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Modeling of Growth using an Immersed Finite Element Method
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To prevent remeshing, we explore the use of a non-boundary-fitted finite element method for the computational modeling
of growth including contact mechanics. Accordingly, we utilize a mesh-related mapping procedure for the use of implicit
geometry description by a level set function within the framework of immersed methods. Hence, our framework provides a
setting to include patient-specific geometries based on imaging data as we use a level set function for the implicit geometry
description. In this contribution, we show that the proposed approach is a viable alternative for problems with mesh-related
obstacles, in particular when large growth simulations on complex patient-specific geometries are of primary interest.
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1 Introduction

Over the last two decades, finite growth modeling has been widely studied for biological tissues [1–3]. Finite growth modeling
has been mostly applied to biological tissues which are different from most engineering materials. Typical examples of
volumetric growth are growing tumors [4], the heart [5], and the vascular tissue [6]. The main focus lies on the specification
of individual growth laws for different types of tissues and on the identification of driving factors for growth in order to
predict biological phenomena [1–6]. To our knowledge, computational modeling of growth is mainly embedded in a classical
finite element framework, that operates in a boundary-fitted approach [1–9]. However, the fact that soft tissues undergo large
deformations coupled with further difficulties in the human body, e.g. complex patient-specific, imaging data-based geometries
or contact with surrounding organs, require remeshing within a classical boundary-fitted finite element approach.

Instead, we propose a approach to apply volume growth of solid bodies on a structured background mesh in an immersed
boundary framework. The problem of remeshing is replaced by a problem of projection. The method is capable of incorporating
large growth of solid bodies including contact mechanics without the necessity of remeshing. In the isotropic growth case the
growing body is described by the deformations on the bounded boundary. Hence, we use a projection that maps the grown
level set geometry back to the structured background mesh.

In general, it is not trivial to create analysis-suitable geometries or fitted finite element meshes for domains that are
implicitly defined by a level set function such as imaging data-based geometries. In this context, our framework provides
a setting to include imaging-based geometries.

2 Background and Notation

This section includes the continuum modeling within the framework of the finite growth theory, provides a brief review of
immersed finite element methods and illustrates the concept of implicit geometry descriptions.

2.1 Finite growth mechanics

We start with the mathematical framework by considering the deformation map φ. Material points X in the reference
configuration Ω0 at time t = 0 are mapped onto spatial points x = φ(X, t) in the deformed configuration Ωt at any given
time t. Within the framework of finite growth, the deformation map is decomposed into two steps. In the first step, a material
point is mapped into an intermediate incompatible growth configuration Ωg. This configuration is assumed to be stress-free as
only mass generation occurs between Ω0 and Ωg. Next, elastic deformations are applied to the intermediate state to ensure the
compatibility of the solid body [10]. This model results in a multiplicative decomposition of the deformation gradient

F = Fe · Fg (1)

into a purely elastic part Fe and a growth deformation gradient Fg [10], which is analogous to the split of the deformation
gradient in the theory of elastoplasticity, first introduced in [11] and afterwards applied to several material models.

A main task in finite growth is to define the growth deformation gradient

Fg = Fg(ϑ,d0, . . . ), (2)
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which is a function of the growth ratio ϑ and possible or preferred directions d0 in which growth occurs. The growth ratio
plays a key role in finite growth as it relates the stimuli of growth to the growth tensor which can be for example stress,
nutrients or concentration driven. According to this, growth is usually governed by an evolution equation

ϑ̇ = ϑ̇(ϑ,C,S,d0, . . . ), (3)

where C is right Cauchy Green strain tensor and S is the second Piola-Kirchhoff stress tensor. Additionally, we include the
mechanics by considering the balance of linear momentum

ρ0v̇ = Div(F · S) + ρ0b, (4)

where S = 2ρ0
∂ψ
∂C denotes the second Piola-Kirchhoff stress tensor in the reference configuration, ρ0b is the momentum

source with b being the body forces, ρ0 is the density, v = φ̇ is the spatial velocity and ψ describes the Helmholtz free energy.
The elastic Piola-Kirchhoff stress can be obtained through a push forward to the intermediate configuration Se = Fg · S · F t

g.

2.2 Immersed finite element method

Immersed finite element methods, also known as unfitted or embedded domain methods, incorporate immersed geometries in
non-boundary-fitted background meshes to solve boundary value problems (see Fig. 1).

In the framework of immersed methods, a physical domain Ωphys of interest is extended with non-physical domain, also
known as fictitious domain Ωfict, to a larger domain of simple shape, referred to as the embedding domain [12]. Due to its
simple shape, discretization appears on the embedding domain. We will refer to this as the structured background mesh.

Moreover, basis functions that are defined on the background mesh are only evaluated on the physical domain. In this
context, there is no need of a boundary-fitted mesh. Instead the geometry of the physical domain is incorporated through
integration of cut elements.

