, yielding good results over a 
large surface coverage range. In order to find the right conditions, a high surface coverage 
monolayer should be initially produced and brought into motion with sound that induces waves 
of the water surface of about 3 mm height.  No motion of the particles should be visible at this 
stage. By using a peristaltic pump, subsequently particles are sucked from the interface in order 
to slowly decrease the surface coverage. At one point, particle motion can be detected as surface 
coverage got sufficiently low. This condition should be used for a variation of amplitude, starting 
at low amplitudes, increasing them in small time steps. At some point a rearrangement and 
growth of crystal grains should be visible, indicating that efficient annealing conditions have been 
found. Finally, surface coverage, amplitude and frequency can be iterated to yield optimal results. 
By using this routine, suitable annealing parameters for a new system can be found within a view 
hours. In typical annealing experiments with such optimized conditions, the crystal grains grew 
rapidly and the quality of the sample increases with in the first 20-30s to the maximal level of 
order achievable by the conditions.  
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Theory for the optimal amplitude and for the optimal frequency 

In the following we propose a simple theory for the optimal amplitude and for the optimal 
frequency needed to achieve an optimal grain annealing. 

We first address a theory for the optimal amplitude. The relaxation of defects is complex in 
general but one decisive part is single vacancy hopping. We assume that vacancy hopping 
constitutes a key ingredient for complex defect annealing which largely determines the parameter 
dependence of the process. In detail, in order to make vacancy hopping in the solid possible, a 
particle has to jump over an energetic barrier made by all its surrounding neighbors in its cage, 
see Figure S7a. For fixed neighbors on a perfect hexagonal lattice the energetic barrier Δ𝐸𝐸 can 
simply be computed by a sum of the pairwise interactions for a particle located at a position      
𝑟𝑟0 = 𝑥𝑥𝑒𝑒𝑥𝑥  on its way to fill a vacancy at the origin. In detail, upon acoustic annealing this energetic 
barrier is oscillating as a function of time 𝑡𝑡, as all particle distances are expanded, and is explicitly 
given by 
 
Δ𝐸𝐸(𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑥𝑥
∑ 𝑈𝑈(𝑟𝑟𝑛𝑛(𝑥𝑥, 𝑡𝑡))𝑛𝑛                                                                                                      (SI 1) 

 
where 𝑈𝑈(𝑟𝑟) is a pair potential as a function of distance 𝑟𝑟 and the sum over 𝑛𝑛 extends over all 
lattice positions except for the hopping particle and the vacancy. Here,  
𝑟𝑟𝑛𝑛(𝑥𝑥, 𝑡𝑡) = ‖𝑅𝑅𝑛𝑛(𝑡𝑡) − 𝑥𝑥𝑒𝑒𝑥𝑥‖, where 
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are the positions of the neighboring particles at a given time 𝑡𝑡 with  
𝑑𝑑(𝑡𝑡) = 𝑑𝑑0(1 + 𝐴𝐴(1 − cos(2𝜋𝜋𝜋𝜋𝑡𝑡))) denoting the time dependent lattice constant of the 
breathing solid. The minimal value of 𝑑𝑑(𝑡𝑡) is the initial distance 𝑑𝑑0. An example of the energetic 
barrier as a function of time is shown in Figure S7b. When the system is expanded most, the 
energetic barrier becomes minimal and that is the moment where vacancy hopping (or particle 
hopping) is most likely. If the minimal barrier height 𝑚𝑚𝑚𝑚𝑛𝑛

𝑡𝑡
Δ𝐸𝐸(𝑡𝑡) is much larger than the thermal 

energy 𝑘𝑘𝐵𝐵𝑇𝑇 the particle will not be able to overcome the barrier by thermal fluctuations such that 
the vacancy stays immobile. In the opposite case, when the barrier height is much smaller than 
𝑘𝑘𝐵𝐵𝑇𝑇, thermal fluctuations will strongly disturb the solid and create new defects. Therefore the 
optimal case for defect annealing occurs when the condition 
 
𝑚𝑚𝑚𝑚𝑛𝑛
𝑡𝑡
Δ𝐸𝐸(𝑡𝑡) ≈ 𝑘𝑘𝐵𝐵𝑇𝑇                                                                                                                                (SI 2) 

 
is fulfilled.  This establishes an implicit condition for the optimal amplitude. For repulsive 
interactions, such as the Yukawa potential used in this work, 𝑚𝑚𝑚𝑚𝑛𝑛

