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Abstract

Sensitivity analysis enables powerful gradient-based mathematical programming

techniques in the optimization of electromechanical products with respect to

electromagnetic compatibility requirements. We present a sensitivity analysis

method based on finite element solutions of both a magnetoquasistatic system in

a tree-cotree gauge and an electrostatic system. A repeated application of the

adjoint method ensures a high computational efficiency, which is showcased in a

comparison with an earlier approach. Application examples provided are the

optimization of a noise filter and the sensitivity computation of a choke with dis-

persive magnetic core.
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1 | INTRODUCTION

Topology and shape optimizations are well established in state-of-the-art design workflows in mechanical engineering.1 It is
obvious that electromechanical products, especially those where space and performance are key, can also benefit greatly by
analogous topology or shape optimizations. Analysis of products with regards to electromagnetic compatibility requirements
is often performed in a combination of the electric circuit domain, governed by Kirchhoff's laws, and the electromagnetic
field domain, as described by Maxwell's equations. The connection between those domains is established by the extraction
of so called parasitic elements from the field domain that can be used as stand-in lumped parameters in circuit simulations.

Efficient gradient-based optimization algorithms can be facilitated by adjoint sensitivity computation methods. A
sensitivity analysis method for parasitic lumped elements was developed for applications in electromagnetic compatibil-
ity (EMC) by Schuhmacher et al.2 It utilizes the finite element (FE) method to extract parasitic resistances R, partial
inductances L, and capacitances C from a CAD model and computes their sensitivities dR=dpi, dL=dpi, and dC=dpi
with respect to a number of parameters pi of the finite element mesh (usually translations of either surface nodes or
faces of the mesh). These sensitivities can subsequently be used to calculate sensitivities dQ=dpi of a quantity of interest
Q¼Q R,L,Cð Þ with the chain rule,

dQ
dpi

¼ ∂Q
∂R

�dR
dpi

þ ∂Q
∂L

� dL
dpi

þ ∂Q
∂C

� dC
dpi

: ð1Þ
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An application of the method in the optimization of a pressure sensor3 attests to its merit.
To facilitate the efficient computation of the tens or hundreds of thousands of sensitivities required in industrial

applications, Schuhmacher et al. employ the adjoint method.4 Their approach, however, still suffers from performance
issues as it computes the inductive sensitivities dL=dpi in an indirect fashion, using Darwin's approximation to Max-
well's equations and a post-processing step to isolate the inductive from the capacitive behavior. Additionally, the
approach exhibits instability and accuracy issues. To resolve these drawbacks, we propose a revised approach for the
computation of inductive sensitivities based on the magnetoquasistatic (MQS) approximation in a tree-cotree gauge. It
is derived by applying the adjoint method multiple times in succession to the linear systems resulting from a FE dis-
cretization of the used systems of differential equations. In addition to resolving the performance, stability, and accuracy
problems of the Darwin approximation approach, it can also be used in a complex-valued form that allows for the
simultaneous computation of both the resistive and inductive sensitivities at a given frequency point.

Section 2 summarizes a FE-based parasitic resistance and inductance extraction approach, that we introduced in a
recent paper,5 and executes the FE discretization to arrive at the linear equation systems needed for the sensitivity anal-
ysis. Section 3 employs the adjoint method to derive efficient expressions for computation of both the inductive sensitiv-
ities dL=dpi and resistive sensitivities dR=dpi. Section 4 summarizes the electrostatic capacitance extraction and
capacitive sensitivity computation approach of Schuhmacher et al.,6 and extends it to the case of more than two conduc-
tors. Section 5 discusses several numerical results: The sensitivity analysis is employed to optimize a noise filter. The
complex-valued sensitivity computation is exemplified with the model of a coil that features a magnetic core with a dis-
persive complex permeability. And finally the advancements of our new MQS-based computation method of inductive
sensitivities are highlighted in a comparison with the original method of Schuhmacher et al., before Section 6 concludes
the paper.

2 | RESISTANCE AND INDUCTANCE EXTRACTION

2.1 | Field-theoretical model

A CAD model is given, providing the relative permittivity εr, relative reluctivity νr, and electric conductivity σ in the
computational domain Ω. The domain is divided into the conducting subdomain Ωc were σ>0 (and which can consist
of multiple disconnected conductors) and the non-conducting subdomain Ω0 ¼ΩnΩc. The boundary ∂Ω of the domain
is the unity of an electric boundary Γel and a magnetic boundary Γmag, ∂Ω¼Γel[Γmag.

To calculate an N-port impedance matrix Z, N numerical experiments are conducted, in each of which an electric
scalar potential ϕc is calculated for a specific source current density Js.

