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Abstract

Axial symmetry in time-harmonic electromagnetic wave problems can be

exploited by considering a Fourier expansion along the angular direction,

reducing fully three-dimensional computations to two-dimensional ones on an

azimuthal cross section. While this transition leads to a significant decrease in

computational effort, it introduces additional difficulties, which necessitate

appropriate finite element (FE) formulations. By combining the latter with

perfectly matched layers (PML), open problems can be considered. In this

work, we compare and discuss the performance of different combinations of

axisymmetric FE formulations and PMLs, using a dielectric sphere in open

space as a test case. As an application example, a superconducting Fabry–Pérot
photon trap is considered.
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1 | INTRODUCTION

In order to exploit the axial symmetry of a wave problem, the electromagnetic fields can be expanded into a Fourier
series along the angular direction, reducing the computations to a two-dimensional (2D) azimuthal cross section, while
still calculating a fully three-dimensional (3D) solution.1 For this reason, these methods are known as quasi-3D or 2.5D
methods. Let us consider the Maxwell eigenvalue problem for an axisymmetric cavity V with homogeneous Dirichlet
boundary conditions in a cylindrical coordinate system r,φ, zð Þ1:

Find the eigenpairs e,ω2ð Þwith e�H0 curl,Vð Þsuch thatZ 2π

0

Z
Ω
μ�1
r curlcyle �curlcyle0dΩdφ�ω2

c20
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εre �e0dΩdφ¼ 0 8e0 �H0 curl,Vð Þ,
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>: ð1Þ

with e r,φ, zð Þ the electric field, Ω a 2D azimuthal cross section of V (see Figure 1), dΩ¼ rdrdz, ω the angular fre-
quency, c0 the speed of light in vacuum and curlcyl the curl in cylindrical coordinates. The components of the second-
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order material tensors of the relative magnetic permeability μ�1
r ¼ diag μ�1

r,r r, zð Þ, μ�1
r,φ r, zð Þ, μ�1

r,z r, zð Þ
h i

and the relative

electric permittivity εr ¼ diag εr,r r, zð Þ, εr,φ r, zð Þ, εr,z r, zð Þ� �
are assumed to be functions of the radial and axial coordinates

only and are chosen as diagonal tensors to account for the perfectly matched layers (PMLs) as discussed in Section 3.

To take the axial symmetry into account, the electric field is expanded into a Fourier series along φ, that is,

e r,φ, zð Þ¼
e0r r, zð Þ
e0φ r, zð Þ
e0z r, zð Þ
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where the Fourier coefficients en r, zð Þ¼ enr , e
n
φ, e

n
z

h iT
for n�ℤ are independent of the angle φ. By inserting Equation (2)

into formulation (1) and exploiting the orthogonality of the trigonometric functions, we rewrite the eigenvalue problem
(1) for the nth eigenmode with homogeneous Dirichlet boundary conditions on the boundary Γ1:

Foragivenmode n�ℤ, find the eigenpairs en,ω2ð Þwith en �Sn Ωð Þsuch thatZ
Ω
μ�1
r curlnen �curlnen0 dΩ�ω2

c20

Z
Ω
εren �en0 dΩ¼ 0 8en0 �Sn Ωð Þ,
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: ð3Þ

where Sn Ωð Þ is the function space of the nth Fourier coefficient and

curlnen ¼
�r�1 nenz þ ∂z renφ

� �� �
∂zenr � ∂renz

þr�1 nenr þ ∂r renφ
� �� �

2
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2 | WELL-POSED 2.5D FORMULATION

Two approaches have been proposed in the literature for the treatment of the singularity of curln at r¼ 0 and to con-
struct a suitable subspace of Sn Ωð Þ.1,2 A comparison of all following strategies has been published by Schnaubelt et al3

for closed cavity problems.

