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High performance magnets play an important role in critical issues of modern life such as renewable energy supply, inde-
pendence of fossile resource and electro mobility. The performance optimization of the established magnetic material system
relies mostly on the microstructure control and modification. Here, finite element based in-silico characterizations, as micro-
magnetic simulations can be used to predict the magnetization distribution on fine scales. The evolution of the magnetization
vectors is described within the framework of the micromagnetic theory by the Landau-Lifshitz-Gilbert equation, which re-
quires the numerically challenging preservation of the Euclidean norm of the magnetization vectors. Finite elements have
proven to be particularly suitable for an accurate discretization of complex microstructures. However, when introducing the
magnetization vectors in terms of a cartesian coordinate system, finite elements do not preserve their unit length a priori.
Hence, additional numerical methods have to be considered to fulfill this requirement. This work introduces a perturbed
Lagrangian multiplier to penalize all deviations of the magnetization vectors from the Euclidean norm in a suited manner. To
reduce the resulting system of equations, an element level based condensation of the Lagrangian multiplier is presented.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Magnets can be classified into magnetically soft and hard materials. Here, the terms “hard” and “soft” refer to the switching
resistance of magnetic materials in the presence of externally applied magnetic fields. Soft magnetic materials are featured
by slender hysteresis loops, in contrast to hard magnetic materials, that have particularly wide hysteresis loops [16]. These
differently pronounced characteristics inherently lead to different fields of application of the materials. However, both hard
and soft magnetic materials make a significant contribution to further increasing the efficiency of power generators (wind
turbines), conversion equipment (transformers), sensors and means of transport (electromobility), as discussed in [1]. Signif-
icantly enhanced properties of these magnetic materials are a key to improving energy efficiency, contributing substantially
to flexible and intelligent designs of industrial applications as well as reducing their environmental impact. Nevertheless,
energy consumption always leaves an environmental footprint that, most importantly, must be minimized. Therefore, improv-
ing the energy chain (conversion-storage-transport and reconversion) is of crucial importance [2]. Promising potential for
improvement is shown by both the synthesis of novel chemical compositions of materials and new processing techniques for
microstructures. The enhancement of such processing routes may be of crucial importance to further enhance the performance
of magnets. As already small defects, e.g. misoriented grains within the microstructure of a permanent magnet, may lead to
decreasing values in coercivity [3], that differ from theoretically attainable values. The large discrepancy between the theoret-
ically and practically obtained coercivity is well known as ’Brown’s paradox’ [4]. To meet and ultimately overcome this issue,
a deep understanding of magnetic materials is necessary. Such a deep understanding aims to be achieved by interdisciplinary
research teams starting with investigations from the atomistic scale (Å) up to the macroscopic scale (mm) [5]. On those differ-
ent scales, various methods are used to investigate the magnetic phenomena. One of these scales to be analyzed is the micron
scale. To understand the complex phenomena of magnetism on that scale, the micromagnetic theory has been established as a
suited tool. It allows for the observation of magnetic domains and their very dynamic motions as well as for the analysis of the
materials hysteresis properties. The physical phenomena associated with magnetization dynamics can be described precisely
using the Landau-Lifshitz-Gilbert equation (LLG) [6, 7]. For instance, micromagnetism is applied to numerically investigate
microstructures regarding their magnetic properties and the influences of varying geometries and chemical compositions as
done by [8–10] among others. Since the considered materials are far below their Curie temperature the magnetization mag-
nitude remains constant, i.e. ||M || = Ms, where M is the magnetization vector and Ms the saturation magnetization. This
requirement provides a numerically challenging constraint, that can be enforced by, among others, projection methods [11,12],
penalty methods [11, 13] or a priori length preserving strategies [14, 24]. Within this work the constraint is enforced by a per-
turbed Lagrange multiplier method as proposed by [22]. For the general treatment of the latter the readers are referred to [18]
and [19]. The multiplier is an additional degree of freedom that penalizes any deviation of the magnetization vectors from
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the required length in a suited intensity, since the intensity is recalculated within each iteration step. However, the drawback
is a larger system of equations resulting in higher computational effort during the solution procedure. To reduce this effort a
condensation of the Lagrange multiplier within the local system of equations is performed, utilizing the Schur complement.
To demonstrate the workability of the presented method, the magnetic properties of a nano structure consisting of permalloy
are investigated. The nano structure is not only subjected to magnetic loading, but also to mechanical and magnetic loading.

