Chemistry–A European Journal

Supporting Information

Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction

Nils Heppe, Charlotte Gallenkamp, Stephen Paul, Nicole Segura-Salas, Niklas von Rhein, Bernhard Kaiser, Wolfram Jaegermann, Atefeh Jafari, Ilya Sergueev, Vera Krewald,* and Ulrike I. Kramm*

- Supporting Information -

Table of Contents

	р.
Supplementary Figures	
Figure S1: Optimized geometries of all Fe(III)-CI complexes (1–6).	3
Figure S2: Phenyl ligand to porphyrin (PhX/P) angles.	4
Figure S3: XPS results of porphyrins 1-6 impregnated on CB.	4
Figure S4: XPS results of porphyrins 1 drop casted from a DCM solution onto In foil.	5
Figure S5: Comparison of N1s binding energies measured by XPS.	5
Figure S6: Supporting RDE data.	6
Figure S7: Differential electrochemistry mass spectrometry (DEMS).	6
Figure S8: Properties of calculated Fe(II) vs. TOF.	8
Figure S9: Gibbs free enthalpies of reaction for different reaction steps vs. TOF.	9 – 10
Figure S10: Properties of calculated Fe(I) vs. TOF.	11
Figure S11: Difference values Fe(II) - Fe(I) for various properties vs. TOF.	12
Figure S12: Orbital occupation scheme for intermediates of the HER cycle.	13
Figure S13: Structures of HER intermediates exemplarily shown for complex 3.	14
Figure S14: Relaxed surface scan for OH bond breaking step (reaction VIII) for 1-5.	14
Figure S15: Relaxed surface scan for H migration (reaction X) for 1, 2, 4 and 5.	15
Figure S16: Scheme of simplified PhX vibrations for assignment of vibrational modes.	15
Figure S17: Mass spectra of the enriched iron-57 porphyrin complexes.	16 – 17

Supplementary Tables

Table S1: NRVS experimental frequencies and interpretation for complexes 2,3,5 and 6.	19
Table S2: Predicted NRVS modes for complexes 2,3,5 and 6, simplified description and	20 – 23
assignment.	
Table S3: Overview of experimentally obtained values.	24
Table S4: Overview of all calculated structures sorted by substituent 1-6 .	25 – 30
Table S5: Mulliken spin populations of OLYP single point calculations for all calculated	31 – 36
structures sorted by substituent 1-6.	
Table S6: Gibbs free enthalpies of reactions I-X.	37 – 39
Table S7: Selected bond lengths in Å for lowest lying spin states sorted by	40 – 41
intermediate.	
Table S8: Selected bond angles (°) for lowest lying spin states sorted by intermediate.	42 – 43
Table S9: Selected dihedral angles for lowest lying spin states by intermediates in °.	44 – 45
Table S10: Mulliken spin populations for lowest lying spin state sorted by intermediate.	46 – 47
Table S11: Calculated Mössbauer parameter for lowest lying spin state sorted by	48 – 49
intermediate.	
Table S12: Gibbs free enthalpies for lowest lying spin state sorted by intermediate.	50 – 51
Table S13: Comparison of predicted and experimental Mössbauer parameters for	51
Fe(III)CI complexes 1, 3 and 4.	

– Supplementary Figures –

Figure S1: Optimized geometries of all Fe(III)-CI complexes (1-6). Fe is depicted in orange, N in blue, CI in light green, F in dark green, O in red, H in white and C in light grey. H atoms in CH groups are omitted for clarity.

Figure S2: Phenyl ligand to porphyrin (PhX/P) angles a)Scheme of simplified PhX/P angle as the $C_1(P)-C_2(P)-C_1(PhX)-C_2(PhX)$ dihedral, **b)** PhX/P angle plotted vs. electrochemical utilization of Fe.

Figure S3: XPS analysis of porphyrins 1-6 impregnated on CB. a) Survey scan with the signals indicated with dashed lines and numbered on top of the graph 1 C-KVV, 2 F-KLL, 3 In3p_{1/2}, 4 F1s, 5 In3p_{3/2}, 6 O1s, 7 In3d, 8 N1s, 9 C1s, 10 In4d; b) correlation between the binding energy associated with the FeN₄ peak and the redox potential $E_{0.5}$ of Fe(II/III) in 0.1 M KOH. Bold numbers refer to the number of the porphyrin complex as indicated in the main manuscript.

Figure S4: XPS analysis of porphyrin 1 drop casted from a DCM solution onto In foil. a) Survey scan with the signals 1 C-KVV, 2 F-KLL, 3 Fe2p, 4 F1s, 5 In3p3/2, 6 O1s, 7 In3d, 8 N1s, 9 C1s, 10 Cl2p, 11 In4d; b) HR-scan of C 1s region; c) HR-scan of N 1s region, with 4 component fit of the signal; d) HR-scan of Fe 2p region.

Figure S5: Comparison of N 1s binding energies measured by XPS with a) calculated mean N 1s orbital energies of Fe(III)-CI and b) calculated mean Mulliken spin population on N as a measure of unpaired spin in the Fe(III)-CI complexes.

Figure S6: Supporting RDE and CV data a) HER activity of different porphyrins at pH 1, **b)** TPP(OMe)₄-FeCl peak integration at pH 13.

Figure S7: Differential electrochemical mass spectrometry (DEMS) **a**) The specific gas product rate (SGPR) of hydrogen for carbon supported iron porphyrin (**3**) and free base porphyrin (**7**) and the bare carbon black (**CB**) support and **b**) the corresponding transient faradaic efficiency of the investigated samples (calculation of transient faradaic efficiencies include capacitive currents, see section below).

To Figure S7:

For DEMS measurements the working electrode of a purpose build half-cell is coupled to a quadrupole mass spectrometer (ExQ Compact Gas Analyzer, Hiden Analytical) via a capillary inlet that serves as the reducing pressure step. The cell is built in a gas flow-by configuration where gas is passed through the back of the gas diffusion layer (GDL) through an intermediate porous Teflon membrane to avoid gas leakage. To promote the gas flow through the pipeline a syringe pump at 1.5 ml min⁻¹ is coupled via a T-piece with an exhaust controlled with a bypass valve. A peristaltic pump is used to maintain the electrolyte flow at 8 ml min⁻¹ that is being constantly purged with N₂. The gas analyzer has a 5 s of delay between the applied voltage and the mass current, which was compensated in the data treatment for an accurate product detection.

To obtain a direct correlation between the mass currents and the faradaic current (I_F) the hydrogen evolution reaction on Pt/C (Hispec 3000, Sigma Aldrich) was used as model reaction in 0.25 M H₂SO₄ electrolyte. By a protocol of consequent galvanostatic steps of 60 s the calibration constant is obtained through the linear relation between both values:

$$I_{MS,j} = \frac{K^*}{n_j} N_j I_{F,j}$$

Where $I_{MS,j}$ is the mass current for the species j (here 2 m/Z), $I_{F,j}$ the applied faradaic current, n_j the number of electrons involved in the production of, N_j the collection of the cell and K^* the calibration constant which contains all the settings from the experimental construction and the MS can also be referred as one value K^0 .

This value is used for calculating the (transient) faradaic efficiency as follows:

$$FE_{j,gas}(\%) = \frac{I_{MS} * n_j}{I_{total} * K^0} x100$$

The mass current is correlated to the transient current response, as a consequence capacitive currents are included as well, which is lowering the obtained efficiencies.

Because the capillary has a constant intake of gases (of 4.3 ml min⁻¹) the specific gas product rate (SGPR) is calculated as follows:

$$SGPR \ (mol \ s^{-1}cm^{-2}) = \frac{\frac{P_j}{P_{total}} * V_{in}}{V_{mol} * A_{geo}}$$

Where P_j is the partial pressure of the species j and P_{total} the pressure in the vacuum gas chamber, V_{in} the intake volume from the capillary, V_{mol} the molar volume of an ideal gas (22.4 I mol⁻¹ at standard pressure) and A_{geo} the geometric area of the catalyst layer.

The electrodes were prepared on GDLs (Freudenberg H23C6) by dropcasting a catalyst ink for a final loading of 0.32 mg cm⁻² in an area of 0.45 cm². The ink formulation and preparation was as follows: for each measurement, 6 mg of a sample was mixed with 393 μ L isopropanol, 56 μ L water and 44 μ L of Nafion 5wt% dispersion. The suspension is first homogenized in the vortex mixer for 1 min, then treated in the ultrasonic bath for 40 min (at room temperature), vortexed for another minute and sonicated for 15 min. The ink deposited was left to dry without heat being applied to the GDL.

To obtain the transient faradaic efficiencies, HER was tested in an electrolyte of 0.1 M KOH, using a glassy carbon counter electrode and a Hg|HgO|1 M NaOH reference electrode. The given potential is corrected for the electrolyte resistance.

Figure S8: Properties of calculated Fe(II) vs. TOF. Mulliken charge on a) Fe and c) all N atoms, Mulliken spin population (b, d, e, f) as measure of unpaired spin on b) Fe, d) N (sum of all nitrogen atoms), e) P (sum of all porphin plane atoms without nitrogen atoms), f) P+N (sum of all porphin atoms with nitrogen atoms) and g) isomer shift. TOF values were calculated for overpotentials of 0.7 and 0.8 V.

Figure S9: Gibbs free enthalpies of reaction for different reaction steps vs. TOF. Trendlines (linear regressions) were added as grey ($\eta = 0.7$ V) and black ($\eta = 0.8$ V) lines if R² exceeded 0.6.

Continued - Figure S9: Gibbs free enthalpies of reaction for different reaction steps vs. TOF. Trendlines (linear regressions) were added as grey ($\eta = 0.7$ V) and black ($\eta = 0.8$ V) lines if R² exceeded 0.6.

Figure S10: Properties of calculated Fe(I) vs. TOF. Mulliken charge on a) Fe and c) all N atoms, Mulliken spin population (b, d, e, f) as measure of unpaired spin on b) Fe, d) N (sum of all nitrogen atoms), e) P (sum of all porphin plane atoms without nitrogen atoms), f) P+N (sum of all porphin atoms with nitrogen atoms) and g) isomer shift. TOF values were calculated for overpotentials of 0.7 and 0.8 V.

Figure S11: Difference values Fe(II) - Fe(I) for various properties vs. TOF. a) Correlation with charge on Fe. b), c) Correlation with Mulliken spin population as a measure of unpaired spin on Fe (b) and sum of N and all porphin plane atoms (c). d) Correlation with the calculated isomer shift.

*) lowest spin state for all exept 3

Figure S12: Orbital occupation scheme for intermediates of the HER cycle.

Figure S13: Structures of HER intermediates exemplarily shown for complex 3. The nomenclature for the labels gives the formal oxidation state of Fe in roman numbers (I-III) as well as axial ligands that are either coordinated to Fe (-H/-Cl/-H₂O) or to one of the porphyrinic N atoms (-NH/-NHOH). In the case of 3(I)-OH-NH, OH is coordinated to Fe while H is coordinated to N. Fe is depicted in orange, N in blue, O in red, H in white and C in light grey. H atoms in CH groups are omitted for clarity.

Figure S14: Relaxed surface scan for OH bond breaking step (reaction VIII in Table S6) for 1-5.

Figure S15: Relaxed surface scan for H migration (reaction X in Table S6) for 1, 2, 4 and 5; the scan terminated for 1 and 5 at 1.65 Å due to SCF failure.

Figure S16: Scheme of simplified PhX vibrations for assignment of vibrational modes.

Figure S17: Mass spectra of the porphyrin complexes a) 2 TPP(CN)₄-⁵⁷FeCl, b) 3 TPP-⁵⁷FeCl and c) 5 TPP(CH)₄-⁵⁷FeCl.

Continued - Figure S17: Mass spectra of the porphyrin complexes d) 6 TPP(CH)₁₂-⁵⁷FeCl.

– Supplementary Tables –

2	2	3		5		6		Mode	
pPD	OS	pPDC)S	pPDOS		pPDOS		description	
Frequency (cm ⁻¹)	Intensity (a.u.)								
26	0.26	26	0.13	23	0.26	27	0.11	lattice modes	
		69	0.08					lattice modes	
112	0.17	117	0.15	107	0.24	106	0.11	γ_9 (doming)	
		195	0.06	172	0.06				
202	0.72	225	1.00	197	0.16	189	0.31		
233	0.83			215	0.83	222	0.15		
246	1.00	258	0.07	224	1.00	243	0.11		
				260	0.86	265	1.00		
300	0.77	291	0.72	298	0.29	313	0.04		
				350	0.25				
366	0.33	387	0.29	366	0.60	363	0.21	Fe-Cl stretch	
402	0.12					373	0.18		
420	0.19	407	0.14	426	0.12	422	0.13	ν_{50}	

Table S1: NRVS experimental frequencies and interpretation for complexes 2,3,5 and 6.

 Table S2: Predicted NRVS modes for complexes 2,3,5 and 6, simplified description and assignment. P designates the porphin plane, PhX the substituted aryl ring (see Figure S16 for assignment of phenyl vibrational modes) and oop an out-of-plane mode.