FIGURE 1 Model setup for axisymmetric problems and used notation; the PML can be seen between the dashed and yellow boundary
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2.1 | Non-classical conditions at the symmetry axis

The first strategy consists in taking the following ansatz: enrz ¼ enr , e
n
z

� �T �H curl,Ωð Þ and e ? ,nφ ¼ renφ �H1 Ωð Þ4 and to
impose non-classical discrete conditions at the symmetry axis.2, Section 4.4 This approach leads to well-posed integrals
while the integrands, however, remain singular. This necessitates either (i) a large number of quadrature points when
using a classical Gaussian quadrature or (ii) specialized quadrature rules.2, Section 5.1 Since the latter differ from element
to element, the use of fast assembly techniques5 is prevented. Therefore, the former approach is followed throughout
this paper. In the remainder of this work, this strategy will be referred to as ansatz “A1.”

2.2 | Direct construction of a subspace of Sn Ωð Þ

The second strategy is to directly construct an appropriate subspace of Sn Ωð Þ in a way that guarantees the well-posedness
of the variational formulation,1,6,7 avoiding thus the need for non-classical conditions on the symmetry axis. In this
approach, the problem is solved for auxiliary unknowns un �H1 Ωð Þ and Un �H curl,Ωð Þ instead of the original
unknowns enφ and enrz, following the two ansätze summarized in Table 1. In what follows, we have

gradrze
n
φ ¼ ∂renφ, ∂ze

n
φ

h iT
, the unit vector along the r-axis denoted as br and the parameters α, β�ℝ.

The parameters α and β of A3 α, βð Þ cannot be chosen freely but must satisfy certain constraints.6,3 Following
Schnaubelt et al,3 we choose β¼ 2 for n¼ 0 and α¼ β¼ 1 for n≠ 0 in this work. With this choice, ansatz A3 α, βð Þ leads
to polynomial integrands which is also the case for A2 when n≠ 0. Additionally, for some modes n, the ansätze need
an additional homogeneous Dirichlet condition at r¼ 0 as shown in Table 2.

3 | CYLINDRICAL PERFECTLY MATCHED LAYERS AS ABSORBING
BOUNDARY CONDITION

In order to model open problems, the computational domain is truncated by cylindrical perfectly matched layers8 as
shown in Figure 1. Let us mention that, alternatively, the domain can be truncated with an absorbing boundary
condition,9 which is however out of the scope of this paper. By mapping the spatial coordinates to complex variables, a
PML introduces a complex change of the metric of the space.10 It is worth noticing that, as the above described ansätze
do not change the metric, all developments on cylindrical PML for general 3D problems remain valid for the 2.5D set-
ting. A convenient way to interpret and implement the stretching of the spatial coordinates is to incorporate it into the
material tensors11 such that

μr r, zð Þ¼eμr r, zð ÞΛ r, zð Þ and εr r, zð Þ¼eεr r, zð ÞΛ r, zð Þ, ð4Þ

TABLE 1 Different ansätze for constructing a subspace of Sn Ωð Þ

Mode Ansatz A27 Ansatz A3 α, βð Þ6, Section 1.3

n¼ 0 u0 ¼ e0φ U0 ¼ e0rz rβu0 ¼ re0φ U0 ¼ e0rz

n¼�1 u�1 ¼ e�1
φ U�1 ¼ n

r e
�1
rz þ e�1

φ

r
br rβu�1 ¼ re�1

φ rαU�1 ¼�e�1
rz þgradrz re�1

φ

� �
j n j >1 un ¼ enφ Un ¼ n

r e
n
rzþ

enφ
r br rβun ¼ renφ rαUn ¼ nenrzþgradrz renφ

� �

TABLE 2 Conditions on the symmetry axis for the different ansätze

Mode Ansatz A2 [19] Ansatz A3 α, βð Þ6, Section 1.5

n¼ 0 u0 ¼ 0 None

n¼�1 None None

j n j >1 un ¼ 0 un ¼ 0
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with the scalar relative magnetic permeability eμr r, zð Þ and electric permittivity eεr r, zð Þ of the medium and the modifica-
tion tensor11