5 The subscript c of the scalar potential indicates
that it is a compensated potential for which any unwanted inductive influence of J s is de-embedded.

The field calculations consist of three steps: First the auxiliary field g is calculated by solving the boundary value
problem (BVP)

�divεr gradg¼�divJ s in Ω, ð2aÞ

g¼ 0 on Γel, ð2bÞ

n � εrg¼ 0 on Γmag: ð2cÞ

Here, divJs is the given divergence of the source current J s, which injects the current I0 at one terminal of port i and
extracts it again at the other one, and n denotes the normal on the boundary ∂Ω. The scalar field g is used both to pro-
duce the source current density with a gradient field ansatz, Js ¼ εrgradg, and to later eliminate the inductive influence
of J s in the computation of ϕc.

In a second step, Maxwell's equations are solved in the MQS approximation in a potential form. The magnetic flux
density and electric field strength are expressed with the magnetic vector potential A and the electric scalar potential ϕ
as B¼ curlA and E¼�jωA�gradϕ, respectively. The potentials can be determined with the BVP
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curlνcurlAþσ gradϕþ jωAð Þ¼ J s in Ω, ð3aÞ

�divσgradϕ� jωdivσA¼�divJ s in Ωc, ð3bÞ

n�A¼ 0 on Γel, ð3cÞ

n � εrA¼ 0 on Γmag: ð3dÞ

Here, (3a) is Ampère's law (in the MQS approximation without displacement current) and (3b) is the divergence of (3a),
which is equivalent to the continuity equation in absence of free charges. There are no boundary conditions on ∂Ω pro-
vided for ϕ as the electric scalar potential is restricted to the conducting subdomain Ωc.

Finally, the compensated scalar potential ϕc is calculated with

�divεrgradϕc ¼�divεr jωAþgradϕð Þþ jωμ0g in Ω, ð4aÞ

ϕc ¼ 0 on Γel, ð4bÞ

n � εrϕc ¼ 0 on Γmag: ð4cÞ

Here, μ0 denotes the vacuum permeability.
For an excitation term divJ ið Þ

s causing the current I0 to flow through port i, the element Zji of the impedance matrix
capturing the response in port j can be calculated from the compensated scalar potential ϕ ið Þ

c with the measurement
functional pj,

Zji ¼ pj ϕ ið Þ
c

� �
≔

1
I0A Tbð Þ

Z
Tb

ϕ ið Þ
c dS� 1

I0A Tað Þ
Z
Ta

ϕ ið Þ
c dS: ð5Þ

Here, Ta and Tb are the terminal surfaces of port j, and A Tað Þ and A Tbð Þ denote their respective surface areas. The
resistance and inductance matrices are given by R¼Re Zð Þ and L¼ Im Zð Þ=ω, respectively.

2.2 | Perfect electric conductor approach for inductance extraction

For many EMC applications, the main focus lies on the inductive (and capacitive) behavior at higher frequencies, and
it is sufficient to compute the inductance matrix L and its sensitivities. A very efficient way to compute L directly with
a smaller, real-valued BVP is by modeling all conductors as perfect electric conductors (PECs). This approach gives the
external inductance, which is the frequency-independent part of the inductance associated with the magnetic vector
potential A outside the conductors and the only part that remains in the high frequency limit.7 In the PEC case, A has
to be calculated in the non-conducting domain while the electric scalar potential ϕ vanishes. Hence, (3) collapses to the
real-valued BVP

curlνcurlA¼ J s in Ω0, ð6aÞ

n�A¼ 0 on ∂Ωc[Γel, ð6bÞ

n� εrA¼ 0 on Γmag: ð6cÞ

The conductors are considered with the boundary condition (6b). A frequency-independent compensated scalar poten-
tial ϑ can be calculated from A with
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�divεr gradϑ¼�divεrAþμ0g in Ω, ð7aÞ

ϑ¼ 0 on Γel, ð7bÞ

n� εrϑ¼ 0 on Γmag: ð7cÞ

The element Lji of the inductance matrix capturing the inductive response at port j to the potential ϑ ið Þ excited by the
current I0 through port i can be calculated analogously to (5) with the measurement functional pj,

Lji ¼ pj ϑ ið Þ
� �

: ð8Þ

2.3 | Finite element discretization

After generating an FE mesh of the domain Ω, finite-dimensional subspaces of the scalar Hilbert space H1 Ωð Þ and the
vectorial, curl-conforming Hilbert space H curl,Ωð Þ can be constructed to discretize the BVPs:

