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In recent years, Lattice Boltzmann methods (LBMs) have been adapted and developed to simulate the behavior of solids.
They have already been applied to fractures as well. However, until now, our previous work has been restricted to stationary
cracks.

In this work, we regard the reduced 2D case of anti-plane shear deformation with mode III crack opening. The wave
equation is the governing equation for this problem, which is solved via an LBM.

The main contribution of this work is the introduction of an algorithm to handle crack growth in an LBM for solids. The
underlying scheme is based on geometric assumptions, which is well suited for the regular lattice used by the LBM. A fracture
criterion based on the stress intensity factor is implemented and illustrated by a numerical example.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Lattice Boltzmann methods (LBMs) can be used as numerical solvers for various partial differential equations [1, 2], well
beyond the field of fluid dynamics, for which they were initially conceived. They have the advantage of a meshless method,
only requiring a regular lattice, with explicit and locally defined operations. This promises great performance, especially when
combined with parallel computing [3].

Recently, an effort has been made towards the development of LBMs for solid mechanics. An overview of recent develop-
ments and relevant literature regarding this topic can be found e.g. in [4].

One approach is to rewrite the dynamics of the solid body in terms of wave equations. In 2D, a decomposition into
longitudinal and transverse waves can be used for plane strain [5]. Similarly, the problem can be reduced to anti-plane shear
deformation [6]. The anti-plane shear model has already successfully been applied to a stationary crack. The main feature is
the consideration of non–lattice conforming boundary conditions [4]. This can now be extended further to model the growth
of cracks.

In this work, the underlying scheme and the algorithmic approach are presented. The crack is represented in a geometric
manner. It is independent of the lattice itself, beyond the pure geometry of the discretization. In a post-processing step,
information about the configuration at the lattice sites is used to determine the parameters, which are relevant to the evaluation
of the fracture criterion. The algorithm concentrates on a few lattice points in the direct vicinity of the crack and thus retains
the good efficiency of LB methods.

This work first introduces some background information on the LBM for anti-plane shear in Sec. 2. Then the processing
scheme and the algorithm for dynamic crack propagation are shown in Sec. 3, with additional information on the evaluation of
stress intensity factors and the fracture criterion. Next, a numerical example in Sec. 4 illustrates the prospects of this method
and acts as a proof-of-concept for the algorithm. Lastly, a discussion of the results and concluding remarks on the possibilities
of generalization follow.

2 Lattice Boltzmann Method for Anti-plane Shear Deformation

A linear elastic solid is considered. Furthermore, small deformations and a restriction to the 2D case are assumed. This can be
described by the Navier-Cauchy equation. Only the x-y-plane is regarded and both the displacement and loading are restricted
to the out-of-plane direction along the z-axis. For such a system, the Navier-Cauchy equation reduces to a 2D wave equation
for the displacement component w(x, y, t). This problem can then be solved by an LBM, e.g. the scheme proposed by Yan [7].
The domain is discretized by a regular lattice with spacing ∆h and timestep ∆t.

In this section, only a short overview of the employed LBM is given. For a more in-depth description of this method and
its application to solid mechanics, see [6], while a general introduction to LBMs can be found in textbooks such as [1, 8].

Generally, an LBM works on the basis of distribution functions fα, which are manipulated locally. The index α relates to
an element of a discrete velocity set cα with |cα| = ∆h/∆t.
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Fig. 1 Depiction of the macroscopic strategy for non–lattice conforming boundary con-
ditions at the boundary point xB . The interpolation involves the prescribed boundary value
at the closest point xBC on the boundary, as well as the displacement at xI and xII , which
in turn result from bilinear interpolation in the cells CI and CII ; from [4].

The discrete Lattice Boltzmann equation (LBE) with a BGKW-collision operator [9, 10] is given by

fα (x+ cα∆t, t+∆t) = fα(x, t)− 1

τ

[
fα(x, t)− fα

eq(x, t)
]
, (1)

where feq describes equilibrium distributions and τ the relaxation time. A simple D2Q5–velocity scheme is used here, thus
α ∈ {0, 1, 2, 3, 4}.

For Yan’s method, the central moment is connected to the rate of change in the displacement

∑

α

fα =
∂w

∂t
= ẇ, (2)

and the equilibrium distributions are defined as

f0
eq =

∂w

∂t
− 2λw

c2
and fα

eq =
λw

c2
for α ∈ {1, 2, 3, 4}, with λ =

c2s
∆t

(
τ − 1

2

)−1

(3)

where c = ∆h/∆t is related to the shear wave speed. Finally, to obtain the displacement, a simple forward Euler time integration
is used

w(x, t+∆t) = w(x, t) + ∆t ẇ(x, t+∆t). (4)

2.1 Non-Lattice Conforming Boundary Conditions

At a boundary, some neighbors of a lattice point might not exist and no distributions are streamed from beyond this boundary.
These missing distribution functions need to be determined from the prescribed boundary conditions. Thus, the boundary
conditions at the macroscale need to be converted to the distribution functions at the mesoscale. Here, the macroscopic
strategy described in [4] is employed. Only some basic information is provided here as background to the last step of the
scheme in Sec. 3.