		Complex	2		
pPDOS	5	Mode	e description		Assignment
Frequency (cm-1)	Intensity (a.u.)	Р	PhX	CI	
6.3	0.979	oop wagging			
12.6	0.018	oop wagging			
18.8	0.120	in-plane	bending		
25.5	0.144	in-plane	bending		
26.8	0.347	doming/rocking	rotating (1)		
32.1	0.067	in-plane	bending		
33.1	0.010	oop tilting	rotating (1)		
36.0	0.013	oop tilting	rotating (1)	bending	
63.6	0.012	oop tilting	rotating (1)	bending	
84.8	0.231	оор	CN bending	bending	
91.5	0.210	оор	CN bending rotating (1)	bending	
94.1	0.226	oop doming	rotating (1)		γ_9 (doming)
117.9	0.028	oop tilting	bending		
120.5	0.019	oop tilting	bending		
121.1	0.062	oop doming	bending		γ_9 (doming)
125.2	0.019	оор	bending		
127.9	0.034	оор	bending		
172.8	0.014	oop twisting	rotating (2) CN bending		
191.9	0.030	asym. in-plane stretch	translation		
198.2	0.215	in-plane translation	translation		
201.5	0.280	in-plane translation	translation	bending	
208.1	0.078	oop doming	rotating (1)		γ_6 (inverse doming)
226.0	0.299	asym. oop	rotating (2) CN bending	bending	
235.0	0.030	asym. oop	rotating (2) CN bending	bending	
244.1	0.389	asym. in-plane Fe-N stretch + oop			
245.0	0.135	asym. in-plane Fe-N stretch + oop			
245.9	0.164	asym. in-plane Fe-N stretch + oop		bending	
259.6	0.011	oop inverse doming	rotating (2)		γ_6 (inverse doming)
296.8	0.139	asym. in-plane Fe-N stretch	tilting		
302.8	0.126	asym. in-plane Fe-N stretch	tilting		
335.3	0.329			stretching	Fe-Cl stretch
341.6	0.012	oop twisting	rotating (2)		
384.7	0.010	sym. in-plane Fe-N stretch			ν_8 (breathing)
425.1	0.013	in-plane	twisting		ν_{50}
426.2	0.011	in-plane	twisting		ν_{50}

Complex 3									
pPDOS	6	Mode	edescription		Assignment				
Frequency (cm ⁻¹)	Intensity (a.u.)	Р	PhX	CI					
30.2	0.222	oop wagging	rotating (1)						
33.9	0.165	oop wagging	rotating (1)						
47.0	0.042	oop wagging	rotating (1)						
53.7	0.061	in plane	bending						
56.7	0.061	in plane	bending						
58.6	0.007	оор	rotating (1)						
79.1	0.014	oop tilting	rotating (1)	bending					
84.0	0.023	oop tilting	rotating (1)	bending					
95.8	0.033	oop tilting	rotating (2)						
104.0	0.557	oop doming			γ_9 (doming)				
116.5	0.008	oop tilting	rotating (2)						
153.4	0.008	oop twisting	rotating (2)						
191.1	0.028	asym. in-plane stretch	translation						
198.5	0.036	asym. in-plane stretch	translation						
203.8	0.009	sym. in-plane stretch	translation						
218.5	0.210	asym. in-plane Fe-N stretch	translation tilting	bending					
221.3	0.511	asym. in-plane Fe-N stretch	translation tilting	bending					
221.7	0.058	оор	translation tilting	bending					
224.3	0.183	asym. in plane stretch + oop	translation	bending					
228.6	0.146	asym. in plane stretch + oop	tilting	bending					
236.7	0.027	oop doming	tilting		γ_6 (inverse doming)				
240.7	0.094	Asym. oop	rotating (2)	bending					
265.9	0.009	oop doming	rotating (2)		γ_6 (inverse doming)				
286.6	0.181	asym. in-plane Fe-N stretch	tilting						
292.5	0.023	oop twisting							
293.5	0.118	asym. in-plane Fe-N stretch		bending					
298.0	0.006	in-plane rotating	tilting						
324.5	0.017	oop twisting	rotating (2)						
328.5	0.274			stretching	Fe-Cl stretch				
391.8	0.009	sym. in-plane stretch			ν_8 (breathing)				
409.2	0.013	asym. in-plane Fe-N stretch	twisting		$ u_{50} $				
411.6	0.013	asym. in-plane Fe-N stretch	twisting		ν_{50}				
432.5	0.007	in-plane	twisting						
442.6	0.006	in-plane	twisting						
447.5	0.006	in-plane	stretching						

Complex 5								
pPDOS		Mode	e description		Assignment			
Frequency (cm-1)	Intensity	Р	PhX	CI				
13.2	0.241		bending					
21.8	0.457	oop wagging	Rotating (1)					
22.9	0.331	oop wagging	CH ₃ rotating					
25.4	0.126	oop wagging	rotating (1)					
37.2	0.028	oop tilting	rotating (1) bending	bending				
38.9	0.024	oop tilting	rotating (1) bending	bending				
48.6	0.014	in-plane rotating	bending CH₃ bending					
62.5	0.012	oop tilting	rotating (1)	bending				
76.6	0.007		CH ₃ rotating					
78.2	0.007		CH ₃ rotating					
92.5	0.484	oop doming	rotating (2)		γ_9 (doming)			
93.9	0.312	oop doming	rotating (2)		γ_9 (doming)			
102.9	0.053	oop tilting	rotating (1)					
114.3	0.007	asym. in-plane stretch	translation					
144.9	0.011	оор	bending					
148.2	0.007	оор	bending					
156.7	0.027	oop tilting	bending					
159.4	0.033	оор	bending					
161.7	0.029	in-plane + oop	tilting					
184.5	0.032	asym. in-plane stretch + oop	translation					
189.4	0.060	asym. in-plane stretch + oop	translation					
198.5	0.010	oop doming	rotating (2)		γ_6 (inverse doming)			
207.5	0.084	asym. in-plane stretch + oop	translation	bending				
210.2	0.330	asym. in plane stretch + oop	translation	bending				
213.7	0.635	asym. in-plane stretch + oop		bending				
225.6	0.202	asym. in-plane stretch + oop		bending				
232.9	0.036	oop doming	rotating (2)		γ_6 (inverse doming)			
253.4	0.016	oop doming	rotating (2)		γ_6 (inverse doming)			
260.3	0.458	asym. in-plane Fe-N stretch + oop						
269.1	0.301	asym. in-plane Fe-N stretch + oop	tilting					
292.5	0.027	oop twisting	CH ₃ bending					
296.1	0.017	oop twisting	CH ₃ bending					
328.4	0.402			stretching	Fe-Cl stretch			
335.9	0.015		tilting	stretching	Fe-Cl stretch			
342.7	0.046	asym. in-plane Fe-N stretch	tilting					
345.9	0.040	asym. in-plane Fe-N stretch	tilting					
389.7	0.013	sym. in-plane Fe-N stretch			v_8 (breathing)			
419.5	0.008	in-plane	twisting		ν_{50}			
420.3	0.010	in-plane	twisting		ν_{50}			
431.2	0.007	in-plane	twisting					

Complex 6									
pPDOS	6	Mode	edescription		Assignment				
Frequency (cm ⁻¹)	Intensity (a.u.)	Р	PhX	CI					
40.6	0.074		bending						
42.1	0.037	oop wagging	rotating (1)						
71.0	0.016	oop wagging	rotating (2)						
74.9	0.040	oop tilting	rotating (2)	bending					
78.7	0.020		CH ₃ rotating						
81.8	0.014	oop tilting	CH ₃ rotating	bending					
89.9	0.465	oop doming	bending		γ_9 (doming)				
100.9	0.019	(in-plane)	tilting						
104.9	0.269	asym. in-plane stretch + oop	translation						
106.5	0.102	(in-plane)	tilting	(bending)					
106.8	0.045	(in-plane)	tilting	(bending)					
160.9	0.045	oop doming	rotating (2) CH₃ rotating		γ_6 (inverse doming)				
176.1	0.014	(in-plane)	CH ₃ rotating						
182.0	0.173	asym. in-plane stretch	translation CH ₃ rotating						
184.1	0.231	asym. in-plane stretch	translation CH ₃ rotating						
185.5	0.008	(asym. in-plane stretch)	CH ₃ rotating						
186.9	0.013	(asym. in-plane stretch)	CH ₃ rotating						
188.7	0.042	(asym. in-plane stretch)	CH ₃ rotating						
189.9	0.011	(asym. in-plane stretch)	CH ₃ rotating						
198.0	0.010	asym. in-plane stretch + oop	tilting CH₃ rotating						
199.5	0.011	(asym. in-plane stretch + oop)	tilting						
200.7	0.010	(asym. in-plane stretch + oop)	tilting						
213.6	0.052	oop tilting	rotating (2)	bending					
216.8	0.123	oop tilting	rotating (2)	bending					
233.3	0.069	oop doming	rotating (2)		γ_6 (inverse doming)				
257.9	0.574	asym. in-plane stretch	translation tilting	bending					
263.9	0.557	asym. in-plane stretch	translation tilting	bending					
302.7	0.015	oop twisting	CH ₃ bending						
303.6	0.017	oop twisting	CH ₃ bending						
333.5	0.353			stretching	Fe-CI stretch				
364.0	0.032	asym. in-plane Fe-N stretch	tilting						
366.4	0.032	asym. in-plane Fe-N stretch	tilting						
397.6	0.013	sym. in-plane Fe-N stretch			ν_8 (breathing)				
423.9	0.021	in-plane	stretching		ν_{50}				
427.3	0.024	in-plane	stretching		ν_{50}				

Parameter	Unit	1	2	3	4	5	6
Abbreviation		TPP(F) ₂₀ - FeCl	TPP(CN) ₄ - FeCl	TPP-FeCl	TPP(OMe) ₄ - FeCl	TPP(Me)₄-FeCl	TPP(Me) ₁₂ -FeCl
E _{0.5} (P ^{0/+} in DCM)	V vs Fc/Fc ⁺	-	0.833	0.666	0.526	0.585	0.603
E _{0.5} (P ^{0/+} in DCM)	V vs RHE	-	1.574	1.407	1.266	1.326	1.344
E₀.₅ (Fe ^{⊮/⊪} in DCM)	V vs Fc/Fc ⁺	-0.582	-0.682	-0.791	-0.812	-0.811	-
E₀.₅ (Fe ^{⊮/⊪} in DCM)	V vs RHE	0.159	0.059	-0.051	-0.071	-0.071	-
E₀.₅ (Fe ^{/⊪} in DCM)	V vs Fc/Fc ⁺	-1.263	-1.443	-1.618	-1.571	-1.567	-
E₀.₅ (Fe ^{//I} in DCM)	V vs RHE	-0.522	-0.702	-0.877	-0.831	-0.827	-
E (LUMO)	eV	4.34	4.23	4.15	4.14	4.12	4.01
E (HOMO)	eV	5.62	5.65	5.39	5.26	5.30	5.33
E (band gap)	eV	1.28	1.41	1.25	1.13	1.19	1.32
E _{0.5} (Fe ^{II/III} in 0.1 M KOH)	V vs RHE	0.448	0.388	0.299	0.285	0.282	0.275
E _{0.5} (Fe ^{⊪/⊪} in 0.1 M H₂SO₄)	V vs RHE	0.341	0.296	0.187	0.153	0.143	0.139
TOF _{0.7 V} (in 0.1 M KOH)	S ⁻¹	0.634	0.702	1.00	0.880	1.28	1.84
TOF _{0.8 V} (in 0.1 M KOH)	S ⁻¹	1.19	1.18	1.68	1.92	2.55	4.03
n _{Fe-EC}	nmol cm ⁻²	58.30	78.56	50.16	46.59	25.99	14.18
N _{Fe-theo} .	nmol cm ⁻²	244.91	279.72	295.49	276.63	286.23	269.56
Contacting efficiency	%	23.8	28.1	17.0	16.8	9.1	5.3
XPS N 1s	eV	399.06	398.66	398.26	398.23	398.29	398.27

Table S3: Overview of experimentally obtained values: redox potentials in DCM, HOMO/LUMO energies, redox potentials in KOH and H_2SO_4 and turnover frequencies in KOH.

Table S4: Overview of all calculated structures sorted by substituent 1-6. Name, charge C, multiplicity M, electronic energies obtained with TPSS and OLYP in Eh, relative electronic energy E_{rel} in kcal mol⁻¹, Mulliken spin population (MSP) on Fe and, if applicable, identification of any negative frequencies.

