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To circumvent a mesh dependency of damage models, non-local approaches such as phase-field and gradient-extended dam-
age models have shown a good capability and attracted a lot of attention for modeling fracture. These models can predict
crack nucleation, kinking, and branching. The gradient-extended formulation proposed by [1, 2], which includes a micro-
morphic degree of freedom for damage, is connected to a phase-field damage model presented in [3]; by connecting fracture
parameters in brittle fracture. The latter is followed by comparing the thermodynamic consistency of these models. Despite
having similarities in the formulation, gradient-extended models differ from the standard phase-field ones by having a dam-
age threshold. Besides that, the local iteration exists in the gradient-extended damage models. By employing the cohesive
phase-field model or the Angiotensin type 1 (AT1), a damage threshold appears in the formulation; by having a linear term for
damage in the crack density function, see [4,5,12]. A comparison between these models is made, by taking several numerical
examples and comparing their responses in a quasi-static case. Moreover, the feasibility of different responses is addressed
when one uses a standard Newton-Raphson solver or the arc-length one for solving a boundary value problem.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Predicting cracking and fracture in solids poses a lot of problems. On the one hand, discrete fracture approaches like the
extended finite element method and cohesive zone models tackle many problems see [6, 7] respectively. On the other hand,
employing them imposes some pre- or peri-computation efforts see [8]. Continuum damage models don’t suffer from the
mentioned problem since damage enters into their formulation as a scalar [9] or tensors of different orders [10]. Employing a
non-local approach by utilizing an internal length scale to prescribe the gradient effects can overcome the mesh dependency
of local damage models, see [11]. Phase-field damage models also show insensitive results concerning the mesh by using a
regularized crack surface energy, see [12].
The comparison has been made between gradient-extended damage models and phase-field ones in [13, 14]. The scope of
the present work is to compare gradient-extended damage models that utilize a micromorphic scalar variable for damage,
see [1, 2], with the standard phase-field damage models in terms of thermodynamical consistency, formulation, and in a
numerical example.
This work represents the models’ thermodynamically consistent formulation and shows how they can be connected together.
Followed by a numerical example and discussion about their features.

2 Constitutive modeling

Gradient-extended damage model based on the micromorphic methodology (GE). The gradient-extended damage model
based on a scalar micromorphic damage variable in the sense of [1, 2], is presented in this section, in the large deformation
framework and for the brittle fracture behavior. The Helmholtz free energy ψPF consists of three parts: elastic stored energy
ψe, damage hardening part ψd, and energy associated with the micromorphic extension ψd̄ which is defined as

ψGE = fd(d)ψe(C) + ψd(d) + ψd̄(d, d̄, ∇d̄), (1)

where a degradation function is defined as fd(d) = (1 − d)2. In the following equations, d stands for the local damage
variable while d̄ indicates the micromorphic one. Meanwhile C represents the right Cauchy-Green deformation tensor. The
Clausius-Duhem inequality for the gradient-extended damage models based on the micromorphic approach is written as

−ψ̇GE + S · 1
2
Ċ + a0i

˙̄d + b0i · ∇ ˙̄d ≥ 0. (2)

In Eq. 2, S represents the second Piola-Kirchhoff stress tensor, and the last two terms stand for the contributions from the
micromorphic damage and its gradient, respectively. After some steps, the conjugate forces are derived as

S = fd(d) 2
∂ψe

∂C
, a0i =

∂ψd̄

∂d̄
, b0i =

∂ψd̄

∂∇d̄ . (3)
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Where a0i and b0i are the generalized forces. Meanwhile, by employing a sufficiently large penalty parameter H , a0i will
disappear. Finally, the remaining part of Eq. 2 becomes

−
(

dfd(d)
dd

ψe +
∂ψd̄

∂d
+
∂ψd

∂d

)
ḋ ≥ 0. (4)

In order to fulfill the Eq. 4 inequality, a damage surface is defined as

Φd = Y − Y0 − ∂ψd

∂d
, (5)

in which Y := −dfd(d)
dd

ψe −
∂ψd̄

∂d
, and Y0 is the damage threshold and can be considered as an additional material parameter,

see [2]. Finally, an evolution equation is derived as

ḋ = λ̇d
∂Φd

∂Y
= λ̇d, (6)

where the λ̇d refers to a damage multiplier. In order to guarantee damage irreversibility, Karush-Kuhn-Tucker conditions are
employed as

λ̇d ≥ 0, Φd ≤ 0, λ̇dΦd = 0. (7)

One concludes that a local iteration is mandatory to solve the evolution equation for the local damage variable in the gradient-
extended damage model based on the micromorphic approach.
For a compressible Neo-Hookean-type 2-D solid, one can write the elastic stored free energy as

ψe =
µ

2

(
tr(C)− 2 − 2 ln

(√
det(C)

