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Abstract

Structural optimization of crash related problems usually involves nonlinearities in geometry, material, and
contact. For such kinds of problems, the sensitivities are either not available or very expensive to compute.
Efficient gradient-based optimizers can then not be employed directly. The Difference-based Equivalent
Static Load (DiESL) method provides a procedure to circumvent the sensitivity calculation of the original
nonlinear dynamic problem by creating linear auxiliary load cases enabling gradient-based optimization.
Each linear auxiliary load case then represents one specific time step of the original nonlinear dynamic
problem.

In this thesis various extensions of the DiESL method are presented and the method is compared to several
other relevant approaches in this field. It is demonstrated how an appropriate selection of the time steps
in each cycle can improve the DiESL method’s approximation quality. For this purpose, the time steps
are selected adaptively such that an appropriate curve, indicating the structure’s nonlinear behavior, is
fitted by the selected time steps. It turns out that this leads to better optimization results and more reliable
convergence behavior.

The DiESL method also enables the adaption of path-dependent structural properties of the original
nonlinear dynamic problem like material stiffness in each linear auxiliary load case. In this thesis, an
adaption of the Young’s modulus and Poisson’s ratio on element level in the linear auxiliary load cases
corresponding to the local plasticization in the nonlinear dynamic problem is tested. Therefore, a bilinear
material model is employed in the auxiliary load cases. Here, the test examples indicate that an observable
improvement can only be obtained if the material of the nonlinear dynamic problem is also idealized
bilinearily and the portion of elements in the elastic and the plastic range is balanced such that the
structure’s behavior is not dominated by one of both.

Crashworthiness design usually involves two contradictory objectives: the structure’s stiffness as well as its
energy absorption behavior. To be able to address the latter, an approach for handling crash forces with
the DiESL method is developed and tested using sizing optimization examples. The respective results are
validated by comparing them to the theoretically known optimum or other state of the art methods.

Moreover, the DiESL method is extended to topology optimization utilizing the Solid Isotropic Material with
Penalization approach (SIMP). The method is tested using three examples. The first is a rigid pole colliding
with a simple beam structure, where the intrusion of the pole is minimized. The initial velocity of the
pole is varied in order to examine the influence of inertia effects on the optimized structures. It is shown
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that the results differ significantly depending on the chosen initial velocity and, consequently, that they
exhibit inertia effects. Moreover, considerable improvement in terms of the resulting objective function’s
value could be achieved employing the DiESL method when compared with the standard ESL method
for high initial velocities. The second example is an extruded rocker colliding with a rigid pole, where
also the intrusion of the pole is minimized. The DiESL method yields equally good results as the Graph
and Heuristic Topology optimization (GHT) approach does. However, the number of nonlinear analyses
necessary to achieve convergence is significantly smaller when using the DiESL method. Finally, a rail
reinforced by an additive manufactured rib is optimized. Here, several optimization runs are executed. The
reaction force is maximized, while the mass of the rib is constrained to various fractions of the original rib’s
mass. This formulation aims to find designs where the original rib’s mass and thus the related production
cycle time is reduced, while its stiffness is almost maintained. In doing so a mass reduction of 30 % could
be achieved.
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Zusammenfassung

Die Strukturoptimierung von Crash-Problemen beinhaltet in der Regel Nichtlinearitäten in Geometrie,
Material und Kontakt. Für diese Art von Problemen sind die Sensitivitäten entweder nicht verfügbar oder
sehr teuer zu berechnen. Effiziente gradientenbasierte Optimierer können dann nicht direkt eingesetzt
werden. Die DiESL-Methode (Difference-based Equivalent Static Load) bietet ein Prozedere zur Umgehung
der Sensitivitätsberechnung des ursprünglichen nichtlinearen dynamischen Problems, indem lineare Hilfs-
lastfälle erstellt werden, die eine gradientenbasierte Optimierung ermöglichen. Jeder lineare Hilfslastfall
repräsentiert dann einen spezifischen Zeitschritt des ursprünglichen nichtlinearen dynamischen Problems.

In dieser Arbeit werden verschiedene Erweiterungen der DiESL-Methode vorgestellt und die Methode
mit verschiedenen relevanten Ansätzen auf diesem Gebiet verglichen. Es wird gezeigt, wie eine geeignete
Wahl der Zeitschritte in jedem Zyklus die Approximationsqualität der DiESL-Methode verbessern kann.
Dafür werden die Zeitschritte adaptiv so gewählt, dass der zeitliche Verlauf einer Strukturantwort, die das
nichtlineare Verhalten der Struktur anzeigt, durch die gewählten Zeitschritte gefittet wird. Es zeigt sich,
dass dies zu besseren Zielfunktionswerten und einem zuverlässigeren Konvergenzverhalten führt.

Die DiESL-Methode ermöglicht auch die Anpassung von Pfad-abhängigen Struktureigenschaften des
ursprünglichen nichtlinearen dynamischen Problems wie z.B. der Materialsteifigkeit in jedem linearen
Hilfslastfall. In dieser Arbeit wird eine Anpassung des Elastizitätsmoduls auf Elementebene in den linearen
Hilfslastfällen entsprechend der lokalen Plastifizierung im nichtlinearen dynamischen Problem getestet.
Dazu wird ein bilineares Materialmodell in den Hilfslastfällen verwendet. Dabei zeigen die Versuchsbei-
spiele, dass eine erkennbare Verbesserung nur dann erreicht werden kann, wenn das Materialmodell des
nichtlinearen dynamischen Problems ebenfalls bilinear ist und wenn weder die Elemente im elastischen
noch im plastischen Bereich das Verhalten der Struktur dominieren.

Bei der Optimierung von Crashlastfällen werden oft zwei widersprüchliche Ziele verfolgt: die Maximierung
der Steifigkeit der Struktur und die Optimierung des Energieabsorptionsverhalten. Um Letzteres adressieren
zu können, wird ein Ansatz zur Behandlung von Kontaktkräften mit der DiESL-Methode entwickelt und
anhand von verschiedenen Beispielen getestet. Dabei wurden gute Ergebnisse im Vergleich zum theoretisch
bekannten Optimum und anderen State-of-the-Art-Methoden erzielt.

Darüber hinaus wird die DiESL-Methode zum Zweck der Topologie-Optimierung unter Verwendung des
SIMP-Ansatzes (Solid Isotropic Material with Penalization) erweitert. Die Methode wird anhand von
drei Beispielen getestet. Das erste Beispiel ist ein nicht deformierbarer Pfahl, der mit einer einfachen
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Balkenstruktur kollidiert, wobei das Eindringen des Pfahls minimiert werden soll. Die Anfangsgeschwin-
digkeit des Pfahls wird variiert, um den Einfluss von Trägheitseffekten auf die optimierten Strukturen zu
untersuchen. Es zeigt sich, dass sich die Ergebnisse je nach gewählter Anfangsgeschwindigkeit deutlich
unterscheiden und folglich Trägheitseffekte berücksichtigt werden. Die Ergebnisse der DiESL-Methode
zeigen eine erhebliche Verbesserung im Vergleich zur standard ESL-Methode für hohe Geschwindigkeiten.
Das zweite Beispiel ist eine gezogene Profilstruktur, die mit einem starren Pfahl kollidiert, wobei auch
hier die Intrusion des Pfahls minimiert wird. Die DiESL-Methode liefert ebenso gute Ergebnisse wie der
Ansatz der Graph und Heuristik basierten Topologie Optimierung (GHT). Allerdings ist die Anzahl der
nichtlinearen Analysen, die notwendig sind, um Konvergenz zu erreichen, bei der DiESL-Methode deutlich
geringer. Schließlich wird ein durch eine additiv gefertigte Rippe verstärkter Träger optimiert. Hier werden
mehrere Optimierungsläufe durchgeführt. Die Reaktionskraft wird maximiert, während die Masse der Rippe
auf verschiedene Bruchteile der Masse der ursprünglichen Rippe beschränkt wird. Diese Formulierung zielt
darauf ab, Designs zu finden, bei denen die Masse der ursprünglichen Rippe und dadurch indirekt die
Produktionszeit der Rippe reduziert wird, während die Steifigkeit der Rippe nahezu erhalten bleibt. Auf
diese Weise konnte eine Massenreduzierung von 30 % erreicht werden.
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1 Introduction

1.1 Motivation

Structural optimization is to be understood as finding a structure’s optimal size, shape and/or topology
for a set of specified load cases, objective and constraints. The analysis of the structure’s behavior in each
defined load case is the basis of the optimization. This analysis is usually carried out employing numerical
simulations. A prominent approach to do so is the Finite Element Method (FEM). Just as FEM-based
simulation is taking an increasingly large role in the development processes in industry, so is structural
optimization. Structural optimization is an essential part of the design process in many fields of industry
and provides many benefits. Its effective usage can further shorten the development process, save materials,
increase the products performance in a desired way and ultimately reduce costs.

This potential is also being leveraged in the automotive industry. One of the most challenging applications
is the optimization of crash load cases. During the development of a car, requirements on the car’s
performance during a crash event need to be fulfilled. These requirements are often related to the
occupant’s or pedestrian’s safety, but can also address potential repair costs and, depending on this,
insurance premiums. In this context, both the structure’s stiffness as well as its potential to absorb kinetic
impact energy are important design criteria. For instance, in order to protect the occupant, parts of the
vehicle must be stiff enough to ensure the occupant is not hit by deforming parts in the event of a crash. On
the other hand, parts of the car must be able to transform the kinetic impact energy into plastic strain energy
and heat. Structural optimization can be a valuable tool to meet those requirements while simultaneously
minimizing the car’s mass, for example. For this purpose the used optimization algorithm must be able to
handle structural responses like displacements quantifying e.g. an impactor’s intrusion into the vehicle and
accelerations as well as crash forces.

For linear static problems efficient gradient-based optimization methods are at hand and a huge number
of design variables can be handled, where the design variables are variable properties of the structure
to be optimized. This is not the case when it comes to problems of nonlinear dynamic nature like crash
events. Then, a transient problem involving dynamics and nonlinearities in geometry, material and contact
needs to be solved. As a result the computational costs for analyzing the structural responses increase
massively. In order to keep the computational effort manageable, explicit time integration is applied for
the analysis. The sensitivities of the structure with regard to a change of the design variables can then
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only be determined at considerable computational cost and gradient-based optimization cannot be applied
efficiently. Instead, gradient free optimization methods like evolutionary algorithm and metamodel-based
methods like for example neural networks or kriging are often used. The drawback of these optimization
methods is that the number of design variables is limited to a small number, as the computational effort
required increases drastically with the number of design variables. Applications involving a huge number
of design variables such as topology optimization are not applicable in this case.

Therefore, current research focuses on alternatives circumventing the calculation of sensitivities of the
nonlinear dynamic system and keeping the number of nonlinear dynamic analyzes at a reasonable level.
One possibility is to define linear auxiliary load cases enabling linear static response optimization based on
nonlinear dynamic analysis. The Equivalent Static Load (ESL) method (Park 2011) provides a procedure to
compute such auxiliary load cases. For a selected number of representative time steps, a set of equivalent
static loads (ESLs) is computed such that the resulting displacement field in linear statics is identical to the
respective field in nonlinear dynamic analysis at the selected times. For each set of ESLs one auxiliary load
case is then created by applying the loads to the structure’s undeformed initial geometry in linear statics.
However, referencing the undeformed geometry in each auxiliary load case leads to some limitations and
disadvantages. To overcome these issues the Difference-based Equivalent Static Loads (DiESL) method has
been introduced previously for sizing optimization (Triller 2019). Here the structure’s displacement path
derived in nonlinear dynamic analysis is split into increments each representing one time step or auxiliary
load case. Difference-based Equivalent Static Loads (DiESLs) are then calculated to create the incremental
displacement field leading from one state to the subsequent deformed state in linear statics. This means the
nonlinear deformation path is approximated by a sequence of linear increments. For academic examples,
it has been shown that the DiESL method enables a significant increase in approximation quality of the
original nonlinear dynamic problem compared to the standard ESL method. It has also been shown that
the DiESL method converges to the same optimum as a state of the art metamodel-based approach while
requiring significantly less nonlinear analyses. In addition, the number of nonlinear analyses does not
directly depend on the number of design variables using the DiESL method. Thus, the method shows high
potential for crash applications involving a huge number of design variables like topology optimization.
However, problems have also been identified which prevent a robust application of the approach in an
industrial context. For instance, the linear static response optimization may terminate with an error before
an optimal design could be derived, due to excessively deformed elements and thus poor element quality in
intermediate auxiliary load cases. Furthermore, the method has only been tested for stiffness optimization
applications yet. The incorporation of other crash relevant structural responses like for example crash
forces is not straight forward, since all the applied DiESLs remain constant throughout the linear static
response optimization.
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1.2 Research Objective

The overall objective of this work can be formulated as follows: The development of an approach for the
optimization of structures subjected to crash events involving a huge number of design variables. This
includes the capability to perform topology optimization tasks. For this purpose, the previously introduced
DiESL method is extended to topology optimization and examined for further potential improvements.
In order to enable a robust and efficient application of the methodology in an industrial context several
requirements are to be addressed:

Commercial solvers are to be used for analysis and optimization. Not only because they are efficient and are
able to handle large models, but also for maintenance reasons. This also guarantees that the methodology
can be quickly integrated into the product development process, as simulation models for the corresponding
solvers already exist and are used throughout the entire development process.

In practice, the existing models for nonlinear dynamic analysis and linear static response optimization
may differ slightly in their geometry, mesh and assembly. Therefore, the methodology must also be able to
handle such non-congruent models.

Furthermore, a solution has to be developed to automatically repair the mesh in auxiliary load cases where
poor element quality occurs and the optimization process is terminated with an error.

Finally, an approach should be worked out enabling the incorporation of crash forces into the optimization
problem using the DiESL method. This is especially important when structural parts are optimized in terms
of their energy absorption behavior.

1.3 Structure of Thesis

This thesis is structured in the following way: In chapter 2 the theoretical framework to understand
structural optimization for problems of linear static as well as nonlinear dynamic nature is given. Based
on this, a literature overview for nonlinear dynamic response optimization is presented and discussed.
Furthermore, examples for typical crash load cases as well as the corresponding requirements are given. In
chapter 3 the Difference-based Equivalent Static Load method is introduced. In that process, potential
improvements are elaborated and discussed. Furthermore, an approach for handling crash forces in DiESL
is introduced. Afterwards the implementation of the algorithm is detailed out. Here, the requirements
formulated above with regard to a robust and efficient application of the DiESL method are specifically
addressed. In chapter 4 the DiESL approach is tested using sizing optimization problems only. First, the
approach is compared to the standard ESL method and a metamodel-based approach. Afterwards the
elaborated improvements are tested using two different examples. Next, an approach for handling contact
forces in DiESL is also tested on the basis of two sizing optimization problems. In chapter 5 the DiESL
approach is extended to topology optimization. Thereby all necessary adaptions of the procedure described
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in chapter 3 are elaborated. The capability of DiESL for topology optimization tasks is tested afterwards
using 3 different numerical examples. Finally, a conclusion and an outlook is worked out in chapter 6.
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2 Structural Optimization

2.1 Introduction

2.1.1 General Definition of an Optimization Problem

Frequently, the term optimization is misunderstood to mean ”improvement” only. In the mathematical
sense, however, it is a much more precise concept: finding the best possible solution of a specified problem
often subjected to constraints (Martins and Ning 2021). Formally, an optimization problem can be stated
as a minimization problem:

min f(x); x ∈ RnD (2.1)

subject to

gj(x) ≤ 0; j = 1, ..., nIC (2.2)

hk(x) = 0; k = 1, ..., nEC (2.3)

xLi ≤ xi ≤ xUi ; i = 1, ..., nD. (2.4)

The objective function f(x) measures the system’s performance which is meant to be minimized. The
system’s responses depend on the design variables x describing nD variable system properties which can be
changed between the explicit bounds xLi and xUi in order to minimize f(x). Often the optimization problem
is constrained. Therefore, inequality constraints g(x) and equality constraints h(x)may be defined if system
responses have to be smaller than or equal to a certain value, respectively. The optimization problems dealt
with in this thesis are nonlinear and continuous. This means the objective function and/or constraints are
nonlinear functions and the design variables are real numbers and can be varied continuously.

Some optimization problems can be solved analytically. However, in practice the most are to complex to be
solved this way. Then, the problem is generally solved using an iterative procedure which is illustrated
in Fig. 2.1. Based on an initial design the system is analyzed and the objective function as well as all
constraints are evaluated. Afterwards predefined convergence criteria are checked, to determine if it is
worthwhile to continue modifying the current design. If not, the procedure terminates. Otherwise, the
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design variables are further modified and the procedure is repeated. The effectiveness of this procedure
depends on all 3 steps. In most cases, the analysis of the system takes the most time. However, a suitable
modification of the design variables is also crucial in order to avoid unnecessary analyses.

Optimization

Analyze system:

evaluate objective and constraints

Convergence?
Update design 

variables
Optimal design

Initial design

YesNo

Figure 2.1: Iterative optimization procedure

In the case of structural optimization, a mechanical structure under a distinct load case needs to be
analyzed. This analysis is usually performed using numerical methods. We therefore speak of simulation-
based optimization. Depending on the load cases and the chosen design variables the complexity of the
numerical simulation as well as the optimization can change drastically. It also has a significant impact
on the time required to solve the problem under consideration. In this chapter, first different kinds of
structural optimization depending on the chosen design variables are presented. Afterwards gradient
based procedures to determine a suitable modification of the design variables are introduced. Then, the
fundamentals of FEM for the analysis of linear static as well as nonlinear dynamic load cases are derived.
Finally, it is worked out how these are embedded in the previously described optimization procedure. In
particular, the challenges of nonlinear dynamic problems are discussed and an overview of state of the art
optimization approaches to solve such problems is given.

2.1.2 Types of structural Optimization

Depending on the area of application and the design variables selected by the engineer, structural opti-
mization can be divided into 3 types:

Sizing Optimization: thicknesses or cross-sectional areas are varied. The number of design variables
usually is comparatively small. Sizing is the most common optimization technique used during the
design process in industry. This can be attributed to the fact, that relatively small efforts have to be
made for the definition and the post processing including the interpretation of results and only few
manufacturing constraints are required for obtaining manufacturable designs (Gerzen et al. 2016).
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Shape Optimization: the design variables describe potential shapes of the structure’s contour. Determining
allowable shape variations can be very time-consuming, which is why shape optimization is one of
the more labor-intensive forms of optimization (Harzheim 2014).

Topology Optimization: the design variables describe the distribution of material within a defined design
space. It’s the most flexible type of structural optimization, since not only variations of the structure’s
contour are possible, but also holes in the inside can evolve (Harzheim 2014). Due to the high
flexibility, topology optimization is especially employed in early stages of the design process for
concept finding. The flexibility comes hand in hand with a large number of design variables. The
handling of large numbers of design variables becomes challenging especially if problems of nonlinear
dynamic nature are to be optimized.

The three types of structural optimization are illustrated in Fig. 2.2.