Ph �H1 Ωð Þ with 8ψ � Ph, ψ ¼ 0 on Γel, ð9Þ

Pσ
h �Ph with 8ψ � Ph,

Z
Ωc

ψj j2dV ≠ 0, ð10Þ

Vh �H curl,Ωð Þ with 8v�Vh,
Z
Ω
curlvj j2dV ≠ 0^n�v¼ 0 on Γel, ð11Þ

eVh �Vh with 8v� eVh, n�v¼ 0 on ∂Ωc: ð12Þ

The condition of (11) demanding that the elements of Vh have a non-vanishing curl can be fulfilled with a tree-cotree
splitting,8 in which a spanning tree is constructed from the graph of nodes and edges of the FE mesh and for which
then all first-order basis functions associated with the edges of the tree are disregarded (higher orders p>1 can also be
treated5). This ensures that the operator matrix resulting from a discretization of the curl-curl operator of (3a) has full
rank and minimal dimension.

The fields of the BVPs (2), (3), and (4) are discretized with the functions ψ i �Ph, ψσ
i �Pσ

h, and vi �Vh,

g¼
X
i

giψ i, A¼ μ0
X
i

aivi, ϕ¼ ffiffiffiffi
ω

p
μ0
X
i

ϕiψ
σ
i , ϕc ¼ μ0

X
i

ϕc
iψ i: ð13Þ

with the degrees of freedom (DOFs) gi, ai, ϕi, and ϕc
i . The scaling

ffiffiffiffi
ω

p
in the discretization of ϕ is needed such that the

system matrix of the BVP (3) is symmetric.
Testing the partial differential Equations (2a) and (4a), (3a), and (3b) in a Galerkin approach with the elements of

spaces Ph, Vh, and Pσ
h, respectively, and integrating over the domain Ω(and using the divergence theorem) transforms

the three continuous BVPs into algebraic linear systems of equations,

Lεg¼bg, ð14Þ

Kν�ωVσ j
ffiffiffi
ω

p
Gσ

j
ffiffiffi
ω

p
GT

σ jLσ

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≔ Aaϕ

a

ϕ

� 	
|ffl{zffl}
≔ xaϕ

¼baϕ ≔
Gεg

� 1ffiffiffiffi
ω

p bϕ

0
@

1
A, ð15Þ
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Lεϕc ¼bc ≔ jωGT
εaþ

ffiffiffiffi
ω

p
Lεϕþ jωMg: ð16Þ

Here, g, a, ϕ, and ϕc are the DOF vectors (e.g., g¼ g1,g2,…ð ÞT). The elements of the various operator matrices are
given by

Kν,ij ¼ ⟨νr curlvi,curlvj⟩, V σ,ij ¼ ⟨σvi,vj⟩,

Gε,ij ¼ ⟨εrgradψ i,vj⟩, Gσ,ij ¼ ⟨σgradψσ
i ,vj⟩, ð17Þ

Lε,ij ¼ ⟨εr gradψ i,gradψ j⟩, Lσ,ij ¼ ⟨σr gradψσ
i ,gradψ

σ
j ⟩, Mij ¼ ⟨ψ i,ψ j⟩,

with the inner products ⟨ f 1, f 2⟩≔
R
Ω f 1 � f 2dV .

The ith element bg,i of right-hand side (RHS) bg of (14) is given by the expression

bg,i ¼�
Z
Ω
ψ idivJs dV ¼ I0

A Tbð Þ
Z
Tb

ψ i dS�
I0

A Tað Þ
Z
Ta

ψ i dS, ð18Þ

with the test functions ϕi �Ph. The elements of the RHS bϕ of (15) are constructed with an analogous expression using
the test functions ψσ

i �Pσ
h.

The discretized equivalent of (5) calculating the element Zjiof the impedance matrix is hence

Zji ¼ μ0
I20
b jð Þ
g �ϕ ið Þ

c ≕ f jð Þ
c �ϕ ið Þ

c , ð19Þ

with the measurement vector f jð Þ
c . Using a direct solver to solve the linear systems (14)–(16) allows to calculate the full

impendace matrix Zat once by using the matrix-valued RHS Bg ¼ b 1ð Þ
g b 2ð Þ

g � � �
h i

to calculate the solution
matrix Φc ¼ ϕ 1ð Þ

c ϕ 2ð Þ
c � � �

h i
,

Z¼ μ0
I20
BT
gΦc: ð20Þ

The discretization of the PEC case BVPs (6) and (7) is analogous to the lossy case (however, the space of vectorial trial
and test functions now being eVhinstead of Vh). It yields the real-valued linear systems

Kνa¼ba ≔Gεg, ð21Þ

Lεϑ¼ bϑ ≔GT
εaþMg: ð22Þ

The inductance matrix L (not to be confused with the Laplace operator matrices Lε and Lσ) can be computed analo-
gously to (20) with a matrix-valued RHS Bg and solution Θ,