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	E _{rel} (OLYP)	MSP(Fe)	
	0	2	-5.11 cm ⁻¹ a)	-5621.8151	-5621.9507	14.4	1.17	
1(III)-CI	0	4	-3.37 cm ⁻¹ a)	-5621.8254	-5621.9724	0.8	2.72	
	0	6	-10.04 cm ⁻¹ a)	-5621.8097	-5621.9737	0.0	4.12	
	1	2		-5161.3206	-5161.4807	38.1	0.62	
1(III)	1	4		-5161.3710	-5161.5415	0.0	2.86	
	1	6		-5161.3109	-5161.4809	38.0	2.92	
	0	1	b)	-5161.5054	-5161.6550	33.3	0.00	
1(II)	0	3	-2.45 cm ⁻¹ a) c)	-5161.5496	-5161.7081	0.0	2.35	
	0	5	b)	-5161.5269	-5161.6870	13.2	3.81	
40	-1	2		-5161.6843	-5161.8337	0.0	2.10	
1(1)	-1	4	-13.40 cm ⁻¹ a) c)	-5161.6668	-5161.8161	11.0	2.40	
	0	2	-2.75 cm ⁻¹ a)	-5162.1283	-5162.2705	0.0	1.24	
1(III)-H	0	4	-29.14 cm ⁻¹ d), -5.46 cm ⁻¹ a)	-5162.0840	-5162.2143	35.3	2.21	
	0	6		no g	eometry found			
	0	1	-5.64 cm ⁻¹ a) c)	-5238.0255	-5238.1332	15.6	0.00	
1(II)-H₂O	0	3		-5238.0389	-5238.1580	0.0	2.35	
	0	5		-5238.0172	-5238.1192	24.4	2.93	
	-1	2		no geometry	/ found, H ₂ O deta	ched		
1(I)-H₂O	-1	4	-3.38 cm ⁻¹ d)	-5238.1545	-5238.2626	9.8	2.38	
	-1	6	-15.27 cm ⁻¹ e), -11.96 cm ⁻¹ a) e) c)	-5238.1349	-5238.2501	17.7	3.79	
	-1	2	-9.16 cm ⁻¹ a) d)	-5238.1268	-5238.2368	26.0	2.22	
1(I)-FeOH-NH	-1	4		no g	eometry found			
	-1	6		-5238.1163	-5238.2340	27.8	3.67	
	-1	2		-5238.1641	-5238.2783	0.0	2.07	
	-1	4		no g	eometry found			
	0	2	-11.14 cm ⁻¹ a) d)	-5162.1134	-5162.2657	3.0	1.98	
1(III)-NH	0	4	-11.98 cm ⁻¹ a) d)	-5162.108	-5162.2589	7.3	2.47	
	0	6		no geometry found				

a) porphyrin plane bending

a) population participating bending
b) geometry with many negative frequencies, not further evaluated but shown for completeness.
c) PhX rotation
d) PhX bending
e) H₂O bending

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	E _{rel} (OLYP)	MSP(Fe)
	0	2		-4005.2205	-4005.9056	14.2	1.22
2(III)-CI	0	4		-4005.2313	-4005.9272	0.6	2.74
	0	6	-7.56 cm ⁻¹ a)	-4005.2150	-4005.9281	0.0	4.11
	1	2	b)	-3544.7351	-3545.4437	35.0	0.64
2(111)	1	4	-6.94 cm ⁻¹ a)	-3544.7805	-3545.4995	0.0	2.86
	1	6	b)	-3544.7492	no S	CF convergen	ce
	0	1	-6.59 cm ⁻¹ a)	-3544.9067	-3545.6058	33.5	0.00
2(II)	0	3		-3544.9515	-3545.6591	0.0	2.34
	0	5		-3544.9288	-3545.6211	23.9	2.87
2(1)	-1	2		-3545.0800	-3545.7793	0.0	2.11
2(1)	-1	4	-5.06 cm ⁻¹ a)	-3545.0643	-3545.7640	9.6	2.40
	0	2	-6.64 cm ⁻¹ a)	-3545.5315	-3546.2229	0.0	1.23
2(III)-H	0	4		-3545.4871	-3546.1799	27.0	1.94
	0	6	-7.68 cm ⁻¹ a)	-3545.4210	-3546.1133	68.8	2.04
	0	1	-6.99 cm ⁻¹ a) f)	-3621.4259	-3622.0832	16.0	0.00
2(II)-H ₂ O	0	3	-5.94 cm ⁻¹ a) d)	-3621.4403	-3622.1086	0.0	2.35
	0	5	-3.84 cm ⁻¹ a) d)	-3621.4199	-3622.0700	24.2	2.99
	-1	2		no geometry	/ found, H ₂ O deta	ched	
2(I)-H ₂ O	-1	4	-12.74 cm ⁻¹ a) d)	-3621.5523	-3622.2114	9.1	2.38
	-1	6		no g	eometry found		
	-1	2		-3621.5196	-3622.1820	27.6	2.20
2(I)-FeOH-NH	-1	4		no geometry	/ found, H ₂ O deta	ched	
	-1	6	-23.15 cm ⁻¹ a) g)	-3621.5150	-3622.1841	26.2	3.67
	-1	2		-3621.5611	-3622.2259	0.0	2.08
2(1)-NHOH	-1	4		-3621.5522	-3622.2134	7.8	2.34
	0	2	-11.46 cm ⁻¹ c)	-3545.5097	-3546.2133	6.0	1.89
2(III)-NH	0	4	-10.62 cm ⁻¹ d)	-3545.4971	-3546.2075	9.7	2.44
	0	6	b)	-3545.4745	-3546.1802	26.8	3.75

a) porphyrin plane bending
b) geometry with many negative frequencies, not further evaluated but shown for completeness.
c) PhX rotation
d) PhX bending
f) H₂O rotating
g) OH bending

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	E _{rel} (OLYP)	MSP(Fe)
	0	2	-3.09 cm ⁻¹ a)	-3636.1758	-3636.8572	14.1	1.20
3(III)-CI	0	4		-3636.1866	-3636.8759	2.4	2.67
	0	6		-3636.1700	-3636.8797	0.0	4.07
	1	2	b)	-3175.6978	-3176.4353	15.7	2.24
3(III)	1	4	-15.29 cm ⁻¹ a)	-3175.7382	-3176.4603	0.0	2.86
	1	6	-13.77 cm ⁻¹ a)	-3175.7086	-3176.4037	35.5	2.96
	0	1	-5.94 cm ⁻¹ a)	-3175.8594	-3176.5624	33.5	0.00
3(II)	0	3		-3175.9045	-3176.6158	0.0	2.33
	0	5	b)	-3175.8813	-3176.5648	32.0	2.87
	-1	2		-3176.0274	-3176.7308	0.0	2.06
3(1)	-1	4		-3176.0077	-3176.7126	11.4	2.40
	0	2		-3176.4854	-3177.1803	0.0	1.22
3(III)-H	0	4	-21.81 cm ⁻¹ a)	-3176.4576	-3177.1224	36.3	2.24
	0	6	b)	-3176.3972	-3177.0517	80.7	2.32
	0	1		-3252.3771	-3253.0388	16.1	0.00
3(II)-H ₂ O	0	3		-3252.3926	-3253.0644	0.0	2.33
	0	5		-3252.3716	-3253.0234	25.7	2.99
	-1	2		no geometry	y found, H ₂ O deta	ched	
3(I)-H ₂ O	-1	4	-60.74 cm ⁻¹ f)	-3252.4894	-3253.1580	12.5	2.42
	-1	6		no g	eometry found		
	-1	2		-3252.4685	-3253.1367	25.9	2.17
3(I)-FeOH-NH	-1	4		no geometry	y found, H ₂ O deta	ched	
	-1	6		-3252.4427	-3253.1099	42.8	2.88
	-1	2		-3252.5086	-3253.1780	0.0	2.02
3(1)-NHOH	-1	4		-3252.4969	-3253.1595	11.6	2.38
	0	2		-3176.4623	-3177.1701	6.4	1.85
3(III)-NH	0	4		-3176.4527	-3177.1652	9.5	2.39
	0	6		-3176.4296	-3177.1503	18.8	3.79

a) porphyrin plane bending
b) geometry with many negative frequencies, not further evaluated but shown for completeness.
f) H₂O rotating

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	E _{rel} (OLYP)	MSP(Fe)	
	0	2		-4094.3842	-4094.9851	13.5	1.30	
4(III)-CI	0	4	-13.85 cm ⁻¹ a)	-4094.3950	-4095.0065	0.1	2.75	
	0	6	-10.79 cm ⁻¹ a)	-4094.3782	-4095.0066	0.0	4.10	
	1	2	-18.18 cm ⁻¹ d)	-18.18 cm ⁻¹ d) -3633.9168 no SCF convergence				
4(III)	1	4	-40.32 cm ⁻¹ h)	-3633.9493	-3634.5808	0.0	2.71	
	1	6	b)	-3633.9215	-3634.5164	40.4	3.10	
	0	1		-3634.0676	-3634.6775	35.7	0.00	
4(II)	0	3	-23.29 cm ⁻¹ a) d)	-3634.1115	-3634.7345	0.0	2.33	
	0	5	-22.22 cm ⁻¹ a) d)	-3634.0709	-3634.6942	25.3	2.62	
40	-1	2	-9.48 cm ⁻¹ a)	-3634.2324	-3634.8485	0.0	2.04	
4(1)	-1	4	-23.90 cm ⁻¹ a)	-3634.2209	-3634.8293	12.0	2.39	
	0	2		-3634.6928	-3635.2999	0.0	1.22	
4(III)-H	0	4	-63.11 cm ⁻¹ a)	-3634.6450	-3635.2424	36.1	2.27	
	0	6	b)	-3634.6476	-3635.2015	61.8	3.32	
	0	1	-17.63 cm ⁻¹ a) d)	-3710.5844	-3711.1579	16.0	0.00	
4(II)-H ₂ O	0	3	-15.10 cm ⁻¹ a) d) -9.63 cm ⁻¹ a) d)	-3710.5995	-3711.1834	0.0	2.33	
	0	5		no g	eometry found			
	-1	2		no geometry	y found, H ₂ O deta	ched		
4(I)-H ₂ O	-1	4		no geometry	y found, H ₂ O deta	ched		
	-1	6		no g	eometry found			
	-1	2	-13.40 cm ⁻¹ a) d)	-3710.6730	-3711.2535	26.5	2.16	
4(I)-FeOH-NH	-1	4		no g	eometry found			
	-1	6		-3710.6592	-3711.2521	27.4	3.90	
	-1	2		-3710.7141	-3711.2957	0.0	2.01	
4(1)-NHOH	-1	4	-28.09 cm ⁻¹ d)	-3710.7023	-3711.2765	12.1	2.38	
	0	2		-3634.6679	-3635.2871	8.1	1.82	
4(III)-NH	0	4		-3634.6541	-3635.2811	11.8	2.41	
	0	6		no g	eometry found			

a) porphyrin plane bending
b) geometry with many negative frequencies, not further evaluated but shown for completeness.
d) PhX bending
h) CH₃OH bending

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	E _{rel} (OLYP)	MSP(Fe)
	0	2	-43.33 cm ⁻¹ i), -40.16 cm ⁻¹ i), -34.38 cm ⁻¹ i)	-3793.3758	-3794.1021	13.8	1.27
5(III)-CI	0	4		-3793.3863	-3794.1235	0.4	2.75
	0	6	-29.43 cm ⁻¹ i)	-3793.3699	-3794.1241	0.0	4.11
	1	2	-32.15; cm ⁻¹ i), -1.58 cm ⁻¹ a)	-3332.9030	no S	CF convergen	ce
5(III)	1	4	i) j)	-3332.9389	-3333.6989	0.0	2.87
	1	6	-45.08 cm ⁻¹ i)	-3332.9102	-3333.6438	34.6	2.96
	0	1	b)	-3333.0586	-3333.7999	33.3	0.00
5(II)	0	3	-40.94 cm ⁻¹ i), -38.50 cm ⁻¹ i), -34.57 cm ⁻¹ i)	-3333.1039	-3333.8530	0.0	2.33
	0	5	b)	-3333.0626	-3333.8121	25.7	2.66
540	-1	2	-14.68 cm ⁻¹ i)	-3333.2258	-3333.9671	0.0	2.05
5(1)	-1	4	-24.36 cm ⁻¹ i)	-3333.2049	-3333.9474	12.3	2.38
	0	2	-29.23 cm ⁻¹ i)	-3333.6850	-3334.4178	0.0	1.22
5(III)-H	0	4	-166.62 cm⁻¹ a), -11.21 cm⁻¹ i)	-3333.6374	-3334.3724	28.5	1.95
	0	6		-3333.5974	-3334.3479	43.8	3.81
	0	1	-33.12 cm ⁻¹ i), -30.09 , cm ⁻¹ i), -28.61 cm ⁻¹ i)	-3409.5768	-3410.2760	16.1	0.00
5(II)-H ₂ O	0	3	-20.03 cm ⁻¹ i)	-3409.5919	-3410.3017	0.0	2.33
	0	5	-31.64 cm ⁻¹ i), -25.57 cm ⁻¹ i)	-3409.5708	-3410.2602	26.0	3.00
	-1	2		no geometry	/ found, H ₂ O deta	ched	
5(I)-H ₂ O	-1	4	-27.51 cm ⁻¹ i)	-3409.6875	-3410.3940	12.9	2.42
	-1	6	-24.92 cm ⁻¹ i), -2.57 cm ⁻¹ a) d) e)	-3409.6721	-3410.3814	20.8	3.79
	-1	2		-3409.6728	-3410.3742	25.3	2.18
5(I)-FeOH-NH	-1	4		no geometry	/ found, H ₂ O deta	ched	
	-1	6		-3409.6613	-3410.3755	24.4	3.88
	-1	2		-3409.7072	-3410.4145	0.0	2.02
	-1	4	-58.89 cm ⁻¹ i)	-3409.6954	-3410.3957	11.8	2.37
	0	2	-33.63, cm ⁻¹ i), -29.45 cm ⁻¹ a) c), -19.31 cm ⁻¹ i)	-3333.6685	-3334.4105	4.6	1.94
5(III)-NH	0	4	-40.64 cm ⁻¹ i)	-3333.6540	-3334.3992	11.7	2.38
	0	6		no g	eometry found		

a) porphyrin plane bending
b) geometry with many negative frequencies, not further evaluated but shown for completeness.
c) PhX rotation
d) PhX bending
e) H₂O bending
i) CH₃ rotation
j) geometry with many negative frequencies