Sizing:

Shape:

Topology:

Figure 2.2: Types of structural optimization

2.1.3 Density-based Material Parametrization

In the case of topology optimization the relation between design variables and material distribution is not
straight forward, as it is for sizing, where the design variables can directly be linked to sheet thicknesses or
cross sectional areas. The voxel or density-based method can be used to establish a spatial relationship
between the design variables and the design space (Bendsøe and Kikuchi 1988; Bendsøe and Soares 1993;
Bendsøe and Sigmund 2003). Here, the design space is split into many small elements. Each element’s
normalized density is then related to the corresponding mechanic behavior. Elements with densities close
to 0 correspond to void parts of the structure, whereas a normalized density of 1 corresponds to solid parts.
This kind of relation is beneficial, since the densities can be varied continuously between the extremes
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void and solid and no discrete optimization problem has to be solved. The most prominent density-based
material parameterization approaches are explained in the following.

The homogenization method was used in the initial work of topology optimization of continuum structures
(Bendsøe and Kikuchi 1988), where the design space is filled with a porous material. This is modeled
utilizing a periodic microstructure consisting of small square or cube micro cells with rectangular holes. For
the two-dimensional case the orientation of each hole can be changed by the angle Θ and the size of the
hole by varying a or b respectively (Fig. 2.3). Thus, each micro cell – its density and mechanical behavior –
is defined by three design variables. The normalized density of each element depends only on a and b:
ρ = 1− ab. The macroscopic material properties depends on all 3 design variables and can be obtained
using numerical homogenization. The design variables are then optimized to maximize the performance of
the structure. One of the benefits of this approach is that intermediate densities have an actual physical
meaning. Unfortunately the resulting orthotropic and multi-scale structures (Wu et al. 2021) are often hard
to interpret in reality due to manufacturability problems, although advances in additive manufacturing
technologies are pushing the boundaries nowadays. In the past, this often led to the approach that only the
material representation or densities and not the orthotropic material properties have been evaluated for
the practical realization (Harzheim 2014). If the resulting design consists only of densities of ρ = 0 and
ρ = 1, the orthothropic material behavior changes to isotropic material behavior in the homogenization
approach. In this case, it is valid to use only the densities for the interpretation of the optimization result.
Unfortunately, the homogenization approach has no inherent mechanism to enforce such designs.

Ω

𝜌𝑖
𝜌0

= 𝑥𝑖

SIMPHomogenization

Figure 2.3: 2D example of material parametrization schemes: the homogenization approach (left) and
Solid Isotropic Material Penalization (right)

The Solid Isotropic Material Penalization (SIMP) tries to overcome this issue (Bendsøe 1989; Zhou and
Rozvany 1991; Bendsøe and Sigmund 1999). Here the distribution of a homogeneous isotropic material is
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optimized and only one design variable xi per element – the normalized density – is used, instead of three
design variables:

xi =
ρi
ρi,1

; i = 1, ..., nE, (2.5)

where nE is the number of elements and ρi,1 and is the density of a solid element. The normalized density
is related to the element’s stiffness. In order to enforce a design consisting only of solid and void elements
intermediate densities are penalized using the following relation:

Ei = Ei,1x
p
i ; p > 1; i = 1, ..., nE, (2.6)

where Ei is the adapted Young’s modulus and Ei,1 is the Young’s modulus corresponding to solid elements.
The relation of the normalized density and Young’s modulus is illustrated in Fig. 2.4 for different exponents
p. The structure’s mass scales linearly with the density, but for exponents p > 1 the structure’s stiffness
scales nonlinearly. For normalized densities close to 1 an increase in density yields a high stiffness increase.
Whereas, for normalized densities close to 0 the change in stiffness depending on the density is relatively
small. This combination thus favors the evolution of a design consisting only of void and solid elements.
In the following we will refer to such designs as 0-1 designs. For three-dimensional structures, a penalty
exponent of p = 3 is usually chosen. The choice of higher p-values increases the risk of getting stuck in
local optima (Schumacher 2020).
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Figure 2.4: Relation between normalized density and Young’s modulus using the SIMP approach with
different penalty exponents

The SIMP method is the most prominent approach for topology optimization and is implemented in
many commercial tools such as MSC NASTRAN, Altair OptiStruct, or VRAND GENESIS. Beside of the
homogenization and the SIMP approach, there are several other methods which are worth mentioning,
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but are not further elaborated here: The Soft Kill Option (SKO) (Baumgartner et al. 1992), Evolutionary
Structural Optimization (ESO) (Xie and Steven 1993; Huang et al. 2010), the Phase Field method (Bourdin
and Chambolle 2003), and the Level Set method (Wang et al. 2003; Allaire et al. 2004). For a comparative
overview refer for example to Sigmund and Maute 2013.
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2.2 Structural Analysis based on Finite Element Method

As already described, the analysis of the system to be optimized is a fundamental part of the optimization
process. The Finite Element Method (FEM) is the most prominent method for structural analysis or
more generally for solving partial differential equations (e.g. structural mechanics, heat transfer). The
method is not only used for solving linear static, but also for nonlinear dynamic problems like crash
applications. In the following the derivation and concept of linear and nonlinear FEM is explained, in
order to lay a foundation for understanding the DiESL method and potential improvements and to clarify
the differences and commonalities of FEM for linear static and nonlinear dynamic problems. For a more
detailed explanation please refer to Bathe 1996; Wriggers 1998.

2.2.1 The weak Form

As starting point of the Finite Element approximation, the weak form of the equation of motion is used.
This can be derived from the balance of momentum of a volume V with boundary S in current configuration:∫︂

V
ρädV⏞ ⏟⏟ ⏞

change of momentum

=

∫︂
S
ΓdS⏞ ⏟⏟ ⏞

surface forces

+

∫︂
V
ρgdV⏞ ⏟⏟ ⏞

volume forces

(2.7)

Where a denotes the displacement of an arbitrary point of the structure1 and Γ the stress vector applied to
the boundary S . All relevant measures and notations as well as the differences between the initial and
current configuration are illustrated in Fig. 2.5.

Initial configuration Current configuration

Volume 𝑉0 𝑉

Surface 𝑆0 𝑆

𝑋1

𝑋2 𝑋3

𝐧

𝐠
𝚪

Deformation

Normal vector

Stress vector

Time: 𝑡0 Time: 𝑡

𝑥1

𝑥2 𝑥3

Figure 2.5: Initial and current configuration of continuum structure

Substituting Γ = n·σ into equation 2.7, where σ is the symmetric stress tensor, and applying the divergence
1This may be unusual, but since the later introduced nodal displacements u of the spatially discretized equation of motion are
used much more often in this thesis, the more common variable u is saved.
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theorem yields ∫︂
V
∇ · σ + ρg − ρädV = 0. (2.8)

This must hold for each subpart of V and hence

∇ · σ + ρg = ρä. (2.9)

Employing voigt-notation
σT = (σxx, σyy, σzz, σyz, σxz, σxy), (2.10)

the operator ∇ can be represented by the operator matrix L

LT =

⎡⎢⎣
∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤⎥⎦ (2.11)

LTσ + ρg = ρä. (2.12)

The weak form is now obtained by integrating over the domain V and multiplying by a virtual displacement
δa ∫︂

V
δaT

(︁
LTσ + ρg − ρä

)︁
dV = 0 ∀ δa (2.13)

and employing the divergence theorem again∫︂
V

(︂
ρδaTä+ (Lδa)T σ

)︂
dV =

∫︂
V
ρδaTgdV +

∫︂
S
δaTΓdS ∀ δa. (2.14)

with given boundary tractions Γ = Γ̄ or alternatively boundary displacements a = ā prescribed on the
structures surface and the initial conditions a(t0) = a0, ȧ(t

0) = a0̇. It should be noted that for the derivation
of the weak form of the equation of motion no assumptions regarding material behavior nor the magnitude
of strains or displacements have been made. Consequently, equation 2.14 is valid for linear statics (ä = 0)

as well as nonlinear dynamic problems.
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2.2.2 Spatial Discretization

Initial configuration Current configuration

𝑉E
0

Deformation

Time: 𝑡0 Time: 𝑡

𝑉E

𝑋1

𝑋2 𝑋3

𝑉
𝐧

d𝑆

𝐧
d𝑆

Node

Figure 2.6: Spatial discretization using Finite Elements

Like illustrated in Fig. 2.6 the basic idea of FEM is to reduce the degree of freedom of the fundamental
continuum equations to a finite number, by dividing the domain of interest into several subdomains.
Therefore, the structure is discretized using finite elements connecting structural nodes. The nodal
displacements then represent a finite number of unknowns. The continuous displacement field a can then
be approximated elementwise using so-called shape functions hk(X) depending on the global coordinates
X: 2

a(X) =

n∑︂
k=1

hk(X)uk. (2.15)

Each element is supported by n nodes and uk is the displacement vector of a node containing the components
(ux, uy, uz). The displacements of all nodes n of an element are collected in the vector

uE =
(︁
uT
E,1,u

T
E,2, ...,u

T
E,n

)︁T (2.16)

in matrix-vector notation the approximation of the continuous displacements within an element can be
written more compact

a(X) = H(X)uE (2.17)

where H is a 3× 3n matrix containing the shape functions hk of all nodes of the used element type in an
appropriate order. The global displacement vector u containing the displacements of all nN nodes can be
related to the e-th element’s displacements uE,e employing an incidence-matrix ZE,e, which defines the
finite elements’ topology:

uE,e = ZE,eu. (2.18)

2For generality and implementation purposes, natural coordinates are usually employed here instead of the global coordinates
X. The global coordinates are used here only for the sake of illustrating the shape function’s spatial dependencies and are not
further detailed.
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With equations 2.17 and 2.18 the spatial discretization can be implemented in the weak form of the
equation of motion 2.14 considering all nE elements

nE∑︂
e=1

∫︂
VE,e

ρ (HZE,eδu)
THZE,eüdV +

nE∑︂
e=1

∫︂
VE,e

(HZE,eLδu)
T σdV

=

nE∑︂
e=1

∫︂
VE,e

ρ (HZE,eδu)
T gdV +

nE∑︂
e=1

∫︂
SE,e

(HZE,eδu)
T ΓdS.

(2.19)

Since the incidence-matrices and the virtual displacements do not depend on the spatial coordinates they
can be brought outside the integral. The virtual displacements can be brought outside the summation sign
as well. Since this must hold for any virtual displacement, the semi-discrete balance of momentum follows:

Mü+ f int = f ext (2.20)

with the mass matrix,

M =

nE∑︂
e=1

ZE,e
T
∫︂
VE,e

ρHTHdV ZE,e (2.21)

the external force vector,

f ext =

nE∑︂
e=1

ZE,e
T
∫︂
VE,e

ρHTgdV +

nE∑︂
e=1

ZE,e
T
∫︂
SE,e

HTΓdS (2.22)

and the internal force vector:

f int =

nE∑︂
e=1

ZE,e
T
∫︂
VE,e

(B)T σdV (2.23)

where
B = LH (2.24)

where B is the strain-displacement matrix. The term Mü is known as inertia term, which has to be in
balance with the external f ext and internal forces f int. By introducing the kinematic (strain-displacement)
and constitutive (stress-strain) relations the tangent stiffnessKt can be derived as df int

du . The differences that
arise depending on the chosen relations for linear statics and nonlinear dynamic problems are elaborated
in the following. Note that for the modeling of nonlinear dynamic problems a damping term Du̇ may also
be included to the semi-discrete balance of momentum. The damping matrix D is often calculated as a
linear combination of mass and stiffness matrices. For notational simplicity this term is excluded here.

2.2.3 Linear Statics

For many applications in structural optimization, assumptions can be made, which allow to considerably
reduce the computational effort for solving the problem at hand. The linear FE-equations can be derived if
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the following assumptions apply:

Kinematic relations: small displacement justify the application of a linear strain-displacement relation

εij =
1

2

(︃
∂ai
∂xj

+
∂aj
∂xi

)︃
. (2.25)

or in matrix-vector notation
ε = LLa. (2.26)

The subscript L is used in the following to denote the linear dependency.

Constitutive relations: small strains justify the usage of the linear elastic material law

σ = CLε (2.27)

where CL is the material matrix containing the instantaneous stiffness moduli – Young’s modulus E
and Poisson’s ratio ν in the case of isotropic material behavior.

Boundary conditions: due to small displacements it can be assumed that all applied boundary conditions
do not change with progressing deformation. All conditions apply to the undeformed structure.

Reference configuration: small displacements and no path-dependent changes of constitutive relations
and boundary conditions enable the evaluation of all measures with reference to the undeformed
initial configuration V 0 and S0. It is assumed that the error resulting of this is sufficiently small since
current and initial configuration are similar in this case.

Inertia effects: static behavior implicates that time plays no role and inertia effects do not need to be
considered anymore. The inertia term Mü in the equation of motion vanishes and reduces to

f ext − f int = 0. (2.28)

On basis of the above assumptions the stress-displacement relation follows as

σ = CLLLHZEu = CLBLZEu (2.29)

and thus the internal force vector as

f int =

nE∑︂
e=1

ZE,e
T
∫︂
V 0
E,e

BL
TCLBLZE,eudV. (2.30)

As the nodal displacements u are independent of the spatial coordinates, they can be brought outside the
integral. Then the equation of linear FEM is derived:

Ku = f . (2.31)
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With the linear stiffness matrix:

K = K0 =

nE∑︂
i=1

ZE,e
T
∫︂
V 0
E,e

BL
TCLBLZE,edV (2.32)

and the force vector:

f = f ext =

nE∑︂
e=1

ZE,e
T
∫︂
V 0
E,e

ρHTgdV +

nE∑︂
e=1

ZE,e
T
∫︂
S0
E,e

HTΓdS. (2.33)

This system of nN linear equations can be solved using direct methods like Cholesky method or iterative
methods like conjugated gradient methods, which are implemented in many commercial FEM solvers.

2.2.4 Nonlinear Dynamics

If a crash related problem is considered there are several nonlinearities which must be taken into account.
These can be of geometrical and/or physical nature. The latter include nonlinearitites in material and
contact. In the case of crash problems, both usually occur. In the following, the cause of the nonlinearities
is briefly addressed, but the handling is not detailed. For more details, refer to Wriggers 1998. Instead,
attention is drawn to the differences to linear statics, which are ultimately noticeable in the resulting
tangent stiffness matrix or internal forces and inertia effects.

Kinematic relations: if large deformations and rotations occur, then geometrical nonlinearities arise and
the strain-displacement relation cannot be assumed to be linear. Nonlinear strain measures have to
be used:

Eij =
1

2

(︃
∂ai
∂xj

+
∂aj
∂xi

+
∂ak
∂xi

∂ak
∂xj

)︃
(2.34)

or in matrix-vector notation
E = LNLa (2.35)

where the subscript NL denotes the nonlinear dependency. As a result the nonlinear tangent stiffness
matrix KNL depends on the displacements u.

Constitutive relations: during a crash typically non-reversible deformations occur. Then, the material
behavior can no longer be assumed to be elastic only and inelastic path-dependent material-laws
have to be employed. The behavior of metals used in automotive engineering can often be described
sufficiently precise by an isotropic elasto-plastic material model. In the case of high strain rates
the dependence of the material behavior on time must also be considered. Then visco-plastic
material models should be employed. In the following the fundamental components of the numerical
implementation of such material models are explained on the basis of a one dimensional tensile test,
for more details please refer to Simo and Hughes 2006.

16



𝜎

𝜀𝜀!𝜀"

𝜎#,%
a

cb
d

𝐸

𝐸&

Figure 2.7: Elasto-plastic material behavior for the 1D case

In Fig. 2.7 the stress-strain relation of such a tensile test is shown. Here the total strain is additively
split into two components, each related to the corresponding effects on the structure:

ε = εe + εp, (2.36)

where εe and εp are the elastic and plastic strains, respectively. This additive split is valid for small
strains only.3

Before the yield stress σy,0 is reached in point a, the material behavior is purely elastic and the stresses
σ scale linearly with the strains ε. Afterwards, the material begins to deform plastically, this means
the material undergoes a non-reversible change of shape. The yield condition indicates the initiation
of this phase:

f(σ) = |σ| − σy(εp) ≤ 0, (2.37)

If the yield function f(σ) = 0 and the structure is further loaded hardening initiates. Then the
plastic strains increase according to the flow rule, which gives an evolutionary equation for the
plastic strains (Simo and Hughes 2006). As the plastic strains increase, the yield stress σy(εp) does
according to the defined hardening law4. In this phase the stresses can be approximated using the
elasto-plastic tangent modulus EH (bilinear material), or more accurately using many elastoplastic
tangent moduli EH,i, each representing a different slope (piecewise linear material). In point b the
structure undergoes elastic relaxation or unloading. This is illustrated just to exemplify the possibility
of unloading after initially reaching the yield stress, but is not mandatory. In this case the elastic
contribution to the strains are reduced but the plastic remains. In point c the ultimate stress is reached
and Necking starts. After this point, increasing strains come with a reduction of stresses until point d
is reached and fracture or damage occurs.

3For large strains a multiplicative decomposition of the deformation gradient into elastic and plastic parts has to be employed.
4For isotropic hardening σy(εp) = σy,0 +H|εp|, where H is the hardening modulus and EH = EH

E+H
.
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Please note that in the three dimensional case a scalar stress measure is used in the yield function
as well. Often the Von Mises stress is employed, which depends on the deviatoric stresses only and
therefore attributes the volumetric constancy of ductile materials such as metals during hardening.

As we see, in contrast to linear statics the material behavior is strongly dependent on the deformation
history of the structure now, therefore we speak of path-dependent material behavior. As mentioned
previously, the constitutive relations can also depend on the strain rate, i.e. how fast the strains are
changing. Consequently, for visco-plasticity the material matrix

CNL = C(a, ȧ) (2.38)

depends on the displacements a as well as on the velocities ȧ. Then, e.g. the strain-curve shifts
towards higher stress with increasing strain rates. For the sake of simpilicity, in this thesis mainly
elasto-plastic material behavior is assumed. However, the last examined example is extended to
visco-plasticity to exemplify the practical use-case for automotive crash problems. Furthermore, the
material is idealized in the regard that fracture and necking is omitted.

Boundary conditions: during a crash event, the major part of external forces act on the structure through
contacting with impacting structures and as a consequence of heavy deformations through self contact
with the structure’s own members. The magnitude but especially the location of contact can change
fast within milliseconds. Hence, the boundary conditions change with progressing deformation. To
model such contacting the Lagrange-multiplier method and the Penalty-method are to be named. For
crash-applications usually the later one is used. In contrast to the Lagrange-method, the structure of
the stiffness matrix does not change using the Penalty-method. After contacting partners have been
determined, so-called penalty forces are calculated which counteract the penetration of the contact
partners. This penalty force e.g. increases proportionally to the penetration, so that one can easily
imagine it as a result of spring elements between the contact partners. In reality, however, no spring
elements are inserted, but only the respective forces are added as a penalty term to the nodes in the
contact zone. For more details please refer to Wriggers 2006 or e.g. Belytschko et al. 2014.

Reference configuration: the presence of path dependent-changes of the constitutive relations (e.g. plas-
ticity) also implies the usage of an updated Lagrange formulation of the balance of momentum,
which means the equation is evaluated with reference to the current configuration (De Borst et al.
2012). Then all integral measures are not evaluated with respect to the undeformed but the current
deformed geometry V (Fig. 2.5).