L¼ μ0
I20
BT
gΘ: ð23Þ

3 | COMPUTATION OF RESISTIVE AND INDUCTIVE SENSITIVITIES

To enable an efficient calculation of a large number of geometric sensitivities dZ=dpiof the impedance matrix it must be
avoided to solve the three BVPs (14), (15), and (16) multiple times. This can be achieved by using the adjoint method,4

with which an expression for dZ=dpican be derived that needs the solution vectors g, a, ϕ, and ϕc only for the original
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choice of geometric parameters pi. It introduces the derivatives with respect to pisolely through the geometric deriva-
tives of the linear operators of (17), which can, due to their sparsity, easily be assembled with a finite difference
scheme.

The following subsection introduces the concept of the adjoint method, and Section 3.2 applies the method to the
systems of linear equations introduced in Section 2.3.

3.1 | Adjoint solutions in sensitivity computation

A scalar quantity of interest (QOI) y is given as the product of the measurement vector f and solution vector x of a lin-
ear system of equations (as in the calculation of the element Zij of the inductance matrix with (5)),

y¼ f Hx ð24Þ

with

Ax¼ b: ð25Þ

The superscript H denotes the adjoint (i.e., conjugate transpose) of a vector or matrix, A is a linear operator and b is the
right-hand side vector. If many QOIs have to be calculated with the same vector f (but different right-hand sides b), the
adjoint method can be used to compute y directly as the scalar product of an adjoint solution λ with the right-hand side
b of (25). The adjoint solution λ is calculated solving the adjoint linear system

AHλ¼ f : ð26Þ

With the adjoint solution λ the QOI y can be expressed as

y¼ f Hx¼ λHAx¼ λHb: ð27Þ

The relevance of the adjoint method for sensitivity computations becomes clear when considering the geometric sensi-
tivities of the QoI y,

dy
dpi

¼ ∂y
∂x

� 	H dx
dpi

¼ f H
dx
dpi

¼ λHA
dx
dpi

: ð28Þ

Differentiating (25) with respect to the geometric parameter pi gives

dA
dpi

xþA
dx
dpi

¼ db
dpi

: ð29Þ

Subtracting the first left-hand side term and inserting the result into (28) yields

dy
dpi

¼ λH
db
dpi

�dA
dpi

x

� 	
ð30Þ

Hence, if both the primal solution x and the adjoint solution λ are known, only the geometric derivatives of the opera-
tor and right-hand side of (25), dA=dpi and db=dpi, respectively, have to be computed to calculate the sensitivity dy=dpi
of the QOI.

The derivative dA=dpi of the already sparse FEM operator A can be efficiently assembled with a finite difference
scheme, which yields a highly sparse result. Furthermore, if A is real and symmetric, as the operators Lε and Kν of the
discretized BVPs (14) and (21) are, then A is also self-adjoint, AH ¼A. In this case A has to be factorized only once to
compute both the primal solution x and the adjoint solution λ with a direct solver.
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3.2 | Efficient calculation of resistive and inductive sensitivities

The considerations of the previous subsection are now applied to the computation of the geometric sensitivities of the
scalar impedance Z of a one-port system, as well as to the computation of the sensitivities of a one-port inductance L
with the PEC approach. Multi-port systems can be treated analogously by using matrix-valued right-hand sides and
solutions as discussed in Section 2.

3.2.1 | Sensitivities of the impedance matrix

Applying the adjoint sensitivity calculation of (30) to the impedance expression (5) yields together with the BVP for ϕc,
(16), the following result for the sensitivity of the impedance is obtained,

dZ
dpi

¼ ∂Z
∂ϕc

� 	Tdϕc

dpi
¼ f Tc

dϕc

dpi
¼ λTc

dbc
dpi

�dLε

dpi
ϕc

� 	
: ð31Þ

The adjoint solution λcis determined by the real-valued linear system Lελc ¼ f c(as Lεis symmetric real and hence self-
adjoint). The term λTc dbc=dpið Þin (31) must be broken down further using the right-hand side of (16) and the defini-
tion Baϕ ≔ jωGT

ε

ffiffiffiffi
ω

p
Lε


 �
,

λTc
dbc
dpi

¼ λTc
dBaϕxaϕ

dpi
þ jωλTc

d Mgð Þ
dpi

¼ jωλTc
dGT

ε

dpi
aþ ffiffiffiffi

ω
p

λTc
dLε

dpi
ϕþ jωλTc

dM
dpi

gþλTcBaϕ
dxaϕ
dpi

þ jωλTcM
dg
dpi

ð32Þ

The last two terms in (32) can again be treated with the adjoint method. Using the linear systems for xaϕand g, (15) and
(14), two additional adjoint solutions can be calculated by