The main goal of immersed methods is to prevent mesh-related obstacles, e.g. remeshing and mesh distortion effects [13].
In addition to standard finite element technology, immersed methods require three basic components, which are (1) imposing
Dirichlet boundary conditions at embedded surfaces utilizing penalty, Lagrange-multipliers or Nitsche-type methods [12] (2)
a stabilizing mechanism for functions with small support and (3) evaluating surface and volume integrals in cut elements.
Therefore, geometrically faithful quadrature plays a major role.

For example, the finite cell method uses an adaptive quadrature technique for all cut elements by recursive quadtree
subdivision in 2D and octree subdivision in 3D. Alternative strategies to integrate cut elements are parametrization techniques,
which ensure optimal accuracy and rely on mappings to enable geometrically accurate parametrization of cut elements [14].
Within this work, we make solely use of the higher-order accurate quadrature algorithms for implicitly defined domains
described in [15] which can be used to solve surface or volume integrals of a geometry intersecting an element. For details on
the used quadrature algorithms, we refer the interested reader to [15].

2.3 Implicit geometry

The domain boundary Γ of an implicit geometry in an Euclidean space is characterized as the zero contour of a function ϕ by

Γ = {x|ϕ(x) = 0}, (5)

often referred to as a level-set height function [16]. A signed distance function outputs the orthogonal distance of a given point
x to the boundary Γ of a domain and satisfies the condition

|∇ϕ| = 1. (6)

The sign of the function determines the position of the point x. Inside the domain Ω the function ϕ takes positive values while
outside it is negative, such that

Ω+ = {x|ϕ(x) > 0}, (7)

Ω− = {x|ϕ(x) < 0}. (8)

3 Computational aspects of immersed growth with contact

In this section, we present the basic components of the proposed approach for the computational modeling of volumetric
growth within an immersed setting.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com



PAMM · Proc. Appl. Math. Mech. 22:1 (2022) 3 of 7

Original
geometry

Solution

Immersed geometry on a
structured mesh

Ωphys

Ωfict

Fig. 1: Concept of immersed methods. Immersed discretization of an embedded physical domain Ωphys extended with a fictitious domain
Ωfict.

3.1 Implicit level set geometry

We introduce a level set based geometry description, whose domain boundary is characterized by a zero value, using basis
functions. The level set height function is defined as

f(x) =
n∑

i=1

Ni,p(x)Ci, (9)

in which C ∈ Rn denote the level set coefficients and Ni,p are the n basis functions of degree p of a continuous finite element
space [17].

We approximate a given geometry by computing the coefficients Ci of the level set height function f(x). We define the
level set coefficients as

Ci =

∫
ΩEl
Ni,p(x)g(x)dx∫
ΩEl
Ni,p(x)dx

, (10)

where g originates from approaches of scan based geometry description and denotes the gray scale function g : Ωscan → R
which contains the gray scale values a ∈ Rnovox in the voxels with novox being the number of voxels [17]. ΩEl corresponds
to the element domain. The voxel-based geometry can be extracted from the gray scale data and is linked to a much coarser
background mesh.

Each element satisfy the partition of unity property and no mean value occurs zero over an element. The equation (10)
is a low order approximation, so the approximation of the level set function will converge only linearly independent of the
polynomial order of the basis. Furthermore, Gibb’s type effects are a consequence of least square approximations and not
a consequence of the higher order case [18]. As described in [17], equation (10) satisfies properties which ensures that no
Gibb’s type effects arise. For more details we refer the interested reader to [17].

3.2 Geometry mapping

The argumentation in the introduction motivates the use of a mesh-related geometry mapping within the framework of the
immersed finite element method. The schematic representation for the mapping procedure of the grown geometry can be seen
in Fig. 2. The starting point is the L2 projection, which mathematically can be formulated as a minimisation problem. Find
fnew ∈ Vh so that

∫

Ω

fnewv dΩ =

∫

Ω

foldv dΩ ∀v ∈ Vh, (11)

where

fnew ∈ Vh ⊂ H1(Ω), (12)

v ∈ Vh ⊂ H1(Ω), (13)

fold ∈ V̂h ⊂ H1(Ω̂). (14)

The function fold describes the level set function on the deformed domain Ω̂ ⊂ Rn, fnew denotes the mapped level set function
on the undeformed domain Ω ⊂ Rn and v are the test functions on the undeformed domain Ω. The representation of both level
set functions differs through the basis functions defined on different domains. The only challenge is to evaluate the old level
set function in the undeformed domain, so

fold = fold(x), x ∈ Ω. (15)
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Fig. 2: Schematic representation of finite growth and subsequent mapping procedure of grown geometry in the framework of the immersed
method. Grown geometry on structured mesh after projection is depicted in blue.

This approach can also generally be used for immersed methods where large deformations leads to increased levels of mesh
distortion unrelated to finite growth.

4 Numerical benchmarks

Two examples are presented in the following to demonstrate finite growth analysis with contact mechanics in the immersed
framework. The immersed finite element method and the contact problem are implemented in the Julia programming language.
In order to perform numerical integration of cut elements and apply the quadrature algorithms described in [15] we make use
of the C++ library Algoim [21] and embed it in Julia.