Inertia effects: If a dynamic problem is to be solved, time is not only a parameter to order the sequence
of events. The inertia term in equation 2.20 needs to be taken into account and the semi-discrete
balance of momentum remains an ordinary differential equation with a derivative with respect to
time on the left side.

Mü(t) = f ext(t)− f int(t, u̇,u) (2.39)
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The semi-discrete balance of momentum is called semi-discrete, because it is only discretized in the
spatial domain but not in the time domain. In order to indicate the time dependency as well as the
nonlinear dynamic background we use (t) in the following. For example u(t) is the displacement
vector at time t resulting of the nonlinear dynamic analysis. The discretization in time can be
accomplished by applying a time integration scheme.

Based on the above described considerations, the internal force vector is calculated as follows:

f int(t, u̇,u) =

nE∑︂
e=1

ZE,e
T
∫︂
VE,e

BNL
TCNLBNLZE,eu(t)dV. (2.40)

The internal force vector therefore summarizes all nonlinear kinematic and constitutive relations. Further-
more, the integral is evaluated in the current domain now. The same applies for the external force vector
f ext.

There are several different time integration schemes at hand to solve the semi-discrete balance of momen-
tum. These schemes can be subdivided into two different classes – implicit and explicit methods. In the
following the basic concepts of both classes are elaborated.

Implicit time integration

Implicit time integration schemes satisfy the balance at time t+∆t. As a starting point the semi-discrete
balance of momentum is reformulated into an incremental equation (Bathe 1996)

Mü(t+∆t) +Kt
NL,0∆u(t) = f ext(t+∆t)− f int(t). (2.41)

The right side of the equation then describes an out of balance force vector, which enforces the incremental
displacements

∆u(t) = u(t+∆t)− u(t). (2.42)

The matrix Kt
NL,0 denotes the tangential stiffness matrix at the beginning of a time step, which can be

derived by linearization of the internal force vector f int(t) (Simo and Hughes 2006). This tangential
stiffness matrix is eventually updated during time integration.

One of the most well known implicit integration schemes is the second-order Newmark Method (Newmark
1959):

u̇(t+∆t) = u̇(t) + [(1− δ) ü(t) + δü(t+∆t)]∆t (2.43)

∆u(t) = u̇(t)∆t+

[︃(︃
1

2
− α

)︃
ü(t) + αü(t+∆t)

]︃
∆t2 (2.44)

where depending on the parameters α and δ different schemes can be obtained. The parameters can
be set to influence stability and accuracy of the integration. For the parameters α = 1

4 and δ = 1
2 the
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trapezoidal rule is realized. Substituting equation 2.43 and 2.44 into the incremental semi-discrete balance
of momentum 2.41 at time step t+∆t yields a system of nonlinear equations:(︃

4

∆t2
M+Kt

NL,0

)︃
∆u(t) = f ext(t+∆t)− f int(t) +M

(︃
ü(t) +

4

∆t
u̇(t)

)︃
. (2.45)

The equations are nonlinear, since KNL,0 depends on the displacements u in a nonlinear fashion. The term
4

∆t2
M+Kt

NL,0 is called effective stiffness. To obtain the displacements u(t+∆t), an iterative procedure
like the Newton-Raphson method has to be employed. Therefore, the effective stiffness matrix needs to
be factorized at least once each time step. The computational effort per time step is thus comparatively
high. For linear analyses this fact can be compensated, since the method is unconditionally stable for some
parameter configurations (e.g. trapezoidal approach), which means there is no restriction on the time
step size. However, the size of the time step ∆t must be justified physically. If nonlinearities in contact
or material occur and high frequencies are dominating the problem, the time step size must be chosen
adequately small, which especially applies for crash related problems. Otherwise the iterative solver may
fail to converge.

Explicit time integration

Explicit time integration schemes directly use equation 2.39, and values at times t+∆t are evaluated using
a finite difference scheme. Then, the solution for a time t+∆t is based on the equilibrium at time t. In
the following the explicit approach is illustrated using the second-order central differences scheme as an
example. These differences can be written as:

u̇(t) =
u(t+∆t)− u(t−∆t)

2∆t
(2.46)

ü(t) =
u(t+∆t)− 2u(t) + u(t−∆t)

∆t2
(2.47)

Substituting equation 2.47 into the semi-discrete balance of momentum at time t and rearranging yields:

u(t+∆t) = ∆t2M−1 (f ext(t)− f int(t)) + 2u(t)− u(t−∆t) (2.48)

which can be solved directly. Therefore the mass-matrix M must be brought to the right side. Usually a
costly inversion can be avoided by diagonalizing the mass matrix using a lumping scheme. This is especially
important, since the time step ∆t is restricted to a very small size in order to maintain the algorithm stable.
An inversion in each time step would thus be very costly. After the displacements u(t + ∆t) have been
calculated, the strains, stresses, internal forces, velocities and accelerations at time t+∆t can be calculated
for each integration point. Afterwards all necessary measures for calculating the displacements u(t+ 2∆t)

are available and the process can be repeated. This step-by-step solution does not require a factorization
of an effective stiffness matrix and can thus be performed fast.
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When it comes to the simulation of crash problems, small time steps must be chosen when using ei-
ther an explicit or an implicit solver. Since the computational effort per time step is significantly higher
with implicit time integration, explicit solvers are usually used for crash simulations. Nevertheless there
are examples for the use of implicit solvers in crash applications, especially for low-speed dynamic or
quasi-static problems. Kazanci and Bathe, for example, examined the axial crushing behavior of a crash
box using the Bathe implicit time integration method (Kazanc and Bathe 2012). Overall, they found good
agreement with experimental results. However, the nonlinear dynamic analysis of the crash box model
with 10332 shell elements took about 2.5 h to run, using 450 implicit time steps on a desktop computer
equipped with an Intel i7 X990 CPU 3.47 GHz. Jonsson et al. 2019 analyzed a roof crush of a Volvo XC40
using the implicit solver of the commercial solver LS-DYNA and compared the results to those of an explicit
solver. Both results are similar, but the computational costs differ considerably. The implicit solver took
73.9 h on a High Performance Cluster (HPC) with 448 cores, whereas the explicit solver only took 2.05 h.
These examples show that, in principle, it is possible to achieve convergence with implicit time integration
methods for crash problems. Still, the computational costs are significantly higher compared to explicit
schemes.
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2.3 Gradient based Optimization

After the theoretical framework for the analysis of structures subjected to linear static as well as nonlinear
dynamic load cases has been elaborated, the concept of gradient-based optimization is presented in the
following. As explained at the beginning, a suitable modification of the design variables is of decisive
importance for the efficiency of the optimization algorithm. The modification of the design variables can
be expressed mathematically:

k+1x = kx+ k∆x, (2.49)

where k∆x is the change of the design variables kx in iteration k. In gradient-based optimization, the
modification of the design variables can be split into two major steps: Identifying a suitable search direction
p in which the design variables are varied and performing a line search afterwards to determine how far to
step in that direction. This way an nD-dimensional optimization problem can be solved by solving a series
of one-dimensional optimization problems (e.g. Fletcher and Reeves 1964). The name gradient-based
relates to the fact that the search direction is determined based on the value of the sensitivities of the
objective function and constraints with respect to the design variables. The sensitivities give a measure of
the extent to which the constraints and the objective function change depending on the design variables.
This is summarized by the gradient containing the partial derivatives with respect to each design variable
xi, exemplary for the objective function:

∇Tf(x) =

(︃
∂f(x)

∂x1
,
∂f(x)

∂x2
, ...,

∂f(x)

∂xi

)︃
; i = 1, ..., nD. (2.50)

2.3.1 Line Search

After a search direction p has been set and in the absence of constraints, the increment k∆x can be
determined by solving the following one-dimensional optimization problem:

min
α

f(kx+ α · k+1p), (2.51)

which can be solved easily using the method of golden ratio or polynomial interpolation for example. Then
k∆x follows as:

k∆x = ∗α · k+1p, (2.52)

where ∗α is the solution of equation 2.51. The new design thus follows as:

k+1x = kx+ ∗α · k+1p. (2.53)

In Fig. 2.8 two subsequent iterations or line searches are illustrated.
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Figure 2.8: Two subsequent gradient-based line search iterations (modified from Harzheim 2014)

This is especially efficient, if a local approximation is used for all function analyses necessary during the
line search. A local approximation provides good approximation in the immediate vicinity of the starting
point kx. A Taylor Series Expansion can provide such approximation. The easiest way is to use a linear
approximation f̃L(x) only (Harzheim 2014):

f̃L(x) = f(kx) +

nD∑︂
i=1

∂f(kx)

∂xi
(xi − kxi). (2.54)

Since the gradients need to be calculated to determine the search direction p anyway, the computation of
a linear approximation does not cause additional computational effort. In order not to exceed the local
approximation’s validity, the change of the design variables k∆x must be limited. Therefore, so called move
limits are introduced, defining a lower and an upper bound x̄L and x̄U, respectively. Each design variable
may vary only within this bounds during each iteration (Harzheim 2014):

x̄Li = max
(︂
xLi , x

(k−1)
i − δ|xk−1

i |
)︂

x̄Ui = min
(︂
xUi , x

(k−1)
i + δ|xk−1

i |
)︂
; δ ∈ [0, 1]. (2.55)

The usage of the min andmax functions ensure that the explicit constraints are not exceeded. The parameter
δ controls the size of the move limits. Often the value δ = 0.5 is used. However, this value may be reduced
with progressing iterations (Harzheim 2014). The validity and quality of the local approximation can
be significantly improved if the knowledge about the approximated function or structural response is
considered. While responses such as mass or volume often relate linearly to the design variables, this may
not be the case for displacements or stresses.5 Then, it is beneficial to use a reciprocal dependency. In this

5For the deflection u of a cantilever with height h loaded at one end and fixed at the other end u ∼ 1/h3 applies.
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case, the Taylor series expansion in equation 2.54 changes to

f̃R(x)(x) = f(kx) +

nD∑︂
i=1

∂f(kx)

∂xi

kxi
xi

(xi − kxi). (2.56)

The Method of Moving Asymptotes (MMA) allows to flexibly switch between linear f̃L(x) and reciprocal
approximation f̃R(x) and all intermediate stages (Svanberg 1987).

2.3.2 Determining the Search Direction

There are several options to define the search direction p. The easiest way is to use the direction of steepest
descent of the objective function. This direction is defined by the inverse gradient:

p = −∇f(x). (2.57)

Like illustrated in Fig. 2.9 (left) this simple approach often leads to unnecessary iterations, since subsequent
search directions must be perpendicular to each other. An alternative approach, where oscillations are
damped, is the conjugate gradient method (Fig. 2.9 , right). For further details, refer to (Harzheim 2014;
Martins and Ning 2021).

0𝐱

1𝐱

2𝐱
𝑥1

𝑥2

0𝐱

1𝐱

2𝐱

𝑥1

𝑥2 Method of steepest descent Conjugate gradient method

Figure 2.9: Comparison of method of steepest descent and conjugate gradient method (modified from
Harzheim 2014)

The above methods take into account the objective function f(x) only. Since most optimization problems
also involve constraints, the strategy for choosing the search direction must be adopted if constraints are
violated or active. In the first case, a strategy must be applied to find a feasible design with priority. In the
second case the design lies at the border of the feasible region. The new search direction then should be
feasible and descend. This means, p points into regions which are feasible and where the objective’s value
reduces. The Method of feasible Directions satisfies both conditions and is illustrated in Fig. 2.10. If the
search direction is selected in this way, the optimizer usually moves along the borders of the feasible region
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until optimality is found. The Karush-Kuhn-Tucker (KKT) conditions provide a criterion to asses the current
design’s optimality. For each regular point x 6, and if only inequality conditions are involved, they can be
summarized as:

∇f(∗x) +
∑︂
J∈Ic

λj∇g(∗x) = 0; λj ≥ 0; j ∈ Ic, (2.58)

where Ic is a set containing all active inequality constraints and λj is the Lagrange multiplier corresponding
to constraint gj . If any λj ≥ 0 exist, for which equation 2.58 is satisfied, then no feasible and descent
region exists like illustrated in Fig. 2.11. However, it is unclear if this point is a local or a global optimum.
As depicted in Fig. 2.12, the global optimum is defined by the objective’s best possible value in the entire
feasible region, whereas a local optimum is the best possible value within a small neighborhood only.
Therefore, the found optimum can only be ensured to be a global optimum if the optimization problem
is convex. Unfortunately, for the most practical applications one cannot tell if the function is convex,
without analyzing the function over the entire design space, which is prohibitive because of the required
computational effort. Thus, it remains unclear if the found optimum is a local or a global optimum. It can
be expected that most crash problems are highly multimodal, which means many different optima exist.
Gradient-based optimizer explore the design space from a selected initial design point and thus only small
parts of the entire design space are usually examined. Due to this fact, gradient-based optimizer are very
efficient especially for higher dimensional problems. The downside is that the probability of ending up in a
local optimum is relatively high. To address this issue most of the examples in this thesis are examined
based on several initial designs uniformly distributed all over the design space.

So far, it has not been elaborated how the gradients are calculated. The possibility and effort for this
depends strongly on the type of optimization problem considered. In the following, the possibilities for
linear static and nonlinear dynamic problems are explained and alternatives to gradient-based optimization
are shown.

6x is regular if x is feasible and the gradients of all active constraints are linearly independent.
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Figure 2.10: Descent and feasible regions for design kx at the border of the feasible region (modified from
Harzheim 2014)

descent

feasible

No descent

and feasible region

𝛁𝑓( ∗𝐱 )

𝛁𝑔( ∗𝐱 )

∗𝐱

Figure 2.11: Descent and feasible regions for optimum ∗x (modified from Harzheim 2014)
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Figure 2.12: Global and local optima and convex optimization problem
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2.4 Linear static Response Optimization

The term linear static response optimization describes the optimization of a problem where the analysis is
performed based on the linear statics FE-equation. Mathematically this problem reads as follows 7:

min f(x,u); x ∈ RnD (2.59)

subject to

gj(x,u) ≤ 0; j = 1, ..., nUC (2.60)

xLi ≤ xi ≤ xUi ; i = 1, ..., nD, (2.61)

where the displacement vector u is the solution of the linear FE-equation:

K(x)u = f . (2.62)

For this kind of problems often the mass is minimized, while the structure’s stiffness is constrained or vice
versa. The structural responses reflecting the structure’s stiffness are for example either the intrusions
of the node subjected to an external force, or the compliance. The compliance is mostly used in case of
topology optimization and is defined as:

Compl =
∑︂
i

f iui; i = 1, ..., nN (2.63)

The sensitivities can be calculated efficiently for linear statics problems. In the following, different
possibilities for deriving the sensitivities are elaborated following the assumptions of linear statics.

2.4.1 Sensitivity Analysis

The concept of gradient-based optimization requires the sensitivities of objective and constraints for defining
the search direction p in each iteration. The sensitivity analysis can require a considerable part of the total
time for optimization. Furthermore, the convergence behavior of the optimization depends strongly on the
chosen search directions and therefore on the accuracy of the sensitivities. Efficient and accurate sensitivity
computations are thus essential for gradient-based optimization schemes. One way to quantify changes of
the objective or constraints with respect to design changes is using finite differences. If forward differences
are used each sensitivity analysis requires nD + 1 analyses, which is extremely expensive. Furthermore,
finite differences schemes tend to be inaccurate. Thus, numerical procedures like finite difference schemes
should only be used for sensitivity analysis if no other method can be applied (Harzheim 2014). There
are two efficient (semi-) analytical alternatives available for linear static response optimization: the direct
7Equality constraints are omitted here, as they are usually not used in practice.
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and the adjoint method (Arora and Haug 1979; Haftka and Adelman 1989; Haftka et al. 2012; Schwarz
2001; Tortorelli and Michaleris 1994; Van Keulen et al. 2005; Kleiber et al. 1997; Komkov et al. 1986;
Hsieh and Arora 1984). In the following, both approaches are illustrated using the example of linear static
response optimization. The total derivative with respect to the design variables x of a structural response
as for example the objective function f , involved in the optimization problem, can be obtained using the
chain rule:

df(x,u)
dxi

=
∂f(x,u)

∂xi
+

(︃
∂f(x,u)

∂u

)︃T ∂u

∂xi
(2.64)

The derivatives ∂f
∂u and ∂f

∂xi
are explicit quantities and their calculation is straight forward. In contrast

the derivative ∂uj

∂xi
is an implicit quantity because the system response u is implicitly defined through the

equation of linear statics. Therefore, the implicit term needs special treatment. It can either be calculated
using the direct method or be eliminated in 2.64 using the adjoint method.

The Direct Method

Employing the direct method, the partial derivatives ∂uj

∂xi
are calculated, by solving nD pseudo load cases.

These pseudo load cases can be derived by differentiating the linear statics FE-equation (equation 2.31)
with respect to x

∂K

∂xi
u+K

∂u

∂xi
=

∂f

∂xi
(2.65)

and rearranging

K
∂u

∂xi
= φ, (2.66)

where φ is called the pseudo load vector

φ =
∂f

∂xi
− ∂K

∂xi
u. (2.67)

The factorization of K has already been done for analysis, but the partial derivatives ∂f
∂xi

and ∂K
∂xi

have to be
calculated in order to solve 2.66. Often the force vector f is independent of the design variables in linear
statics and thus ∂f

∂xi
is zero. If this is not the case, the dependence of f with respect to xi is usually known

explicitly and ∂f
∂xi

can be determined analytically (e.g. body loads). The remaining term ∂K
∂xi

can either
be calculated analytically or by using finite differences. If finite differences are employed, one speaks of
semi-analytical sensitivity analysis and otherwise of analytical sensitivity analysis. Since the term ∂uj

∂xi
has

to be calculated only once for each structural response f , the direct method is insensitive to the number of
constraints nC imposed to the problem. However, the drawback is obviously, that one pseudo load case
must be solved for each design variable and the method is therefore not suitable for topology optimization.
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The adjoint Method

Instead of calculating the partial derivatives ∂u
∂xi

, one can also eliminate them from equation 2.64 using the
adjoint method. Therefore, equation 2.66 must be rearranged

∂u

∂xi
= K−1φ (2.68)

and inserted into equation 2.64

df(x,u)
dxi

=
∂f(x,u)

∂xi
+

(︃
∂f(x,u)

∂u

)︃T

K−1φ. (2.69)

Instead of solving the pseudo loadcase 2.68 as a first step like in the direct method, now the adjoint variable
λ is calculated

λT =

(︃
∂f(x,u)

∂u

)︃T

K−1. (2.70)

Using the symmetry of the stiffness matrix K the adjoint variable λ can be calculated by solving the
following system of equations

Kλ =
∂f(x,u)

∂u
, (2.71)

which is in fact another pseudo load case. This time the pseudo load vector is given by the partials ∂f(x,u)
∂u .