AH
aϕλaϕ ¼ f aϕ with f aϕ ≔BH

aϕλc, ð33Þ

Lελgc ¼ f gc with f gc ≔Mλc: ð34Þ

With these adjoint solutions the terms in question can be expressed as

λTcBaϕ
dxaϕ
dpi

¼ f Taϕ
dxaϕ
dpi

¼�λHaϕ
dAaϕ

dpi
xaϕþλHaϕ

dbaϕ
dpi

, ð35Þ

λTcM
dg
dpi

¼ f Tgc
dg
dpi

¼�λTgc
dLε

dpi
gþλTgc

dbg
dpi|{z}
¼0

: ð36Þ

The derivative dbg=dpi is zero since geometrical variations of the terminal surfaces are not considered in our method
and bg is zero in all elements except those belonging to the terminal surfaces. Thus, only the last term in (35) remains
to be treated. Dividing λaϕ into two parts of the lengths of a and ϕ, λaϕ ≕ λa,λϕ

� 
T
, yields

λHaϕ
dbaϕ
dpi

¼ λHa
dGε

dpi
gþλHa Gε

dg
dpi

� 1ffiffiffiffi
ω

p λHϕ
dbϕ
dpi|{z}
¼0

: ð37Þ
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The second term on the right-hand side demands again an adjoint solution λga, which is calculated analogously to (34):

Lελga ¼ f ga with f ga ≔GT
ε λa: ð38Þ

This leads to an equation analogous to (36):

λHa Gε
dg
dpi

¼ f Hga
dg
dpi

¼�λHga
dLε

dpi
yþ λHga

dbg
dpi|{z}
¼0

: ð39Þ

With this, all individual terms are treated and the result can be assembled. Firstly inserting (39) into (37) and the
resulting equation into (35) gives

λTcBaϕ
dxaϕ
dpi

¼�λHaϕ
dAaϕ

dpi
xaϕþλHa

dGε

dpi
g�λHga

dLε

dpi
g: ð40Þ

The final result for dZ=dpi is then produced by inserting (36) and (40) into (32) and the resulting equation into (31),
which yields

dZ
dpi

¼ λTc jω
dGT

ε

dpi
aþ ffiffiffiffi

ω
p dLε

dpi
ϕþ jω

dM
dpi

g�dLε

dpi
ϕc

� 	

þλHa
dGε

dpi
g�λHaϕ

dAaϕ

dpi
xaϕ�λHg

dLε

dpi
g

ð41Þ

with λg ≔ λga� jωλgc. The resistive and inductive sensitivities are simply dR=dpi ¼Re dZ=dpið Þ and
dL=dpi ¼ Im dZ=dpið Þ=ω, respectively.

3.2.2 | Sensitivities of the PEC case inductance matrix

For models that do not include any materials with a strongly dispersive magnetic permeability μ, a frequency-indepen-
dent approximation of the inductive sensitivities dL=dpi can be sufficient to answer many EMC-driven questions. In
this case the PEC approach of Section 2.2 provides a computationally very efficient way to calculate the inductive sensi-
tivities, because it only involves real-valued BVPs, and needs significantly fever DOFs, since its central BVP (6) deter-
mines only the magnetic vector potential A in the non-conducting subdomain Ω0.

The derivation of an expression for the inductive sensitivities is analogous to that of the sensitivities of the imped-
ance matrix, using the BVPs determining ϑ and a (22) and (21), respectively, instead of (16) and (15). We therefore state
only the result here,

dL
dpi

¼ λTϑ
dGT

ε

dpi
aþdM

dpi
g�dLε

dpi
ϑ

� 	
þλTa

dGε

dpi
g�dKν

dpi
a

� 	
�λTg

dLε

dpi
g ð42Þ

with λg ≔ λgϑþλga. The linear systems determining the adjoint solutions are

Lελϑ ¼ f ϑ ≔ μ0=I
2
0

� 

bg, ð43Þ

Kνλa ¼ f a ≔Gελϑ, ð44Þ
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Lελgϑ ¼ f gϑ ≔Mλϑ, ð45Þ

Lελga ¼ f ga ≔GT
ελa: ð46Þ

4 | CAPACITANCE EXTRACTION AND CAPACITIVE SENSITIVITY
COMPUTATION

The electrostatic (ES) extraction of a capacitance matrix C and computation of capacitive sensitivities dC=dpi presented
by Schuhmacher et al.6 is much less involved than the extraction of resistances and inductances and their sensitivity
analysis as discussed in Sections 2 and 3. However, since Schuhmacher et al. do not treat the general case of an arbi-
trary number of conductors and terminals, a brief discussion of the general method is given here for completeness.