Name	С	м	Comment	FSPE(TPSS)	FSPE(OLYP)	Erel(OLYP)	MSP(Fe)
	0	2	-26.67 cm ⁻¹ d)	-4107.7838	-4108.5493	14.8	1.20
6(III)-CI	0	4	-33.32 cm ⁻¹ d)	-4107.7936	-4108.5713	1.1	2.73
	0	6	-13.42 cm ⁻¹ i)	-4107.7778	-4108.5730	0.0	4.12
	1	2	-33.54 cm ⁻¹ i)	-3647.3315	-3648.0902	35.9	0.64
6(III)	1	4		-3647.3450	-3648.1473	0.0	2.87
	1	6		no g	eometry found		
	0 1 no geometry found						
6(II)	0	3	-30.52 cm ⁻¹ i)	-3647.5124	-3648.3029	0.0	2.33
	0	5		-3647.4883	-3648.2506	32.8	2.95
6(1)	-1	2	-12.82 cm ⁻¹ i)	-3647.6329	-3648.4141	0.0	2.04
6(1)	-1	4	-18.85 cm ⁻¹ d) i)	-3647.6111	-3648.3941	12.6	2.39
	0	2		-3648.0936	-3648.8676	0.0	1.24
6(III)-H	0	4	-39.89 cm ⁻¹ i), -1.81 cm ⁻¹ a)	-3648.0652	-3648.8085	37.1	2.25
	0	6	-26.94 cm ⁻¹ c), -21.65 cm ⁻¹ i)	-3648.0475	-3648.7929	46.9	4.03
	0	1	-27.16 cm ⁻¹ c)	-3723.9844	-3724.7235	15.3	0.00
6(II)-H ₂ O	0	3	-6.13 cm ⁻¹ a) d) f)	-3723.9996	-3724.7479	0.0	2.33
	0	5	-8.33 cm ⁻¹ a) c)	-3723.9760	-3724.7055	26.6	2.92
	-1	2		no geometry	y found, H ₂ O deta	ched	
6(I)-H ₂ O	-1	4		no geometry	y found, H ₂ O deta	ched	
	-1	6	b)	-3724.0746	no S	CF convergend	e
	-1	2		no geometry	y found, H ₂ O deta	ched	
6(I)-FeOH-NH	-1	4		no geometry	y found, H ₂ O deta	ched	
	-1	6		-3724.0630	-3724.8151	27.9	3.85
	-1	2		-3724.1150	-3724.8596	0.0	2.00
6(I)-NHOH	-1	4	-19.36 cm ⁻¹ c)	-3724.1013	-3724.8403	12.1	2.34
	0	2		-3648.0744	-3648.8550	7.9	1.86
6(III)-NH	0	4		-3648.0677	-3648.8471	12.9	2.31
	0	6	b)	-3648.0352	no S	CF convergence	ce

a) porphyrin plane bending
b) geometry with many negative frequencies, not further evaluated, only shown for completeness.
c) PhX rotation
d) PhX bending
f) H₂O rotating
i) CH₃ rotation

Table S5: Mulliken spin populations of OLYP single point calculations for all calculated structures sorted by substituent 1-6. Charge C, multiplicity M, axial ligand L (sum over all atoms if there is more than one atom), nitrogen atoms N (sum), P porphin (sum of all atoms in porphin plane) and substituted aryl rest PhX (sum).

Name	С	м	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)
	0	2	1.17	0.02	-0.18	-0.01	0.01
1(III)-CI	0	4	2.72	0.29	-0.20	0.18	0.01
	0	6	4.12	0.30	0.32	0.26	0.01
	1	2	0.62		0.08	0.24	0.06
1(III)	1	4	2.86		-0.18	0.29	0.03
	1	6	2.92		0.23	1.69	0.16
	0	1	0.00		0.00	0.00	0.00
1(II)	0	3	2.35		-0.24	-0.11	0.01
	0	5	3.81		-0.06	0.24	0.01
400	-1	2	2.10		-0.25	-0.81	-0.04
1(1)	-1	4	2.40		-0.13	0.63	0.10
	0	2	1.24		-0.14	0.02	-0.01
1(III)-H	0	4	2.21		-0.14	1.08	0.04
	0	6		r	no geometry fo	und	
	0	1	0.00	0.00	0.00	0.00	0.00
1(II)-H ₂ O	0	3	2.35	0.04	-0.23	-0.12	-0.04
	0	5	2.93	0.06	-0.11	1.08	0.04
	-1	2		no geom	etry found, H ₂	O detached	
1(I)-H ₂ O	-1	4	2.38	0.03	-0.13	0.57	0.15
	-1	6	3.79	0.03	0.07	0.97	0.13
	-1	2	2.22	0.11	-0.23	-1.05	-0.04
1(I)-FeOH-NH	-1	4		r	no geometry fo	und	
	-1	6	3.67	0.14	0.05	1.04	0.11
	-1	2	2.07	0.00	-0.24	-0.80	-0.04
	-1	4		r	no geometry fo	und	
	0	2	1.98	-0.01	-0.21	-0.72	-0.04
1(III)-NH	0	4	2.47	0.00	-0.18	0.73	-0.02
	0	6		r	no geometry fo	und	

Name	С	м	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)			
	0	2	1.22	0.02	-0.20	-0.04	0.00			
2(III)-CI	0	4	2.74	0.27	-0.19	0.18	0.01			
	0	6	4.11	0.28	0.33	0.27	0.02			
	1	2	0.64		0.06	0.23	0.07			
2(111)	1	4	2.86		-0.17	0.28	0.03			
	1	6		no SCF convergence						
	0	1 0.00 0.00 0.00								
2(II)	0	3	2.34		-0.24	-0.10	0.00			
	0	5	2.87		-0.08	1.00	0.21			
2(1)	-1	2	2.11		-0.24	-0.78	-0.09			
2(1)	-1	4	2.40		-0.15	0.49	0.26			
0		2	1.23	-0.10	-0.14	0.02	0.00			
2(III)-H	0	4	1.94	-0.13	-0.04	1.07	0.16			
	0	6	2.04	-0.14	-0.01	2.74	0.37			
	0	1	0.00	0.00	0.00	0.00	0.00			
2(II)-H ₂ O	0	3	2.35	0.03	-0.23	-0.18	0.03			
	0	5	2.99	0.00	0.00	0.00	0.00			
	-1	2		no geom	netry found, H ₂	O detached				
2(I)-H ₂ O	-1	4	2.38	0.03	-0.16	0.43	0.31			
	-1	6		r	no geometry fo	und				
	-1	2	2.20	0.11	-0.23	-0.99	-0.09			
2(I)-FeOH-NH	-1	4		no geom	netry found, H ₂ 0	O detached				
	-1	6	3.67	0.14	0.03	0.92	0.25			
2(1)-NHOH	-1	2	2.08	0.00	-0.23	-0.77	-0.09			
2(1)-111011	-1	4	2.34	0.00	-0.17	0.52	0.31			
	0	2	1.89	-0.02	-0.20	-0.62	-0.05			
2(III)-NH	0	4	2.44	0.00	-0.19	0.70	0.06			
	0	6	3.75	0.00	0.08	1.01	0.16			

Name	С	м	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)
	0	2	1.20	0.03	-0.17	-0.06	0.00
3(III)-CI	0	4	2.67	0.35	-0.16	0.13	0.01
	0	6	4.07	0.34	0.36	0.21	0.02
	1	2	2.24		-0.44	-0.63	-0.17
3(III)	1	4	2.86		-0.17	0.28	0.03
	1	6	2.96		0.18	1.57	0.29
	0	1	0.00		0.00	0.00	0.00
3(II)	0	3	2.33		-0.24	-0.09	0.01
	0	5	2.87		-0.10	1.15	0.08
2/1)	-1	2	2.06		-0.25	-0.76	-0.05
3(1)	-1	4	2.40		-0.12	0.67	0.05
	0	2	1.22	-0.10	-0.14	0.02	0.00
3(III)-H	0	4	2.24	-0.16	-0.16	1.02	0.06
	0	6	2.32	-0.14	-0.06	2.67	0.21
	0	1	0.00	0.00	0.00	0.00	0.00
3(II)-H ₂ O	0	3	2.33	0.03	-0.23	-0.10	-0.04
	0	5	2.99	0.05	-0.11	0.95	0.11
	-1	2		no geom	etry found, H ₂	O detached	
3(I)-H ₂ O	-1	4	2.42	0.03	-0.10	0.53	0.12
	-1	6		r	o geometry fo	und	
	-1	2	2.17	0.10	-0.23	-1.00	-0.03
3(I)-FeOH-NH	-1	4		no geom	etry found, H ₂	O detached	
	-1	6	2.88	0.20	-0.02	1.79	0.16
	-1	2	2.02	0.00	-0.24	-0.74	-0.04
3(1)-NHOH	-1	4	2.38	0.00	-0.13	0.63	0.12
	0	2	1.85	-0.03	-0.20	-0.59	-0.03
3(III)-NH	0	4	2.39	0.00	-0.18	0.78	0.02
	0	6	3.79	0.00	0.09	1.08	0.05

Name	С	м	Fe	Σ(L)	Σ(N)	Σ(Ρ)	Σ(PhX)
	0	2	1.30	0.02	-0.23	-0.06	-0.03
4(III)-CI	0	4	2.75	0.25	-0.18	0.18	0.00
	0	6	4.10	0.26	0.34	0.29	0.01
	1	2			0.00	0.00	0.00
4(III)	1	4	2.71		-0.14	0.34	0.08
	1	6	3.10		0.07	1.46	0.37
	0	1	0.00		0.00	0.00	0.00
4(II)	0	3	2.33		-0.24	-0.08	0.00
	0	5	2.62		0.03	1.22	0.13
4(1)	-1	2	2.04		-0.25	-0.77	-0.02
4(1)	-1	4	2.39		-0.13	0.69	0.05
	0	2	1.22	-0.10	-0.14	0.02	0.00
4(III)-H	0	4	2.27	-0.13	-0.17	1.02	0.02
	0	6	3.32	-0.24	0.19	1.47	0.26
	0	1	0.00	0.00	0.00	0.00	0.00
4(II)-H ₂ O	0	3	2.33	0.03	-0.23	-0.13	0.00
	0	5		r	no geometry fo	und	
	-1	2		no geom	netry found, H ₂	O detached	
4(I)-H ₂ O	-1	4		no geom	netry found, H ₂	O detached	
	-1	6		r	no geometry fo	und	
	-1	2	2.16	0.10	-0.23	-1.02	-0.01
4(I)-FeOH-NH	-1	4		r	no geometry fo	und	
	-1	6	3.90	0.15	0.14	0.78	0.02
	-1	2	2.01	0.00	-0.24	-0.75	-0.02
4(1)-111011	-1	4	2.38	0.00	-0.13	0.69	0.05
	0	2	1.82	-0.03	-0.20	-0.58	-0.01
4(III)-NH	0	4	2.41	0.00	-0.18	0.76	0.01
	0	6		r	no geometry fo	und	

Name	С	м	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)
	0	2	1.27	0.02	-0.22	-0.06	0.00
5(III)-CI	0	4	2.75	0.25	-0.19	0.18	0.01
	0	6	4.11	0.26 0.34		0.28	0.02
	1	2		nc	SCF converg	ence	
5(111)	1	4	2.87		-0.17	0.28	0.03
	1	6	2.96		0.16	1.52	0.35
	0	1	0.00		0.00	0.00	0.00
5(II)	0	3	2.33		-0.24	-0.09	0.01
	0	5	2.66		0.02	1.19	0.13
5(1)	-1	2	2.05		-0.25	-0.75	-0.05
5(I)	-1	4	2.38		-0.13	0.69	0.06
	0	2	1.22	-0.10	-0.14	0.02	0.00
5(III)-H	0	4	1.95	-0.13	-0.02	1.11	0.09
	0	6	3.81	0.03	0.12	0.98	0.05
	0	1	0.00	0.00	0.00	0.00	0.00
5(II)-H ₂ O	0	3	2.33	0.03	-0.23	-0.16	0.03
	0	5	3.00	0.05	-0.10	0.94	0.11
	-1	2		no geom	etry found, H ₂	O detached	
5(I)-H ₂ O	-1	4	2.42	0.03	-0.10	0.54	0.11
	-1	6	3.79	0.03	0.10	0.95	0.13
	-1	2	2.18	0.10	-0.24	-0.97	-0.07
5(I)-FeOH-NH	-1	4		O detached			
	-1	6	3.88	0.14	0.17	0.71	0.09
5(1)-NHOH	-1	2	2.02	0.00	-0.24	-0.74	-0.04
	-1	4	2.37	0.00	-0.13	0.63	0.12
	0	2	1.94	-0.01	-0.22	-0.67	-0.04
5(III)-NH	0	4	2.38	0.01	-0.15	0.65	0.11
	0	6		r	no geometry fo	und	

Name	С	м	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)			
	0	2	1.20	0.03	-0.22	-0.02	0.01			
6(III)-CI	0	4	2.73	0.27	-0.19	0.19	0.00			
	0	6	4.12	0.27	0.34	0.27	0.01			
	1	2	0.64		-0.01	0.36	0.01			
6(III)	1	4	2.87		-0.19	0.29	0.03			
	1	6	no geometry found							
	0	1		r	no geometry fo	und				
6(II)	0	3	2.33		-0.25	-0.08	0.00			
	0	5	2.95		-0.10	1.05	0.10			
6(1)	-1	2	2.04	-0.04						
0(1)	-1	4	2.39		-0.12	0.72	0.01			
	0	2	1.24	-0.10	-0.15	0.03	-0.01			
6(III)-H	0	4	2.25	-0.16	-0.16	0.97	0.09			
	0	6	4.03	-0.01	0.12	0.75	0.12			
	0	1	0.00	0.00	0.00	0.00	0.00			
6(II)-H ₂ O	0	3	2.33	0.03	-0.24	-0.08	-0.04			
	0	5	2.92	0.05	-0.08	1.08	0.03			
	-1	2		no georr	etry found, H ₂	O detached				
6(I)-H ₂ O	-1	4		no georr	etry found, H ₂	O detached				
	-1	6		nc	SCF converg	ence				
	-1	2		no georr	etry found, H ₂	O detached				
6(I)-FeOH-NH	-1	4		no georr	etry found, H ₂	O detached				
	-1	6	3.85	0.13	0.18	0.82	0.02			
	-1	2	2.00	0.00	-0.25	-0.71	-0.04			
0(1)-1111011	-1	4	2.34	0.01	-0.12	0.82	-0.04			
	0	2	1.86	-0.02	-0.21	-0.60	-0.03			
6(III)-NH	0	4	2.31	0.00	-0.18	0.84	0.03			
	0	6		nc	SCF converg	ence				

Table S6: Gib	bs free enthal	pies of reaction	is I-X.	Corrected	Gibbs	enthalpies	of formation of
reactants and	products ΔG in E	Eh and Gibbs fre	e entha	alpy of rea	ction Δ	₁G in eV.	