Their calculation is straight forward and can be done analytically. In order to finally derive the sensitivities
the remaining partials in equation 2.69 can either be calculated analytically or semi-analytically, like
already described before. The main difference between the direct and the adjoint method thus is the
sequence of matrix operations and therefore the resulting number of overall operations (Firl and Bletzinger
2010; Schwarz 2001; Harzheim 2014). If the direct method is used nD pseudo loadcases must be solved,
whereas for the adjoint method nC + 1 pseudo load cases must be solved. This means for problems with a
high number of design variables nD and a small number of constraints nC the adjoint method is much more
efficient, which is why it is typically used for topology optimization problems.
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2.5 Nonlinear dynamic Response Optimization

The optimization of structures subjected to a crash event can be classified in the category of nonlinear
dynamic response optimization. Here, the optimized systems are of nonlinear dynamic nature and the
optimization problem can be formulated as follows:

min f(x,u(t)); x ∈ RnD (2.72)

subject to

gj(x,u(t)) ≤ 0; j = 1, ..., nUC (2.73)

xLl ≤ xl ≤ xUl ; l = 1, ..., nD (2.74)

where the displacement vector u(t) is the solution of the nonlinear dynamic FE-equation:

M(x)ü(t) +DNL(x,u)u̇(t) +KNL(x,u)u(t) = f ext(t). (2.75)

Inertia effects as well as nonlinearities in geometry, material and contact need to be considered. The
sensitivities cannot be derived as efficiently as in the case of linear static response optimization (Michaleris
et al. 1994; Kleiber et al. 1997). Furthermore, the structural responses involved in optimization problems
usually differ from those used in linear static response optimization. The dependency of e.g. the objective
function on time varies depending on the selected load case. One could for example be interested of the
maximum or final value of f(x,u(t)) over time or an integral quantity. In the following, it is first elaborated
which structural responses are most relevant for a structure’s crashworthiness and an overview of typical
crash load cases is given. Afterwards, approaches based on sensitivities of the nonlinear dynamic system as
well as approaches circumventing the sensitivity analysis are presented.

2.5.1 Crashworthiness Design

Crashworthiness design aims to increase the passive safety of vehicles while simultaneously reducing
material and manufacturing costs. Passive safety refers to safety measures that reduce the consequences of
an accident for vehicle occupants and pedestrians after an accident has become unavoidable. A number of
load cases are used by automotive manufacturers to design crash structures according to these aspects.
These load cases follow, on the one hand, the regulations established by the legislator that must be met
within the homologation of a vehicle on the relevant market. On the other hand, voluntary vehicle safety
rating systems, like e.g. the European New Car Assessment Program (Euro NCAP), provide independet
information for consumers based on other crash load cases. The performance of the vehicles in these load
cases thus becomes a relevant bench-marking criterion for customers and automotive companies. In the
following some of the load cases are described schematically:
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Side Impact: Like illustrated in Fig. 2.13 a car with an initial velocity of 32 km/h is colliding sideways
with a rigid pole. This simulates the collision with roadside objects such as trees, after the driver lost
control over the vehicle. The ability of the car to protect the driver’s head and body is tested here.
Therefore, the pole impacts at the position of the driver’s head. The intrusion of the pole is limited.
Otherwise, the pole would hit the driver’s head and cause severe injuries. Please note that before
2015 EURO NCAP placed the car perpendicular to the direction of motion.

Front Impact: The vehicle drives at a speed of 50 km/h against a rigid barrier that covers the full width of
the vehicle (Fig. 2.14). The test is designed to simulate what happens when the front of a vehicle
collides with another vehicle or an roadside object. After collision the car decelerates rapidly and the
whole kinetic energy of the car must be absorbed by the car’s body. The deceleration can cause severe
injuries to the occupants and must therefore be limited. Also, structural parts striking against the
occupants can cause injuries. In order to prevent parts buckling towards the occupant, most vehicles
have stiff safety cages encapsulating the occupant compartment. However, these stiff structural
members are not able to absorb the kinetic crash energy and do not keep the acceleration at a
moderate level. For that purpose, so called crush zones are designed to crush and absorb the crash
energy and reduce forces on the safety cage. Besides the shown frontal crash there are many other
configurations. Mostly the velocity of the car and the overlap width and stiffness of the barrier differ,
such that for example only the driver’s side of the car hits a deformable barrier.

Roof Crush: The purpose of this load case is to reduce deaths and injuries due to the crushing of the roof
into the passenger compartment during an rollover accident. Therefore, the resistance of the vehicle’s
roof is measured while a rigid rectangular block moves downwards at a defined angle (Fig. 2.15).
The rigid block moves with constant velocity until 127 mm intrusion is reached. If the measured
force exceeds a defined threshold during the deformation process, the roof ’s resistance is considered
sufficient. Since the crushing of the roof during a rollover also depends on the vehicle’s mass, the
resistance is calculated as a quotient of reaction force and the vehicle’s weight.
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Figure 2.13: Side impact crash load case: Vehicle colliding sideways with rigid pole
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Figure 2.14: Front impact crash load case with full width barrier according to Euro NCAP 2022: Vehicle
colliding with rigid barrier
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Figure 2.15: Roof crush load case ( modified from National Highway Traffic Safety Administration 2009):
Application to measure a vehicle’s roof crush resistance

The above exemplary load cases illustrate that often several criteria must be considered when optimizing
crash load cases. The criteria are partly contradictory. Stiff structures must be realized for the design of
the occupants compartment, which can be targeted by optimizing intrusions (e.g. side impact) or reaction
forces (e.g. roof crush). The crush zone, on the other hand, is purposely designed to convert the kinetic
crash energy into plastic deformation and heat. This can for example be accomplished by maximizing
the plastic work or plastic strain energy, which is given as the area below the stress-plastic strain curve (cf.
figure 2.7). In order to avoid damaging spot welds or structural parts of the occupant compartment, the
maximum reaction force of the crush zone must also be limited.

Instead of the plastic work, an approach based on the force-displacement curve of a structural member
of the crush zone can also be used for optimization. Such a force-displacement curve is illustrated in Fig.
2.16. Here, the reaction or crash force of a structural part subjected to a crash is plotted over the impactor’s
displacement in force direction. The integral of the force-displacement curve is the internal energy. Point d
marks the maximum intrusion. At this point the kinetic crash energy has been transferred to internal energy
completely. The structure rebounds afterwards and the elastic part of the internal energy is transformed
to kinetic energy again. With consideration of the constraint of the maximum force FU and a maximum
feasible displacement dU, a rectangular force-displacement curve results as the theoretical optimum of the
force-displacement curve. Thereby, the deformation is limited by the available deformation space and the
maximum force to prevent the parts in the occupant compartment or spot welds from damage. Such a
force-displacement curve can therefore be targeted, for example, by minimizing the maximum force and
constraining the maximum displacement.
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Figure 2.16: Crash force vs. displacement for a structure subjected to a crash event

In addition to the crash forces and intrusions, the accelerations imposed on the occupants also play an
important role during the crash event. These should in principle be as low as possible. Accelerations are
directly related to the crash forces occurring. In this work, therefore, we focus on the incorporation of
crash forces and intrusions in the optimization problems solved.

2.5.2 Approaches based on Sensitivities of the nonlinear dynamic System

For nonlinear dynamic problems, sensitivities can only be derived under special circumstances and with
high computational effort. As elaborated before for linear statics, also for nonlinear dynamics either the
direct or the adjoint method can be used. However, the methods are much more complicated in this case.
In the following, a short explanation of sensitivity analysis for nonlinear dynamics is given to elaborate
its limitations and drawbacks. In doing so, the explanation is limited to the adjoint method, because just
as for linear statics, the computational effort of the direct method increases with the number of design
variables nD. Therefore, the direct method is not suitable for topology optimization. For more detailed
information please refer for example to Michaleris et al. 1994 or Kleiber et al. 1997, who give more detailed
explanations of both direct and adjoint methods for nonlinear dynamics.

The basic idea of the adjoint method for nonlinear dynamics is similar to the procedure explained before.
First the sensitivity of the structural response of interest is split into explicit and implicit quantities.
Afterwards the implicit quantities are annihilated by introducing the adjoint variables. In contrast to linear
static response optimization, the adjoint variables can only be derived by solving a terminal value problem,
which must be solved backwards in time. The computational effort of this calculation is similarly high as of
the forward time integration used for the nonlinear dynamic analysis. However, there are some synergies
that can potentially be employed: The factorized tangent stiffness matrix is required in each time step of
the backward integration. To derive the tangent stiffness matrices there are two options: If an implicit
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time integration scheme is used for the primal nonlinear dynamic analysis, the factorized tangent stiffness
can be stored for each time step and reused for solving the adjoint problem. If an explicit time integration
scheme is employed the tangent stiffness matrices have to be set up and factorized after the primal analysis.
While the first option is more demanding in terms of storage usage, the computational effort of the second
option is higher. This might be the reason, why current research on adjoint sensitivity analysis of crash
related problems is focused on using implicit solvers (Ivarsson et al. 2018; Weider and Schumacher 2018;
Weider and Schumacher 2019). At this point I want to remind the readers of the comparison of the elapsed
times for explicit and implicit time integration schemes in chapter 2.2.4. Although, it may be beneficial
to employ implicit time integration schemes here, it still is very time consuming. Therefore, nonlinear
dynamic response optimization employing the adjoint method cannot be considered an option for large
scale industrial application yet.

Nevertheless, efforts are made towards crashworthiness topology optimization using adjoint sensitivity
analysis for highly nonlinear problems. Weider for example calculates the so-called topological derivative,
which is the sensitivity of a functional for introducing an infinitesimal hole into the structure. These
sensitivities can be used afterwards for level set optimization. In Weider and Schumacher 2019 the
sensitivities for the functionals: internal energy and displacement have been introduced. However, some
boundary integrals occur in the explicit terms which cannot be calculated directly. A metamodel-based
approximation as described in Weider and Schumacher 2018 for the internal energy functional, can be
used to approximate the missing explicit terms. Ivarsson et al. 2018 also used the adjoint sensitivity
analysis for topology optimization of visco-plastic structures under transient loads. They used the RAMP
material interpolation scheme8 and optimized the normalized densities using MMA. The approach was
tested employing several numerical examples. These are 2D beam structures that are clamped at both ends
and deformed in the middle by a transient load. They differ in the measurements of the beam and the exact
implementation of the clamping. For each example the loading rate is varied between very fast and slow
(quasi-static), while the maximum deformation of the structure in the loading area remains the same. The
objective is to maximize the absorbed visco-plastic energy. The results of all examples have in common that
at high load rates the mass accumulates in the middle of the structure, i.e. close to the loading area. This
reflects the increasing influence of inertia effects with higher loading rates. The results demonstrate the
functionality of the methodology, taking into account dynamic/inertia effects and material nonlinearities.
However, contact remains unconsidered, which is an elementary component of most crash problems.

2.5.3 Approaches without Sensitivity Calculation of the nonlinear dynamic System

Due to the circumstances described above, efforts are made to avoid the calculation of sensitivities of the
nonlinear dynamic system. In the following relevant approaches for both sizing and topology optimization
are presented.
8Rational approximation of material properties (RAMP) is a material interpolation scheme developed by Stolpe and Svanberg
2001. It has some similarities with the SIMP approach. For a comparative review refer to Sigmund and Maute 2013.
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Metamodel based Approaches

A metamodel, or also known as surrogate model, or response surface model (RSM), approximates responses
over the design space based on underlying data points. The overall goal of a metamodel is to enable
much faster analysis than the original nonlinear dynamic system. However, in order to create a sufficiently
accurate metamodel, the analysis of several points in the data space is necessary. The procedure of selecting
these design points is called Sampling. This should be accomplished such that the entire design space is
covered sufficiently while their number remains at a moderate level. Such points can be generated for
example by using Latin Hypercube sampling or Strenght-Two Orthogonal Arrays (STOA). The latter is said
to have a very even distribution of points over the design space (space filling design) (Harzheim 2014).

It can generally be distinguished between global and local metamodels. For the first, a global approximation
of the entire design space is made, while for the second only local approximations of predefined sub-spaces
are created. An example for the latter is the Successive Response Surface Method (SRSM) (Stander 2001;
Stander and Craig 2002), which is implemented in the commercial tool LS-Opt (LSTC 2015). Here, starting
from an initial design 0x, the optimum of a local approximation of the sub-space spanned around the
starting point is determined. A new approximation is then created in a new sub-space around the newly
found optimum, based on which again the optimum is determined. This process is repeated until certain
convergence criteria are met. Building accurate local approximation usually involves less computational
effort than building a sufficiently accurate global approximation. In contrast to global approximations no
computational efforts are made to approximate obviously sub-optimal regions. However, since only parts
of the design space are explored using SRSMs the chance of getting stuck in a local optimum is higher
than when using global approximations. If global approximations are used for optimization purposes, the
metamodel usually is not highly accurate at the beginning but is improved by adding new design points
during the optimization until convergence is reached.

There are basically two different ways to fit the metamodels: Regression and Interpolation. Regression,
does not necessarily match the underlying data points exactly, instead they give a smooth trend of the data
points. This is especially advantageous if the available data is noisy. Examples for regressions are Neural
Networks (Hornik et al. 1990; Hornik et al. 1992; Waszczyszyn 1999) and Polynomials (Lancaster and
Salkauskas 1981). In contrast, interpolations like Radial Basis Functions (Powell 1992) and Kriging (Krige
1951; Matheron 1963; Cressie 1988; Cressie 1990) build functions that exactly fit the data points. If the
optimization problem to be solved is highly multimodal, the usage of an interpolating metamodel ensures
that the underlying physical effects reflected in the responses are not smoothed away. One limitation
of metamodels is the poor scalability with regard to the number of design variables: the computational
effort for constructing a sufficiently accurate metamodel increases significantly with the number of design
variables. Hence, it can be used for sizing and shape optimization but not for topology optimization.
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Hybrid Cellular Automaton

An alternative heuristic approach for topology optimization of nonlinear dynamic systems is the Hybrid
Cellular Automaton (HCA) (Patel 2007; Patel et al. 2009), which is an extension of the previously introduced
methodology by Tovar et al. 2006 for linear static response optimization. Similar to the SKO (Baumgartner
et al. 1992), Tovar aims to simulate the process of structural adaption in bones and homogenizes the strain
energy density for this purpose. Therefore, the Cellular Automaton (CA) paradigm (Von Neumann 1951) is
combined with FEM. In a CA, the structure is subdivided into several cells by a homogeneous grid. The
state of a cell is then varied depending on its own state and those of the neighboring cells. In the simplest
case, each cell corresponds to an element in the FE-discretization, and the states are used as optimization
design variables. The mechanical properties and structural responses of each cell can then directly be used
to modify the design variables according to the cellular paradigm. This results in an iterative sequence of
Finite Element Analysis (FEA) and modification of the design variables as described in Fig. 2.1. The name
Hybrid Cellular Automaton reflects the coupling of the FEM with the concept of CA.9

Patel directly transfers Tovar’s idea to crashworthiness optimization and homogenizes the strain energy
density of elasto-plastic crash structures subjected to a mass constraint. For this purpose, the normalized
density of the cells is varied until – if possible – a state of homogeneous strain energy is reached. The
normalized densities are related to the structure’s mechanical properties using the SIMP approach. This
requires the SIMP approach to be extended to elasto-plastic material behavior. In addition to the Young’s
modulus E, the yield stress σy and the hardening modulus EH are scaled analogously here. For the
numerical examples the penalty exponent p = 1 is used. In order to fulfill the mass constraint, a target
value for the strain energy density is defined in each iteration using a heuristic rule. For this purpose it is
assumed that the strain energy density increases with decreasing mass.

Since the heuristic described above does not take into account structural responses besides the strain
energy density and mass, Patel presents an approach to incorporate constraints referencing other relevant
responses. By adjusting the mass constraint during the optimization procedure, the stiffness of the resulting
structure is varied until these constraints are met. To exemplify this, we imagine a deformed structure. If
its deflection exceeds the feasible range, then the mass constraint and thus – as assumed – the stiffness is
increased, in order to reduce the deflection. Patel demonstrates the functionality of this approach using a
maximum displacement constraint as well as a maximum force constraint.

The HCA is available as the commercial tool LS-TASC (Roux 2016; Gandikota et al. 2019). Weider et al.
2017 published a systematic study testing LS-TASC for crashworthiness applications. They found that the
tool yields reliable results for stiffness applications. However, they also state that for objectives considering
responses such as crash forces and accelerations the results highly depend on the load case. It is questionable,
if an homogenized energy density leads to optimal structures, when considering a metal crash boxes for
example. These are an essential part of the crush zone in many cars. The desired energy absorption behavior
9While in a CA the state of a cell does only depend on its one and those of the neighboring cells, the combination with FEM
makes it a ”Hybrid” Cellular Automaton, since the FEA’s result depends on the states of all cells.
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is reached by an progressive folding of the box through plastic hinges and subsequent self-contacting. In
this case the absorbed energy concentrates at the plastic hinges and is rather not homogeneously distributed.
This example may illustrate the major drawback of the HCA. Nevertheless, the approach is advantageous
for stiffness optimization especially because of its comparably small computational effort.

Evolutionary Algorithm

Another possibility of gradient free optimization, is the use of Evolutionary Algorithms (EA). The methodol-
ogy is based on the basic principles of Darwin’s Theory of Evolution (Darwin 1859), in which the individuals
of a population who possess traits that enable them to adapt to their surrounding environment best,
reproduce most frequently (survival of the fittest). The offspring of these individuals will inherit those
superior traits and over time those traits will become more frequent within the entire population. In
addition to the simple passing on of traits, reproduction also involves recombination with other individuals
and the random mutation of traits. As a result, a natural variety within the population remains and the
population adapts better and better to its environment over time.

Recombination and 

Mutation

Offspring

Parents

Selection based on 

Fitness

Figure 2.17: Procedure of an evolutionary algorithm (Harzheim 2014)

This process is simulated by the EA and is illustrated in Fig. 2.17. Parents produce offspring by recombina-
tion and mutation. The fitness of these offspring is then assessed based on predefined criteria to select
the best-fitting among them, which will then become the parents of the next generation. This process is
repeated until defined convergence criteria are met.

The idea of transferring this methodology to optimization purposes has been pursued since the 1970s
(Rechenberg 1970; Höfler et al. 1973). Accordingly, there is a large number of different implementations
and application examples for sizing, shape and topology optimization. The explanation of all publications
would go beyond the scope of this work. For an overview please refer to, e.g., Kicinger et al. 2005 or
Aulig and Olhofer 2016. However, the most prominent subcategories of evolutionary algorithms should be
mentioned at this point: the Evolution Strategy (ES) (Rechenberg 1970; Rechenberg 1994) and the Genetic
Algorithms (GA) (Holland 1992).

The advantage of the procedure described above is certainly that the fitness of the offspring can be
represented by any calculable measure. This means that any structural responses calculated in the analysis
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can be used for the selection and thus be optimized. Furthermore, the likelihood of ending up in a local
optimum is smaller, than when using gradient-based approaches. However, these advantages come at the
cost of a considerable disadvantage: the number of analyses necessary to evaluate the offspring is relatively
high and increases significantly with the number of design variables.

