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Abstract

Electromagnetic quasistatic field models, which take into consideration resis-

tive, inductive, and capacitive effects, have been introduced for electrical engi-

neering applications whose geometrical characteristics, combined with the

operational frequencies, suggest negligible radiation phenomena. Here, a mono-

lithic variant of a previously proposed two-step electromagnetic quasistatic algo-

rithm and a two-step time-domain Maxwell formulation are presented, together

with relevant initial-boundary value problems. In view of numerical experi-

ments, the fields that are obtained with the two-step electromagnetic quasistatic

algorithm, its monolithic variant, and the two-step time-domain Maxwell for-

mulation are compared and turn out to be in good agreement.
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1 | INTRODUCTION

In electrical engineering applications, such as resonant coils, inductive charging systems, and high-voltage insulators, it
is often assumed that the rate of change of either the magnetic flux density B or that of the electric flux density D is
vanishing. Under any of these assumptions, the fields are said to be quasistatic, with the resulting fields being called
electro-quasistatic (EQS) and magneto-quasistatic (MQS) for ∂tB = ∂B/∂t = 0 and ∂tD = 0, respectively. More recently,
the interest of the engineering community has been shifted toward electromagnetic quasistatic (EMQS) field models,1–7

that is, models that are able to capture all effects—resistive, inductive, and capacitive—excluding radiation, such as for
instance the two-step Darwin model.8 This two-step approach is based on the observation that MQS fields can be
gauged by first solving an EQS problem and then employing the resulting EQS current as a source term for the equation
that governs the MQS field. More precisely, let the EQS current be

JEQS¼�εr∂ tφ�σrφ, ð1Þ

where φ is the sought scalar EQS potential, ε > 0 is the electric permittivity, and σ ≥ 0 is the electric conductivity. Then,
in the absence of external currents, the EQS problem r�JEQS = 0 is solved for φ, while the resulting current JEQS
appears in the MQS equation.
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r�μ�1r�Aþσ∂ tA¼ JEQS ð2Þ

as a known term. By taking the divergence of (2), it immediately follows that the vectorial MQS potential A satisfies the
condition.

r�σ∂ tA¼ 0: ð3Þ

Provided that the computational domain Ω constitutes of a non-conductive subdomain ΩV with σjΩV = 0 and a con-
ductive subdomain whose conductivity σjΩC > 0 is constant, Equation (3) provides a partial gauging in the conductive
regions only, that is, r� ∂tAjΩC = 0. Although this partial gauging is sufficient for computing the magnetic flux density
B = r � A, the electric field intensity needs to be corrected by the rate of change of the vectorial MQS potential,
that is,

E¼�rφ� ∂ tA, ð4Þ

and hence, the vectorial MQS potential needs to be well-determined everywhere in the computational domain.
The rest of the paper is organized as follows. In the forthcoming section, the continuous initial-boundary value

problems of interest are introduced, in a general setting, and suitable discrete formulations are presented. The
section concludes with two algorithms for computing EMQS fields; one algorithm for the two-step approach and one
for the monolithic variant. In the next section, both the two-step algorithm and its monolithic variant are numerically
validated against each other and against the time-domain two-step Maxwell scheme. The last section concludes the
paper.

2 | PROBLEM STATEMENT

Suppose that the device of interest is contained in a bounded and simply connected domain Ω�ℝ3 whose boundary
∂Ω is Lipschitz, such as those depicted in Figure 1. The domain Ω is free from charge and current sources, while it con-
stitutes of two disjoint domains ΩV and ΩC, which are occupied by void and conductive material, respectively. A third
disjoint subdomain ΩD that is occupied by dielectric material with vanishing conductivity may be present, as for

FIGURE 1 Devices that exhibit resistive, capacitive, and inductive phenomena, and are suitable for testing electromagnetic quasistatic

formulations
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instance the RLC circuit9 consisting of a resistor (R), an inductor (L), and a capacitor (C), depicted on the most-right
side of Figure 1. All subdomains of Ω are also assumed to have Lipschitz interfaces. The terminals of the device reach
the boundary ∂Ω at the surfaces ΓE and ΓG, with ΓE supplying a time-dependent excitation voltage.