This work is structured in the following manner: Firstly, all governing equations along with their corresponding boundary
conditions are introduced to fully describe the micromagnetic-mechanically coupled boundary value problem. Secondly, the
energy functional including all important contributing energies is presented. Thirdly, the finite element implementation of the
beforehand introduced field equations is discussed. Fourthly, The workability of the proposed method is presented in terms of
a suited numerical example, followed by a concluding section.

2 Field equations

The coupling between mechanical and magnetic properties is of significant importance for the simulation and design of
ferromagnetic materials. The magnetic properties can be stimulated by mechanical influences. In this paper we assume small
deformations and thus a linear elastic material behavior. Hence, the quasi-static states of the deformations within a body
B ⊂ IR3 parametrized in x can be described via the balance of linear momentum

divσ + f = 0 in B, (1)

where σ denotes the Cauchy stress tensor and f the acting body force vector. The small deformation assumption leads to the
following symmetric strain tensor

ε =
1

2

[
∇u+ (∇u)T

]
, (2)

that can be derived utilizing the definition of the spatial gradient ∇(·) = ∂(·)/∂x. Suited boundary conditions on ∂B = ∂Bu ∪
∂Bσ , with ∂Bu ∩ ∂Bσ = ∅ can be prescribed either as Dirichlet- or Neumann-type boundary conditions as

u = u0 on ∂Bu and σ · n = t0 on ∂Bσ, (3)

respectively. Here, u0 denotes the an arbitrarily prescribed displacement and t0 the acting traction vector. The evolution of
the magnetic field considered here can be described by the magnetic gauss law

divB = 0 with B = µ · (H +M) , (4)

where B denotes the magnetic induction, depending on the magnetic field H and the magnetization M . The material
dependent magnetic permeability tensor is represented by µ. Let φ be a scalar magnetic potential, then the magnetic field can
be gained from the relation

H := −∇φ. (5)

To fully describe the boundary value problem the boundary conditions on ∂B = ∂Bφ ∪ ∂BB , with ∂Bφ ∩ ∂BB = ∅
corresponding to the scalar potential can be defined as

φ = φ0 on ∂Bφ and B · n = ζ0 on ∂BB . (6)

Since the induction is a function of the magnetic field as well as the magnetization, which is variable in space and time, an
evolution equation describing the the magnetization dynamics is required. This dynamic behavior is suitably represented in
the micromagnetic theory by the Gilbert equation, that can be expressed as

ṁ = −γ0µ0 m×Heff + αm× ṁ. (7)

The physical constants γ0 and µ0 are the gyromagnetic ratio as well as the permeability of a vacuum, while α defines the mate-
rial dependent Gilbert damping parameter, ṁ describes the rate of the magnetization vectors and Heff the so-called effective
field. Here it must be noticed that the magnetization within the magnetic solid B is defined by the relation M := Ms m,
where m represents the magnetic unit director. However, outside of B it holds M := 0. In general, micromagnetism as-
sumes isothermal conditions far below the Curie temperature of the considered material, so that the magnetization requires the
constraint

||M || = Ms and ||m|| = 1. (8)

In the context of the present work, ||m|| = √
m ·m denotes the Euclidean norm.
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3 Energy functional

To precisely describe the magnetization behavior of magnetic solids within the micromagnetic theory, the knowledge of the
competing internal as well as external energies is required. Here, these energies are assembled within the energy functional as

H (ε,H,m,∇m) = Hela(ε,m) +Hmag(H,m) +Hexc(∇m) +Hani(m). (9)

The elastic term Hela includes mechanical effects on the magnetic solid, while the magnetostatic part Hmag is responsible
for the formation of magnetic domains and the magnetic exchange term Hexc causes the parallel alignment of the magnetic
moments. The influence of the crystalline lattice on the magnetic properties is addressed by the crystalline anisotropy Hani.
This can be formally defined as follows

Hela(ε,m) =
1

2
εe : C : εe, Hmag(H,m) = −1

2
µ0 H ·H − µ0MsH ·m

Hexc(∇m) = 2Aexc∇m : ∇m and Hani(m) = Kani (m · a),
(10)

where C denotes the mechanical stiffness tensor, εe = ε − ε0 the elastic strain tensor, ε0 = λ100
3
2

(
m⊗m− 1

3I
)

the
magnetization induced strain tensor, λ100 the magnetostrictive coefficient, Aexc the exchange coefficient, Kani the anisotropy
parameter and a = [sin θ1 cos θ2, sin θ1 sin θ2, cos θ1]

T a structural vector indicating the preferred direction of the material.
The magnetization vectors will be subject to a torque developed by the so-called effective field [25]. This effective field is
derived via the relation

Heff =
−1

µ0Ms
[π − divΠ] , with π =

∂H
∂m

and Π =
∂H

∂∇m
. (11)

4 Finite element implementation

For the solution of micromagnetic-mechanically coupled boundary value problems, based on the finite element method (FEM),
the equations introduced in Sect. 2 have to be transferred into their weak forms. The solution procedure invokes in most cases
some Newton-like methods, that also requires the corresponding linear increments of the considered equations. Since these
linear increments might result in complicated derivations the whole system of equations is derived and implemented into the
framework of AceGen/AceFEM [20] which possesses a strong automatic differentiation engine. A general overview of the
FEM is provided in [18].