Λ r, zð Þ¼ diag
er rð Þ
r

sz zð Þ
sr rð Þ,

rer rð Þsz zð Þsr rð Þ,er rð Þ
r

sr rð Þ
sz zð Þ

� �
: ð5Þ

Herein, we have used the complex-valued stretching functions

sr rð Þ¼ 1� ipr rð Þ if r>R,

1 else,

�
and sz zð Þ¼ 1� ipz zð Þ if jzj>Z,

1 else,

�
and er rð Þ¼Rþ

Zr

R

sr r0ð Þdr0, ð6Þ

where R (resp. Z) is the distance between the r�axis (resp. z�axis) and the PML in the r�direction (resp. z-direction)
as shown in Figure 1. The different types of PMLs are then distinguished by their damping functions pr and pz. In this
work, six different damping functions will be compared as summarized in Table 3. Here, ΔR (resp. ΔZ) is the thickness
of the PML in r-direction (resp. z-direction) as illustrated in Figure 1, a (in rad/m) is the absorption parameter2 andek¼ Re ωð Þ=c0 is the real part of the wavenumber. Due to the dependency of ek on the angular frequency, all damping
functions of Table 3 except for the constant one lead to nonlinear eigenvalue problems12 when inserted into formula-
tion (3).

Finally, since the electric field is assumed to have decayed to zero on the boundary Γ, homogeneous Dirichlet
boundary conditions n�en�n¼ 0 are imposed on Γ with the outward pointing unit vector n, recovering the formula-
tion (3).

4 | NUMERICAL EXPERIMENTS ON A DIELECTRIC SPHERE IN VOID

In order to validate and compare the method, a systematic analysis has been performed on a dielectric resonating
sphere surrounded by air with radius r¼ 1m and with a relative electric permittivity εr ¼ 40, for which closed-form
solutions of the eigenvalue problem (3) are well-known.16 Since the eigenfrequencies ω are known, the pre-computed
value for ek is used for the damping functions, converting thus the nonlinear eigenvalue problem into a classical
generalized one.

This section is structured as follows: in Section 4.1, the approaches are validated by checking the convergence with
respect to the mesh refinement. Afterwards, the accuracy of the approaches is compared with respect to the influence
of the PML thickness and distance in Section 4.2 and with respect to the damping parameter a in Section 4.3. Last, in
Section 4.4, a comparison of the computational cost of the approaches can be found. For the sake of compactness, only a
selection of the numerical experiments carried out for the systematic analysis is shown. However, the data shown are repre-
sentative for all numerical experiments carried out.

To carry out the analysis, the approaches have been implemented in a homemade high-order open-source finite ele-
ment (FE) code.*

TABLE 3 Damping functions considered in this work8,13,14,15

Function Abbreviation pr rð Þ pz zð Þ
Constant c. 1 1

Constant parameterized c.p. aek aek
Linear l. aek r�R

ΔR
aek jz�sgn zð ÞZj

ΔZ

Quadratic q. aek r�R
ΔR

	 
2
aek z�sgn zð ÞZ

ΔZ

� �2

Hyperbolic h. aek 1
ΔR� r�Rð Þ

aek 1
ΔZ�jz�sgn zð ÞZj

Shifted hyperbolic h.s. aek 1
ΔR� r�Rð Þþ aek 1

ΔR
aek 1
ΔZ�jz�sgn zð ÞZjþ aek 1

ΔZ
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4.1 | Validation: Convergence with respect to the mesh refinement