A relationship between the ES potential φ and the nodal capacitance matrix CN is established by equating the elec-
tric field energy with the capacitive energy

WE ¼ 1
2

Z
Ω
ε gradφj j2dV ¼ 1

2
φT
cCNφc: ð47Þ

Here, φc is a vector whose elements φc,i are the potentials on the different conductors in the computational domain,
and CN is defined by q¼CNφc with q being the vector of charges on the conductors.

Providing a vector φc of potentials on the conductors, the ES potential is determined in the whole domain Ω by solv-
ing Gauss' law in the non-conducting subdomain Ω0 ¼Ω ∖Ωc with Dirichlet boundary conditions on the surfaces ∂Ωc,i

of the conductors and a magnetic boundary condition on the outer boundary ∂Ω¼Γmag,

�divεrgradφ¼ 0 in Ω0, ð48aÞ

φ¼φc,i on ∂Ωc,i, ð48bÞ

n�gradφ¼ 0 on ∂Ω: ð48cÞ

The magnetic boundary condition (48c) guarantees a charge-free outer boundary and prevents any capacitive coupling
between the boundary and the conductors of the model (i.e., setting the self-capacitances of the conductors to zero).

Ultimately, we are not interested in the densely populated nodal capacitance matrix CNbut rather in a diagonal
branch capacitance matrix C, whose diagonal consists of the mutual capacitances Cijbetween all conductors iand j.
Using the incidence matrix Athat contains a number of Nconductors as nodes and all possible conductor pairings as
branches, to relate the nodal and branch capacitance matrices, CN ¼ACAT, yields the expressions for the main- and
off-diagonal elements of CN

CN,ii ¼
XN
j¼1

Cij, CN,ij ¼CN,ji ¼�Cij: ð49Þ

To calculate the capacitances Cij of an N conductor system, the BVP (48) is solved N times with the FE method, setting
the potential to φ0 on one conductor i and to zero on all other conductors. This yields N FE solution vectors φi (associ-
ated with the function space Ph introduced in (9)), that are firstly used to compute the main-diagonal elements of the
nodal capacitance matrix CN with (47)

CN,ii ¼ 2WE,i

φ2
0

¼ 1
φ2
0
φT
i Lεφi: ð50Þ

The linear operator Lε is defined in (17).
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The main-diagonal elements of CN are subsequently used to determine the sought capacitances Cij: Exploiting the
linearity of the BVP (48), linear combinations φij ¼φi�φj of the FE solution vectors φi represent the results of experi-
ments where the ES potential is set to φ0 and �φ0 on the conductors i and j, respectively, and to zero on the remaining
conductors. The capacitances are then given by

Cij ¼�CN,ij ¼�WE,ij

φ2
0

þ1
2

CN,iiþCN,jj
� 
¼� 1

2φ2
0
φT
ijLεφijþ

1
2

CN,iiþCN,jj
� 


: ð51Þ

To be able to combine the ES capacitances with the extracted MQS resistances and inductances of Section 2, they must
share a circuit topology with the same nodes. In the MQS problem, there are typically at least two terminals on each
conductor. For the ES problem, it is therefore necessary to divide the conductors into parts closest to each terminal and
treat each part as a separate conductor in the capacitance extraction, while ignoring capacitances Cij between two parts
of the same conductor.

For the computation of the capacitive sensitivities dC=dpi Schuhmacher et al.6 show that only the derivative of the
linear operator has to be considered as the sensitivities do not depend on the derivatives of the DOF vector φ. For the
case of an arbitrary number of conductors this yields

dCjk

dpi
¼� 1

2φ2
0
φT
jk
dLε

dpi
φjkþ

1
2

dCN,jj

dpi
þdCN,kk

dpi

� 	
,

dCN,jj

dpi
¼ 1
φ2
0
φT
j
dLε

dpi
φj: ð52Þ

5 | NUMERICAL RESULTS

5.1 | Noise filter optimization

Shiraki et al.9 present a noise filter in a signal line, that consists of a shunt capacitor and a coil for inductance cancel-
ation, which improves the filter performance in the high-frequency regime. Comparing their filter with coil “β” to a fil-
ter without coil, the authors report an attenuation of the relevant scattering parameter S21 of about 20 dB for
frequencies f >30MHz. While the paper lists the total length and width of the coil, it does not provide the optimal dis-
tance d between the inner and outer windings. To showcase how the sensitivity analysis helps to determine optimal
design parameters, we created a CAD model of the filter with an initial coil design with d¼ 0:7 mm. A simulation of
S21 with the commercial tool CST Studio Suite (in which the shunt capacitor was modeled as a lumped element) of both
the filter without coil and with the initial coil design suggests that the coil leads to an attenuation of only ≈ 1:8dB
for f >30 MHz.