))
+

Λ

4

(
det(C)− 1 − 2 ln

(√
det(C)

))
. (8)

In which µ and Λ are the Lamé constants. The damage hardening energy and micromorphic part are defined as ψd =
1

2
rd2

and ψd̄ =
H

2

(
d− d̄

)2
+
A

2
∇d̄ · ∇d̄, respectively. In the previously mentioned equations, r and A are material parameters,

and H refers to a penalty parameter that enforces the local and the micromorphic damage variables share the same value. It is
worth mentioning that the above choices are arbitrary for the Helmholtz free energy of each part.
Taking into account a domain Ω, one needs to satisfy two different balances: the balance of linear momentum and a micro-
morphic balance. These equations, in the absence of body forces, read in the form of partial differential equations (PDE)
as

Div(FS) = 0 in Ω, Div(A∇d̄) − H(d− d̄) = 0 in Ω. (9)

In Eq. 9, F denotes to the deformation gradient. The model inherits an internal length scale which can be computed as

lc =

√
A

H
, and a boundary condition needs to be satisfied additionally as ∇d̄ · n = 0 on Γ, where n is the normal vector on

the boundary Γ.

Angiotensin type 2 (AT2) phase-field damage model (PF). The phase-field damage model is a regularized formulation
of Griffith’s brittle fracture, see [3]. That substitutes a strong discontinuity (crack) with a diffuse one. One can write the
crack-free energy of the AT2 phase-field damage model ψc as

ψc = Gc

(
1

2 lc
d̄ 2 +

lc
2
∇d̄ · ∇d̄

)
. (10)

In Eq. 10, d̄ stands for the phase-field variable (damage), Gc is the fracture energy, and lc is the internal length scale. The
Helmholtz free energy of the system is written as

ψPF = fd(d̄)ψe(C) + ψc(d̄). (11)

Similarly to gradient-extended damage models, once again, we start from the Clausius-Duhem inequality as
∫

R

(
−ψ̇PF + S · 1

2
Ċ + ξ · ∇ ˙̄d − π ˙̄d

)
dR ≥ 0. (12)

Please note that for utilizing the divergence theorem in simplifying the inequality, one needs to use an integral form and
consider a micro part of the body as depicted in Fig. 1.
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Fig. 1: The micro part of a body with having micro-
stresses and micro-forces.

ξ: micro-stresses
π: internal micro-force
κ: external micro-force

Contrary to gradient-extended damage models, the micro-force balance is utilized directly to derive conjugate forces and
simplify the inequality as Div(ξ) + π + κ = 0. Analogously to Eq. 3, the second Piola-Kirchhoff stress tensor is derived as

S = fd(d̄) 2
∂ψe

∂C
, and micro-stresses are ξ =

∂ψc

∂∇d̄ which is identical to b0i . The remaining part of inequality in Eq. 12, after
performing divergence theorem and neglecting the external micro-force reads

(
∂ψPF

∂d̄
− Div

(
∂ψPF

∂∇d̄

))
˙̄d ≥ 0. (13)

For satisfying the Eq. 13, according to [15], an evolution equation is derived as

˙̄d = −M
(
∂ψPF

∂d̄
− Div

(
∂ψPF

∂∇d̄

))
. (14)

In Eq. 14, M represents the mobility term, and in the quasi-static case, one can assume M → ∞. By considering the domain
Ω, the latter enforces another PDE, the balance of dissipated energy, which has to be solved in addition to the balance of linear
momentum as

Div(FS) = 0 in Ω,

(
∂ψPF

∂d̄
− Div

(
∂ψPF

∂∇d̄

))
= 0 in Ω. (15)

Consequently, there is no additional local evolution equation in phase-field damage models. For completeness, damage irre-
versibility cannot be guaranteed by only satisfying the balance of dissipated energy. That leads to using history variables for
damage or the elastic stored energy ψe in order to use the maximum amount of stored energy as a damage driving force. In
this work, we have chosen the second option; see [3] for more details.
The elastic stored energy has been chosen the same as the gradient-damage part. The same also for the degradation function
of phase-field model, and we employed the fd(d̄) = (1− d̄)2 form.

Comparison between gradient-extended and phase-field damage models by neglecting the local damage quantity in
gradient-extended damage models. To compare model, the local damage part and its damage hardening-related part are
removed from the GE formulation in this part. After performing some steps, one can derive the same evolution equation and
system of equations as PF. In this case, the AT2 PF model can be seen as a particular type of GE model.

Table 1: Comparison of GE and PF by neglecting the local damage quantity in GE.