First, the approaches are validated by investigating the convergence of the numerically computed eigenfrequencies with
respect to the mesh refinement. To this end, a structured fourth order triangular mesh as shown in Figure 2 is refined
by successively uniformly splitting each triangle into four subtriangles. Figure 4 shows the decrease of the relative error
between the numerically computed eigenfrequency and its analytical counterpart for different mesh refinement levels,
n� 1, 2f g and for all 2.5D ansätze as described above. In order to simplify the discussion, the PML distance and thick-
ness are chosen equal† and are fixed to R¼Z¼ΔR¼ΔZ¼ 1λ with the wavelength λ. Furthermore, we choose
a¼ 5rad=m. These choices have been made to ensure converging solutions (compare the following sections for a justifi-
cation). A second order FE method is used, thus a convergence slope of 4 for the eigenfrequency with respect to the
mesh refinement is expected.17

All combinations of 2.5D ansätze and PML damping functions lead to converging solutions close to or exceeding the
expected convergence slope. Let us note that this is not an isolated case but has been observed for all n and all investi-
gated modes. The numerically computed solutions for the ansätze A2 and A3 coincide, as it has also been the case for
the closed cavity problems.3 Since this holds true for all following test cases, in particular for all n, different FE orders
and PML damping functions, only one of the two ansätze is shown for the remainder of this work.

While A2 and A3 outperformed A1 for closed cavity problems leading to smaller relative errors for the same mesh,3

a similar conclusion cannot be drawn for the case of open cavities. For the latter, the absolute value of the relative error
for the different 2.5D ansätze depends on the investigated eigenmode, n and the chosen PML parameters. Last, little dif-
ferences are observed when comparing the different damping profiles. As shown in the next subsection, this is due to
the particular choice of a, R, Z, ΔR and ΔZ.

However, before analyzing the influence of the PML parameters, the influence of the FE order on the convergence
slope will be checked. The decrease of the relative error can be seen in Figure 3 for different FE orders p. As it has been

FIGURE 2 Illustration of a structured triangular mesh used for the mesh refinement convergence tests, the dielectric sphere is shown in

orange

FIGURE 3 Convergence results for the fundamental mode TE1m1, different FE orders p, R¼Z¼ΔR¼ΔZ¼ 1λ and n¼ 1. The index m

reflects the degeneracy of the modes16 and a constant damping function is used
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FIGURE 4 Convergence results for the TM4m1 mode with R¼Z¼ΔR¼ΔZ¼ 1λ, n� 1, 2f g, a¼ 5rad=m and a second order FE method.

The lowest slope is marked by a triangle, the upper (lower) curves represent the imaginary (real) part
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established that the difference between the different damping functions is negligible for this choice of R, Z, ΔR, ΔZ and
a, only the constant one is shown here for the sake of conciseness. As the FE order is increased, the expected conver-
gence slope is matched for first and second order, but this is not the case for the third order method where a slope of
6 is expected. A possible explanation for this behavior is the geometrical error which is introduced when approximating
the circular boundary of the sphere by polynomials. This problem could be alleviated by the use of isogeometric
methods.18

4.2 | Accuracy comparison: Convergence with respect to the PML thickness and
distance

In this section, the influence of the PML thickness and distance is investigated. Figure 5 shows the relative error of the
eigenfrequency as a function of the PML thickness and distance R¼Z¼ΔR¼ΔZ¼ sPML in terms of the wavelength λ
for all damping functions. To this end, an unstructured mesh is used in order to keep the same mesh density inside the
PML when considering different sPML. In the figure, the results for ansatz A1, n¼ 2 and a third-order method are
depicted for the sake of conciseness. However, the same conclusions can be drawn for the other ansätze and FE orders
as well as for other n and eigenmodes.

For increasing PML thickness and distance, the differences between the damping functions become increasingly
negligible, with the damping function c.p. being the only exception (compare especially the results for the imaginary
part). This is approximately already the case for sPML ≥ λ and hence, this value has been chosen for the previous and the
subsequent test cases. Let us note that, while the number of degrees of freedom obviously increases with sPML, the com-
putational cost does not become prohibitive with 2.5D methods, in contrast to full 3D computations, due to the 2D
mesh used.