𝑡𝑡
Δ𝐸𝐸(𝑡𝑡) increases with density 

such that the optimal amplitude is getting larger for increasing density. In fact the theory not only 
gives a prediction for varying density and particle size but also describes the experimental and 
simulation data reasonably well. An example for the criterion (SI 2) is shown in Figure S7c for the 
experimental parameters. The theory yields an optimal amplitude of  0.19 which is close to the 
simulated value of 0.22 (see Fig. 6a). 
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Regarding the optimal frequency, for sufficiently high amplitudes, high frequencies lead to 
particle oscillations still confining the particles to their lattice positions while low frequencies are 
likely to support the emergence of new defects. Optimality is expected when the frequency is 
comparable to the inverse Brownian time𝑚𝑚2 𝐷𝐷0⁄ needed for a single particle to diffuse over a 
distance 𝑚𝑚 (lattice constant). It has then enough time to sample its surrounding to search for an 
escape route making defect annealing possible. Hence the optimal frequency 𝜔𝜔𝑜𝑜𝑜𝑜𝑡𝑡 is 
approximately given by 
 
𝜔𝜔𝑜𝑜𝑜𝑜𝑡𝑡 ≈ 𝐷𝐷0 𝑚𝑚2⁄                                                                                                                                        (SI 3) 
 
This yields a scaling of the optimal frequency which is linear in the particle density 𝜌𝜌 as 𝜌𝜌 is 
proportional to 𝑚𝑚−2.  With the Stokes-Einstein relation 𝐷𝐷0 = 𝑘𝑘𝐵𝐵𝑇𝑇

6𝜋𝜋𝜂𝜂𝑠𝑠𝑅𝑅
 this expression (SI 3) also yields 

a simple scaling of 𝜔𝜔𝑜𝑜𝑜𝑜𝑡𝑡 with the inverse particle radius 𝑅𝑅. For the experimental parameters the 
expression (SI 3) predicts an optimal frequency of 0.5/s which is the same order of magnitude as 
the simulated value of 1.5/s (see Fig. 6b). 
 



 

 

5 

 

 

Figure S1: Destroyed monolayer at 8 Hz, 𝜂𝜂 = 88 % and 20 V. a) Photograph of the monolayer 
after treatment with 8 Hz and 20 V. b) LIA image of the monolayer in (a). c) Size of the ten 
largest grains in image (b). d) A rigorous analysis of the crystal reveals a disturbed orientation at 
the microscale and a large loss of particles to the subphase (evidenced by the whitish 
appearance). 
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Figure S2: Reproducibility of the pure monolayer assembly at the air/water interface. a-d) LIA 
images of the pure monolayer without annealing. e) Size of the ten largest grains of the analyzed 
images (a-d). f) Weighted average of the grain sizes of the individual images and an overall 
average with standard deviation indicated. Sale bar: 5 mm.  
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Figure S3: Reproducibility of the ACDC process using 16.5 V, 4 Hz and 𝜂𝜂 = 88 %. a-d) LIA images 
of the monolayer after one minute of annealing. e) Size of the ten largest grains of the analyzed 
images (a-d). f) Weighted average of the grain sizes of the individual images and an overall 
average with standard deviation indicated. Scale bar: 5 mm.  
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Figure S4: Annealing at 8 Hz and 𝜂𝜂 = 88%. a) LIA image of a monolayer annealed at 8 Hz and 6 V. b) LIA 
image of a monolayer annealed at 8 Hz and 16.5 V. c) Sizes of the ten largest grains of the images (a) and 
(b). d) Average grain size of the images (a) and (b). Scale bar: 5 mm. Comparing Figure S4 to the data in 
Figure 2 shows that optimal amplitude and frequency are coupled: While an amplitude of 16.5 V at 4Hz 
increases the grain size by a factor of 6.2 (Figure 2), the same amplitude only leads to an increase by a 
factor of 2.4 at 8 Hz. At this higher frequency a lower amplitude of 6 V provides a more efficient 
annealing. 
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Figure S5: Illustration of the laser diffraction experiments where L is the distance between the 
diffraction pattern and the monolayer, r the diffraction radius and θ the angle between r and L.  
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Figure S6: Sodium chloride addition to polystyrene monolayer. a) Interparticle distance versus 
salt concentration. b) Photograph of the monolayer without salt. b) Photograph of the 
monolayer with 10 mM NaCl in the subphase. A hole is visible which results from the decreasing 
inter particle distance.  
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Figure S7: (a) Potential energy landscape which the particle has to overcome during vacancy 
hopping with an energetic barrier Δ𝐸𝐸 experienced by a particle that exchanges its position with a 
vacancy along a position coordinate 𝑥𝑥. (b) Energetic barrier as a function of time for breathing 
solid. The dashed line indicates the case when the potential energy barrier equals 𝑘𝑘𝐵𝐵𝑇𝑇. (c) 
Minimal energetic barrier as a function of driving amplitude. The criterion for the optimal 
amplitude is indicated by the dashed line. The parameters are: D = 0.43μm2s−1, 𝜂𝜂 = 74 %, A = 
0.2(a,b), f = 1 Hz, V0/γ = 3 × 105 μm3s−1, λ = 0.1μm using the Yukawa potential described in the 
main manuscript. 
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Figure S8: Second setup with labeled components. A d=9.4 cm beaker filled with 200 mL of 
MilliQ-water was placed on the bass speaker  bass pump 4 Ω 50W by Sinus Line with two h = 2 
cm foamed polystyrene dampeners between speaker and beaker. The dipper was used to 
deposit the monolayer.  
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Figure S9: Particle tracking analysis for microgels and core-shell particles. a) Scanning electron 
micrograph of a hard core-soft shell particle lattice recorded at 5 keV. b-c) Color coded mosaic 
SEM images of a core-shell particle monolayer before (b) and after (c) sound application. d) 
Scanning electron micrograph of a microgel lattice recorded at 1 keV. e-f) Color coded mosaic 
SEM images of a microgel monolayer before (b) and after (c) sound application. 
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Supplementary Videos 