Fe(III)-CI → Fe(III) + CI ⁻									
Complex	Δ <i>G</i> (Fe(III)-CI) / Eh	Δ <i>G</i> (Fe(III)) / Eh		∆ <i>G</i> (Cl ⁻) / Eh		Δ _r G / eV			
1	-5621.6348	-5161.2004		-460.3921		1.1510			
2	-4005.4197	-3544.9875			1.0911				
3	-3636.3644	-3175.9340		1.0408					
4	-4094.3673	-3633.9370		-460.3921		1.0382			
5	-3793.5015	-3333.0721		-460.3921		1.0153			
6	-4107.7511	-3647.3234		-460.3921		0.9695			
			Fe(III) + e ⁻ → Fe(I	I)					
Complex	Δ <i>G</i> (Fe(III)) / Eh	Δ <i>G</i> (Fe(II)) / Eh	Δ _r G / eV	FSPE(OLYP) Fe(III) / Eh	FSPE(OLYP) Fe(II) / Eh	ΔFSPE(OLYP) / eV			
1	-5161.2004	-5161.3651	-4.4814	-5161.5415	-5161.7081	-4.5331			
2	-3544.9875	-3545.1479	-4.3655	-3545.4995	-3545.6591	-4.3440			
3	-3175.9340	-3176.0881	-4.1911	-3176.4603	-3176.6158	-4.2315			
4	-3633.9370	-3634.0908	-4.1853	-3634.5808	-3634.7345	-4.1811			
5	-3333.0721	-3333.2256	-4.1773	-3333.6989	-3333.8530	-4.1931			
6	-3647.3234	-3647.4771	-4.1821	-3648.1473	-3648.3029	-4.2336			
	·	•	Fe(II) + e ⁻ → Fe(I)					
Complex	Δ <i>G</i> (Fe(II)) / Eh	Δ <i>G</i> (Fe(l)) / Eh	$\Delta_{\rm r}G$ / eV	FSPE(OLYP) Fe(II) / Eh	FSPE(OLYP) Fe(l) / Eh	ΔFSPE(OLYP) / eV			
1	-5161.3651	-5161.4947	-3.5253	-5161.7081	-5161.8337	-3.4176			
2	-3545.1479	-3545.2693	-3.3028	-3545.6591	-3545.7793	-3.2708			
3	-3176.0881	-3176.2066	-3.2249	-3176.6158	-3176.7308	-3.1296			
4	-3634.0908	-3634.2062	-3.1379	-3634.7345	-3634.8485	-3.1015			
5	-3333.2256	-3333.3431	-3.1980	-3333.8530	-3333.9671	-3.1051			
6	-3647.4771	-3647.5888	-3.0406	-3648.3029	-3648.4141	-3.0249			
			Fe(I) + H₂O → F	e(III)-H + OH					
Complex	Δ <i>G</i> (Fe(I)) / Eh	∆ <i>G</i> (H₂O) / Eh	Δ <i>G</i> (Fe(III)-H) / Fh	Δ <i>G</i> (OH ⁻) / Eh	Δ _r G	∂/eV			
1	-5161.4947	-76.4491	-5161.9208	-75.9496	1.9	9968			
2	-3545.2693	-76.4491	-3545.7028	-75.9496	1.7	7961			
3	-3176.2066	-76.4491	-3176.6464	-75.9496	1.6	6233			
4	-3634.2062	-76.4491	-3634.6516	-75.9496	1.4	4703			
5	-3333.3431	-76.4491	-3333.7848	-75.9496	1.5	5739			
6	-3647.5888	-76.4491	-3648.0351	-75.9496	1.4	1491			
L	1								

$Fe(II) + H_2O \rightarrow Fe(II)-H_2O$										
Complex	Δ <i>G</i> (Fe(II)) / Eh	Δ <i>G</i> (H₂O) / Eh	Δ <i>G</i> (Fe(II)-H₂O) / Eh	$\Delta_r G / eV$						
1	-5161.3651	-76.4491	-5237.7964	0.4852						
2	-3545.1479	-76.4491	-3621.5756	0.5854						
3	-3176.0881	-76.4491	-3252.5186	0.5062						
4	-3634.0908	-76.4491	-3710.5192	0.5670						
5	-3333.2256	-76.4491	-3409.6554	0.5269						
6	-3647.4771	-76.4491	-3723.9006	0.6980						
	F	Fe(I) + H₂O → Fe(I)-H₂O								
Complex	Δ <i>G</i> (Fe(l)) / Eh	ΔG(H₂O) / Eh	ΔG(Fe(I)-H₂O) / Eh	$\Delta_r G / eV$						
1	-5161.4947	-76.4491	-5237.9050	1.0568						
2	-3545.2693	-76.4491	-3621.6828	0.9690						
3	-3176.2066	-76.4491	-3252.6153	1.0999						
4	-3634.2062	-76.4491								
5	-3333.3431	-76.4491	-3409.7519	1.0998						
6	-3647.5888	-76.4491								
Fe(I) + H₂O → Fe(I)-NHOH										
Complex	Δ <i>G</i> (Fe(I)) / Eh	$\Delta G(H_2O) / Eh$	Δ <i>G</i> (Fe(I)-NHOH) / Eh	$\Delta_r G / eV$						
1	-5161.4947	-76.4491	-5237.9192	0.6689						
2	-3545.2693	-76.4491	-3621.6973	0.5754						
3	-3176.2066	-76.4491	-3252.6343	0.5832						
4	-3634.2062	-76.4491	-3710.6359	0.5273						
5	-3333.3431	-76.4491	-3409.7719	0.5538						
6	-3647.5888	-76.4491	-3724.0151	0.6217						
	Fe(I)-	NHOH → Fe(I)OH-NH (M=	=6)							
Complex	Δ <i>G</i> (Fe(I)-NHOH) / Eh	Δ <i>G</i> (Fe(I)	OH-NH) / Eh	$\Delta_r G / eV$						
1	-5237.9192	-523	37.8786	1.1057						
2	-3621.6973	-362	21.6571	1.0950						
3	-3252.6343	-325	52.5935	1.1089						
4	-3710.6359	-371	0.5963	1.0790						
5	-3409.7719	-340	9.7366	0.9603						
6	-3724.0151	-372	23.9758	1.0693						
Complex	Δ <i>G</i> (Fe(I)OH-NH) / Eh	Δ <i>G</i> (Fe(III)-NH) / Eh	Δ <i>G</i> (OH ⁻) / Eh	Δ _r G/eV						
1	-5237.8786	-5161.9144	-75.9496	0.3958						
2	-3621.6571	-3545.6921	-75.9496	0.4166						
3	-3252.5935	-3176.6351	-75.9496	0.2388						
4	-3710.5963	-3634.6368	-75.9496	0.2685						
5	-3409.7366	-3333.7733	-75.9496	0.3740						
6	-3723.9758	-3648.0190	-75.9496	0.1959						
l										

Fe(III)-NH → Fe(III)-H									
Complex	ΔG(Fe(III)-NH) / Eh	Δ <i>G</i> (Fe(III)-NH) / Eh	$\Delta_{\rm r}G$ / eV						
1	-5161.9144	-5161.9208	-0.1736						
2	-3545.6921	-3545.7028	-0.2909						
3	-3176.6351	-3176.6464	-0.3077						
4	-3634.6368	-3634.6516	-0.4045						
5	-3333.7733	-3333.7848	-0.3142						
6	-3648.0190	-3648.0351	-0.4379						

Name	M	FeN₁	FeN₀	FeN ₂	FeN₄	ø(FeN)	Fe-L
1/111)Cl	6	2 090	2 091	2 090	2 091	2 091	2 223
2(111)-CI	6	2.000	2.001	2.000	2.001	2.001	2 235
3(III)-CI	6	2.091	2.092	2.091	2.092	2.092	2.242
4(III)-Cl	6	2.090	2.093	2.091	2.094	2.092	2.246
5(III)-CI	6	2.091	2.093	2.091	2.093	2.092	2.243
6(III)-CI	6	2.090	2.089	2.090	2.090	2.090	2.238
1(111)	4	1.965	1.965	1.964	1.964	1.965	
2(III)	4	1.960	1.960	1.960	1.960	1.960	
3(11)	4	1.959	1.958	1.959	1.959	1.959	
4(111)	4	1.955	1.956	1.956	1.956	1.956	
5(III)	4	1.959	1.958	1.958	1.958	1.958	
6(III)	4	1.964	1.964	1.964	1.964	1.964	
1(II)	3	1.991	1.987	1.991	1.987	1.989	
2(11)	3	1.988	1.983	1.988	1.983	1.986	
3(II)	3	1.987	1.982	1.987	1.982	1.985	
4(II)	3	1.979	1.984	1.979	1.984	1.982	
5(II)	3	1.986	1.981	1.986	1.981	1.984	
6(II)	3	1.991	1.987	1.991	1.986	1.989	
1(I)	2	1.981	1.979	1.985	1.988	1.983	
2(I)	2	1.975	1.975	1.974	1.975	1.975	
3(I)	2	1.977	1.977	1.977	1.977	1.977	
4(I)	2	1.971	1.972	1.972	1.972	1.972	
5(I)	2	1.976	1.976	1.976	1.976	1.976	
6(I)	2	1.982	1.981	1.982	1.981	1.982	
1(III)-H	2	1.984	1.983	1.979	1.978	1.981	1.481
2(III)-H	2	1.980	1.979	1.976	1.974	1.977	1.484
3(III)-H	2	1.979	1.975	1.974	1.973	1.975	1.486
4(III)-H	2	1.971	1.974	1.976	1.969	1.973	1.487
5(III)-H	2	1.981	1.976	1.973	1.971	1.975	1.486
6(III)-H	2	1.977	1.977	1.982	1.982	1.980	1.487
1(II)-H₂O	3	2.002	2.003	1.997	1.998	2.000	2.270
2(II)-H₂O	3	1.998	1.994	1.994	2.000	1.997	2.294
3(II)-H ₂ O	3	1.998	2.000	1.992	1.993	1.996	2.319
4(II)-H₂O	3	1.989	1.989	1.997	1.994	1.992	2.323
5(II)-H₂O	3	1.991	1.998	1.996	1.991	1.994	2.321
6(II)-H₂O	3	1.990	1.990	1.998	1.998	1.994	2.352
1(I)-H₂O	4	2.002	2.014	2.014	2.004	2.009	2.361
2(I)-H₂O	4	2.001	1.996	1.992	2.005	1.999	2.355
3(I)-H₂O	4	2.002	2.014	2.002	2.004	2.006	2.286
4(I)-H₂O	4		nc	o geometry	found, H ₂ O	detached	
5(I)-H₂O	4	2.002	2.014	2.001	2.004	2.005	2.290
6(I)-H₂O	4		no	o geometry	found, H ₂ O	detached	

Table S7: Selected bond lengths in Å for lowest lying spin states sorted by intermediate.