Expressing the scattering parameter with the frequency-independent inductances of Section 2.2 and the capaci-
tances of Section 4, S21 ¼ S21 L,Cð Þ, the sensitivities dS21=dpi can be calculated from the inductive and capacitive sensi-
tivities with (1). Figure 1 shows a sensitivity map of the scattering parameter, in which shades of blue and red on the
conductor's surface indicate that a shift of the colored face in the direction of its normal would decrease and increase
S21, respectively. The map hence suggests that an optimized coil design must have a smaller distance d between inner
and outer winding.

To test this result, we manufactured the filter without coil, with the initial coil design, and with a new coil design
with d¼ 0:4 mm. Figure 2 displays the scattering parameter S21 of the three designs measured with a vector network
analyzer. Whereas the initial coil leads to an attenuation of only 1:3�1:8 dB in the frequency interval 30 MHz,1 GHz½ �,
the optimized coil design provides in the same interval an attenuation of 12�15 dB. A second iteration of sensitivity
analysis can be expected to improve the attenuation even further but was not performed for this example.

5.2 | Choke with magnetic core

The ability to consider the resistive and inductive sensitivities frequency-dependently with the expression of (41) is
demonstrated with the model of a choke with a cylindrical magnetic core, as shown in Figure 3. The small-signal rela-
tive magnetic permeability μr of the core material is modeled using a first-order Debye model,
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μr fð Þ¼ μ∞þμs�μ∞
1þ jf τ

, ð53Þ

with μ∞ ¼ 1, μs ¼ 2500, and τ¼ 100 ns.
An optimal choke possesses a maximal inductance L and a minimal resistance R. To investigate how the choke can

be optimized by changing the core's shape, the sensitivities of the choke's inductance and resistance with respect to
shifts of mesh faces on the core's surface are computed at both ends of the relevant frequency interval 100 Hz,1 GHz½ �.
The results are displayed as sensitivity maps in Figure 4. Whereas the inductive sensitivities remain largely constant in
the frequency interval, the resistive sensitivities at 100 Hz are much smaller than those at 1 GHz, both absolutely and
relative to the values of R at these frequencies, R 100 Hzð Þ¼ 1:4 mΩ and R 1 GHzð Þ¼ 1:2 kΩ. For f ¼ 1 GHz the optimal
shape of the core maximizing the inductance while minimizing the resistance cannot be inferred from the sensitivity
map directly, as a bone-like shape would maximize both quantities. A sensitivity analysis with respect to Cartesian

FIGURE 1 Sensitivity map of scattering parameter S21 of the noise filter with respect to shifts pi of the conductor faces in the directions

of their normals. Shades of red and blue indicate positive and negative sensitivity dS21=dpi, respectively. The added arrows emphasize how

the coil design must be changed to minimize the scattering parameter

FIGURE 2 Measured scattering parameter S21 of filter design without coil, with initial coil design of Figure 1, and with optimized coil.

Whereas the initial coil leads to an attenuation of only 1:4 dB compared to a model without coil at f ¼ 100 MHz, the optimized coil

suggested by the sensitivity analysis achieves an attenuation of 12:5 dB
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shifts of the core's mesh nodes can be utilized for a multi-objective gradient-based shape optimization. This is, however,
beyond the scope of this work.

5.3 | Performance comparison

The performance of the direct inductive sensitivity computation method derived in Section 3.2.2 can be compared to
that of the method of Schuhmacher et al.,2 as both methods use PECs to compute frequency-independent inductive sen-
sitivities dL=dpi without considering ohmic losses. The two terminals of each port used to extract the inductance matrix
L as described in Section 2 must be galvanically connected (i.e., lie on the same conductor). The arrangement of termi-
nals (nodes of the circuit) into ports (branches of the circuit) can be expressed with an incidence matrix A. In contrast
our MQS-based extraction which simulates only the behavior of the galvanically connected branches, Schuhmacher
et al. use the Darwin approximation to compute the complete nodal impedance matrix ZN, which also includes

FIGURE 3 Choke consisting of a coil around a magnetic core (total length 34 mm)

FIGURE 4 Maps of the inductive and resistive sensitivities of the choke model with respect to shifts of the magnetic core's faces at

frequencies f ¼ 100 Hz and f ¼ 1 GHz. Whereas the inductive sensitivities are almost identical at the two frequencies, the low- and high-

frequency resistive sensitivities differ drastically
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capacitive effects. Their method therefore requires several post-processing steps to arrive at dL=dpi, which are summa-
rized here:

1. Compute the sensitivities dZN
dpi

fð Þ of the nodal impedance matrix at two or three frequencies f . This is necessary to

separate the inductive and capacitive contributions to dZN
dpi

in a least-squares fit.