To get an idea of the involved computational effort, Bujny 2020 should be mentioned, for example, who uses
a combination of the level set method and evolutionary algorithms (EA-LSM) for the topology optimization
of crash structures. Bujny uses level set functions, in particular moving morphable components, to describe
the geometry only. This way the number of design variables can be reduced compared to the previously
described density-based approaches, where each voxel or element corresponds to at least one design
variable. The design variables specifying the level set functions are then varied and optimized using the
evolutionary algorithm. The method’s functionality is illustrated by various linear static as well as nonlinear
dynamic examples. The latter includes a three-dimensional beam clamped on both sides, which is deformed
by the impact of a rigid pole10. The beam’s topology is described employing 144 design variables and the
intrusion of the impactor into the beam is minimized while the beam’s mass is constrained. The plausibility
of the results is shown by a comparison with those of the HCA method. However, the number of analyses
required exceeds that of the HCA method considerably and is given as approximately 6000 (Bujny 2020).
This is extremely expensive, and the optimization of full vehicle models is completely unrealistic under
these circumstances. Such methods should therefore only be employed if no other method is applicable.

Graph and heuristic based Topology Optimization

Ortmann et. al. developed an alternative approach: The Graph and heuristic based Topology Optimization
(GHT) combined with sizing and shape optimization (Ortmann and Schumacher 2013; Ortmann 2015).
In contrast to the density-based approaches explained before, mathematical graphs are used to describe
the topology of constant cross sections of profile structures. Thus, only planar graphs are necessary to
describe the cross-sections, although the simulated structures are three dimensional. The optimization
is organized in two nested loops: The topology modification is performed based on heuristic rules in
the outer loop. These heuristics have been derived from expert knowledge. The heuristics applied in
each loop are selected by prioritizing and ranking all heuristics based on the current structural behavior.
An example is the heuristic ”Delete unnecessary Walls”. In order to simplify the structure, unnecessary
connections are deleted. They are identified by comparing the maximum internal strain energy density
of each connection. Those with comparably small values may be removed without significant influence
on the performance of the structure. The sizing and shape optimization is performed in the inner loop
using GA or sequential optimization procedures with domain reduction (Ortmann and Schumacher 2013).
Both are gradient-free algorithms and typically require a large number of analyses. The approach has been
tested using numerical examples, where both stiffness and energy absorption were optimized. Good results
10In terms of complexity and formulation of the optimization problem, the example is comparable to that examined in chapter

5.2.1. However, a direct comparison of the results is not valid due to differences in material and geometry.
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have been achieved for both objectives. The method has recently been extended, such that the results of
different heuristics are pursued through the following optimization as competing designs (Ortmann et al.
2021). The goal is to reduce the chance of getting stuck in a local minimum. For testing this extension the
inner loop optimization is only performed once at the end in order to save computational effort. According
to Ortmann et al. 2021 the number of nonlinear analyses required for convergence can then been reduced
from approximately 3500 to 500 using the extension. Although, this is a significant improvement, 500
analyses is still very expensive, especially if large automotive structures are optimized. No qualitative
results of the extension compared to the previous implementation has been published. Hence, we cannot
tell which approach yields the better results in terms of the structure’s performance.

The biggest advantage of the GHT may be the usability of arbitrary structural responses for the definition of
objective and constraints. For the particular optimization of profile structures with constant cross-sections
it is also advantageous that no interpretation of the resulting structures is necessary as in the case of the
density-based approach. The latter may require to transfer the resulting voxel structures to shell structures.
This transfer in general opens various possibilities and therefore involves uncertainties. On the other hand,
the density-based approach is applicable to a much broader field of problems and is not limited to the
optimization of constant cross-sections only. To overcome this issue, efforts are made to extend the GHT
to use graphs describing three dimensional structures (Beyer et al. 2020). However, it is questionable if
the available heuristics can be directly transferred to three dimensional structures and other problems.
Another disadvantage is the high computational cost, which can be attributed in particular to the large
number of analyses and the usage of the inner loop optimization algorithms.

The Equivalent Static Load Method

The basic idea of the ESL method is to create linear auxiliary load cases for a nonlinear and/or dynamic
problem, enabling gradient-based linear static response optimization. Therefore, the optimization problem
is split into an analysis and a design domain. In the analysis domain the original problem is analyzed. Based
on these results the linear auxiliary load cases are created in the design domain. These auxiliary load cases
are used afterwards to optimize the structure employing efficient gradient-based optimization. The method
has initially been introduced by W. S. Choi and Park 2002 for linear dynamic response sizing and shape
optimization. Thereafter is has gradually been extended to other types of problems and optimizations, like
nonlinear static response optimization (Shin et al. 2007) and nonlinear dynamic response optimization
(Kim and Park 2010). It has successfully been applied for sizing, shape and topology optimization (H. A.
Lee et al. 2007; Jeong et al. 2008; Hong et al. 2010; Park 2011; Jang et al. 2012; J. J. Lee et al. 2013;
H. A. Lee and Park 2015; W. H. Choi et al. 2018; Karev et al. 2018; Karev et al. 2019). The general
procedure of the ESL method for all applications remains the same. The main difference is the governing
equation to be solved in the analysis domain. Fig. 2.18 illustrates the procedure for nonlinear dynamic
response optimization.

41



𝐊𝐮(𝑡𝑖) = 𝐟ESL
𝑖 ; 𝑖 = 1,… , 𝑛T

Computation of ESLs

…

Time

D
is

p
la

c
e
m

e
n
ts

Nonlinear dynamic analysis

𝐌(𝐱) ሷ𝐮(𝑡)+𝐃NL(𝐱, 𝐮) ሶ𝐮(𝑡) + 𝐊NL 𝐱, 𝐮 𝐮(𝑡) = 𝐟(𝑡)

𝐮(𝑡1)

𝐮(𝑡𝑛T)

𝐮(𝑡2)

𝑡1 𝑡2 𝑡3 𝑡4 𝑡𝑛T−1 𝑡𝑛T

Analysis Domain

Iterations

1

…

Auxiliary load cases

E
S

L
s

Linear static response optimization

𝐊𝐮i= 𝚫 𝐟ESL
i

𝐟ESL
𝑛T

𝐟ESL
2

𝐟ESL
1

2 3 4 𝑛T-1 𝑛T

…

Cycles

Convergence?Stop

Yes No

Design Domain

Figure 2.18: Procedure of the ESL method for nonlinear dynamic response optimization

It starts with a nonlinear dynamic analysis. Based on the resulting displacement fields u(ti) in the analysis
domain for nT selected times ti, the ESLs fESL are calculated in the design domain. This is achieved by
multiplying the linear stiffness matrix K(x) with the given displacement fields for each ESL time:

K(x)u(ti) = f iESL; i = 1, ..., nT. (2.76)

The resulting ESLs fESL are thus equivalent in the sense that they lead to the same displacement fields in
linear statics. Each ESL f iESL is used to create one auxiliary load case representing the corresponding time
ti. Based on these nT load cases, linear static response optimization is performed in the design domain
afterwards, where the following linear static sub-problem is solved:

min f(x,ui); x ∈ RnD (2.77)

subject to

gj(x,u
i) ≤ 0; j = 1, ..., nUC (2.78)

xLl ≤ xl ≤ xUl ; l = 1, ..., nD (2.79)
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where ui is the solution of the auxiliary load case:

K(x)ui = f iESL; i = 1, ..., nT, (2.80)

and the ESLs fESL are the solution of equation 2.76 using the displacement fields u(ti) resulting of the
nonlinear dynamic FE-equation 2.75. Since for the calculation of the ESLs the stiffness matrix K(x)

describing the undeformed initial geometry is used for all load cases, only one FE-model is required for
linear static response optimization.

At the beginning of the linear static response optimization, the displacement fields are identical to those
derived from the nonlinear dynamic analysis by definition. As soon as, the design variables x are changed,
this is no longer the case. The responses of the linear auxiliary load cases are only an approximation of
those of the nonlinear dynamic system. In order to maintain the approximation’s validity, the inner loop
should not change the design too much. This can be achieved by executing the inner loop only for a few
iterations without achieving convergence. Then the nonlinear dynamic model is updated and evaluated.
The responses obtained can be compared to those of the design domain. If their difference is too high the
process is iterated in an outer loop until the difference is small enough and additional termination criteria
are fulfilled (Park 2011; H. A. Lee and Park 2015). In the following the outer loop iterations are called
cycles to distinguish them from the iterations of the inner loop in the design domain.

Since this method requires only one analysis of the nonlinear dynamic system per cycle, the overall number
of analyses is usually limited to a low two-digit number. The comparably small computational effort is one
of the advantages of the ESL approach. Futhermore, the number of nonlinear dynamic analyses required
for convergence does not scale with the number of design variables nD. The method’s applicability to sizing,
shape, and topology optimization can therefore be stated as another advantage. Moreover, well developed
commercial software can be used for nonlinear dynamic analysis and linear static response optimization.
This is especially advantageous when employed in an industrial context.

Besides these advantages, there are also some obstacles and disadvantages. Dynamic responses such as
velocities, and accelerations are not directly available in the linear static response optimization. Their
consideration requires the definition of proper approximations in the design domain. For velocity and
acceleration simple finite forward (Jeong et al. 2010) or central (Karev et al. 2019) differences between
adjacent auxiliary load cases can be used. The consideration of crash forces is also not straight forward,
because the ESL methodology dictates that the ESLs remain constant in each inner loop. In Faß 2017 an
approach is introduced and validated, where the reaction force in a roof crush test is approximated using a
reciprocal dependency between the displacements in force direction and the reaction force. Due to the
impactor’s constant velocity the roof crush test is seen as a crash load case with moderate complexity. It
therefore needs to be checked whether the approach is applicable for highly nonlinear examples with more
complexity.

The Equivalent Static Displacement (ESD) method has been presented by Ma et al. 2020 as an alternative
approach. The procedure is similar to the ESL method, but instead of the displacements, nodal forces in
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the crash zone are extracted from the nonlinear dynamic analysis. They are used to calculate equivalent
static displacements which in turn define the load cases for linear static response optimization. In this case
the applied nodal forces correspond exactly to those from the nonlinear dynamic analysis, but the resulting
displacement fields do not match. However, the displacements remain constant during optimization and
forces can thus be considered directly in the formulation of the linear static sub problem. The functionality
of the approach has been illustrated using a side impact and a quasi-static crash box example. The examples
are used later in the thesis and compared with the results of the DiESL methodology.

The ESL and ESD method have one decisive disadvantage in common, which is the fact that each linear
auxiliary load case is based on the undeformed initial structure and thus the same stiffness matrix K(x).
As shown in chapter 2.2 the stiffness matrices K and KNL differ considerably, if geometric and material
nonlinearities occur as in the case of crash problems. Thus, it can be expected that the sensitivities in the
linear auxiliary load cases differ significantly from those of the actual nonlinear dynamic problem and may
not even match in sign.

Furthermore, the ESLs used in the linear auxiliary load cases are completely different from the nodal forces
in the original nonlinear dynamic problem (c.f. equation 2.30 and 2.33). Also, since the validity of linear
statics are exceeded by far, the linear strain and stress measures lead to completely different results in
comparison to the appropriate measures in nonlinear dynamics. Constraints on damage and fracture are
often based on these responses and are therefore not applicable.

It should also be noted that there is an ongoing debate regarding the transferability of the optimality of
the auxiliary sub-problem’s solution to the original optimization problem. It was stated for linear dynamic
response optimization by Park and Kang 2003 that the KKT-conditions of the linear static auxiliary load
cases and the original dynamic problem are identical if certain termination criteria are satisfied. Stolpe
2014 showed that the proof is incomplete and incorrect. He, furthermore, showed that the sensitivities in
the auxiliary load cases are not necessarily the same as in the original dynamic problem. In Stolpe et al.
2018 this is supported by a simple counterexample, where the ESL method fails to find the optimum of a
linear dynamic response optimization problem. In the example shown, the compliance of a harmonically
actuated truss consisting of two members has been optimized. The optimal design has been obtained for
structures with eigenfrequencies far away from the driven frequency. However, when using the ESL method,
resonance effects are not considered, and the method does not converge towards the actual optimum. This
clearly shows a weak point of the ESL method. However, it is questionable whether this issue applies to
crash load cases, since resonance effects play a subordinate role here. As a response to Stolpe, Park and
Y. Lee 2019 added additional termination criteria and claimed that the solution of the ESL method is a
KKT point of the original problem under these conditions. However, this topic is still under discussion. This
history perfectly demonstrates the difficulties that may arise when proving convergence and optimality
criteria of engineering approaches such as the ESL method.
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3 The difference-based equivalent static Load Method

The DiESL method attempts to eliminate the previously described weaknesses of the ESL method by
splitting the deformation path into linear increments. The method has initially been presented in Triller
2019. For sizing optimization, it has been shown that the DiESL method enables a significant improvement
in approximating the nonlinear dynamic problem using linear auxiliary load cases. The DiESL method
found a true optimum of the nonlinear dynamic problem where the ESL method converged to a design
point that is not an optimum at all. However, also some obstacles have been observed preventing a robust
application of the approach in an industrial context. Furthermore, the method has only been tested for
stiffness optimization yet and thus only displacement responses have been considered during optimization.
In this chapter, the basic procedure of the DIESL method is explained first. Then, the computation of other
crash relevant responses like crash forces is worked out. Afterwards, further potential improvements of the
methodology are elaborated and discussed. Finally, the implementation of the methodology is detailed
out, addressing the previously observed problems regarding the robust applicability of the method in an
industrial context. For the latter the use of commercial solvers is advantageous, but also leads to some
limitations which are discussed.

3.1 General Procedure

The general procedure of the DiESL method is similar to the ESL method. As a starting point the basic
differences may be illustrated best graphically, like depicted in Fig. 3.1.
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Figure 3.1: Displacement path of an arbitrary node during the deformation of a structure (left) and the
corresponding displacement u(ti) (middle) and ∆u(ti) (right) used for the computation of the
ESLs and DiESLs at time steps ti, respectively

Here, the displacement path of an arbitrary node, i.e. its coordinates r(t) as obtained by a nonlinear
dynamic analysis is illustrated (Fig. 3.1, left). Results are given at selected discrete times t0,…, ti. The ESL
method uses the undeformed geometry at time t0 to assemble the stiffness matrix K. The loads f iESL to
derive the nodal displacements u(ti) are calculated for each given time ti (Fig. 3.1, middle). Consequently,
it falls short of following the given nonlinear displacement path (Fig. 3.1, left) but rather jumps from the
starting point to each point on the path. In contrast, the DiESL method follows the nonlinear displacement
path by splitting it into linear increments (Fig. 3.1, right). This can be accomplished by using an individual
linear sub model with the corresponding deformed geometry at each time ti. Consequently, the DiESL
approach requires nT linear sub models, one for each time step ti; i = 0,…, nT − 1. We call such a Linear
Sub Model at time ti LSMi in the following. The handling of all LSMs in one optimization run can be
realized employing Multiple Model Optimization (MMO)1. The LSMi is defined by the coordinates of all
nodes at time step ti which can be combined in the vector

rT (ti) =
(︁
rT1 (t

i), rT2 (t
i), ..., rTnN(t

i)
)︁

(3.1)

containing the coordinates rj(ti) of all nodes of the FE-model. Since all LSMs share the same mesh topology
and only differ in the coordinates r(ti), the coordinates of LSMi can be calculated by

r(ti) = r(t0) + u(ti), (3.2)

where r(t0) are the coordinates of the undeformed structure and u(ti) are the displacement fields derived
from nonlinear dynamic analysis. And the incremental displacement fields ∆u(ti) leading from r(ti) to
r(ti+1) are calculated as

∆u(ti) = u(ti+1)− u(ti) = r(ti+1)− r(ti). (3.3)

1In MMO multiple FE-models are taken into account simultaneously in one linear static response optimization run

46



The corresponding incremental equivalent static loads ∆f iDiESL can be calculated for each LSMi using

Ki∆u(ti) = ∆f iDiESL; i = 0, ..., nT − 1, (3.4)

where the tangent stiffness matrix Ki = K(x, r(ti)) is defined by the design variables x and the nodal
coordinates r(ti) of LSMi and therefore incorporates the arising geometric nonlinearities, but non due to
path-dependent material. 2 Like in the ESL method, the incremental equivalent static loads ∆f iDiESL are
used in the design domain for solving the following optimization problem:

min f
(︁
x,∆u0(x), ...,∆unT−1(x)

)︁
; x ∈ RnD (3.5)

subject to

gj
(︁
x,∆u0(x), ...,∆unT−1(x)

)︁
) ≤ 0; j = 1, ..., nIC (3.6)

xLl ≤ xl ≤ xUl ; l = 1, ..., nD (3.7)

where ∆ui is the solution of the auxiliary load case:

Ki∆ui = ∆f iDiESL; i = 0, ..., nT − 1, (3.8)

and the DiESLs ∆fDiESL are the solution of equation 3.4 with the displacements ∆u(ti) = u(ti+1)− u(ti)

derived from nonlinear dynamic analysis 2.75.

To exemplify the resulting benefits from employing the deformed geometries r(ti) for assembling the
stiffness matrices Ki, we consider a three-point bending example with a beam of height h as illustrated in
Fig. 3.2.

𝑡 = 𝑡𝑖𝑡 = 𝑡𝑖−1

𝚫𝐮(𝑡𝑖−1)

𝐅𝑡 = 0

Figure 3.2: Different states of deformation in three-point bending illustrating the benefits of the DiESL
approach (modified from Triller et al. 2021)

At time t0 = 0 the structure is subjected to bending only, but due to the deformation at later times ti there
are also tensile contributions. Assuming that the beam is optimized, only the bending contributions are
considered by the ESL method, since the ESL method employs the undeformed structure in each auxiliary
2This is driven by the requirement of using commercial software for analysis and optimization. The grid coordinates and design
variables are standard input parameters for commercial FE software for linear static problems and can therefore be easily
adjusted. Adjustment of material properties at the element level is not as straightforward and is addressed in Chapter 3.2.2.
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load case. In contrast, with the DiESL method the tensile contributions are considered as well, because the
deformed structures as illustrated in Fig. 3.2 by the dotted lines are employed as LSMs. Thus, the DiESL
method provides a better approximation when optimizing the height h of the beam. In Triller 2019 this
advantage has been confirmed, minimizing the mass of a similar three point bending example, while the
deflection of the beam was constrained. It has been shown, that the DiESL method converges significantly
faster to the known optimum than the ESL method.

The overall program flow of the DiESL method is similar as for the ESL method explained before. This
is illustrated in Fig. 3.3. Exactly as described for the ESL method, there is an outer optimization loop
involving analysis and design domain until certain convergence criteria are satisfied. Keeping this iterative
scheme enables the usage of commercial solvers for the DiESL method as it is the case for the ESL method.
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Figure 3.3: General optimization process of the DiESL method for nonlinear dynamic response optimiza-
tion (Triller et al. 2022b)

Splitting the deformation path into increments and optimizing each LSM using MMO, however, requires
some efforts for the reconstruction of the total response values during the inner loop optimization. Fur-
thermore, some structural responses such as velocities, accelerations, and crash forces are not available in
linear statics or remain constant during the linear static response optimization due to the ESL methodology.
In the following it is worked out how these responses can be computed using the DiESL method and MMO.
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3.1.1 Computation of Displacements

Each LSM yields the incremental displacement ∆ui. The total displacement ui can then be computed
recursively as

ui = ui−1 +∆ui−1 (3.9)

or as an accumulated sum

ui =
i−1∑︂
j=0

∆uj (3.10)

where ∆ui−1 are the nodal displacement results of LSMi−1 during optimization. This accumulation is
performed by the MMO process, which manages all LSMs.