4.1 Weak forms of field equations and enforcement of unit constraint with a Lagrange multiplier

The weak forms of the field equations outlined in Sect. 2 can be stated as

Gu = −
∫

B
δε : σ dv +

∫

∂Bσ

δu · t0 da, Gφ = −
∫

B
δH ·B dv +

∫

∂BB

δφ ζ0 da,

Gm = −
∫

B

{
δm ·

[
Ms

γ0
(α ṁ+m×m) + IP · ∂mH

]
+∇δm : Π

}
dv +

∫

B
2 δm ·m λ dv,

(12)

where δu, δε, δφ, δH, δm and δ∇m denote the variational counterparts of the primary variables and their spacial derivatives.
The time derivative of the magnetization is indicated as ṁ and IP = (I − m ⊗ m) represents an abbreviation for compact
notation. Since the considered unit constraint on the magnetization vectors is not fulfilled a priori, it is enforced via a Lagrange
multiplier λ. Here, an additional degree of freedom is added to the system of equations, that penalizes all deviations of the
magnetization vectors from the Euclidean norm with a suited intensity, since it is recalculated within each iteration step. One
disadvantage of Lagrange multipliers is obviously that the system of equations grows by an additional degree of freedom,
increasing the computational effort during the solution procedure. Another disadvantage is, the saddle point structure of the
system matrix which can lead to problems during the solution procedure, especially with iterative solvers involved, compare
[17] or [18]. To circumvent the latter problem, instead of a classical Lagrangian formulation as presented in [21], a perturbed
formulation, proposed by [22], is applied. The weak form of the perturbed Lagrange functional yields

Gλ =

∫

B
δλ

([
||m||2 − 1

]
− λ

kL

)
dv, (13)

where δλ denotes the variational counterpart of the Lagrange multiplier. Due to the squared Lagrange multiplier and the
scaling factor kL non-zero entries are generated on the main diagonal, which leads to less numerical difficulties, compare also
[17] or [18]. To shorten the notation (·) denotes arrays and the abbreviation ΞT := {uT , φ,mT } holds in the following. From
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the above introduced weak forms GΞ, Gλ and their corresponding linear increments, the local residual IRT =
[
IRT

Ξ , IR
T
λ

]T
as

well as the corresponding system matrix IK of the current iteration, can be obtained and represented as the following system
of equations:

[
IRΞ

IRλ

]
=

[
IKΞΞ IKΞλ

IKλΞ IKλλ

][
∆dΞ

∆dλ

]
, (14)

where ∆dΞ and ∆dλ are the incremental degrees of freedom of the coupled system.

4.2 Interpolation space of the Lagrange multiplier

With the definition of a scalar-valued function a ∈ IR, the L2(B)-space can be formally expressed as L2 := {a : ||a||L2 < ∞},

with ||a||L2(B) =
√∫

B |a|2 dv defining the corresponding L2(B)-norm for scalar valued functions a on the domain B ∈ IR3.
The approximation of the Lagrange multiplier in the function space

Λh
j =

{
λ ∈ L2 (B)3 : λ|Be ∈ P d

j (Be)
3 ∀ Be

}
, (15)

utilizes discontinuous Lagrangian type finite element interpolation functions P d
j (Be)

3, where j denotes the considered inter-
polation orders. Since λ ∈ L2 (B)3 no special continuity requirements are requested, which allows for a static condensation.

4.3 Condensation of the Lagrange multiplier

The Schur decomposition allows to reduce the dimension of the local system of equations by a static condensation of the
degrees of freedom, also compare [20]. Within the context of this work, the degree of freedom to condense is the Lagrange
multiplier. Hence, the system of equations in Eq. 14 is decomposed and reassembled leading to the reduced system of
equations

IRc = IKc ∆dc, with IRc = IRΞ − IKΞλ IK
−1
λλ IRλ︸ ︷︷ ︸
ILλ

and IKc = IKΞΞ − IKΞλ IK
−1
λλ IKλΞ︸ ︷︷ ︸
ILλΞ

.
(16)

The update of the local degrees of freedom associated to the Lagrange multiplier follows the rule

dλ = dnλ + ILλ − ILλΞ ∆dn
Ξ. (17)

The new system matrix was reduced by one degree of freedom and thus corresponds to the dimensions of a system matrix in
which the unit constraint is observed by a penalty parameter.