In short, a quadratic interpolation is used to find the displacement wB at a boundary lattice point xB , cf. Fig. 1. Due to the
coupled contributions of other boundary lattice points, this leads to a linear system of equations

SwB(t+∆t) = R(t+∆t), (5)

which can be solved to get the displacement of all boundary lattice points. With the results for wB , each of the m missing
distributions at xB can be set via the formula

fα(xB , t+∆t) =
1

m


w(xB , t+∆t)− w(xB , t)

∆t
−

∑

β∈NB

fβ(xB , t+∆t)


 , ∀α /∈ NB , (6)

where NB describes the set of indices which denote links to interior neighbouring lattice points of xB .

3 Algorithm for Crack Propagation

The handling of crack growth occurs as an additional step in the LB algorithm, which is appended at the end of a time step
of the time loop, after all field values at the lattice sites have been updated. A fracture criterion can then be evaluated based
on these field values. Details on the chosen criterion and its implementation can be found in Sec. 3.1, whereas a more general
description is given here.
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(a) Crack gowth: The crack is extended by
a segment (dotted line) of length ∆a = ȧ∆t,
with P1 as the new crack tip.

(b) Boundary point identification: For finding
the intersected link (blue line), all links con-
nected to points in gray boxes are successively
checked.

(c) Boundary processing: The new boundary
points are processed. The interpolation in-
volves the points on the blue line, including the
closest point on the crack.

Fig. 2: Handling of a growing crack (dark red) in three steps, including the processing of boundary points (filled circles).

An initial crack needs to be present in the domain. This crack itself is represented as a line between two points, see the red
line in Fig. 2. The algorithmic treatment of crack propagation follows Alg. 1, which can be split up into three steps. These
are illustrated in Fig. 2. First the criterion is evaluated. If it is fulfilled, the crack tip is shifted by ∆a = ȧ∆td, where ȧ is
the current rate of crack growth and d is the direction. This creates a new crack segment, see Fig. 2a. It would be possible to
compute both ȧ and d during runtime based on the current configuration. For simplicity, only straight cracks are regarded for
now, i.e. d is constant and given as input.

Algorithm 1 Handling of dynamic cracks in the LBM

procedure CRACKGROWTH
propagation← EVALUATECRITERION
if propagation = True then

v⃗ ← ȧ · ⃗̂d
cr_tipprev ← cr_tip
cr_tip← cr_tip + v⃗∆t
create cr_segment(cr_tipprev ⇆ cr_tip) ▷ new crack segment
B ← CHECKLINKS(cr_segment)
PROCESSPOINTS(B)

end if
end procedure
function CHECKLINKS(cr_segment)

let N (p) be the set of neighbors linked to lattice points p
let (Bprev) be the set of boundary points from previous increment
Q← N (Bprev) ▷ queue
B ← ∅ ▷ new boundary points
V ← ∅ ▷ visited
while |Q| > 0 do

let p ∈ Q
Q← Q\{p} ▷ pop p from queue
V ← V ∪ {p} ▷ mark as visited
for all np ∈ N (p) do

create link(p ⇆ np2)
if cr_segment intersects link(p ⇆ np) then

B ← B ∪ {p, np}
Q← Q ∪N (np)\V

end if
end for

end while
return B

end function
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The crack segment should act as traction free boundary within the domain. Thus the connectivity of lattice points in the
vicinity of the crack segment might require modification. In order to identify any of these lattice points, which are adjacent
to the segment, the links connecting a point to its neighbors need to be checked. This identification process can be narrowed
to down to an environment around the previous crack tip, indicated by grey boxes in Fig. 2b. The function CheckLinks
in Alg. 1 shows the approach of an environment that is dynamically updated. If the crack segment intersects any link, this
link is broken, inhibiting the exchange of distribution functions in subsequent streaming steps. Instead, the distributions for
these links are determined from the boundary conditions. To this end, the previously linked lattice points must be processed
accordingly. For the macroscopic strategy presented in [4], see also Sec. 2.1, the interpolation scheme needs to be instituted
with the required coefficients. This adds new equations to the system described by Eq. (5). Thus the matrix S and the vector
R in Eq. (5) need to be appended accordingly and S must be inverted to solve the system of equations. In the next time step
these points are then treated as boundary lattice points.

3.1 Stress Intensity Factors and the Fracture Criterion

In this section the implementation of one fracture criterion is discussed. It is based on stress intensity factors (SIF) and was
first formulated by Irwin [11]. In the immediate vicinity of the crack tip, the elastic fields exhibit a universal shape with certain
unique parameters determining its amplitudes. These parameters are the SIFs KI , KII and KIII for the three different crack
opening modes. Since the mechanical model is limited to anti-plane shear deformation, only KIII is regarded and the index
omitted in the following.