The first example is the isotropic growth of a sphere for which the analytical solution of the deformations

u3 = 3

∫ r

0

Θ3(r̃)r̃2dr̃ (16)

exists, where u is the displacement field, Θ is in the non-constant case a function of the radius and r corresponds to the radial
coordinate [19]. In the case of isotropic growth, we follow [20] and define the isotropic growth tensor as

Fg = ϑI, (17)

with I being the identity tensor. We apply the previously described finite growth equations and the function

Θ = ϑ− r̃ = 0.3r̃ (18)

with the growth function ϑ = 1.3r̃ which depends on the radius of the sphere. We compute the growth of the sphere within the
immersed framework and apply a quasi-static setting (v̇ = 0) and no body forces (b = 0). Additionally, we use a hyperelastic
material model by utilizing a free energy density ψ of Neo-Hookean type which can be expressed in terms of the first and third
invariant of the elastic right Cauchy Green tensor

ψ =
1

8
λln2(I3) +

1

2
µ[I1 − 3− ln(I3)], (19)

where I1 = tr(Ce), I3 = det(Ce), Ce = F t
e · Fe and λ and µ describe the Lamé coefficients [6]. To compute the level set

function in the benchmark, we use the function g from equation (10) as a function to perform inside/outside test by checking
whether Gauss points are inside or outside the domain and define the function g as

g(x) =

{
1 x ∈ Ωphys

−1 x ∈ Ωfict.
(20)

For the actual analysis we compute the growth solution field of an eighth of a sphere due to symmetry conditions (see Fig. 3)
and compare the numerical results with the analytical solution.

In the case of using the definition (10) of the level set height function we obtain suboptimal convergence if we compute the
L2 norm in terms of the deformation field (Fig. 4 (a)) which is justifiable for the case when we work with imaging data and
contact of soft tissues as higher order accuracy can not be expected.

Another possibility to compute the level set coefficients is via a signed distance function ϕ. In this case, the signed distance
function for a sphere is given by

ϕ = R−
√
x2 + y2 + z2. (21)
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(a) (b) (c)

Fig. 3: Finite growth within immersed method. (a) Background mesh consisting of 8× 8× 8 linear elements, (b) Gauss points representing
geometry and (c) Growth plotted on deformed configuration.
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(a) Application of equations (9) and
(10) for implicit geometry.
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(b) Application of equations (9) and
(22) for implicit geometry.

Fig. 4: Convergence of the error in the L2 norm for displacement u. Level set functions are applied for geometry description. Numerical
results of displacement field are compared to analytical solution in equation (16).

As we use a nodal-interpolatory approach, we can directly extract the coefficients from

Ci = R−
√
x2i + y2i + z2i , (22)

where R is the radius of the sphere and {xi, yi, zi} are the coordinates of the nodal point i. As can be seen in Fig. 4 (b), we
obtain optimal convergence if we apply the coefficients in equation (22) extracted from a signed distance approach.

However, the advantage of using equation (10) instead of equation (22) lies in the fact that it is compatible with imaging
data. In future work, we will use equation (10) and apply linear basis function to model growth of patient-specific imaged-
based human liver experiencing contact with surrounding organs.

Additionally, we briefly introduce the treatment of frictionless contact as contact possibly occurs in the growth modeling
of soft tissues. We apply the penalty method [22] for contact which benefits from various advantages like no additional
unknowns, symmetry and positive definiteness of the stiffness matrix. The penalty method is based on including an additional
penalty term δWp to the weak form of the underlying problem. The penalty term, which is obtained by integration over the
Contact boundary ∂Sc, can be expressed as

δWp(u, δu) = β

∫

∂Sc

g(u) · δudA (23)

where β describes the scalar penalty parameter and δu are the test functions. The vector g = u − û is the penetration in
which u are the unknown displacement and û denote the displacement on ∂Sc.

Thus, the next benchmark consists of a growing sphere that experiences contact within the immersed framework. We
compute a sphere that grows against a rigid plane (see Fig. 5). The numerical efficiency of the contact formulation in the
immersed framework is evaluated by confirming the convergence of the Newton scheme which converges in 5 iterations to a
residual norm of 10−6.

5 Summary and conclusion

In this work, we present a non-boundary-fitted finite element method for growth modeling including contact mechanics and
a mapping procedure for implicit level set geometry descriptions. The numerical efficiency of the method is evaluated by
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Fig. 5: Unilateral contact of a sphere within immersed framework

confirming the convergence behaviour for a three-dimensional numerical benchmark. As an outlook to future work, we will
apply this approach to a biomedical patient-specific problem, where we will focus on modeling the regrowth of the human
liver. The aim is to make use of the mapping scheme and compute large growth ratios without the need of remeshing. The
modeling goals are to investigate how residual stresses develop during liver size regeneration, how they are distributed and
which influence they have on the growth directions of the liver.
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