3.1.2 Computation of Strains and Stresses

Just like displacements, the strains and stresses need to be accumulated as well. The procedure is
exemplified for strains in the following. The strain component εi in LSMi can be calculated recursively as

εi = εi−1 + αi−1∆εi−1, (3.11)

or as an accumulated sum

εi =

i−1∑︂
j=0

αj∆εj (3.12)

where α is a scaling factor. It is introduced to attribute for nonlinearities arising in the kinematic and
constitutive relations. The scaling factor is defined as

αi =
ε(ti)− ε(ti−1)

0∆εi−1
(3.13)

where 0∆εi−1 is the incremental strain in LSMi−1 at the beginning of the linear static response optimization
(i.e. iteration 0) in each cycle and ε(ti) is the strain at corresponding time ti obtained from nonlinear
dynamic analysis. For strains the scaling factor α = 1 can usually be used, since the kinematic relations
can be assumed to be linear at least if the ESL time increments are selected sufficiently small (Triller et al.
2021). This is not the case for the constitutive relations and hence the computation of stresses, e.g. the
hardening modulus EH in the plastic area considerably differs from the Young’s modulus E.

3.1.3 Computation of Velocities and Accelerations

Like mentioned before for the ESL method, velocities and accelerations can be approximated using finite
differences between adjacent time steps if the time steps are sufficiently small. In DiESL the incremental
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solution ∆ui can be directly used, as it already is a difference. The velocities at time ti follows as a forward
difference:

u̇i =
∆ui

∆ti
, (3.14)

where ∆ti = ti+1 − ti. The accelerations follow as

üi =
2(u̇i − u̇i−1)

∆ti +∆ti−1
, (3.15)

3.1.4 Computation of Forces

As elaborated before, the consideration of forces is an elementary part of crashworthiness optimization.
Since the DiESLs ∆fDiESL remain constant during the linear static response optimization per definition, an
alternative approach to approximate the changes of forces during the linear static response optimization
must be found. For the ESL method, Faß 2017 used a reciprocal dependency between the contact force F

and a node’s displacement u in the contact zone in the direction of the force 3. This dependency in the
linear static system can be derived from the following considerations: at the beginning of each linear static
response optimization the ESLs yield the displacement 0ui = u(ti) derived from nonlinear dynamic analysis.
This displacement can be related to the contact force 0F i = F (ti) (Point A in Fig. 3.4), by introducing a
global stiffness k(x):

0F i

0ui
= 0k, (3.16)

where 0k = k(0x) is the global stiffness at the beginning of the optimization. The force F i to be approxi-
mated can also be related to 0ui and a corresponding stiffness k(x) as (Point B in Fig. 3.4):

F i(x)
0ui

= k(x). (3.17)

Since the ESLs remain constant during linear static response optimization, we try to find the displacements
ui corresponding to the global stiffness k(x) at a constant force level 0F i (Point C in Fig. 3.4):

0F i

ui(x)
= k(x). (3.18)

Using 3.17 = 3.18 yields the reciprocal dependency between F i and ui:

F i(x) =
0F i

ui(x)
0ui. (3.19)

This means the force F i can be reduced by increasing the displacement ui and vice versa. Assuming a
reduction of the displacement is equivalent with increasing the stiffness, it follows that the increase of the
3For the sake of simplicity the vector notation is omitted in the following, since the discussed contact force F and the node’s
displacement u are collinear
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stiffness leads to an increase of the contact force.
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Figure 3.4: Relation between contact force F i and displacements ui in ESL

The presented approach will now be transferred to the incremental DiESL methodology. The most obvious
solution is to transfer the approach directly to an increment or LSM. This will be called Inc approach in the
following. The force increment in an LSM is defined as:

∆F i(x) =
0∆F i

∆ui(x)
0∆ui. (3.20)

The total force then follows as the sum of all increments

F i =

i−1∑︂
j=0

∆F j . (3.21)

F
o

rc
e

Displacement

…

LSM1

Δ𝐹 < 0
LSM0

Δ𝐹 ≥ 0

Figure 3.5: Contact force curve describing elastic compression (∆F > 0) followed by plastic crushing
(∆F < 0)

When geometric nonlinearities are involved there is another phenomenon that needs to be considered. It is
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observed in both displacement-driven (e.g. roof crush) and initial velocity-driven (e.g. front crash) crash
events. It is illustrated by the following simplified example. The force curve shown in Fig. 3.5 describes
the deformation of a crash structure in 2 steps: initially, there is only elastic compression of the structure,
and the force increases linearly. Subsequently, the force drops with increasing displacement. This behavior
can be explained with the formation of a plastic hinge as a result of the geometric changes, e.g. buckling.
Each of the two steps is covered in the following by one respective LSM. As illustrated in Fig. 3.5, the
incremental forces 0∆F 0 > 0 and 0∆F 1 < 0 differ in their sign sign while the incremental displacements
are both positive. As a result, the sensitivities ∂∆F 0

∂∆u0 and ∂∆F 1

∂∆u1 have opposite signs as well. This means for
increasing the total force F 1 = ∆F 0 +∆F 1, the displacement ∆u0 has to be reduced, whereas ∆u1 has
to be increased. The latter is in contradiction to the original assumption – total force F increases with an
increase in the stiffness or a reduction of displacement, respectively – reflected by equation 3.19.

In Fig. 3.6 the dependencies between force and displacement are illustrated by the black line for the Inc
approach. On the left side the reciprocal dependency between ∆F and ∆u for ∆F ≥ 0 is given according
to equation 3.19. On the right side the curve is plotted for ∆F < 0. Obviously the approximated force ∆F

increases (i.e., moves towards positive infinity) as the displacement increases for the Inc approach. This
behavior contradicts the assumption – total force F increases with an increase in the stiffness or a reduction
of displacement. To remedy this inversed behavior we introduce an alternative approximation for LSMs
where ∆F i < 0:

∆F i(x) =
0∆F i

2 0∆ui −∆ui(x)
0∆ui. (3.22)

Geometrically, this is a reflection of the Inc curve about the line ∆u = 0∆u. We will use the abbreviation
IncS in the following to reference this approach. As illustrated in Fig. 3.6 by the red dashed line, the
general assumption holds for this approach. Summarizing this approximation in one equation within the
optimization for both cases, we introduce the transformation variable θ:

θi =

⎧⎨⎩1 if ∆F i ≥ 0

−1 if ∆F i < 0,
(3.23)

and ∆F i(x) follows as

∆F i(x) =
2 0∆F i

(1 + θi)∆ui + (1− θi) (2 0∆ui −∆ui(x))
0∆ui. (3.24)

In chapter 4.3 both the Inc and IncS approach are tested using sizing optimization examples.
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the Inc and IncS approach for approximation

3.2 Potential Improvements

In the following further potential improvements of the previously presented DiESL method are elaborated
and discussed. These improvements should enhance the approximation quality of linear auxiliar load cases
when compared to the nonlinear dynamic system.

3.2.1 Discretization in Time

The DiESL method incorporates geometric nonlinearities into the auxiliary load cases by employing multiple
LSMs with one subcase each instead of using one model with multiple subcases. Compared to the ESL
method, this advantage comes with additional efforts, since not only one FE-model is employed in linear
static response optimization, but nT different FE-models simultaneously. To keep the computational costs
low, the number of ESL times nT should therefore be limited4. So far equidistant ESL times t have been
used (Triller 2019). However, in most crash problems the nonlinearities and hence the changes of the
stiffness matrix do not occur at regular time intervals. As an example, the contact force curve and three
different states of deformation for a crash box colliding with a rigid impactor are illustrated in Fig. 3.7.
The oscillating course of the contact force reflects the creation of plastic hinges and subsequent contacting
and therefore the occurrence of nonlinearities. It can be assumed that the stiffness matrix changes only
4To get an impression of the computational efforts involved depending on nT please refer to appendix 7.3.
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moderately while the contact force is linearly increasing. In contrast, at the curve’s extrema strong changes
are to be expected. Hence, the ESL times should be placed at these extrema where nonlinearities dominate,
in order to capture the changes of the stiffness matrix.
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Figure 3.7: Deformation of a crash box model at three different times and corresponding contact force
curve between impactor and crash box (times of deformations indicated with red circles)
(Triller et al. 2022a)

This can be accomplished by an adaptive selection of ESL times in each cycle directly after the nonlinear
dynamic analysis (Triller et al. 2022a). The idea is to fit a representative curve f(t) by a piecewise linear
line l(t) with the ESL times t = {t0, t1, t2, ..., tnT} as breakpoints. Since in most crash-problems, a rigid
impactor collides with a structure, the contact force curve between both can be used as an indicator of the
nonlinearities and therefore be considered as representative.

Before the nonlinear dynamic analysis is executed, the ESL times are not yet defined. A set of possible
ESL times τ needs to be defined for which the displacement results are output from the nonlinear solver.
This means, the results of the nonlinear dynamic analysis (i.e. contact force and displacement field) must
be stored for all nτ + 1 possible ESL times τ = {τ0, τ0 +∆τ, τ0 + 2∆τ,…, τnτ −∆τ, τnτ }. Due to storage
requirements nτ should also be limited. Consequently, no continuous description of the function f(t) to
be fitted is available. To avoid the usage of a discrete optimizer in the following, the function f(t) is
approximated as a piecewise linear function, based on the stored data fi:

f(t) = fi−1 +
fi − fi−1

τi − τi−1
(t− τi−1); τi−1 ≤ t < τi; i = 1, ..., nτ . (3.25)

To determine the optimal selection of t from the set τ , the piecewise linear function l(t), defined by the
ESL-times t as breakpoints

l(t) = f(tj−1) +
f(tj)− f(tj−1)

tj − tj−1
(t− tj−1); tj−1 < t ≤ tj ; j = 1, ..., nT (3.26)

is defined. It is fitted to represent the piecewise linear function f(t) in an optimal way as illustrated in Fig.
3.8. For this purpose, the Sum of Squared Residuals (SSR) between l(t) and f(t) is defined:

SSR(x) =
1

nτ

nτ∑︂
i=0

(f(τi)− l(τi))
2 ; x ∈ RnD . (3.27)
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The vector of ESL times t is then obtained as solution of the following optimization problem:

minSSR(x); (3.28)

subject to

|xj − xi| ≥ ∆τ ; i ̸= j; j = 1, ..., nD; i = 1, ..., nD (3.29)

xfix(i) = ti,fix; i = 1, ..., nfix (3.30)

where x = t is the vector of ESL-times. The inequality constraints 3.29 are used to define a minimum
spacing of ESL times that is no smaller than the spacing ∆τ of the stored data fi. The equality constraints
3.30 enforce a set of nfix predefined ESL times ti,fix that must be contained in the solution and are mapped
via the function fix(i) to the corresponding ESL times. Examples for such predefined ESL times are:

• The initial time t0 = 0 must always be prescribed.

• The last ESL time must always be prescribed. The simulation end time may be used here. Alternatively,
a characteristic event may be used to define this time. For example, this may be the time of maximum
intrusion td where any response value after this time is ignored during the linear static response
optimization. This has the advantage that the ESL times are distributed more densely in the range of
interest.

• An intermediate ESL time may be prescribed to match a characteristic event. An example here would
be to enforce an ESL time to match the time of maximum contact force tFmax .

The optimization problem is solved using continuous ESL times x and a sequential least square programming
optimization algorithm. The results are rounded afterwards, according to the spacing ∆τ of the stored
data points τ :

∗xi,r = ⌊
∗xi
∆τ

+ 0.5⌋∆τ ; i = 0, ..., nD. (3.31)

As a result, the fitted ESL times ∗t follow from the rounded results ∗xi,r.
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Figure 3.8: Piecewise linear fit of contact force curve f(t) by polygonal line l(t) with ESL-times t as
breakpoints before (left) and after (right) optimization (Triller et al. 2022a));
Note: in the right diagram the stored data points f(τ) are omitted for clarity

When solving the optimization problem 3.28 using sequential least square programming the starting
values 0x can have decisive influence on the results. Therefore, two different strategies for selecting 0x are
compared in the following. The first strategy is simple and uses equidistant spacing (EQD). In the second
strategy the initial values are determined by successive breakpoint removal (SBR) of breakpoints with small
impact on the SSR: the number of design variables nD is initially set to the largest value possible nτ , such
that each of the breakpoints tj of l(t) is located on a time τi. In that case, SSR(x) = 0 because the piecewise
linear function l(t) is identical to f(t). Then one breakpoint is removed, namely the breakpoint, for which
the SSR increases the least. It is prohibited to remove a prescribed breakpoint. If the last ESL time does
not match the simulation end time, then only the relevant times τj are taken into consideration. This
process of removing one breakpoint is repeated successively until the desired number of design variables
nD or ESL times is obtained.

Fig. 3.9 compares both strategies using the curve f(t) illustrated on the right side. Like suggested before,
the time of maximum contact force tFmax = 35 ms is prescribed as well as time τ0 = 0 ms and the simulation
end time τ80 = 80 ms. The curve is fitted for nT = 10, 11, ..., 39, 40 ESL times. On the left side of Fig.
3.9 the resulting SSR is plotted for both strategies over nT. On the right side of Fig. 3.9 the fit for both
strategies is plotted for nT = 12. It can be seen clearly that SBR leads to significantly better results. The
curve f(t) is characterized by an uneven distribution of extremes. Here, SBR draws its benefits from the
ability to unevenly distribute the initial values 0x before and after the intermediate prescribed ESL time
tFmax: for nT = 12 the distribution is 9:3 (left:right) by SBR and 6:6 by EQD. Note that one weakness of
the optimization problem stated in equation 3.28 is the fact that a breakpoint cannot pass any prescribed
time due to the inequality constraints 3.29. This is detrimental if the occurrence of local extrema is not
balanced before and after a prescribed breakpoint as is the case in Fig. 3.9. Furthermore, the optimization
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problem suffers from a multitude of local minima. It is a strength of the SBR method to provide an excellent
initial value with a low SSR value and therefore it is used in the following. The additional computational
effort compared to EQD is limited, since the number of possible ESL-times nτ should also be limited due to
storage requirements. The adaptive selection of ESL times is tested in chapter 4.2 for sizing optimization.
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3.2.2 Adaption of path depended properties

Splitting the deformation path into increments with DiESL, also enables the adaption of path depended
structural properties in the LSMs such as the material stiffness. As explained in chapter 2.2.4 the constitutive
relations become nonlinear in the case of crash problems. For example, plasticization occurs during
deformation, and the stiffness of the plasticized regions is drastically reduced. The significantly lower
material stiffness of elements exceeding yield stress can be adopted in the corresponding LSMs by adapting
the Young’s modulus on element level. For this purpose, we employ a bilinear material model in the
design domain, which is defined by two material containers representing the Young’s modulus E and the
hardening modulus EH (Fig. 3.10).

𝜎

𝜎𝑌

𝜀

slope: Young’s modulus 𝐸
“stiff”

Figure 3.10: Effective strain vs. stress for a bilinear material model

As elaborated previously, during the nonlinear dynamic analysis the yield function is evaluated to determine
if the structure deforms either elastically or plastically. However, since the time increment represented by
one LSM is significantly larger than those used within the explicit time integration, this logic may not be
suited here. The time difference is such big that we cannot exclude the possibility that elements are in
several different states during the time step represented by an LSM. In this case, both E and EH would
not correctly represent the material behavior in the design domain. In order to find an easy criterion to
decide which material stiffness is assigned to an element in the design domain, the following considerations
are made. During an automotive crash, the force is typically transferred from the contact zone with the
colliding structure via specific load paths into the vehicle structure. Those load paths have major influence
on the structural behavior and are hence of special interest when it comes to crashworthiness design.
During the crash, parts of the structure deform plastically along the load path and plastic joints are formed.
Due to the low stiffness of these plastic joints, it is likely that they will continue to deform plastically until
the load path changes. This may happen as a result of the folding process and subsequent contacting as
exemplified in Fig. 3.7, where already plastified structural parts leave the load path in the consequence of
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such event. Furthermore, we assume that plasticized elements outside the load path have little influence
on the structural behavior. If these elements relax elastically, this consequently also has little influence on
the structural behavior. Following the above considerations, it is essential that already plastified elements
are assigned to the smaller stiffness EH. Therefore, the element’s plastic strain εp(t

i) calculated during
nonlinear dynamic analysis is used as criterion to decide if either the Young’s modulus or the hardening
modulus is used for the respective element in the corresponding LSMi. If εp(ti) > 0 the hardening modulus
is used, otherwise the Young’s modulus. Furthermore, the Poisson’s ratio is set to 0.49 to account for the
incompressibility of the plastic deformation. The adapted stiffness matrix K̂

i assembled in LSMi then also
depends on the plastic strain vector

εTp (t
i) =

(︁
εTp,1(t

i), εTp,2(t
i), ..., εTp,nE(t

i)
)︁
, (3.32)

and thus

K̂
i
= K

(︁
x, r(ti), εp(t

i)
)︁
. (3.33)

In Fig. 3.11 the procedure of adapting the material stiffness in the linear auxiliary load cases is exemplified
using a deformed steel frame structure with bilinear material behavior (E = 210 GPa, EH = 0.6 GPa)
subjected to a pole impact. On the left side the present plastic strains at time t = 82 ms and on the right
side the used materials in the corresponding LSM are illustrated. The non-plasticized purple elements are
assigned to a material with E = 210 GPa in the LSM. The remaining elements are assigned to a material
representing the hardening modulus with E = 0.6 GPa.

In chapter 4.2 it is tested if the approximation capability of the DiESL method can be improved by adapting
the material properties of the LSMs using the bilinear material model in the design domain. For this
purpose nonlinear dynamic sizing optimization problems involving a bilinear as well as a piecewise linear
material model are employed. For the latter, the hardening modulus does not remain constant after yielding.
However, the changes of the hardening modulus are small in relation to the Young’s modulus. Thus, it
is assumed that the hardening modulus can be properly approximated using a bilinear material model
in the design domain. Note that in general it is conceivable to define additional intermediate material
containers in the LSMs to account for the changes of the hardening modulus when piecewise linear material
behavior is employed in the analysis domain. However, the effort for this is relatively high, since the way
of assembling an LSM’s stiffness matrix cannot be directly prescribed when employing a commercial solver
for linear static response optimization. Instead, a part must be created for each material container. An
element is then not directly assigned to a material but to the associated part. The complexity increases,
as the design variables for sizing are related to the respective mechanical properties by referencing the
corresponding part. To keep it simple, we limit ourselves here to the use of a bilinear material model in
the design domain.
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Nonlinear dynamic analysis at time 𝑡𝑖 Corresponding LSM𝑖

elements without plastic strain: 𝜺𝒑 = 𝟎 use Young’s modulus:     E = 210.0 GPa

elements with plastic strain:      𝜺𝒑 > 𝟎 use hardening modulus:  E =     0.6 GPa
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Figure 3.11: Plastic strain of nonlinear dynamic analysis of a frame structure subjected to a pole impact
(chapter. 4 xi = 0.8 mm) at time t = 82 ms and corresponding LSM (Triller et al. 2022a)

3.3 Implementation

In the following the implementation of the DiESL method is detailed out. For this purpose first the employed
commercial software is presented. Afterwards, the used convergence criteria and techniques for limiting
the length of the optimization path in the design domain are described. Furthermore, obstacles preventing
the application of the DiESL method in an industrial context are addressed. This includes the introduction
of a mechanism for automatically repairing the meshes of LSMs with distorted elements, failing the element
quality check, as well as the handling of non-congruent FE-models in analysis and design domain. Finally,
the overall program flow is summarized.