Name	М	FeN ₁	FeN ₂	FeN₃	FeN₄	ø(FeN)	N-H	0-Н	Fe-O
1(I)-NHOH	2	1.979	1.985	1.996	1.981	1.985	2.034	0.987/ 0.977	3.031
2(I)-NHOH	2	1.983	1.973	1.971	1.973	1.975	1.985	0.990/ 0.976	3.375
3(I)-NHOH	2	1.968	1.970	1.981	1.970	1.972	1.977	0.991/ 0.976	3.353
4(I)-NHOH	2	1.967	1.966	1.967	1.978	1.970	1.972	0.992/ 0.976	3.348
5(I)-NHOH	2	1.967	1.969	1.980	1.969	1.971	1.975	0.992/ 0.976	3.355
6(I)-NHOH	2	1.989	1.977	1.974	1.976	1.979	1.992	0.991/ 0.976	3.208
1(I)-FeOH-NH	2	1.983	2.184	1.980	1.940	2.022	1.091	1.582/ 0.976	2.003
2(I)-FeOH-NH	2	1.985	1.946	1.989	2.184	2.026	1.093	1.583/ 0.976	2.012
3(I)-FeOH-NH	2	1.986	2.179	1.982	1.938	2.021	1.090	1.592/ 0.976	2.032
4(I)-FeOH-NH	2	2.179	1.982	1.939	1.989	2.022	1.092	1.585/ 0.976	2.034
5(I)-FeOH-NH	2	1.924	1.972	2.159	1.972	2.007	1.083	1.608/ 0.976	2.041
6(I)-FeOH-NH	2				no	geometry four	nd		
1(I)-FeOH-NH	6	2.071	2.353	2.077	2.037	2.135	1.057	1.732/ 0.976	1.961
2(I)-FeOH-NH	6	2.083	2.040	2.077	2.362	2.141	1.050	1.777/ 0.976	1.959
3(I)-FeOH-NH	6	1.985	2.283	1.980	1.971	2.055	1.039	1.934/ 0.977	1.917
4(I)-FeOH-NH	6	2.327	2.084	2.025	2.084	2.130	1.053	1.846/ 0.975	1.972
5(I)-FeOH-NH	6	2.006	2.059	2.412	2.091	2.142	1.050	1.786/ 0.975	1.978
6(I)-FeOH-NH	6	2.436	2.082	2.003	2.061	2.146	1.048	1.804/ 0.975	1.967
1(III)-NH	2	1.963	2.095	1.963	1.951	1.993	1.050		
2(III)-NH	2	2.077	1.953	1.942	1.953	1.981	1.064		
3(III)-NH	2	1.952	1.952	2.078	1.952	1.984	1.067		
4(III)-NH	2	1.969	1.952	1.969	2.096	1.997	1.075		
5(III)-NH	2	2.098	1.973	1.956	1.974	2.000	1.046		
6(III)-NH	2	1.969	2.094	1.969	1.952	1.996	1.059		

			N-re-N (adjacent) N-re-N (opposite					isite)			N-Fe-L			
Name	М	N_1N_2	N_1N_4	N_2N_3	N_3N_4	ø	N_1N_3	N_2N_4	ø	N ₁	N ₂	N ₃	N ₄	ø
1(III)CI	6	87.1	87.1	87.0	87.1	87.0	153.6	153.9	153.8	103.2	103.1	103.2	103.1	103.1
2(III)-CI	6	87.0	87.0	87.0	87.0	87.0	153.7	153.6	153.7	103.1	103.3	103.1	103.1	103.2
3(III)-CI	6	87.0	87.0	87.0	87.0	87.0	153.2	153.7	153.4	103.4	103.2	103.4	103.1	103.3
4(III)-CI	6	87.0	86.8	86.9	87.0	86.9	152.6	153.6	153.1	103.6	103.1	103.7	103.3	103.4
5(III)-CI	6	86.9	87.0	87.0	86.9	86.9	153.0	153.6	153.3	103.5	103.2	103.5	103.2	103.3
6(III)-CI	6	86.8	86.8	86.8	86.8	86.8	152.9	152.8	152.8	103.6	103.6	103.5	103.6	103.6
1(III)	4	90.1	90.1	90.1	90.2	90.1	174.4	174.3	174.4					
2(III)	4	90.2	90.2	90.2	90.2	90.2	173.9	173.8	173.8					
3(III)	4	90.2	90.1	90.2	90.2	90.2	173.9	173.7	173.8					
4(III)	4	89.6	90.3	90.2	89.5	89.9	174.1	175.9	175.0					
5(III)	4	90.2	90.2	90.2	90.2	90.2	174.0	173.7	173.9					
6(III)	4	90.2	90.1	90.1	90.2	90.2	174.1	174.0	174.1					
1(II)	3	90.0	90.0	90.0	90.0	90.0	177.4	177.9	177.6					
2(II)	3	90.1	90.1	90.1	90.0	90.1	175.8	177.0	176.4					
3(II)	3	90.1	90.1	90.1	90.1	90.1	175.4	176.7	176.0					
4(II)	3	90.1	90.1	90.1	90.1	90.1	176.4	174.7	175.5					
5(II)	3	90.1	90.1	90.1	90.1	90.1	175.2	176.5	175.8					
6(II)	3	90.0	90.0	90.0	90.0	90.0	179.4	179.3	179.3					
1(I)	2	90.4	89.9	90.2	89.7	90.0	176.7	176.6	176.7					
2(I)	2	90.1	90.1	90.2	90.2	90.1	174.2	174.2	174.2					
3(I)	2	90.3	90.0	90.0	90.3	90.1	174.5	174.5	174.5					
4(I)	2	90.2	90.2	90.2	90.2	90.2	173.8	173.7	173.8					
5(I)	2	90.3	90.0	90.0	90.3	90.1	174.3	174.3	174.3					
6(I)	2	90.0	90.0	90.0	90.0	90.0	177.5	177.5	177.5					
1(III)-H	2	90.3	89.5	89.6	90.5	89.9	172.4	178.2	175.3	88.2	86.8	99.3	95.0	92.3
2(III)-H	2	90.2	89.5	89.6	90.4	89.9	170.9	178.5	174.7	88.8	87.1	100.3	94.4	92.6
3(III)-H	2	90.3	89.5	89.6	90.4	89.9	170.1	178.5	174.3	88.8	87.4	101.1	94.1	92.8
4(III)-H	2	89.6	90.4	90.1	89.6	89.9	169.5	178.5	174.0	101.3	87.6	89.2	93.8	93.0
5(III)-H	2	90.1	89.4	89.7	90.5	89.9	169.8	178.6	174.2	89.0	87.4	101.3	93.9	92.9
6(III)-H	2	90.4	89.5	89.5	90.1	89.9	174.5	174.6	174.6	97.8	97.6	87.7	87.7	92.7
1(II)-H₂O	3	90.5	89.3	89.3	90.6	89.9	173.8	176.9	175.3	90.1	89.0	96.1	94.2	
2(II)-H ₂ O	3	89.2	90.5	90.6	89.3	89.9	173.2	177.4	175.3	90.2	94.7	96.6	87.9	
3(II)-H ₂ O	3	90.5	89.3	89.4	90.6	89.9	173.1	178.0	175.5	88.8	87.3	98.1	94.7	
4(II)-H₂O	3	90.7	89.3	89.4	90.5	89.9	178.4	172.5	175.5	86.7	89.6	94.8	97.8	
5(II)-H₂O	3	89.3	90.7	90.5	89.3	89.9	172.8	178.1	175.4	97.5	87.1	89.6	94.8	
6(II)-H₂O	3	90.7	89.3	89.3	90.5	89.9	175.8	175.8	175.8	98.2	98.3	86.0	85.9	
1(I)-H₂O	4	89.8	90.3	90.0	89.7	89.9	174.7	177.5	176.1	84.9	96.8	100.3	85.7	
2(I)-H₂O	4	89.8	89.9	90.1	89.9	89.9	173.0	177.8	175.4	85.7	87.2	96.4	99.8	
3(I)-H₂O	4	89.8	90.0	89.8	90.0	89.9	1/2.2	1/6.8	1/4.5	93.7	95.3	94.1	88.0	
4(I)-H₂O	4	00.0	00.0	00.0	00.0	00.0	no geom		H_2O de	ached	oo -	05.0	04.0	
5(I)-H₂O	4	89.8	90.0	89.8	90.0	89.9	1/2.1	1/6.9	1/4.5	87.8	93.7	95.3	94.2	
ט(I)-H₂O	4						no geom	etry tound	i, H ₂ O de	lached				

Table S8: Selected bond angles (°) for lowest lying spin states sorted by intermediate.N-Fe-N (adjacent)N-Fe-N (opposite)N-Fe-L

			N-Fe	e-N (adja	acent)	N-Fe-N (opposite)								
Name	М	N_1N_2	N_1N_4	N_2N_3	N_3N_4	ø	N_1N_3	N_2N_4	ø	Fe- N-H₁	N-H₁- O	Fe- O-H₁	Fe-O- H₂	N- Fe-O
1(I)-NHOH	2	90.3	90.1	89.7	90.1	90.1	176.1	176.3	176.2	75.4	165.9	46.9	80.8	69.9
2(I)-NHOH	2	90.2	89.9	90.2	90.5	90.2	173.8	173.7	173.7	82.1	171.6	33.5	90.0	60.9
3(I)-NHOH	2	90.4	90.2	89.9	90.2	90.2	173.4	173.5	173.5	81.2	170.4	32.6	93.0	61.1
4(I)-NHOH	2	90.3	90.2	90.4	90.0	90.2	173.1	173.0	173.1	81.1	170.0	32.5	92.3	61.1
5(I)-NHOH	2	90.4	90.2	89.9	90.2	90.2	173.3	173.3	173.3	81.2	170.1	32.4	92.6	61.0
6(I)-NHOH	2	89.9	90.0	90.3	90.1	90.1	175.5	175.6	175.6	78.0	170.1	38.2	92.1	64.9
1(I)-FeOH-NH	2	87.8	91.9	88.2	91.8	89.9	175.4	172.2	173.8	65.6	151.4	66.6	104.0	76.4
2(I)-FeOH-NH	2	91.9	88.1	91.8	87.7	89.9	174.6	172.4	173.5	64.6	153.2	65.5	103.3	76.7
3(I)-FeOH-NH	2	87.7	91.9	88.1	91.8	89.9	174.8	171.8	173.3	64.8	153.7	64.8	102.8	76.7
4(I)-FeOH-NH	2	88.3	87.5	91.8	91.8	89.9	172.5	174.3	173.4	64.5	154.2	64.7	102.6	76.5
5(I)-FeOH-NH	2	91.8	91.8	88.0	88.3	90.0	169.9	176.3	173.1	66.9	151.2	65.2	102.8	76.8
6(I)-FeOH-NH	2						no	geometry	found					
1(I)-FeOH-NH	6	86.7	91.0	86.6	91.0	88.8	161.4	164.8	163.1	62.5	151.8	68.5	108.6	77.2
2(I)-FeOH-NH	6	90.9	86.7	91.0	86.7	88.8	161.7	164.4	163.1	63.1	150.3	68.5	108.1	78.1
3(I)-FeOH-NH	6	86.3	91.5	86.8	91.6	89.0	166.2	162.6	164.4	70.8	137.6	68.8	107.0	82.8
4(I)-FeOH-NH	6	85.2	84.9	92.3	91.0	88.3	162.0	157.7	159.9	61.7	151.7	64.8	107.6	81.4
5(I)-FeOH-NH	6	93.5	92.7	84.6	83.8	88.6	166.0	155.7	160.8	60.8	153.8	67.9	108.8	77.5
6(I)-FeOH-NH	6	83.3	83.7	92.6	92.5	88.0	161.6	153.3	157.4	57.9	156.9	66.7	107.9	78.1
1(III)-NH	2	88.7	91.5	88.7	91.5	90.1	173.8	176.2	175.0	73.0				
2(III)-NH	2	88.9	88.9	91.4	91.4	90.2	174.3	173.4	173.8	66.3				
3(III)-NH	2	91.3	91.3	88.9	88.9	90.1	176.2	172.5	174.4	65.1				
4(III)-NH	2	91.4	88.7	91.4	88.7	90.1	175.2	176.0	175.6	63.0				
5(III)-NH	2	88.8	88.6	91.3	91.3	90.0	179.2	177.4	178.3	75.7				
6(III)-NH	2	88.7	91.4	88.7	91.4	90.1	175.5	176.2	175.9	68.3				

Table S9: Selected dihedral angles for lowest lying spin states by intermediates in °. Smallest dihedral angle $C_1(P)-C_2(P)-C_1(PhX)-C_2(PhX)$ (see Figure S5) for each of four PhX groups per complex is reported.

Name	М	PhX ₁	PhX ₂	PhX₃	PhX₄	ø
1(III)CI	6	69.7	68.3	68.2	68.9	68.8
2(III)-CI	6	59.7	59.7	59.8	59.6	59.7
3(III)-CI	6	58.9	58.9	59.0	58.8	58.9
4(III)-CI	6	54.7	54.8	55.0	54.5	54.8
5(III)-CI	6	57.5	57.4	57.5	57.4	57.5
6(III)-CI	6	90.0	89.6	89.9	89.5	89.7
1(III)	4	67.2	67.7	67.9	66.8	67.4
2(111)	4	56.6	56.7	56.6	56.5	56.6
3(III)	4	55.7	55.8	55.7	55.6	55.7
4(11)	4	39.6	49.0	47.3	48.9	46.2
5(III)	4	54.5	54.2	54.2	54.4	54.3
6(III)	4	83.9	83.8	83.6	83.9	83.8
1(II)	3	70.6	69.9	69.3	70.3	70.0
2(11)	3	59.5	59.8	59.6	59.6	59.6
3(II)	3	59.6	59.9	59.7	59.8	59.7
4(II)	3	44.0	56.7	56.7	56.6	53.5
5(II)	3	58.6	58.6	58.5	58.7	58.6
6(II)	3	88.9	88.7	89.1	88.9	88.9
1(I)	2	69.7	69.4	69.0	69.8	69.5
2(I)	2	56.5	56.6	56.5	56.4	56.5
3(I)	2	59.8	58.9	59.9	58.8	59.3
4(I)	2	44.5	57.8	57.9	57.7	54.5
5(I)	2	59.0	58.3	59.0	58.1	58.6
6(I)	2	86.6	86.6	86.6	86.5	86.6
1(III)-H	2	70.4	69.3	70.1	70.5	70.1
2(III)-H	2	60.6	60.1	60.7	60.4	60.4
3(III)-H	2	60.1	59.6	60.3	60.1	60.0
4(III)-H	2	55.0	55.1	55.5	55.6	55.3
5(III)-H	2	58.7	58.4	59.1	58.7	58.8
6(III)-H	2	89.0	88.8	88.9	89.0	88.9