GE AT2 PF Connection

ψGE = fd(d̄)ψe + ψd̄ ψPF = fd(d̄)ψe + ψc identical ψe and fd

ψd̄ =
H

2
d̄2 +

A

2
∇d̄ · ∇d̄ ψc = Gc

(
1

2 lc
d̄2 +

lc
2
∇d̄ · ∇d̄

)
H =

Gc

lc
A = Gclc

Tab. 1 connects the GE material parameters to the AT2 PF ones. Under Tab. 1 assumptions, the two models are identical
(AT2 PF, a particular case of GE).

Comparison between gradient-extended and phase-field damage models without neglecting the local damage quan-
tity in gradient-extended damage models. With a sufficiently large value for the penalty parameter H , the metamorphic
damage variable takes the same value as the local one (d ≈ d̄). The latter enables us to connect other terms in the two formu-
lations and make equivalent free energies in GE and PF models by substituting d with d̄. After some steps, the following table
is derived for connecting the models’ material parameters.
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Table 2: Comparison of GE and PF without neglecting the local damage quantity in GE.

GE AT2 PF Connection

ψGE = fd(d)ψe + ψd̄ ψPF = fd(d̄)ψe + ψc identical ψe and fd

ψd̄ =
A

2
∇d̄ · ∇d̄ ψc = Gc

(
1

2 lc
d̄2 +

lc
2
∇d̄ · ∇d̄

)
r =

Gc

lc

ψd =
1

2
rd̄2 A = Gclc

H → ∞

In Tab. 2, some terms vanished resulted from the fact that the relation has been assumed.
Finally, the damage threshold Y0 can be set to zero since, for the PF formulation, the threshold does not exist. One can refer to
the cohesive phase-field formulations see [4,5], or the work of [16] in order to incorporate damage threshold in the phase-field
formulation. In the scope of this work, Y0 ≈ 0 is considered.
Moreover, the first comparison leads to an identical formulation of phase-field. That is why we consider only the connection
of formulation without neglecting the local damage quantity.

3 A numerical example: an asymmetrically notched specimen

With the formulations’ connection in hand, the following asymmetrical numerical example is utilized in order to see the
models’ results (damage contours, and load-displacement curves). Fig. 2 shows boundary conditions and dimensions of this
example.

Fig. 2: Geometry and boundary conditions for a asymmetrically
notched specimen.

Table 3: Material parameters for elasticity AT2 PF and GE.

Λ = 25000 MPaelasticity:
µ = 55000 MPa
Gc = 35, 50, 70 MPa mmAT2 PF
lc = 5, 7 mm
A = 250, 500 MPa mm2

r = 5, 10 MPa
H = 106 MPaGE

Y0 ≈ 0 MPa

In Fig. 2, gray areas represent rigid body parts that undergo the same deformations. Tab. 3 shows the material parameters
for different formulations. Please note that the elasticity parameters are the same between the two models.
Note:H is the penalty parameter and can be treated as a numerical parameter; rather than a material one. Meanwhile, a similar
quantity to Y0 is needed in PF to impose the damage threshold.
The following damage contours are obtained in Fig. 3a and Fig. 3b. Fig. 3c shows the force-displacement curve for a set of
connected material parameters of two models.
For both cases, the arc-length method is utilized to solve the system of equations. To this end, the snap-back behavior is visible
in Fig. 3c and Fig. 4.
Solving the system of equations without using the arc-length method, leads to a sudden drop in the force-displacement curve;
see [5] for more details.
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Fig. 3: a) Damage contour for the GE model. b) Damage contour for the PF model.
c) Force-displacement curve for the given set of material parameters.

Fig. 4: Force-displacement curves for two different sets of material param-
eters

Models are sharing the same path until the softening regime. The deviation of gradient-extended from phase-field in a
softening regime damage model can be induced by the damage threshold, despite setting it close to zero. That also leads to a
smaller damage zone in gradient-extended damage models. If one puts Y0 exactly as 0, it will trigger some numerical problems
and make the simulation almost impossible. The other reason may be assuming d = d̄. However, one should remember that
these values will be sufficiently close together and are not equal since H → ∞.

4 Conclusions and outlook

In this study, gradient-extended damage models based on the micromorphic approach are compared to AT2 phase-field damage
models. It has been shown that both models are thermodynamically consistent, and they employ a balance of micro-forces to
satisfy Clausius-Duhem inequality. Furthermore, the models’ material parameters are connected. The study uses an asymmet-
rically notched specimen to compare the results for three different sets of parameters. Although phase-field damage models
benefit from having no local evolution equation involved in the formulation, gradient-extended damage models show more
flexibility for defining various damage hardening terms and different damage surfaces. All in all, the responses of these models
show many similarities.
In future works, the authors aim to compare the cohesive phase-field formulation with the current gradient-extended damage
model by including cohesive softening law in GE formulation. Another appealing point would be to evaluate these models,
also from in terms of their compuational cost.
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