3.3.1 Used Software

As previously worked out, the DiESL method enables the application of commercial solvers for both nonlinear
dynamic analysis as well as linear static response optimization. This is advantageous for several reasons:
no additional effort is required for the development of own solvers, maintenance work is carried out by
the software supplier, the software is efficient and tested and the same software used during the product
development process can be used for optimization. Hence, a time-consuming conversion of the FE-models
is not required. For the latter reason the software to be employed is selected according to the standards of
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the Opel Automobile GmbH. This means, LS-DYNA (LSTC 2015) is employed for nonlinear dynamic analysis
using explicit time integration and OptiStruct (HyperWorks 2021) is used for the computation of the ESLs
and for the linear static response optimization. It is worth mentioning, that the employed software can
easily be substituted by any other software as only the interfaces for reading the output files and writing
the input decks need to be adapted while the basic program flow does not change.

3.3.2 Termination Criteria

Three termination criteria are used in this thesis for sizing optimization. The first criterion checks if the
current design is feasible. Since the linear static auxiliary load cases only provide estimations for the actual
problem, the optimized responses of the linear static analysis often differ from those of the subsequent
nonlinear dynamic analysis. Therefore, the convergence check is performed after the nonlinear dynamic
analysis has been run. A small constraint violation is tolerated. Summarizing, the implemented first
convergence criterion is that the maximum normalized constraint violation gmax must be smaller than a
specified limit ϵg > 0:

gmax ≤ ϵg (3.34)

The second criterion checks the relative change of the objective function between subsequent cycles k − 1

and k

k∆f̄ =
|f(kx)− f(k−1x)|

|f(kx)|
. (3.35)

The left subscript is used for the specification of the cycle(outer loop) to distinguish it from the iteration(inner
loop) counter denoted as left superscript. The second criterion is satisfied if the relative change of objective
is smaller than ϵf > 0 in two subsequent cycles

k∆f̄ ≤ ϵf ∧ k−1∆f̄ ≤ ϵf. (3.36)

If this criterion is satisfied, the objective hardly changes and continuing the optimization is not worthwhile
in most cases. We check k∆f̄ of two subsequent cycles to reduce the likelihood that the criterion is satisfied
by coincidence. The reason is that the objective function can potentially remain almost constant between
two cycles although the design variables are changing strongly. The optimization terminates if both
equations 3.34 and 3.36 are satisfied in the same cycle. In the entire thesis ϵg = ϵf = 0.01 is used.

The third individual criterion is based on the number of performed cycles. After 40 cycles the optimization
is terminated if no convergence has been achieved before.

k ≥ 40 (3.37)

This is because the design variables do hardly change afterwards, in particular, because of the actions to
limit the length of the optimization path presented in the following (section 3.3.3).
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3.3.3 Limitation of Optimization Path

As the linear auxiliary load cases are only an approximation of the actual nonlinear dynamic problem, the
length of each inner loop optimization path is limited by two combined measures. First, we employ move
limits like introduced in equation 2.55:

kx̄
L
i = max

(︁
xLi , k−1xi − kδ|k−1xi|

)︁
kx̄

U
i = min

(︁
xUi , k−1xi + kδ|k−1xi|

)︁
; kδ ∈ [0, 1]. (3.38)

These are used to constrain the change of each design variable per iteration. The Parameter kδ controls
the size of the move limit in cycle k. Based on an intial value δini, kδ is reduced in each cycle using the
reduction factor β:

0δ = δini; if k = 0 (3.39)

kδ = δini β
k; if k > 0 (3.40)

In this thesis the parameter set δini = 0.2 and β = 0.9 are used in all sizing examples. The second measure
is limiting the number of iterations per cycle. Therefore, the parameter maxiter is introduced, defining the
maximum number of iterations per cycle. For all sizing examples maxiter = 2 is used. This means each
cycle contains 2 iterations.

3.3.4 Handling of failed Elements

In Triller 2019, issues were observed, due to excessively distorted elements in LSMs at later ESL times.
These elements failed the element quality check in OptiStruct. This is a severe issue since it causes the
entire optimization to terminate with an error before an optimal design can be derived. To realize a robust
application of DiESL, an automated repair mechanism for the mesh must be realized. In Fig. 3.12 such
distorted elements are illustrated. Here, a crash box is crushed by a rigid impactor (green) with initial
speed v0. The element highlighted by the red outline failed the element quality check. The nonlinear
dynamic solver handles such distorted elements, by deleting them after the distortion becomes critical. It
is therefore obvious to automatically delete the elements also in the LSMs if their element quality check
fails. This element deletion is not permanent but is applied to the affected LSMs in the current cycle only.
After the linear static response optimization is finished all elements will be restored in the subsequent
cycle. This repair mechanism is applied in all following examples.
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𝑣0

Figure 3.12: Initial and deformed crash box subjected to an impact exemplifying strongly distorted ele-
ments

3.3.5 Handling of non-congruent Models

As the product’s design changes during the development process, the nonlinear (analysis domain) and
linear (design domain) models available for optimization may differ slightly in geometry. This may happen
if the model version does not match or if they are not synchronized. In Fig. 3.13 this is exemplified. Parts
may have different geometric topology in the linear and nonlinear models (A, left). Another example is that
the linear model may contain irrelevant extra parts compared to the nonlinear model (B, right). If only the
meshes of the models differ, there is no problem, because the structural responses derived from nonlinear
dynamic analysis can be mapped to the mesh of the linear model. Dealing with non-congruent models is a
different issue, since for the geometry only defined in the linear model no information can be derived from
nonlinear dynamic analysis. The nodal coordinates r(ti) are then not available to build the LSMs. In order
to avoid a time-consuming pre-processing for adjusting the models, another solution has been developed. 5

5This procedure is also employed later in this thesis in the context of topology optimization.
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linear model

nonlinear model

parts only

in linear model

A.

Figure 3.13: Examples for non-congruent models

The approach presented here prescribes the known displacements u(ti) from the nonlinear dynamic solution
as Single Point Constraints (SPCs) to the undeformed structure, in order to derive the deformations of the
nodes missing in the analysis domain. For this purpose, a dedicated reconstruction FEA is executed. For
each ESL time ti a subcase is created to solve the following problem:

K(x)ũ(ti) = f ; i = 1, ..., nT. (3.41)

Here, the vector ũ(ti) contains both the known displacements u(ti) from the analysis domain as well
as the unknown displacements of the nodes exclusively defined in the design domain. The goal of
this reconstruction FEA is to have the nodes with missing displacements follow the nodes with given
displacement. This idea is illustrated in Fig. 3.14. As a result, the nodes with missing displacements are
dragged along and follow the prescribed deformation of the surrounding mesh (Fig. 3.14, bottom right)
and are solution of 3.41. All missing displacements can be computed in a single linear static analysis using
the undeformed mesh and representing the deformation of each ESL time ti by a subcase. This approach is
tested in the latter parts of this thesis in the context of topology optimization in chapter 5.
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Figure 3.14: Computation of deformations of nodes missing in analysis domain using a linear static
reconstruction analysis

3.3.6 Detailed Program Flow

The overall program flow explained before is implemented in Python following the steps below:

1: Set the initial design variables and parameters (k = 0, 0x, ϵf, ϵg, β, maxiter, nT, δini).

2: perform nonlinear dynamic analysis with kx.

3: If the ESL times are determined adaptively, determine ∗t by fitting appropriate curve, e.g. contact
force according to chapter 3.2.1.

4: If k > 1, check convergence criteria: If equations 3.34 and 3.36 or 3.37 are satisfied then terminate
the process.

5: If non-congruent models are employed in analysis and design domain, calculate displacement of all
nodes in LSMs using equation 3.41 and set u(ti) = ũ(ti) afterwards.

6: Calculate the incremental displacements ∆u(ti) and the nodal coordinates r(ti) of all LSMs for all
selected time steps ti.
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7: Check the element-quality of each LSM’s FE-mesh. If check was not successful, delete failed elements
in respective LSM and repeat Step 6 for the remaining mesh.

8: If material is adapted in the LSMs, check maximum plastic strain of each element: If εp,j(ti) > 0 then
adapt Young’s modulus and Poisson’s ratio of element j in LSMi to EH and νH = 0.49.

9: Calculate the incremental equivalent static loads ∆f iDiESL.

10: Update the move limit kδ according to equation 3.39.

11: Solve the linear static response optimization problem using the difference-based equivalent static
loads ∆f iDiESL. This includes the computation of sensitivities as well as subsequent line searches for
the defined number of iterations maxiter .

12: Update the design variables in the nonlinear dynamic model, set k = k + 1 and go to step 2.
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4 Sizing Optimization

In the following, the DiESL method and the previously presented extensions are tested using sizing
optimization examples. For this purpose, the solutions of the ESL method, DiESL method and a metamodel-
based approach are first compared with each other using a side impact example. A similar comparison has
already been started in Triller 2019. At that time, the study could not be finished because in some runs
failed elements led to an abrupt termination of the optimization and the automated repair mechanism
had not been implemented yet. The same side impact example as well as a crash box example are used to
evaluate the adaptive selection of ESL times as well as the local adaption of the Young’s modulus on element
level with regard to the DiESL method’s approximation capabilities. Finally, the proposed approaches for
approximating crash forces in the design domain are tested, using the previously mentioned crash box
model and a side impact example including a B-Pillar. The following evaluation criteria are employed:

1. The number of cycles or nonlinear dynamic analyses required to complete the optimization process.
Since the nonlinear dynamic analysis is the most time intense process in nonlinear dynamic response
optimization this criterion is therefore considered to reflect the methods efficiency.

2. The optimized design’s objective value. This is used to assess the quality of the optimization result.

Both criteria are related to the approximation quality provided by the respective method. For gradient-
based optimization the chosen search direction depends on the quality of the approximated problem. Bad
approximations result in wrong search directions and hence an increased number of analyses. Moreover,
good results in terms of the objective function are more likely achieved if the original problem is sufficiently
accurate approximated. In the following, these criteria are partially complemented by individual criteria
related to the investigated problem. This will only be done in exceptional cases andwith detailed justification.
Furthermore, to achieve statistical independence from the initial design, the comparisons are widely based
on several starting points uniformly distributed in the design space. These initial designs are created as a
STOA.

4.1 Comparison of the ESL Method, DiESL Method and RSM

For the first comparison, a frame structure subjected to an impact is optimized, it is illustrated in Fig.
4.1. A rigid pole (mass = 44.67 kg) with initial speed vy = −8m/s collides with the frame structure
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specified by seven design variables. To decrease computational effort and increase numerical stability,
symmetry conditions are applied and only half the structure is computed. Furthermore, the structure is
clamped along the distant edge with regard to the pole in all six degrees of freedom using SPCs. The
pole’s degrees of freedom are all locked except for the y-direction. The frame structure is made of steel
(Young’s modulus: E = 210 GPa, density: ρ = 7850 kg/m3, Poison’s ratio: ν = 0.3) and bilinear material
behavior is applied (hardening modulus:EH = 0.6 GPa, yield stress: 0.25 GPa). For the modeling of the
frame structure fully integrated shell elements are employed (LSTC 2006). The total number of nodes is
6412. To get an impression of how the frame structure deforms for the design xi = 0.8 mm; i = 1, ..., 7

please see Fig. 3.11.

1

3
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2
7

5

6

SPC

Symmetry

𝑣0 = 8m/s

Figure 4.1: Side impact – FE-model and labeling of design variables (Triller et al. 2022a)

There is a contact defined between pole and frame structure in both models, i.e. analysis and design
domain. However, the contact in linear static response optimization is not a contact in the correct sense
of the concept. During crash, the contact points usually change very quickly. The nonlinear dynamic
analysis is performed employing explicit time integration and is thus capable of resolving the quick opening
and closing of contacts with time. Here the contact is modeled using the Penalty approach (LSTC 2006).
The time increment represented by an LSM is much larger than in explicit time integration. According
to the assumptions of linear statics, a contact defined in an LSM remains either closed or open during
the respective time increment. Modeling contact by inserting invariant contact elements between the
contact partners in the LSMs is therefore expected to be inaccurate. In order to measure the intrusion of
the impactor, however, the pole in the linear static model must be connected to the frame structure. For
this purpose, very soft contact elements between pole and frame are defined. The contact elements are
sufficiently soft, compared to the remaining elements, such that their influence on the frame structure is
negligible, but the impactor is pulled along with the structure. The impactor is used as a mere measuring
device but does not affect the structure’s deformation. This is necessary, because no representative node
in the structure’s impact zone could be found to reliably reflect the pole’s intrusion. This circumstance
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is caused by parts of the structure buckling away from the pole, as it can be seen in Fig. 3.11. The
optimization’s objective is to minimize the mass of the frame structure, while the maximum intrusion d(x)

of the pole is constrained and the design variables must remain in the corridor between 0.5 and 3 mm:

minmass (x) ; x ∈ R7 (4.1)

subject to

d (x) ≤ 200mm; (4.2)

0.5 ≤ xj ≤ 3.0; j = 1, ..., 7 (4.3)

To begin with, ESL and DiESL are compared exemplary on the basis of a run with the initial values 0xi = 0.8

mm; i = 1, ..., 7. Then, the results are compared with those of a metamodel-based approach, in particular a
SRSM employing multi-quadratic radial basis functions. The optimization is executed using the commercial
software LS-Opt. To confirm the validity of the ESL and DiESL results, a multistart study is performed
for the gradient-based methods, in which the start values are varied as described before. Please note
that at this point neither the Young’s moduli in the LSMs are adopted nor are the ESL times are selected
adaptively. This study uses nT = 20 equidistantly distributed ESL times t = 5, 10, ..., 95, 100 ms. This
captures the maximum intrusion of the pole for the initial design, where the constraint is severely violated.
The optimizer is expected to generate stiffer designs, hence the time of maximum intrusion will shift to
earlier times and will thus be captured with the selected ESL times.

Figure 4.2: Side impact – objective function and max. relative constraint violation over iterations (left)
and (max.) relative change of objective and design variables over cycles (right) using ESL
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Figure 4.3: Side impact – objective function and max. relative constraint violation over iterations (left)
and (max.) relative change of objective and design variables over cycles (right) using DiESL

The optimization history of the ESL and DiESL method are plotted in Fig. 4.2 and Fig. 4.3, respectively.
The objective function and the normalized maximum constraint violation are plotted in the left diagrams.
Blue circles denote the values resulting in the design domain and red circles mark those from the analysis
domain. Each inner loop executes two iterations, hence in every second iteration there are two dots: one
is the solution of the linear static response optimization in the design domain, the other is the result of the
nonlinear dynamic analysis in the analysis domain evaluating the optimized design. The difference between
the two can therefore be interpreted as the approximation error in the design domain. In this example,
there is obviously no approximation error in the objective function since the mass is used. However, there
is an approximation error visible in the maximum violated constraints representing the maximum intrusion
of the pole. The relative change of both, the objective function and the design variables can be seen in the
upper right diagrams of Fig. 4.2 and Fig. 4.3. The lower right shows the maximum constraint violation
versus cycles. The values are the same as in the lower left diagram except it does not show the values of
the inner loop iterations.

As can be seen in Fig. 4.2, the ESL method converges after 33 cycles, which required 34 nonlinear dynamic
analyses. The final objective function value is 9.02 kg. Initially the optimizer strives towards a relatively
good design (iteration 8-16). Thereafter, strong oscillations occur. These oscillations are damped by the
decreasing move limits until the method converges. The DiESL method shows a very different convergence
behavior (Fig. 4.3). It converges smoothly after 13 cycles already and yields an objective value of 7.03 kg.

Besides the above described findings, the final designs ∗x are given in table 4.1 and are compared to the
metamodel-based results. Comparing LS-Opt and DiESL, LS-Opt yields a slightly better design than DiESL
does. However, the number of nonlinear analyses to achieve this is almost 10 times as high as for DiESL.
The resulting designs differ slightly in the design variables x3, x4, x5 and x7. This similarity confirms that
the optimum found by the DiESL method is an actual optimum of the nonlinear dynamic problem. This is
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not the case for the ESL method. Here, major differences to LS-Opt and DiESL can be found in x4 and x6.
For x6, ESL converges to the opposite bound than both other methods. This design variable represents the
thickness of the vertical panel in contact with the impactor. According to linear static theory, the bending
stiffness of this panel grows with the third power of its thickness. Obviously, the ESL method aims at a
more bending resistant design, whereas the two other methods increase the tensile stiffness by increasing
x4. This reconfirms the conclusions drawn from the three-point bending example illustrated in Fig. 3.2 and
exemplifies the benefits of using the deformed geometries in the LSMs and thus incorporating geometrical
nonlinearities.

Table 4.1: Side impact – optimization results for 0xi = 0.8 mm using ESL, the DiESL and LS-Opt

Method # nonlinear ∗mass ∗x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7
analyses

kg mm mm mm mm mm mm mm

ESL 34 9.02 0.53 0.73 0.5 0.79 2.41 3.0 0.5
DiESL 14 7.03 0.5 0.5 0.5 1.79 2.87 0.5 0.5
LS-Opt 131 6.85 0.5 0.5 0.59 1.31 2.94 0.5 0.62

To ensure the statistical independence of both ESL and DiESL results of the initial design, a multistart
study with 20 different uniformly distributed initial designs (Appendix 7.1) was performed as described
previously. Fig. 4.4 shows the resulting ∗mass against the cycles necessary for convergence for each initial
design for both ESL and DiESL methods. Table 4.2 reports the measures ∗cycle and ∗mass as average over
all 20 multistart results. The results consistently confirm the previous findings obtained with the initial
design 0xi = 0.8 mm; i = 1, ..., 7.
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Figure 4.4: Side impact – resulting masses and corresponding cycles of all multistart optimization runs
for the ESL and DiESL method

Summarizing, the DiESL method significantly outperforms the ESL method. It converges to a better
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optimum while requiring considerably less cycles. Furthermore, the optimal design found by ESL has been
examined by using it as starting design in LS-Opt using a narrow local initial sub-space. It turned out that
LS-Opt converged to the same optimum as for the initial design 0xi = 0.8 mm i = 1, ..., 7. This gives rise to
the conclusion that the solution found by ESL is not even a local optimum of the nonlinear problem – it is
not an optimum at all.

In contrast to the study in Triller 2019 no failed elements occurred here. This may be attributed to two
changes in the simulation models: First, symmetry conditions were applied, and secondly, the element
formulation in the analysis domain was changed from reduced to fully integration. The deletion of failed
elements is tested using the crash box example.

Table 4.2: Side impact – optimization results using ESL and DiESL methods

Method ∗cycle ∗mass
kg

ESL 33.30 9.03
DiESL 9.55 7.11

4.2 Adaptive Selection of ESL Times and Local Adaption of Young’s Modulus

After having shown the advantages of the DiESL method over both ESL method and SRSM, it is now tested
whether the approximation quality of the DiESL method can be improved by adaptively selecting the ESL
times and adjusting the material stiffness locally in the LSMs. The influence of each extension is tested
both separately as well as in combination using two examples: the previously introduced side impact and a
crash box example.