Name	М	PhX₁	PhX₂	PhX₃	PhX₄	ø
1(II)-H ₂ O	3	69.7	69.8	69.2	71.1	70.0
2(II)-H ₂ O	3	60.6	60.8	60.9	59.1	60.3
3(II)-H ₂ O	3	60.0	60.8	59.7	60.8	60.3
4(II)-H ₂ O	3	57.8	57.8	58.2	56.5	57.6
5(II)-H ₂ O	3	59.6	59.5	59.7	58.7	59.4
6(II)-H ₂ O	3	88.7	90.8	88.2	88.9	89.2
1(I)-H ₂ O	4	70.2	65.1	68.8	65.3	67.4
2(I)-H ₂ O	4	55.9	50.6	56.4	51.0	53.4
3(I)-H ₂ O	4	56.5	56.5	56.0	56.3	56.3
4(I)-H ₂ O	4		no geomet	ry found, H ₂ 0	O detached	
5(I)-H ₂ O	4	56.1	55.9	55.9	55.6	55.9
6(I)-H ₂ O	4		no geomet	ry found, H ₂ 0	O detached	
1(I)-NHOH	2	69.4	68.1	70.2	68.2	69.0
2(I)-NHOH	2	53.7	57.1	54.0	56.6	55.3
3(I)-NHOH	2	58.0	58.7	58.1	58.8	58.4
4(I)-NHOH	2	56.7	56.7	57.2	56.8	56.9
5(I)-NHOH	2	58.0	58.4	58.1	57.6	58.0
6(I)-NHOH	2	86.6	84.4	84.1	84.7	84.9
1(I)-FeOH-NH	2	70.9	67.2	66.9	72.0	69.3
2(I)-FeOH-NH	2	70.7	61.8	61.5	71.0	66.3
3(I)-FeOH-NH	2	65.4	76.9	77.5	65.3	71.3
4(I)-FeOH-NH	2	73.6	63.7	63.8	72.2	68.3
5(I)-FeOH-NH	2	57.5	57.7	53.9	53.7	55.7
6(I)-FeOH-NH	2		no	geometry for	und	
1(I)-FeOH-NH	6	69.5	68.6	63.4	63.0	66.1
2(I)-FeOH-NH	6	49.3	48.7	62.2	61.9	55.5
3(I)-FeOH-NH	6	67.8	67.9	50.7	50.7	59.3
4(I)-FeOH-NH	6	70.0	59.6	60.3	71.5	65.3
5(I)-FeOH-NH	6	53.5	50.8	49.8	49.3	50.8
6(I)-FeOH-NH	6	73.8	72.6	80.8	78.6	76.5
1(III)-NH	2	72.576	72.498	65.066	64.776	68.7
2(III)-NH	2	71.681	71.292	64.89	64.606	68.1
3(III)-NH	2	66.363	66.472	74.083	73.835	70.2
4(III)-NH	2	68.853	63.224	62.795	69.094	66.0
5(III)-NH	2	50.775	55.667	55.925	50.684	53.3
6(III)-NH	2	81.708	77.489	77.294	81.479	79.5

Table S10: Mulliken spin populations for lowest lying spin state sorted by intermediate. Multiplicity M, axial ligand L (sum if more than one atom), nitrogen atoms N (sum), P porphin (sum of all atoms in porphin plane) and substituted aryl rest PhX (sum).

	Μ	Fe	Σ(L)	Σ(Ν)	Σ(Ρ)	Σ(PhX)
1(III)CI	6	4.119	0.296	0.317	0.256	0.012
2(III)-CI	6	4.114	0.277	0.327	0.266	0.017
3(III)-CI	6	4.069	0.344	0.364	0.208	0.015
4(III)-CI	6	4.102	0.255	0.339	0.293	0.011
5(III)-CI	6	4.107	0.261	0.337	0.278	0.017
6(III)-CI	6	4.116	0.270	0.336	0.270	0.007
1(III)	4	2.861		-0.179	0.289	0.029
2(III)	4	2.860		-0.174	0.284	0.029
3(III)	4	2.863		-0.174	0.280	0.030
4(III)	4	2.714		-0.138	0.342	0.083
5(III)	4	2.866		-0.173	0.276	0.031
6(III)	4	2.869		-0.188	0.292	0.026
1(II)	3	2.345		-0.242	-0.109	0.006
2(II)	3	2.340		-0.242	-0.102	0.004
3(II)	3	2.332		-0.245	-0.093	0.006
4(II)	3	2.326		-0.243	-0.077	-0.005
5(II)	3	2.330		-0.244	-0.091	0.006
6(II)	3	2.332		-0.253	-0.083	0.003
1(I)	2	2.098		-0.247	-0.813	-0.038
2(I)	2	2.107		-0.242	-0.777	-0.088
3(I)	2	2.058		-0.251	-0.760	-0.048
4(I)	2	2.041		-0.251	-0.771	-0.019
5(I)	2	2.052		-0.251	-0.753	-0.049
6(I)	2	2.035		-0.264	-0.731	-0.041
1(III)-H	2	1.239	-0.102	-0.145	0.018	-0.011
2(III)-H	2	1.227	-0.099	-0.142	0.017	-0.004
3(III)-H	2	1.220	-0.097	-0.142	0.019	-0.001
4(III)-H	2	1.216	-0.096	-0.140	0.022	-0.003
5(III)-H	2	1.218	-0.096	-0.141	0.018	0.001
6(III)-H	2	1.238	-0.101	-0.151	0.030	-0.015
1(II)-H₂O	3	2.354	0.036	-0.231	-0.120	-0.038
2(II)-H ₂ O	3	2.348	0.033	-0.231	-0.176	0.026
3(II)-H₂O	3	2.334	0.031	-0.232	-0.098	-0.035
4(II)-H ₂ O	3	2.331	0.031	-0.230	-0.128	-0.003
5(II)-H₂O	3	2.333	0.031	-0.232	-0.160	0.028
6(II)-H ₂ O	3	2.327	0.029	-0.238	-0.078	-0.040
1 (I)-H ₂O	4	2.380	0.030	-0.127	0.571	0.146
2(I)-H ₂ O	4	2.381	0.029	-0.157	0.433	0.315
3(I)-H₂O	4	2.418	0.032	-0.099	0.533	0.117
4(I)-H₂O	4	nc	geometr	y found, H	I ₂ O detac	hed
5(I)-H₂O	4	2.416	0.031	-0.097	0.535	0.114
6(I)-H₂O	4	nc	geometr	y found, H	I ₂ O detac	hed

Name	М	Fe	0	H₁	H2	N ₁	N ₂	N ₃	N ₄	Σ(Ρ)	Σ(PhX)
1(I)-FeOH-NH	2	2.218	0.101	0.006	0.001	-0.058	-0.033	-0.055	-0.086	-1.053	-0.041
2(I)-FeOH-NH	2	2.201	0.100	0.005	0.001	-0.054	-0.085	-0.057	-0.030	-0.995	-0.086
3(I)-FeOH-NH	2	2.166	0.092	0.005	0.001	-0.058	-0.030	-0.056	-0.089	-0.996	-0.035
4(I)-FeOH-NH	2	2.161	0.091	0.005	0.001	-0.029	-0.055	-0.090	-0.058	-1.015	-0.010
5(I)-FeOH-NH	2	2.180	0.090	0.006	0.001	-0.086	-0.059	-0.035	-0.056	-0.968	-0.072
6(I)-FeOH-NH	2					no geon	netry found				
1(I)-FeOH-NH	6	3.668	0.127	0.005	0.004	0.055	-0.042	0.06	-0.020	1.037	0.106
2(I)-FeOH-NH	6	3.665	0.127	0.005	0.004	0.047	-0.018	0.042	-0.042	0.921	0.249
3(I)-FeOH-NH	6	2.876	0.187	0.006	0.003	-0.005	-0.013	-0.007	0.003	1.789	0.162
4(I)-FeOH-NH	6	3.904	0.143	0.003	0.003	0.029	0.003	0.096	0.015	0.782	0.022
5(I)-FeOH-NH	6	3.883	0.134	0.004	0.003	0.092	0.031	0.035	0.013	0.712	0.094
6(I)-FeOH-NH	6	3.851	0.131	0.002	0.002	-0.006	0.085	0.000	0.099	0.818	0.019
1(I)-NHOH	2	2.067	0.008	-0.003	0.000	-0.062	-0.061	-0.053	-0.063	-0.797	-0.037
2(I)-NHOH	2	2.085	0.004	-0.004	0.000	-0.052	-0.060	-0.059	-0.061	-0.766	-0.087
3(I)-NHOH	2	2.023	0.004	-0.004	0.000	-0.061	-0.063	-0.054	-0.062	-0.742	-0.041
4(I)-NHOH	2	2.011	0.004	-0.003	0.000	-0.062	-0.061	-0.063	-0.054	-0.755	-0.017
5(I)-NHOH	2	2.017	0.004	-0.004	0.000	-0.061	-0.063	-0.054	-0.062	-0.736	-0.041
6(I)-NHOH	2	2.003	0.005	-0.004	-0.001	-0.055	-0.066	-0.065	-0.066	-0.713	-0.038
1(III)-NH	2	1.977		-0.013		-0.064	-0.027	-0.064	-0.051	-0.721	-0.038
2(III)-NH	2	1.889		-0.025		-0.063	-0.053	-0.063	-0.021	-0.619	-0.046
3(III)-NH	2	1.849		-0.028		-0.063	-0.021	-0.063	-0.055	-0.592	-0.027
4(III)-NH	2	1.821		-0.033		-0.020	-0.063	-0.056	-0.064	-0.578	-0.008
5(III)-NH	2	1.937		-0.012		-0.052	-0.066	-0.033	-0.066	-0.672	-0.036
6(III)-NH	2	1.863		-0.022		-0.025	-0.064	-0.056	-0.064	-0.596	-0.035

Table S11: Calculated Mössbauer parameter for lowest lying spin state sorted by intermediate. Multiplicity M, final single point energy for B3LYP density functional FSPE(B3LYP) in Eh, Mulliken spin population (MSP) at iron ion, electron density at iron nucleus $\rho(0)$ in au⁻³, isomer shift δ_{iso} in mm s⁻¹ and quadrupole splitting ΔE_{Q} in mm s⁻¹.

Name	М	FSPE(B3LYP)	MSP(Fe)	<i>ρ</i> (0) / au⁻³	δ _{iso} / mm s ⁻¹	Δ <i>E</i> _Q / mm s ⁻¹
1(III)CI	6	-5621.0794	4.23	11816.705	0.487	0.396
2(III)-CI	6	-4005.1873	4.22	11816.680	0.499	0.405
3(III)-CI	6	-3636.0948	4.26	11816.753	0.463	0.806
4(III)-CI	6	-4094.3033	4.21	11816.649	0.515	0.402
5(III)-CI	6	-3793.4560	4.21	11816.659	0.510	0.394
6(III)-CI	6	-4107.9206	4.22	11816.672	0.503	0.345
1(III)	4	-5160.6972	3.01	11816.980	0.351	4.901
2(III)	4	-3544.8085	3.01	11817.001	0.340	4.953
3(III)	4	-3175.8512	3.01	11817.010	0.336	4.981
4(III)	4	-3633.9248	2.98	11817.055	0.313	4.513
5(III)	4	-3333.0802	3.01	11817.009	0.336	4.996
6(III)	4	-3647.5440	3.01	11817.003	0.340	4.933
1(II)	3	-5160.8771	2.19	11816.302	0.687	-3.307
2(II)	3	-3544.9814	2.19	11816.324	0.676	-3.338
3(II)	3	-3176.0202	2.19	11816.339	0.668	-3.356
4(II)	3	-3634.0947	2.19	11816.354	0.661	-3.375
5(II)	3	-3333.2478	2.19	11816.344	0.666	-3.363
6(II)	3	-3647.7131	2.20	11816.320	0.678	-3.351
1(I)	2	-5160.9923	2.16	11816.392	0.642	2.425
2(I)	2	-3545.0895	2.15	11816.434	0.621	2.491
3(I)	2	-3176.1234	2.12	11816.409	0.633	2.390
4(I)	2	-3634.1967	2.11	11816.434	0.621	2.422
5(I)	2	-3333.3501	2.11	11816.413	0.632	2.391
6(I)	2	-3647.8138	2.10	11816.376	0.650	2.319
1(III)-H	2	-5161.4372	1.21	11817.166	0.259	-2.436
2(III)-H	2	-3545.5428	1.21	11817.177	0.253	-2.467
3(III)-H	2	-3176.5823	1.20	11817.182	0.251	-2.480
4(III)-H	2	-3634.6573	1.20	11817.193	0.245	-2.509
5(III)-H	2	-3333.8101	1.20	11817.185	0.249	-2.499
6(III)-H	2	-3648.2756	1.22	11817.165	0.259	-2.353
1(II)-H₂O	3	-5237.3306	2.16	11816.173	0.751	-1.414
2(II)-H₂O	3	-3621.4344	2.16	11816.191	0.742	-1.399
3(II)-H₂O	3	-3252.4727	2.15	11816.205	0.735	-1.400
4(II)-H₂O	3	-3710.5472	2.15	11816.219	0.727	-1.405
5(II)-H₂O	3	-3409.7003	2.15	11816.212	0.731	-1.401
6(II)-H₂O	3	-3724.1638	2.16	11816.224	0.725	-1.391