With Irwin’s criterion, the crack propagates when K reaches a certain critical value KC , a material specific parameter,
which is passed as input to the algorithm. This can be formulated as

K > KC . (7)

K is evaluated from the jump in the displacement δ = |wL(r0)−wR(r0)| between both crack faces (L and R) for a very small
distance r0 from the crack tip, where r0 ≪ L for a characteristic length L of the system, such as as the total crack length. For
stationary problems, it can be computed via

K(r0) =
µ

4

√
2π

r0
δ, (8)

with the shear modulus µ.
For dynamical problems, however, K has to be adjusted [12] by a factor to compensate dynamical effects of a moving crack

tip. Instead, due to practical reasons, an approach is taken, which adapts the distance of evaluation is to the crack speed v. K
is sensitive to variations in r, thus partially compensating for the effects of crack propagation. It is assumed, that

Kdyn(t) ≃ K inst(r)
∣∣
t
, r(v) ⩾ r0, (9)

with the instantaneous value of K at time t from Eq. (8) and the relative crack speed v = ȧ/cs. The distance of evaluation is
and the relative speed v are estimated from

r(v) ≈ r0
1− v

, and v (K;KC) ∼ tanh

(√
(K/KC)

4 − 1

)
vmax, K > KC , 0 < v ≤ vmax, (10)

where v is based on the relative overshoot of K over KC , with the maximum allowed speed vmax. It should be noted, that the
expressions in Eq. (10) are chosen from empirical considerations to minimize the the overshoot of K over KC .

4 Numerical Example

A simple numerical example is given here as an illustration of crack growth and as a proof of concept for the algorithm,
including the criterion and the implementation presented in the preceding section. The domain shown in Fig. 3 is rectangular,
except for a V-shaped notch. It is held fixed at the right edge (purple), while the top, bottom, and left edge are treated as free
boundaries. A short initial crack, originating from the notch, is allowed to propagate horizontally.

A traction is applied to the flanks of the notch. This is modulated in time by a sine (blue) or a cosine (green), respectively,
see Fig. 4. This loading excites waves in the domain, effectively causing the crack to be periodically pulled apart.

The spatial discretization is chosen as ∆h = L/32 for an arbitrary length L. This results in a total of 4 000 lattice points.
The simulation runs for a time 0 < t < 20 L/cs and the maximum relative speed for the crack propagation is set to vmax = 0.9.

The results of this example are summarized in Fig. 5. The figure shows K as a reaction to the waves travelling through the
material. This is indicated by K rising and falling again, giving three wide peaks. For each on,e K eventually surpasses the
critical value. This results in periods of crack propagation, during which K stays close to or slightly above KC . However, the
propagation is not continuous. It also temporarily halts throughout these periods and comes to a stop after K falls below KC .

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com



PAMM · Proc. Appl. Math. Mech. 22:1 (2022) 5 of 6

Illustrations of the deformed domain for different times are given in Fig. 6. The crack grows significantly in length, which can
especially be seen when comparing Fig. 6b to 6d. Furthermore, Fig. 5 shows that the length a of the crack increases, just as
the speed v is at a positive value, directly corresponding to the periods of growth with K > KC .

In conclusion, the features outlined above reflect the behavior expected during crack propagation.
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Fig. 3: The domain for the numerical example with L as an arbi-
trary length scale. The initial crack (red) has a length of 0.16L. At
the flanks of the notch, a time dependent traction is applied.
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Fig. 4: The time dependency of the applied traction at the notch.
The colors correspond to the edges in Fig. 3.
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Fig. 5: Results of the numerical example. The blue crosses show the stress intensity factor K. When it surpasses the critical value,
normalized to 1 here, the crack grows. The relative crack speed v = ȧ/cs (green dots) is then positive and the additional length of the crack
(purple line) increases.
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(a) t = 3.0 (b) t = 6.5

(c) t = 15.0 (d) t = 18.0

Fig. 6: Illustrations of the deformed domain. The color map represents the scalar value of displacement field w. In (a), the crack just begins
to grow before it is pulled apart further. (b) shows the crack at the the end of the first peak in Fig. 5, after propagation has halted. (c) is at
the beginning of the third period of crack growth, while (d) shows its end, with a considerably longer crack.

5 Conclusion and Discussion

This work presents a novel method to simulate crack propagation, added onto a LBM for anti-plane shear deformation. The
scheme is based on geometrical considerations, which take advantage of the simple regular lattice. Crack propagation is
appended as a post-processing step to the existing LBM. It does not add much complexity, such as additional equations or a
remeshing.

The numerical example shows the expected behavior and indicates that the underlying concept is indeed working as in-
tended. Still, more extensive studies and comparisons to established methods are needed in order to verify the performance
and efficiency of the method.

The evaluation of the SIF K remains challenging. However this evaluation, as well as the criterion, can be reformulated
or exchanged without any changes to the schematic approach. These modular characteristics of the algorithm also allow for
possible a generalizations beyond anti-plane shear deformation and mode III crack opening. At the lattice points, only the data
relevant to the evaluation of the criterion is needed. Therefore, the specific LB scheme can be exchanged, since the definition
of statistical moments or the computations themselves are not relevant to the algorithm handling the crack propagation. For
a different mechanical model, such as plane strain with crack opening modes I and II, the necessary evaluations, the crack
propagation criterion, as well as the boundary handling need to be adjusted, which should pose no problem with the method
proposed here.

In summary, this approach to crack propagation is more universal than the restricted model shown here.
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