

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202201806

Controlling the Formation of Conductive Pathways in Memristive Devices

Robert Winkler, Alexander Zintler, Stefan Petzold, Eszter Piros, Nico Kaiser, Tobias Vogel, Déspina Nasiou, Keith P. McKenna, Leopoldo Molina-Luna* and Lambert Alff*

Supporting Information

Controlling the formation of conductive pathways in memristive devices

Robert Winkler, Alexander Zintler, Stefan Petzold, Eszter Piros, Nico Kaiser, Tobias Vogel, Déspina Nasiou, Keith P. McKenna, Leopoldo Molina-Luna & Lambert Alff

Figure S1. a)-c) To visualize the texture transfer for HfO_2 films grown on TiN, crystal structures of one atomic plane are shown along growth directions for (020), a) and (111), c) HfO_2 and (111) TiN, b). The common structure (dotted lines) highlights that the lattice mismatch is smallest between (020) textured HfO_2 and (111) TiN. Unit cells are represented by hatched lines. The structures for TiN and HfO_2 are taken from Christensen & An¹ and Ruh & Corfield ², respectively and are visualized with VESTA³.

Figure S2. a) Leakage currents of $30x30 \ \mu\text{m}^2$ TiN/HfO₂/Pt/Au devices are lower for $(11\overline{1})$, (purple) textured HfO₂ compared to a device with (020) HfO₂, (pink). Experimental data of the leakage current for the device with (020) HfO₂ were fitted by a Lorentzian function. b) The required forming voltage is greatly reduced for a device with $(11\overline{1})$ HfO₂ (purple). (c) The initial forming process for the device with $(11\overline{1})$ hafnia is refined to a space-charge-limited conduction (SCLC) mechanism with a trap-filled limit voltage around 1 V. (d) For the device with (020) textured hafnia the conduction mechanism is consistent with Fowler-Nordheim tunneling $(\ln I/V_2 \sim 1/V)$.

Figure S3. DFT relaxed atomic structures were retrieved from the HAADF-STEM images of grain boundaries (Fig. 2) for a) $(11\overline{1})$ and b) (020) textured HfO₂. The same periodically occurring structural units are marked in purple and pink. Scale bar is 1 nm. The DFT structures are based on a model from Ruh & Corfield² and are visualized with VESTA³.

Figure S4. a) The simulated HADDF-STEM images retrieved from b) the second stable DFT structure of $(11\overline{1})$ textured HfO₂. Scale bar is 1 nm. The DFT structures are based on a model from Ruh & Corfield ² and are visualized with VESTA ³.

Figure S5. a), b) The density of states (DOS) show no intermediate gap states at an oxygen vacancy (V₀) concentration (conc.) equal to zero. c), d) Multiple intermediate states for a V₀ conc. = 2 nm^{-2} and e), f) a conducting sub band at V₀ conc. = 6 nm^{-2} for the (111), (purple) and (020), (pink) HfO₂ grain boundaries. The DOS were calculated using the projector augmented wave (PAW) method.

Figure S6. The $(11\overline{1})$ pole figures (PFs) for a) $(11\overline{1})$ and b) (020) textured HfO₂ reveal six and 12 clustered poles, respectively. Due to the monoclinic structure, one defined in-plane orientation should result in one pole for the c) $(11\overline{1})$ and two poles for the d) (020) textured HfO₂ when measuring the $(11\overline{1})$ PF indicated by the black (measurable poles) and red (not measurable poles) arrows. Hence, six defined in-plane orientations are expected rotated in-plane by 60° and 30° for $(11\overline{1})$ and (020) textured HfO₂, respectively.

Figure S7. DC endurance behavior trends of devices with (a) (020) and (b) $(11\overline{1})$ textured hafnia for current readout at 200 mV. The device based on (020) textured HfO₂ shows bipolar resistive switching in the so-called counter figure eight (*cf8*) mode. In the device based on $(11\overline{1})$ textured HfO₂ the high resistance value locks to the conductance quantum G₀ at (12.9 k Ω)⁻¹ (dashed line) after several cycles. The low resistive state shows two well-defined values attributed to *cf8* and figure 8 (*f8*) switching. These two states occur when switching takes place at both electrodes (see S. U. Sharath *et al.*, Adv. Funct. Mater. **2017**, 27, 1700432).

References

- [1] A. Christensen, C. An, The Temperature Factor Parameters of Some Transition Metal Carbides and Nitrides by Single Crystal X-ray and Neutron Diffraction. **1978**.
- [2] R. Ruh, P. W. R. Corfield, Journal of the American Ceramic Society 1970, 53, 126.
- [3] K. Momma, F. Izumi, J Appl Cryst **2011**, 44, 1272.