1(I)-H₂O	4	-5237.4426	2.19	11816.183	0.746	-1.306
2(I)-H ₂ O	4	-3621.5406	2.18	11816.219	0.728	-1.329
3(I)-H ₂ O	4	-3252.5690	2.21	11816.175	0.749	-2.717
4(I)-H₂O	4		no geometry	found, H ₂ O detach	ed	
5(I)-H₂O	4	-3409.7954	2.21	11816.178	0.748	-2.731
6(I)-H ₂ O	4		no geometry	found, H ₂ O detach	ed	
1(I)-FeOH-NH	2	-5237.4012	0.12	11816.161	0.757	-1.846
2(I)-FeOH-NH	2	-3621.4987	0.12	11816.132	0.771	-1.840
3(I)-FeOH-NH	2	-3252.5343	0.13	11816.141	0.766	-1.903
4(I)-FeOH-NH	2	-3710.6072	0.13	11816.134	0.770	-1.896
5(I)-FeOH-NH	2	-3409.7632	0.13	11816.186	0.744	-2.012
6(I)-FeOH-NH	2		no ge	eometry found		
1(I)-FeOH-NH	6	-5237.4196	3.78	11815.766	0.952	4.099
2(I)-FeOH-NH	6	-3621.5202	3.77	11815.758	0.956	4.073
3(I)-FeOH-NH	6	-3252.5150	2.94	11816.759	0.460	2.406
4(I)-FeOH-NH	6	-3710.6233	3.80	11815.734	0.968	4.191
5(I)-FeOH-NH	6	-3409.7814	3.80	11815.789	0.941	4.122
6(I)-FeOH-NH	6	-3724.2400	3.78	11815.811	0.930	4.194
1(I)-NHOH	2	-5237.4389	2.12	11816.373	0.652	2.314
2(I)-NHOH	2	-3621.5373	2.12	11816.424	0.626	2.428
3(I)-NHOH	2	-3252.5721	2.08	11816.423	0.627	2.360
4(I)-NHOH	2	-3710.6455	2.07	11816.434	0.621	2.369
5(I)-NHOH	2	-3409.7990	2.07	11816.426	0.625	2.358
6(I)-NHOH	2	-3724.2632	2.06	11816.383	0.647	2.271
1(III)-NH	2	-5161.4353	1.98	11816.513	0.582	0.666
2(III)-NH	2	-3545.5228	1.99	11816.162	0.756	-3.050
3(III)-NH	2	-3176.5697	1.97	11816.494	0.591	0.823
4(III)-NH	2	-3634.6340	1.90	11816.137	0.768	-2.731
5(III)-NH	2	-3333.8063	1.94	11816.598	0.540	-0.767
6(III)-NH	2	-3648.2543	1.90	11816.245	0.715	-2.336

Table S12: Gibbs free enthalpies for lowest lying spin state sorted by intermediate. Final single point energies (FSPE) for TPSS and OLYP density functionals in Eh, standard enthalpy (ΔH), entropy (ΔS) and Gibbs free enthalpy (ΔG) of formation in Eh, corrected Gibbs free enthalpy of formation (ΔG_{corr}) in Eh, Gibbs enthalpy of reaction relative to fourfold coordinated Fe(III) species in Eh and in eV.

Name	М	FSPE(TPSS)	FSPE(OLYP)	ΔH	ΔS	ΔG	∆G _{corr}	Δ <i>G</i> – Δ <i>G</i> _{Fe(III)} / Eh	ΔG – ΔG _{Fe(III)} / eV
1(III)CI	6	-5621.8097	-5621.9737	-5621.3269	0.1440	-5621.4709	-5621.6348	-0.0423	-1.15
2(III)-CI	6	-4005.2150	-4005.9281	-4004.5856	0.1210	-4004.7066	-4005.4197	-0.0401	-1.09
3(III)-CI	6	-3636.1700	-3636.886	-3635.5404	0.1075	-3635.6479	-3636.3644	-0.0382	-1.04
4(III)-CI	6	-4094.3782	-4095.0066	-4093.6122	0.1266	-4093.7389	-4094.3673	-0.0382	-1.04
5(III)-CI	6	-3793.3699	-3794.1241	-3792.6257	0.1215	-3792.7472	-3793.5015	-0.0373	-1.02
6(III)-CI	6	-4107.7778	-4108.5730	-4106.8051	0.1509	-4106.9559	-4107.7511	-0.0356	-0.97
1(III)	4	-5161.3710	-5161.5415	-5160.8889	0.1410	-5161.0299	-5161.2004	0.0000	0.00
2(111)	4	-3544.7805	-3545.4995	-3544.1531	0.1155	-3544.2686	-3544.9875	0.0000	0.00
3(III)	4	-3175.7382	-3176.4603	-3175.1119	0.1001	-3175.2120	-3175.9340	0.0000	0.00
4(III)	4	-3633.9493	-3634.5808	-3633.1842	0.1213	-3633.3055	-3633.9370	0.0000	0.00
5(III)	4	-3332.9389	-3333.6989	-3332.2009	0.1112	-3332.3120	-3333.0721	0.0000	0.00
6(III)	4	-3647.3450	-3648.1473	-3646.3734	0.1477	-3646.5211	-3647.3234	0.0000	0.00
1(II)	3	-5161.5496	-5161.7081	-5161.0687	0.1379	-5161.2067	-5161.3651	-0.1647	-4.48
2(II)	3	-3544.9515	-3545.6591	-3544.3231	0.1172	-3544.4403	-3545.1479	-0.1604	-4.37
3(II)	3	-3175.9045	-3176.6158	-3175.2760	0.1008	-3175.3768	-3176.0881	-0.1540	-4.19
4(II)	3	-3634.1115	-3634.7345	-3633.3475	0.1203	-3633.4679	-3634.0908	-0.1538	-4.19
5(II)	3	-3333.1039	-3333.8530	-3332.3646	0.1118	-3332.4765	-3333.2256	-0.1535	-4.18
6(II)	3	-3647.5124	-3648.3029	-3646.5418	0.1448	-3646.6865	-3647.4771	-0.1537	-4.18
1(I)	2	-5161.6843	-5161.8337	-5161.2042	0.1411	-5161.3453	-5161.4947	-0.2942	-8.01
2(I)	2	-3545.0800	-3545.7793	-3544.4534	0.1166	-3544.5700	-3545.2693	-0.2818	-7.67
3(I)	2	-3176.0274	-3176.7308	-3175.4020	0.1012	-3175.5031	-3176.2066	-0.2725	-7.42
4(I)	2	-3634.2324	-3634.8485	-3633.4702	0.1199	-3633.5901	-3634.2062	-0.2691	-7.32
5(I)	2	-3333.2258	-3333.9671	-3332.4867	0.1151	-3332.6018	-3333.3431	-0.2710	-7.38
6(I)	2	-3647.6329	-3648.4141	-3646.6641	0.1436	-3646.8077	-3647.5888	-0.2654	-7.22
1(III)-H	2	-5162.1283	-5162.2705	-5161.6402	0.1384	-5161.7786	-5161.9208	-0.2209	-6.01
2(III)-H	2	-3545.5315	-3546.2229	-3544.8966	0.1148	-3545.0114	-3545.7028	-0.2158	-5.87
3(III)-H	2	-3176.4854	-3177.1803	-3175.8502	0.1013	-3175.9515	-3176.6464	-0.2129	-5.79
4(III)-H	2	-3634.6928	-3635.2999	-3633.9206	0.1238	-3634.0445	-3634.6516	-0.2151	-5.85
5(III)-H	2	-3333.6850	-3334.4178	-3332.9365	0.1155	-3333.0520	-3333.7848	-0.2132	-5.80
6(III)-H	2	-3648.0936	-3648.8676	-3647.1147	0.1463	-3647.2611	-3648.0351	-0.2122	-5.77
1(II)-H₂O	3	-5238.0389	-5238.1580	-5237.5308	0.1465	-5237.6773	-5237.7964	-0.1469	-4.00
2(II)-H ₂ O	3	-3621.4403	-3622.1086	-3620.7861	0.1210	-3620.9072	-3621.5756	-0.1389	-3.78
3(II)-H ₂ O	3	-3252.3926	-3253.0644	-3251.7386	0.1082	-3251.8468	-3252.5186	-0.1354	-3.68
4(II)-H ₂ O	3	-3710.5995	-3711.1834	-3709.8113	0.1239	-3709.9352	-3710.5192	-0.1330	-3.62
5(II)-H ₂ O	3	-3409.5919	-3410.3017	-3408.8240	0.1216	-3408.9456	-3409.6554	-0.1342	-3.65
6(II)-H ₂ O	3	-3723.9996	-3724.7479	-3723.0026	0.1497	-3723.1523	-3723.9006	-0.1280	-3.48

1(I)-H₂O	4	-5238.1545	-5238.2626	-5237.6511	0.1457	-5237.7968	-5237.9050	-0.2554	-6.95
2(I)-H ₂ O	4	-3621.5523	-3622.2114	-3620.9019	0.1218	-3621.0238	-3621.6828	-0.2462	-6.70
3(I)-H ₂ O	4	-3252.4894	-3253.1580	-3251.8392	0.1075	-3251.9467	-3252.6153	-0.2321	-6.32
4(I)-H ₂ O	4				•				
5(I)-H ₂ O	4	-3409.6875	-3410.3940	-3408.9226	0.1228	-3409.0453	-3409.7519	-0.2306	-6.28
6(I)-H ₂ O	4				•				
1(I)-FeOH-NH	2	-5238.1268	-5238.2368	-5237.6233	0.1410	-5237.7643	-5237.8742	-0.2247	-6.11
2(I)-FeOH-NH	2	-3621.5196	-3622.1820	-3620.8684	0.1213	-3620.9897	-3621.6521	-0.2154	-5.86
3(I)-FeOH-NH	2	-3252.4685	-3253.1367	-3251.8184	0.1068	-3251.9253	-3252.5935	-0.2104	-5.72
4(I)-FeOH-NH	2	-3710.6730	-3711.2535	-3709.8860	0.1255	-3710.0115	-3710.5920	-0.2058	-5.60
5(I)-FeOH-NH	2	-3409.6728	-3410.3742	-3408.9079	0.1210	-3409.0289	-3409.7303	-0.2091	-5.69
6(I)-FeOH-NH	2		1	•		L			
1(I)-FeOH-NH	6	-5238.1163	-5238.2340	-5237.6131	0.1477	-5237.7608	-5237.8786	-0.2290	-6.23
2(I)-FeOH-NH	6	-3621.5150	-3622.1841	-3620.8658	0.1221	-3620.9879	-3621.6571	-0.2204	-6.00
3(I)-FeOH-NH	6	-3252.4427	-3253.1099	-3251.7924	0.1075	-3251.8999	-3252.5671	-0.1840	-5.01
4(I)-FeOH-NH	6	-3710.6592	-3711.2535	-3709.8719	0.1301	-3710.0020	-3710.5963	-0.2101	-5.72
5(I)-FeOH-NH	6	-3409.6613	-3410.3755	-3408.8980	0.1244	-3409.0224	-3409.7366	-0.2154	-5.86
6(I)-FeOH-NH	6	-3724.0630	-3724.8151	-3723.0701	0.1535	-3723.2237	-3723.9758	-0.2033	-5.53
1(I)-NHOH	2	-5238.1641	-5238.2783	-5237.6592	0.1458	-5237.8050	-5237.9192	-0.2697	-7.34
2(I)-NHOH	2	-3621.5611	-3622.2259	-3620.9085	0.1240	-3621.0326	-3621.6973	-0.2607	-7.09
3(I)-NHOH	2	-3252.5086	-3253.1780	-3251.8571	0.1078	-3251.9649	-3252.6343	-0.2511	-6.83
4(I)-NHOH	2	-3710.7141	-3711.2957	-3709.9252	0.1291	-3710.0543	-3710.6359	-0.2497	-6.80
5(I)-NHOH	2	-3409.7072	-3410.4145	-3408.9411	0.1236	-3409.0647	-3409.7719	-0.2507	-6.82
6(I)-NHOH	2	-3724.1150	-3724.8596	-3723.1190	0.1516	-3723.2706	-3724.0151	-0.2426	-6.60
1(III)-NH	2	-5162.1134	-5162.2657	-5161.6232	0.1389	-5161.7621	-5161.9144	-0.2145	-5.84
2(III)-NH	2	-3545.5097	-3546.2133	-3544.8728	0.1157	-3544.9886	-3545.6921	-0.2051	-5.58
3(III)-NH	2	-3176.4623	-3177.1701	-3175.8250	0.1024	-3175.9274	-3176.6351	-0.2016	-5.49
4(III)-NH	2	-3634.6679	-3635.2871	-3633.8933	0.1243	-3634.0177	-3634.6368	-0.2002	-5.45
5(III)-NH	2	-3333.6685	-3334.4105	-3332.9194	0.1119	-3333.0313	-3333.7733	-0.2016	-5.49
6(III)-NH	2	-3648.0744	-3648.8550	-3647.0931	0.1453	-3647.2384	-3648.0190	-0.1961	-5.34

Table S13: Comparison of predicted and experimental Mössbauer parameters for Fe(III)CI complexes 1, 3 and 4.

	calc. (this work)			exp.			
Complex	ρ(0)	$\boldsymbol{\delta}_{iso}$	ΔE _Q	δ _{iso}	ΔE _Q	Т	Ref.
1	11816.7047	0.487	0.396	0.38	0.85	4.2 K	[1,2]
3	11816.7530	0.463	0.806	0.41	0.46	4.2 K	[2,3]
4	11816.6488	0.515	0.402	0.37	1.03	4.2 K	[1,2]

SI references

C. Maricondi, D. K. Straub and L. M. Epstein, *J. Am. Chem. Soc.* 94, 4157 (1972).
 D. Dolphin, The Porphyrins Volume IV: Physical Chemistry Part B, *Academic Press, Inc. (London)*, p. 441, 1979.
 M. A. Torréns, D. K. Straub and L. M. Epstein, *J. Am. Chem. Soc.* 94, 4162 (1972).