4.3 | Accuracy comparison: Convergence with respect to the absorption parameter

As a last numerical experiment on the dielectric sphere, the influence of the absorption parameter a on the accuracy of
the solution is investigated in this section. To this end, the evolution of the relative error of the eigenfrequency w.r.t. a
is shown in Figure 6 for ansatz A3 and R¼Z¼ΔR¼ΔZ¼ 1λ. Furthermore, since the influence of a also depends on
the number of mesh elements per wavelength inside the PML nλPML, the latter is swept between 2 and 32 while the mesh
size inside the non-PML part of the computational domain is kept constant at eight elements per λ. To achieve this, an
unstructured triangular mesh is used.

For nλ
PML ¼ 2, the accuracy of the solution varies with a over the whole interval of investigated absorption parame-

ters. However, as nλ
PML increases to nλPML ¼ 32, there exists a threshold at after which the solution is approximately

FIGURE 5 Influence of the perfectly matched layer thickness and distance on the relative error of the numerically computed

eigenfrequency of the TE4m1 mode of the free dielectric sphere. A third order FE method, n¼ 2, a¼ 5rad=m and ansatz A1 are used
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FIGURE 6 Influence of the absorption parameter on the numerically computed eigenfrequency of the TE4m1 mode. A third order FE

method, n¼ 2, R¼Z¼ΔR¼ΔZ¼ 1λ and ansatz A2 are used
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constant w.r.t. a. Again, the constant parameterized damping function forms an exception since its behavior is sensitive
to a, even for fine meshes inside the PML. In particular, no at can be found for the latter damping profile. For all other
damping functions, assuming a sufficient spatial resolution in the PML region, the influence of a is negligible for a> at.
However, the threshold depends, among others, on the investigated eigenmode and on n. Due to this behavior,
a¼ 5rad=s > at has been chosen for the previous test cases.

Furthermore, assuming that the threshold is exceeded, the damping functions yield comparable solutions, even in
the constant PML case, which does not involve the parameter a. Last, the other 2.5D ansätze lead to the same conclu-
sions as well as different n, FE orders and investigated eigenmodes. As already stated, the latter will, however, influence
the value of at.

4.4 | Computational cost

Before concluding this section about the dielectric sphere in void, let us address the question of the computational cost.
In particular, we focus in this section on the simulations carried out in Section 4.3 and restrict the damping parameter
a to the set a {1, 5, 10} rad/m for conciseness reasons.

The computational cost is usually divided in two parts: the cost of the assembly of the discrete matrices and the cost
of solving the associated eigenvalue problem. Regarding the assembly cost, we provide the number of elementary FE
terms associated with the different ansätze in Table 4, which clearly shows that, while A2 and A3 demand less integra-
tion points for the assembly than A1, they require more elementary FE terms than A1. In Schnaubelt et al,3 a discussion
comparing the three ansätze in terms of accuracy with respect to the number of integration points is available.‡

Let us now focus on the computational effort required for computing the eigenpairs e,ω2ð Þ of (1). Our implementa-
tion relies on the Krylov–Schur method,19 as provided by the SLEPc library.20 Additionally, the eigenvalue problem is
transformed with the Shift-and-Invert approach21 and the underlying LU factorization is carried out with the MUMPS
mutlifrontal direct solver.22 In our case, this latter step is the most computationally consuming part of the eigenvalue
solver and, for this reason, we concentrate only on this part in the following paragraph. But before that, let us mention
that in all cases the Krylov–Schur method converged in one iteration, as the spectral shift was selected with the analyti-
cal solution.