5 Numerical examples

Magnetic nano structures that are able to develop a vortex are of particular interest as they can play an important role in the
development of magnetic storage media [23]. These nano structures are mostly measured between some 10 nm up to a few
µm thick [23]. To demonstrate the workability of the proposed method a nano structure of Permalloy (Ni80Fe20) and the
corresponding dimensions of 250 nm × 250 nm × 20 nm is considered within this contribution. Magnetic fields form around
a magnetic solid and can have a strong influence on its behavior. To numerically consider these fields, the considered magnet
must be surrounded by a free space discretized by means of finite elements. The free space considered here is of dimensions
2000 nm×2000 nm×1000 nm. The material parameters can be taken from Tab. 1. The Gilbert damping parameter of Permal-
loy is usually assumed to be of amplitude around α = 0.008, but to faster adapt the quasi-static magnetization states, this
parameter is considered to be slightly higher as α = 0.5, what is a common assumption in micromagnetic simulations and
does not influence the results significantly, compare [23, 26]. At the beginning, the nano structure is initiated with an energet-
ically high random distribution of the magnetization vectors (Fig. 1a and c) that is subsequently relaxed to its energetically
more favorable self-equilibrium state (Fig. 1b and d), without the influence of any external magnetic or mechanical influ-
ences. This self-equilibrium state corresponds to a so-called vortex state and serves as the initial configuration for subsequent
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Table 1: Material parameters of permalloy (Ni80Fe20) are taken from [26] and [24] .

Parameter Unit Ni80Fe20 Parameter Unit Ni80Fe20

exchange const. Ae / J
m 1.3 · 10−11 sat. magnetization Ms /A

m 8 · 105

vac. permeability µ0 /H
m 4π · 10−7 anisotropy const. Kani / J

m3 0

elastic const. C11 / N
m2 1.27 · 1011 elastic const. C12 / N

m2 0.75 · 1011

elastic const. C44 / N
m2 0.52 · 1011 magnetostriction const. λ100 7.0 · 10−6

simulations. Magnetic hysteresis loops present the behavior of a magnetic material treated with a cycling, externally applied

a) b)

c) d)

Random state Vortex state

m
1

Fig. 1: A squared plate of Permalloy is initialized with an energetically high random magnetization state depicted in a) and c). The simulated
relaxed or self-equilibrium state of the plate shows a vortex formation presented in b) and d).

magnetic field, revealing its distinct properties like the coercivity Hc or its remanence Mr. The influence of modified boundary
conditions on the material behavior can also be well monitored by means of these hysteresis loops. Hence, the hysteresis of
the nano structure is first calculated under homogeneous mechanical boundary conditions (free deformability of the structure).
Subsequently, the nano structure is both compressed and stretched by applying a displacement of ux = ±0.5 nm on ∂Bu

within two independent simulations. The applied magnetic field has a field strength of µ0 H2 = 100mT and follows the load
path depicted in Fig. 2b. The resulting hysteresis loops of the three different boundary value problems are shown in Fig. 2a.
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Fig. 2: a) Loading protocol following influence of an alternating externally applied magnetic field µ0 H2 b) Influence of mechanical loading
on the hysteresis.
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The influence of the mechanical boundary conditions on the magnetic properties cannot be dismissed. Both tension and com-
pression reduce the coercivity of the material. While the magnetization of the stretched nano structure switches entirely after
a certain critical point, the compression causes a so-called kink to occur during the reversal. The influence of the mechanical
boundary conditions on the results presented here will be considered more intensively in subsequent work. The presented
examples illustrate how well the proposed model has worked so far. However, its performance still needs to be compared to
the non-condensed perturbed Lagrange method. Therefore, the undeformed boundary value problem is recomputed, using the
non-condensed perturbed Lagrange method. The condensed method delivers up to 10% faster simulations.

6 Conclusion

As an extension to the conventional Lagrange multiplier FE formulation of micromagnetics [22], a perturbed Lagrange multi-
plier approach is applied in this work. To improve computational efficiency, the introduced Lagrange multiplier was condensed
using the Schur complement and the resulting local system matrix, reduced in dimension by one degree of freedom. The ap-
plicability of the presented model was sufficiently demonstrated by complex numerical examples. It was also shown that the
computation time could be reduced by condensing the Lagrange multiplier. Future research will address the computational
speed-up due to the condensation as well as the analysis of magneto-mechanically coupled hard and soft magnets.
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