φ jΓE¼φE tð Þ¼φmax �min ft,1ð Þ � sin 2πftð Þ ð5Þ

and ΓG set to ground, that is, φjΓG = 0. The rest of the boundary of Ω is assumed to be electrically insulating, and
hence, a vanishing Neumann boundary condition is imposed on ∂Ω ∖ (ΓE [ΓG) for the scalar EQS potential. Further-
more, the tangential component of the vectorial MQS potential is assumed to be vanishing on ∂Ω, that is, n � Aj∂Ω = 0,
where n is the outward pointing unit normal on ∂Ω. Then, for all t � I = [0, T] with T > 0, the scalar EQS potential φ
satisfies the initial-boundary value problem.

r� σrφþ εr∂ tφð Þ¼ 0 inΩ� I, φj t¼ 0f g¼ 0, φjΓG� I¼ 0,

φjΓE� I ¼φE tð Þ, ∂φ=∂nj∂Ω, ΓE[ΓGð Þ� I¼ 0
ð6Þ

while, provided the solution of problem (6), the vectorial MQS potential A is obtained by solving the initial-boundary
value problem.

r�μ�1r�Aþσ∂ tA¼ JEQS inΩ� I, A j t¼ 0f g¼ 0, n�A j ∂Ω� I¼ 0: ð7Þ

To state the variational forms that are associated with problems (6) and (7), consider the standard Sobolev spaces H
(grad, Ω) = H 1(Ω), H(curl, Ω) and define

Ha grad,Ωð Þ¼ ψ �H grad,Ωð Þ :ψ jΓE¼ a,ψ jΓG¼ 0f g, H0 curl,Ωð Þ¼ w �H curl,Ωð Þ :n�wj∂Ω¼ 0f g: ð8Þ

Then, problems (6) and (7) imply the following variational problems.

findφ�Hφ tð Þ grad,Ωð Þ such that
Z
Ω
σrψ �rφdΩþ

Z
Ω
εrψ �r∂ tφdΩ¼ 0 8ψ �H0 grad,Ωð Þ, ð9Þ

findA�H0 curl,Ωð Þ such that
Z
Ω
μ�1r�w �r�AdΩþ

Z
Ω
σw � ∂ tAdΩ

¼
Z
Ω
w �JEQSdΩ 8w�H0 curl,Ωð Þ:

ð10Þ

Given that both problems (9) and (10) can be stiff, the trapezoidal rule, which is second-order accurate and A-stable,
is used for time-discretization. To this end, consider a partition (t0, t1), (t1, t2), …, (tN�1, tN) of the time interval I, with
t0 = 0, tN = T, and timestep Δt = tn+1 � tn for all n �{0, 1, …, N � 1}. Then, the trapezoidal rule results in the time-
discrete equations.

Z
Ω

2ε
Δt
þσ

� �
rψ �rφnþ1dΩ¼

Z
Ω

2ε
Δt
�σ

� �
rψ �rφndΩ, ð11Þ

Z
Ω
μ�1r�w �r�Anþ1dΩþ

Z
Ω

2σ
Δt

w �Anþ1dΩþ
Z
Ω

σþ 2ε
Δt

� �
w �rφnþ1dΩ

¼�
Z
Ω
μ�1r�w �r�AndΩþ

Z
Ω

2σ
Δt

w �AndΩ�
Z
Ω

σ� 2ε
Δt

� �
w �rφndΩ:

ð12Þ
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A space-discrete variant is then obtained with the finite element method. More precisely, consider a triangulation of
Ω, employ element-wise constant basis functions for the material coefficients, s first-order polynomial basis functions
for the scalar EQS potential, and v zeroth order Nédélec basis functions for the vectorial MQS potential to obtain the
systems.

M12ϕ
nþ1¼bnþ11 , M21anþ1þM22ϕ

nþ1¼ bnþ12 , ð13Þ

where M12 �ℝs�s, M21 �ℝv�v, M22 �ℝv�s are matrices that are associated with the left-hand-sides of Equations (11)
and (12), while b1 �ℝs and b2 �ℝv are associated with the right-hand-sides of the same equations and the boundary
conditions. These matrices are non-singular provided the partial gauging, the usage of Nédélec elements, continuity
of the tangential component along interfaces, and boundary conditions. Since the first linear system of
Equation (13) does not depend on the vectorial MQS potential, the scalar EQS potential ϕn+1 can be obtained first
and can be substituted into the second linear system of Equation (13) for computing the vectorial MQS potential
an+1, that is,

ϕnþ1¼M�112 b
nþ1
1 , anþ1¼M�121 b

nþ1
2 �M�121 M22M�112 b

nþ1
1 : ð14Þ

Alternatively, a monolithic approach can be adopted, where the potentials ϕn+1, an+1 are computed simultaneously
by solving the compound linear system.