The wall-clock times associated with the cases nλPML ¼ 2, nλ
PML ¼ 8 and nλPML ¼ 32 are provided in Table 5, which

shows the results for the constant PML case only. Nonetheless, the timings are equivalent with the other PMLs and the
considered values of a, up to 1s. Those data are the average value over 5 different runs, the associated standard devia-
tion being smaller than 1s in every case. In all these different scenarios, the wall-clock time of the A1 ansatz is the
smallest, with a relative difference of approximately 14% when compared with A2 and A3, the latter two exhibiting
approximately the same wall-clock time. Explaining this phenomenon is a delicate task, but a few differences between

TABLE 4 Number of elementary FE terms associated with the different ansätze

Ansatz Number of FE terms

A1 7

A2 30

A3 15

TABLE 5 Time required for solving the eigenvalue problem (1) for the constant perfectly matched layer (PML; values in seconds,

averaged value over 5 runs, same setting as in Section 4.3, the data regarding the other PMLs—for a� 1, 5, 10f grad=m—are the same, up

to 1s)

nλ
PML

Ansatz

A1 A2 A3

2 18 21 21

8 20 23 23

32 37 43 43
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the three ansätze are worth mentioning. First, the matrices resulting from A1 are sightly smaller, because of the use of
boundary conditions on the symmetry axis. Nonetheless, this difference decreases as the number of mesh elements in
Ω increases. Second, the sparsity patterns associated with each ansatz are very different from each other. As a notable
result, the order of the largest frontal matrix22 (as reported by MUMPS) is systematically larger (yet only by approxi-
mately 1%) with A1 when compared with A2 and A3, the latter two exhibiting the same order. Finally, the number of
off-diagonal pivots is also very different in the matrices resulting from the different ansätze. In particular, A1 (resp. A3)
is systematically associated with the smallest (resp. largest) number of off-diagonal pivots. Concerning the memory
usage of the MUMPS solver, it varies by less than 1% when comparing the three ansätze on the same test case.

To conclude this section, let us discuss briefly the case of nonlinear eigenvalue problems, when solved with a con-
tour integral method.23 In a nutshell, this approach requires the solution of many linear systems that have the same
structure as the one found in the Shift-and-Invert transformation, up to the “shift” which is different for each system.
Therefore, our previous analysis for the linear case applies as well. However, this computational cost must be paid more
than once in the nonlinear case, one for each linear system. Nonetheless, in the case of a contour integral approach, the
aforementioned linear systems can be solved in a concurrent way and independently from each other, exhibiting thus
good scaling properties.

5 | SIMULATION OF AN ULTRAHIGH FINESSE FABRY–P �EROT
SUPERCONDUCTING RESONATOR

As an application example, an ultrahigh finesse Fabry–Pérot superconducting resonator, whose dimensions are similar
to the one built by Kuhr et al,24 is simulated (see Figure 7). Such devices find applications in quantum computing, by
creating a quantum system consisting of a single trapped photon.25 In this work, we are interested in computing the res-
onance frequency and damping time of the 9th trapping mode24 numerically. This is a computationally demanding task
which requires the usage of clusters in 3D.26 The cavity is not axially symmetric but elliptic. Nonetheless, its two radii
of curvature are close to each other (40:6mm and 39:4mm).24 For this reason, it will be approximated as axisymmetric
to benefit from 2.5D methods. The 2.5D results will subsequently be compared to the ones achieved with a full 3D FE
simulation of the elliptic cavity.26

The relation between the angular frequency ω computed in the eigenvalue problem and the cavity resonance fre-
quency f and damping time τ reads

ω2 ¼ 2πf þ i
1
τ

� �2

: ð7Þ

The constant damping function will be used for this numerical study, as it was established in the previous test case as
an appropriate choice and naturally leads to a classical generalized eigenvalue problem. Furthermore, after a dedicated
sensitivity analysis, the PML thickness and distance are chosen as one wavelength. An unstructured second order