2. Invert the impedance sensitivities, dYN
dpi

¼Z�1
N

dZN
dpi

Z�1
N , and extract the nodal (inverse) inductive and capacitive sen-

sitivities with a fit to dYN
dpi

¼ 1
jω

dL�1
N

dpi
þ jωdCN

dpi
.

3. Use the pseudo-inverse Aþ of the incidence matrix for a transition to sensitivities of an inverse branch inductance
matrix, dL

�1

dpi
¼Aþ dL�1

N
dpi

AþT, and invert again to arrive at the final result of the inductive sensitivities dL
dpi

¼�LdL�1

dpi
L.

The two largest drawbacks of this method are the large dimension and hence computation times of the Darwin
approximation system (compared to the more efficient MQS system), and the sometimes difficult choice of the frequen-
cies in its first step. The fit requires the frequencies to be below the first resonance of the impedance but also above the
low-frequency regime, where the Darwin system used by Schuhmacher et al. exhibits a loss of stability.

5.3.1 | Computation times

To exemplify the increased performance of our new approach, we considered the model of a pressure sensor also used
by Benz et al.3 There are 37 terminals defined on its conductors, leading to a branch inductance matrix L of dimension
26�26. The model is meshed with 250 000 tetrahedra, and 39 000 face sensitivities dL=dpi are computed on a 2.8 GHz
Intel Xeon CPU. The computation times listed in Table 1 indicate that our MQS-based approach is 6.5 times faster than
Schuhmacher et al.’s original approach.

5.3.2 | Treatment of g-field derivatives

In the derivation of the inductive sensitivities dL=dpi of (42), not only the geometric derivatives of the scalar potential ϑ
and magnetic vector potential A are treated with the adjoint method but also the derivatives dg=dpi of the auxiliary field

TABLE 1 Computation times for 39 000 face sensitivities dL=dpi

Original approach2 New approach

Operator assembly 4:79 h (38%) 1:17 h (61%)

Matrix vector products 7:2 h (57%) 0:75 h (39%)

Post-processing 0:6 h (5%) —

Total time 12:6 h 2:34 h

FIGURE 5 Inductive sensitivities dL=dpi of a wire with square cross section with respect to Cartesian shifts pi of the wire's surface

nodes, both excluding terms with derivatives dg=dpi of the auxiliary field g (red) and including these terms via the adjoint method (green).

Near the end of the wire (i.e., a terminal surface) the former result features a spurious longitudinal component, which should be avoided

especially if the result is to be used for an automated shape optimization
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g, which appears on the right-hand side of (6a) (since J s ¼ εr gradg) and (7a). Schuhmacher et al. did not apply the
adjoint method to the g derivatives but rather listed the linear system to be solved in order to compute dg=dpi directly.
A direct computation of dg=dpi, however, becomes prohibitively expensive for larger models with a high number of geo-
metric parameters pi. The authors note that the dg=dpi terms are significant only for sensitivities associated with mesh
nodes or faces near the terminals, and thus can be neglected if necessary. However, treating the terms in our new
approach with the adjoint method allows them to be considered also for large models without significant penalty.
Figure 5 shows the influence of these terms for inductive sensitivities dL=dpi of a wire with square cross section with
respect to Cartesian shifts pi of the mesh nodes on the wire's surface. Especially if the sensitivities are to be used for
gradient-based shape optimization, a correct computation of the gradients in all areas is paramount.

6 | CONCLUSIONS

In this work, we developed a numerically efficient and stable sensitivity analysis method for electromagnetic compatibility
applications, that is based on a finite element parasitic extraction method. It uses inductive, capacitive, and resistive sensitivi-
ties to compute the sensitivities of arbitrary quantities of interest that can be expressed with the extracted parasitic lumped
elements. Expressions for the resistive and inductive sensitivities are derived by applying the adjoint method multiple times
to the linear systems that result from the finite element discretization of a set of magnetoquasistatic differential equations.
An expression for capacitive sensitivities is found by generalizing an earlier method. Several numerical experiments are dis-
cussed: A typical use case is given with the application of the method in the optimization of a noise filter. The ability to con-
sider the frequency dependence of sensitivities is showcased using the model of a choke with magnetic core. Finally, our
method's computational efficiency, accuracy and stability are highlighted in a comparison with an earlier method.
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