 

Supplementary Movie 1: ACDC process using an amplitude ramp to 16.5 V, a frequency 
of 4 Hz, η=83% and d=1µm PS particles. 

 

Supplementary Movie 2: Cycling between ordered and disordered monolayers at 4Hz 
and 80 Hz respectively and 16.5V, η=80% and d=1µm PS particles. 

 

Supplementary Movie 3: Monolayer annealing of d=1µm PS particles at η=80% playing 
Beethoven’s symphony no. 5 through the speaker with post-processed video sound. 
Music released under Creative Commons License CC0. Performed by Berliner 
Philharmoniker, conducted by Herbert von Karajan, Deutsche Grammophon 1962.   

 

Supplementary Movie 3b: Monolayer annealing of d=1µm PS particles at η=80% playing 
Beethoven’s symphony no. 5 through the speaker with original video sound.  

 

Supplementary Movie 4: Monolayer annealing by stroking the rim of a wine glass filled 
with a PS d=1µm monolayer.  

 

Supplementary Movie 5: Monolayer formation in the laser diffraction setup.  

  

Supplementary Movie 6: Laser diffraction pattern during monolayer formation.  

 

Supplementary Movie 7: Deposition of the d=1µm PS particle monolayer without NaCl in 
the sub phase to a glass slide at η=100%. No permanent gap opens up upon deposition.  

 

Supplementary Movie 8: Salt addition in five steps to a final sub phase NaCl 
concentration of 10mM to a monolayer of d=1µm PS particles at η=82%. A hole opens 
up upon salt addition and particles added to a salt containing sub phase do not 
crystallize.  
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Supplementary Movie 9: Deposition of the d=1µm PS particle monolayer with 10mM 
NaCl in the sub phase to a glass slide at η=100%. A permanent gap opens up upon 
deposition.  

 

Supplementary Movie 10: Simulation shown in Figure 7a. Annealing of a point defect.   

 

Supplementary Movie 11: Simulation shown in Figure 7b. Crystal realignment with 30° of 
initial phase angle mismatch. 

 

Supplementary Movie 12: Simulation shown in Figure 7c. Crystal realignment with 10° of 
initial phase angle mismatch.  

 

Supplementary Movie 13: Simulation shown in Figure 7d. Crystal realignment with 5° of 
initial phase angle mismatch. 

  

 

 