0 M12

M21 M22

� �
anþ1

ϕnþ1

� �
¼ bnþ11

bnþ12

" #
: ð15Þ

Provided the potentials ϕn, an for all n �{0, 1, …, N}, the electric field intensity and the magnetic flux density are
computed by

En
h¼�rφn

h�
Anþ1

h �An�1
h

2Δt
, Bn

h ¼r�An
h, ð16Þ

where the subscript h is used for the associated finite element expansions.
Here, a two-step approach is also adopted for obtaining reference fields by solving the time-domain Maxwell equa-

tions, similarly to two-step frequency-domain schemes.10,11 More precisely, as with the two-step EMQS method, initial-
boundary value problem (6) is first solved, while the radiation term ε∂ttA is now taken into account and gauges the
non-conductive regions by imposing the condition r� ε∂ttA = 0. Thus, the equation that holds in Ω � I, see
Equation (7), is replaced by

r�μ�1r�Aþσ∂ tAþ ε∂ ttA¼ JEQS inΩ� I, ð17Þ

and hence, the associated variational problem reads as follows

findA�H0 curl,Ωð Þ such that
Z
Ω
μ�1r�w �r�AdΩþ

Z
Ω
σw � ∂ tAdΩþ

Z
Ω
εw � ∂ ttAdΩ

¼
Z
Ω
w �JEQSdΩ 8w�H0 curl,Ωð Þ:

ð18Þ

The time-discrete equation
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Z
Ω

1
4μ
r�w �r�Anþ1dΩþ

Z
Ω

σ

2Δt
þ ε

Δtð Þ2
 !

w �Anþ1dΩ

¼�
Z
Ω

1
2μ
r�w �r�AndΩþ

Z
Ω

2ε

Δtð Þ2w �A
ndΩ

�
Z
Ω

1
4μ
r�w �r�An�1dΩþ

Z
Ω

σ

2Δt
� ε

Δtð Þ2
 !

w �An�1dΩ

þ
Z
Ω
w � 1

4
Jnþ1EQSþ

1
2
JnEQSþ

1
4
Jn�1EQS

� �
dΩ

ð19Þ

with JnEQS¼ ε rφnþ1�rφn�1ð Þ= 2Δtð Þþσrφn is obtained by employing a Newmark-Beta scheme12,13 (γ = 1/2, β = 1/4).
The two-step EMQS approach in Equation (14) and the monolithic EMQS approach in Equation (15) are summa-

rized in Algorithm 1 and Algorithm 2, respectively. In the following section, these two algorithms are numerically vali-
dated against the two-step Maxwell formulation.

3 | NUMERICAL EXPERIMENTS

The helical coil and the RLC circuit that are depicted in Figure 1 are used for verifying the schemes in a computational
setting. The conductive material ΩC and the dielectric material ΩD are placed in a domain Ω, with ΩV¼Ω ∖ΩC being
void. A small artificial conductivity with a value of 2ε0/Δt is introduced in the non-conductive regions to regularize the

Algorithm 1 Two-step EMQS Scheme

Require: Computational domain Ω, material functions ε, σ, μ, and boundary conditions
Ensure: Electromagnetic quasistatic field En

h,B
n
h

� �
1: Initialization: a�1, a0 0, ϕ0 0
2: for n 0, 1, …, N do
3: ϕnþ1 M�112 b

nþ1
1

4: end for.
5: for n 0, 1, …, N do
6: anþ1 M�121 b

nþ1
2 �M�121 M22ϕ

nþ1

7: En
h �rφn

h� Anþ1
h �An�1

h

� �
= 2Δtð Þ

8: Bn
h r�An

h

9: end for

Algorithm 2 Monolithic EMQS Scheme

Require: Computational domain Ω, material functions ε, σ, μ, and boundary conditions.
Ensure: Electromagnetic quasistatic field En

h,B
n
h

� �
1: Initialization: a�1, a0 0, ϕ0 0
2: for n 0, 1, …, N do
3: Solve problem (14) for (an+1, ϕn+1)
4: En

h �rφn
h� Anþ1

h �An�1
h

� �
= 2Δtð Þ

5: Bn
h r�An

h

6: end for
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MQS problem. The material parameters of the devices are listed in Table 1. The boundary ΓS supplies an excitation
(5) whose frequency is f = 10 MHz and its maximum amplitude φmax is equal to 12V, while ΓG is set to ground, and
hence, φjΓG = 0 for all t � [0, 3/f]. The remaining part of the boundary is insulated. Provided that both the characteris-
tic length ℓHC = 6 cm of the helical coil and that of the RLC circuit, ℓRLC = 4 cm, are smaller than half of the wave-
length λffi 30m that is associated with the operating frequency in void, the quasistatic assumption is expected to hold
sufficiently well.