FIGURE 7 The upper half of the azimuthal cross section of the considered superconducting resonator, its radius is 25mm, the radius of

the curvature is 40:6mm and the distance between the apexes is 27:57mm.24 Due to symmetry considerations, only the upper half of the

cross section needs to be simulated. The model is truncated by perfectly matched layers in axial and radial direction
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triangular mesh is used. The evolution of the resonance frequency and damping time with the number of mesh ele-
ments can be seen in Figure 8. Convergence is reached both for f and τ for all different 2.5D ansätze. Furthermore, the
numerically computed values are comparable§ to the ones achieved using a 3D simulation of the actual non-
axisymmetric geometry26 (see Figure 9). For the latter, however, the simulation used significantly less mesh elements
per wavelength due to memory limitations caused by the 3D meshes. Hence, the convergence is not as clearly visible as
in the 2.5D case. Furthermore, the 2.5D results have been generated on a laptop computer with 16GB of RAM with
simulation times in the range of few minutes while the 3D simulation has been run on a cluster using 120 computing
nodes with 64GB of RAM per node which still needed hours of run time. By drastically reducing run times, 2.5D
methods enable the usage of optimization or uncertainty quantification methods for (almost) axisymmetric problems.

6 | CONCLUSIONS

This paper compared three different 2.5D ansätze in combination with six different damping profiles for cylindrical per-
fectly matched layers to treat open three-dimensional time-harmonic electromagnetic wave problems in axisymmetric
geometries. Given an appropriate choice of the absorption parameter as well as PML thickness and distance, it has been
shown that all combinations yield accurate results when computing the eigenfrequencies of a free dielectric sphere,
with the constant parameterized damping function being an exception due to its sensitivity to the choice of a and sPML.
The constant damping profile has been proposed as a simple and suitable choice since first, it does not turn the general-
ized eigenvalue problem into a nonlinear one, as it is parameter free, in contrast to the other profiles. Second, perfor-
mance differences between the different damping profiles have been observed to be negligible assuming that the PML
size and distance is chosen big enough, which is not computationally prohibitive thanks to the 2D mesh used. It has
been shown that ansatz A1 leads to slightly smaller computational times when solving the eigenvalue problem. Hence,
we propose the combination of ansatz A1 and constant damping profile as a simple but appropriate choice. While this

FIGURE 8 Numerically computed resonance frequency and damping time of the trapping mode of the superconducting cavity

approximated as axisymmetric. A constant damping function, R¼Z¼ΔR¼ΔZ¼ 1λ and a third order 2.5D FE method have been used

FIGURE 9 Numerically computed26 resonance frequency and damping time of the trapping mode of the 3D superconducting cavity. A

hyperbolic damping function, R¼Z¼ΔR¼ΔZ¼ 1λ and a FE method of order p are used

SCHNAUBELT ET AL. 11 of 13



proposal is not an optimal choice and could be improved upon by an independent study of the influence of the PML
thickness and distance, it leads to a drastic reduction of computational effort of 2.5D methods compared to 3D methods
as demonstrated on an ultrahigh finesse Fabry–Pérot superconducting resonator.
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ENDNOTES

* See https://gitlab.onelab.info/gmsh/small_fem/-/blob/master/simulation/Quasi3DPML.cpp
† This choice is in general not optimal and the influence of the PML distance and thickness on the numerical accuracy and efficiency should
be studied independently. However, for the applications studied in this paper, the choice R¼Z¼ΔR¼ΔZ has been found to be
appropriate.

‡ Let us note that the wall-clock time associated with the assembly of A1, A2 and A3 cannot be compared with our homemade FE code.
Indeed, this code exhibits two distinct assembly kernels: a “fast” one exploiting cache locality (as discussed in Marsic et al5) and a “slow”
one that does not. In the current status of the implementation, the A2 and A3 ansätze do not fit into the “fast” kernel while the A1 does. In
a high-order FE context, this leads to very large differences in the assembly time. Before concluding this footnote, let us mention that the
use of the “slow” kernel is not due to a fundamental limitation of the A2 and A3 ansätze, but to technical details related to the implementa-
tion itself.

§ Thus, the 2.5D results support the validity of the original 3D simulation since they are in the same order of magnitude.
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