The time range is discretized with the trapezoidal rule for Δt �{2.5, 1.25, 0.625} ns and N = 3/(f �Δt), while the phys-
ical space is discretized with the finite element method, using first-order Lagrangian elements for the scalar EQS poten-
tial φ and lowest-order edge elements for the vectorial MQS potential A. The number of degrees of freedom, the
minimum mesh element size, and the average runtime per timestep are listed in Table 2. All algorithms are
implemented using the finite element software FreeFEM14 using PETSc15 for parallelization and with MUMPS16 as a
solver. All simulations are run with 20 MPI processes.

The magnitude of the magnetic flux density and the electric field intensity for the helical coil and the RLC circuit
obtained with the two-step EMQS scheme are depicted in Figure 2. For both devices the magnitude of the magnetic flux
density is at its maximum within the coil and capacitive effects between the coil windings are visible in the plot of the
magnitude of the electric field intensity. In the RLC circuit, the electric field intensity is strongest between the plates of
the capacitor. A limitation of the discussed EMQS formulation is that induced displacement currents are neglected17

and therefore, in combination with the employed artificial conductivity, a phase shift of the electric field can occur in
between the capacitor plates.

The relative difference of the electric field intensity E and the magnetic flux density B, defined as

FI1 �FI2k kL2 Ωð Þ
FI1k kL2 Ωð Þ

ð20Þ

where F �{Eh, Bh}, (I1, I2) �{(TS, M), (ML, M), (ML, TS)}, with the subscripts TS, ML, and M standing for the two-
step, monolithic and full Maxwell schemes, respectively, and are depicted in Figures 3 and 4. In the same figures,
observe that all differences are bounded from above, with reduced bounds for decreasing timesteps. The cause of
the high-frequency oscillations is mainly related to the employed time-discretization. The relative differences
between the fields that are obtained with the monolithic and the two-step EMQS algorithms for the RLC circuit are
shown in Figure 5 and are less than 10�8 for the whole time-interval. Furthermore, the presented results are in
agreement with the results previously presented, where the two-step EMQS scheme was compared to a two-step
frequency-domain Maxwell solver.8

TABLE 1 Material parameters

Domain Conductivity Relative permittivity εr Relative permeability μr

ΩV 0 S/m (σartificial = 2ε0/Δt) 1 1

ΩC 5.96 � 107 S/m 1 1

ΩD 0 S/m (σartificial = 2ε0/Δt) 2 1

TABLE 2 Number of Degrees of Freedom (dof), minimum cell size, and and average run time per timestep with the subscripts TS, ML,

and M standing for the two-step, monolithic and full Maxwell schemes, respectively

Lagrange elements Nédélec elements hmin τTS τML τM

Helical coil 40 045 285 265 1.6 � 10�4 m 2.6 s 2.6 s 4 s

RLC circuit 232 265 1 663 197 1 � 10�4 m 16.4 s 12.4 s 23.4 s
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4 | CONCLUSIONS

Based on a previously developed two-step EMQS algorithm, we verified a monolithic EMQS scheme and proposed a
two-step time-domain Maxwell algorithm. Here, it has been demonstrated that the fields that are obtained with the
two-step EMQS algorithm, its monolithic variant, and the two-step Maxwell algorithm are in good agreement. Both
two-step algorithms enable the usage of efficient solvers, due to the symmetry of the resulting linear systems, while the
two-step EMQS algorithm has the benefit of requiring only first order derivative approximations with respect to time.
All presented algorithms may require additional regularization in void, depending on the frequency of the excitation,

FIGURE 2 The magnitude of the magnetic flux density and the electric field intensity for the helical coil and the RLC circuit

FIGURE 3 The relative difference of the electric field intensity and the magnetic flux density between two-step electromagnetic

quasistatic scheme and the full Maxwell scheme for the helical coil

HENKEL ET AL. 7 of 9



since the proposed electric field intensity computation requires a well-defined vectorial MQS potential throughout the
computational domain.
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