4.2.1 Side Impact

First, the adaptive selection of ESL times (AT) is compared to equidistantly distributed ESL times (ET)
solving the side impact optimization problem introduced before (Chapter 4.1). The number of ESL times
nT is varied between 5, 10, and 20. The ET are set such that the last ESL time remains tnT = 100 ms,
regardless of nT. Fig. 4.5 illustrates the distribution of ESL times for both methods. It plots the contact
force curve f(t) for the design xi = 0.8 mm; i = 1, ..., 7 and the respective fit l(t) using nT = 20. For AT,
the time of maximal contact is prescribed. Also, the time of maximum intrusion td is set as last ESL time
rather than the fixed value 100 ms.
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Figure 4.5: Side impact – contact force curve f(t) and corresponding optimized fit l(t) using ET (left) and
AT (right) for nT = 20 and design xi = 0.8 mm; i = 1, ..., 7 (Triller et al. 2022a)

Fig. 4.6 shows 3 diagrams, one for each of the selected numbers of ESL times nT. In each diagram the
resulting ∗mass is plotted against the cycles necessary for convergence for each initial multistart design
for both configurations ET and AT. All results can be grouped into two clusters distinguished by their
∗mass. These clusters represent two different local optima. Table 4.3 shows the average results of all
configurations. The averaged results for the two clusters are also shown. The average ∗mass is similar for
ET and AT, regardless of the observed scenario (all runs or individual clusters). However, the averaged
number of cycles until convergence is slightly better if AT is employed, this can clearly be observed in Fig.
4.6. This faster convergence of AT becomes more pronounced for smaller numbers of ESL times nT, it may
be attributed to the better utilization of available resources in each cycle: By setting the last ESL time as the
time of maximum intrusion of the impactor, the ESL times are concentrated on the relevant deformation
process.

Table 4.3: Side impact – averaged multistart results for equidistant distribution of ESL times (ET) and
adaptive time selection (AT) (Triller et al. 2022a)

nT ESL times All runs Runs ∗mass ≤ 7.1 kg Runs ∗mass > 7.1 kg

# ∗cycle ∗mass # ∗cycle ∗mass # ∗cycle ∗mass
kg kg kg

20 ET 20 9.6 7.11 13 10.8 7.04 7 7.29 7.25
AT 20 9.5 7.15 9 9.2 7.02 11 9.64 7.26

10 ET 20 13.7 7.12 8 12.3 7.02 12 15.88 7.27
AT 20 10.1 7.17 8 10.1 7.03 12 10.08 7.27

5 ET 20 15.2 7.20 5 19.4 7.03 15 13.80 7.26
AT 20 11.3 7.21 4 11.0 7.03 16 11.31 7.25
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Figure 4.6: Side impact – resulting ∗mass and corresponding ∗cycle of all multistart optimization runs,
varying nT and the selection of ESL times (Triller et al. 2022a)

As a second step, the local adaption of Young’s moduli (LA) in the LSMs is tested in combination with
ET and AT employing nT = 20 ESL times. The averaged results are given in table 4.4, and the individual
results are plotted in Fig. 4.7. Using LA a considerable number of runs converged to a new and better
optimum than before with ∗mass ≤ 7.0 kg. It can also be seen that the runs converging to this optimum
need more cycles than the remaining runs. For the remaining runs ∗mass > 7.0 kg, the average number
of cycles to converge is smaller when LA is applied. The convergence issues to the new optimum can
be attributed to oscillations of some design variables near the optimum. This is illustrated in Fig. 4.8,
where the optimization history of one of these runs is given as an example. The diagram showing the
design variable history reveals that the design changes significantly within the first 7 cycles. Thereafter,
the oscillation of the design variables x1 and x4 prevent the algorithm from converging. The large number
of cycles required for convergence is therefore not associated with poor approximation quality, but with
the choice of termination criteria and the nature of the new optimum.

Table 4.4: Side impact – multi-start results for equidistant distribution of ESL times (ET) and adaptive
time selection (AT) with (LA) and without (NLA) local adaption of Young’s moduli (Triller et al.
2022a)

nT Method ESL times All runs Runs ∗mass ≤ 7.0 kg Runs ∗mass > 7.0 kg

# ∗cycle ∗mass # ∗cycle ∗mass # ∗cycle ∗mass
kg kg kg

20 NLA ET 20 9.5 7.11 0 - - 20 9.6 7.11
LA ET 20 11.2 7.15 9 16.0 6.96 13 8.6 7.18

20 NLA AT 20 9.5 7.11 0 - - 20 9.5 7.15
LA AT 20 14.8 7.11 8 23.9 6.94 12 8.7 7.22
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Figure 4.7: Side impact – resultingmasses and corresponding cycles of all multistart results using nT = 20
for equidistant ESL times (left) andwith adaptive ESL times selection (right) (Triller et al. 2022a)
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Figure 4.8: Side impact – optimization history of one multistart run involving oscillations in the design
variables. Objective function and maximum relative constraint violation over iterations (left),
convergence criteria and maximum relative change of design variables over cycles (middle),
and design variables over cycles (left)

The following investigation aims at a better understanding of why LA converges to a better optimum. The
intrusion constraint’s contour line for the original nonlinear dynamic problem and for the corresponding
DiESL approximation are compared for selected design points. To visualize the contour lines, suitable
regions must be identified, in which only 2 design variables are relevant. For that purpose, the optima
resulting of all multistart optimization runs summarized in table 4.4 are compared. The results ∗mass

and ∗x are used to cluster the optima as follows: in Fig. 4.9 (left) the averaged values of the design
variables and the corresponding standard deviation of four different optima (a-d) are illustrated as parallel
coordinates. All design variables except for ∗x1, ∗x4, and ∗x5 are at their lower bound. Each cluster can
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be uniquely identified by the value ∗x4, this is highlighted with the rectangular box. In Fig. 4.9 (right)
∗x1 and ∗x5 are plotted against ∗x4. For ∗x4 ≤ 1.1mm all values ∗x5 are at their upper bound. It is thus
concluded that x5 is irrelevant in this range. For ∗x4 > 1.1mm ∗x1 remains at the lower bound, while ∗x5

changes with ∗x4. Hence, we can identify two regions, each spanned by only two relevant design variables
(Triller et al. 2022a).
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(cross), ∗x5 (circle) over ∗x4 (right) for runs with nT = 20 clustered according:
a) ∗mass ≥ 7.1 kg,
b) 7.0 kg ≤ ∗mass < 7.1 kg and x4 > 1.1mm runs,
c) 7.0 kg ≤ ∗mass < 7.1 kg and x4 ≤ 1.1mm,
d) ∗mass < 7.0 kg
(Triller et al. 2022a)

In each of those ranges one focal design point near a local optimum is selected for which a DiESL approxi-
mation is created. The approximation as well as the nonlinear dynamic system are then evaluated on a
grid of closely spaced design points spanning the whole region. The resulting intrusions for each grid point
are then used to compute a contour (iso-)line of the maximum intrusion d(x). Fig. 4.10 shows the focal
design points and the resulting contour lines for both regions. The contour lines for the mass objective are
added such that the local minima can be seen visually. It is striking in both regions that the contour lines
of mass objective and intrusion constraint are almost parallel. This makes it extremely hard to identify a
local optimum, especially with the jagged shape of the nonlinear intrusion contour line. The DiESL contour
lines are computed for all four combinations of ET/AT and LA/NLA. They are now compared to those of
the actual nonlinear dynamic problem to asses their approximation quality.1 The DiESL method fits the
global trend of the nonlinear dynamic problem well in both design regions. The noisy contour line of the
nonlinear dynamic problem is smoothed by DiESL which is beneficial when gradient-based optimization is
applied. LA improves the approximation quality of the DiESL method in both design regions while ET has
1In the appendix in Fig. 7.1 the ESL approximation of the two design points is given as well. Please note that the above
assumptions for identifying the two ranges based on the DiESL DoE results do not apply for the ESL method.
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a minor influence. In range 2 the improvement by LA is more pronounced, this is where the new optimum
∗mass ≤ 7.0 kg was found by using LA. It is obvious why this optimum is only found using LA: The angle
between the objective’s and the constraint’s contour line switches sign when LA is used. Specifically, the
NLA DiESL approximations indicate that an increase in x4 leads to a smaller mass at constant intrusion,
whereas both LA approximations suggest the opposite. Moreover, for LA, both mass and intrusion contour
lines are almost parallel near x4 = 0.6mm, which could explain the observed oscillations of design variables
x1 and x4 in the region of the new optimum: Two design points close to each other may result in angles
between mass and intrusion contour lines with opposite sign, causing the optimizer to invert its search
direction over and over again. The delayed convergence for the LA runs to the new optimum can therefore
indeed be attributed to the nature of the optimum and is not an inherent weakness of LA. On the contrary,
the fact that the new optimum is reached only with LA shows the improved approximation quality achieved
by the extension.
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Figure 4.10: Side impact – contour lines of objectivemass (grey) andmaximum intrusion d for the nonlinear
dynamic problem and the DiESL approximation for
region 1: design point x1 = 0.5mm;x4 = 1.98mm;x5 = 2.73mm; d(x) = 199.1mm (left) and
region 2: design point x1 = 0.8mm; x4 = 0.6mm;x5 = 3mm; d(x) = 200.6mm (right).
Note: all design variables x2, x3, x6, x7 are set to the lower bound (0.5mm)

Fig. 4.11 and Fig. 4.12 show the contour lines in range 2 for each ESL time for ET and AT, respectively.
The legends are omitted for sake of clarity, they are identical to Fig. 4.10.
Fig. 4.11 and Fig. 4.12 perfectly illustrate why DiESL approximates the global trend of the original nonlinear
dynamic problem. As elaborated in chapter 3.1.1, the displacements ui in DiESL are the accumulated
sums of the incremental displacements ∆ui resulting from each LSM. Consequently, the sensitivities or the
orientation of the contour lines are also sums of all previous LSMs. The orientation of the contour lines or
direction of sensitivities can therefore also be understood as the weighted average of the LSMs sensitivities,
where the weight factors are the sensitivity magnitudes (Triller et al. 2022a).

From examining Fig. 4.11 and Fig. 4.12 the previous findings can also be reconfirmed. Both extensions AT
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as well as LA improve the DiESL method’s approximation quality. ET seems to introduce an angle offset
between the nonlinear and its DiESL approximation contour lines in the first ESL time t1 = 5 ms. This
offset propagates through all subsequent ESL times and has a negative impact on the overall approximation.
This poor approximations in early time steps may be attributed to the rough discretization with ET. In case
of AT the approximation is much more accurate for the early times.
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Figure 4.11: Side impact – contour lines of maximum intrusion for the nonlinear dynamic problem and
the ET DiESL approximation for range 2: design point x1 = 0.8mm; x4 = 0.6mm; x5 = 3mm
for all equidistant ESL times and respective intrusions. Note: the legend is given in Fig. 4.10
(Triller et al. 2022a)
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Figure 4.12: Side impact – contour lines of maximum intrusion for the nonlinear dynamic problem and
the AT DiESL approximation for range 2: design point x1 = 0.8mm; x4 = 0.6mm; x5 = 3mm
for all adaptively selected ESL times and respective intrusions. Note: the legend is given in
Fig. 4.10 (Triller et al. 2022a)

79



4.2.2 Crash Box

After showing the functionality and benefits of adaptive selection of ESL times and local adaption of Young’s
moduli using the side impact example, in the following a more complex crash box example is optimized.
In Fig. 4.13 the load case is shown: a crash box being crushed by a rigid impactor (mass = 622kg) with
initial speed vy = 4.167 m/s. This model has been published by Ma et al. 2020. However, in comparison
to Ma several changes have been made. The biggest difference refers to the impactor’s velocity. Instead
of constant velocity only the initial velocity is prescribed. This is to incorporate dynamic effects and
to simulate the realistic practical use case of crash boxes in the automotive crush zone. For the sake
of numerical stability and computational effort, symmetry conditions with respect to the yz-plane are
employed. The crash box is clamped at the distant edge using SPCs locking all 6 degrees of freedom.
Furthermore, the impactor’s degrees of freedom except of the one in y-direction are locked. The crash
box is discretized using fully integrated elements connecting 5842 nodes. The crash box is made of steel
(Young’s modulus: E = 210 GPa, density: ρ = 7850 kg/m3, Poison’s ratio: ν = 0.3) and in contrast to the
side impact example piecewise linear material behavior is applied (Fig. 4.13 right). Thus, the material
behavior cannot be adapted correctly using a bilinear material model in the design domain. Based on the
assumption given in chapter 3.2.2, the stiffness of the plastified elements in the design domain is globally
approximated using EH = 0.4 GPa as illustrated in Fig. 4.13 by the dashed line. As shown in Fig. 4.14
many elements are in the plastic range (blue) even at the very beginning of the deformation process at
time ti = 8ms. For each of these elements the smaller hardening modulus EH = 0.4 GPa is then applied in
the corresponding LSMs. This approximation is considered valid, since a significant number of elements
have plastic strains εp ≥ 0.3 already in early LSMs. The models used in the design and analysis domain
employ the same mesh to avoid results mapping. A contact between the impactor and the crash box is
defined in the nonlinear dynamic model only. Furthermore, the crash box is stiffened in the area of the
impact zone employing RBE2 elements in order to improve the force transmission between impactor and
crash box. In the design domain neither a contact nor an impactor is modeled. The impactor’s intrusion in
the LSMs is approximated from a structural node (red dot in Fig. 4.13 left) in the impact zone.
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Figure 4.13: Crash box – FE-model and labeling of design variables (left); applied material model and
corresponding approximation for local adaption of Young’s moduli (right) (Triller et al. 2022a)
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Nonlinear dynamic analysis at time 𝑡𝑖 Corresponding LSM𝑖

elements without plastic strain: 𝜺𝒑 = 𝟎 use Young’s modulus:     E = 210.0 GPa

elements with plastic strain:      𝜺𝒑 > 𝟎 use hardening modulus:  E =     0.4 GPa
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Figure 4.14: Crash box – plastic strain in nonlinear dynamic analysis for an initial design of the multistart
study at an early time step ti = 8ms (left) and modulus distribution in the corresponding LSM
(right) (Triller et al. 2022a)

The crash box’s design is specified by the thicknesses of twelve sheet metals, each corresponding to one
design variable. The optimization’s objective is again to minimize the mass while the maximum intrusion
in y-direction d(x) is constrained and the design variables must remain in the corridor between 0.5 mm
and 2.5 mm. Mathematically the optimization is formulated as follows:

minmass (x) ; x ∈ R12 (4.4)

subject to

d (x) ≤ 160mm; (4.5)

0.5 ≤ xj ≤ 2.5; j = 1, ..., 12 (4.6)

Fig. 4.15 shows the contact force curve f(t) of a very soft design (d(x) = 205.5 mm) as well as the
corresponding fits l(t) using ET and AT. This highly unfeasible design is used to determine the largest
ESL time to be considered for ET, this is the same approach as in the previous side impact example. The
optimizer is expected to generate stiffer (feasible) designs, therefore tnT = 98 ms is expected to capture the
maximum intrusion d(x) for the current soft as well as all following designs. As before in the side impact
example, the last ESL time is set to the time of maximum intrusion td when applying AT. Additionally, the
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time corresponding to the maximum crash force tFmax is prescribed.
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Figure 4.15: Crash box – contact force curve f(t) for xj = 1.2mm and corresponding piecewise linear
fit l(t) using nT = 14 ESL times distributed equidistantly (left) and nT = 14 adaptively (right)
(Triller et al. 2022a)

For evaluating the extensions AT and LA we follow the same procedure as before for the side impact
example. First ET and AT are compared based on multistart studies employing different numbers of ESL
times. The number of ESL times nT is varied between 7, 14, and 31. The number of multistart optimization
runs is increased to 40 uniformly distributed initial designs to account for the higher number of design
variables in this example (Appendix 7.2). This study does not use local adaption of Young’s moduli LA.

During most multistart runs, failed elements occurred in LSMs. This issue has been fixed using the presented
automatic deleting approach. The failed elements typically occurred in LSMs representing the later ESL
times with large deformations. The number of deleted elements per LSM was always smaller than ten,
thus the influence on the subsequent optimization can be considered negligible.

The averaged results of the multistart study are given in table 4.5 for all combinations of ET, AT and
all numbers of ESL times. Again, the resulting designs can be clustered. One group is identified by the
optimized mass being smaller than or equal to 0.55 kg as illustrated in Fig. 4.16. This group is referred
to as best optimum in the following. The reason for this division is shown in the right diagram where the
averaged values of the resulting design variables ∗xi as well as the corresponding standard deviations are
plotted for the best optimum runs and all runs as parallel coordinates: all design variables of this group
are in the same region. The best optimum runs are characterized by thinner upper parts (even design
variables) and thicker lower parts (odd design variables) of the crash box. The standard deviation of all
runs is significantly higher than for the best optimum runs, which means the multistart study converged to
many different local optima. This is not surprising since no global optimizer has been employed and this is
a highly nonlinear and multimodal example (Triller et al. 2022a). Table 4.5 and Fig. 4.16 left show that AT

82



statistically improves the convergence to the best optimum. As an example, for nT = 14 the best optimum is
found 19 times using AT and only 4 times using ET. This supremacy of AT holds fo all numbers of ESL times
investigated (table 4.5 and Fig. 4.17 right) and it is more pronounced for smaller numbers of ESL times.

Table 4.5: Crash box – averaged multistart results using NLA for equidistant distribution of ESL-times
(ET) and adaptive time selection (AT) (Triller et al. 2022a)

nT ESL times All runs Best optimum runs ∗mass ≤ 0.55 kg

# ∗cycle ∗mass # ∗cycle ∗mass
kg kg

31 ET 40 20.9 0.563 21 23.6 0.531
31 AT 40 20.4 0.555 23 22.0 0.526
14 ET 40 19.6 0.605 4 27.5 0.533
14 AT 40 20.3 0.568 19 17.0 0.527
7 ET 40 25.4 0.634 1 34.0 0.538
7 AT 40 23.6 0.595 11 23.5 0.532
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Figure 4.16: Crash box – resulting masses and corresponding cycles of multistart study using NLA (left)
and averaged ∗x with corresponding standard deviation for the two groups: a) all runs and b)
runs converged to the best optimum (right) for nT = 14 (Triller et al. 2022a)

Table 4.5 and Fig. 4.17 also reveal that ∗mass is smaller if AT is used, this holds for both groups all runs
and best optimum runs and for all numbers of ESL times. Again, this supremacy becomes more pronounced
if the number of ESL times nT is reduced: The diagrams in Fig. 4.17 left and middle show that ∗mass

increases and on the right side that the number of runs converging to the best optimum reduces as nT

is decreased. This applies to both approaches AT and ET, but it is more pronounced for ET. The second
evaluation criterion is the number of cycles required for convergence, for that purpose table 4.5 reports the
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average value ∗cycle. The runs converging to the best optimum clearly need less cycles when using AT. In
contrast to that, the averaged values for all runs do not show a clear trend.

Summarizing the findings of this comparison, the adaptive selection of ESL times leads to a number of
benefits: lower objective values on average, a higher portion of runs converging to the best optimum, less
cycles for converging to the best optimum, and even better objective values for runs converging to the
best optimum. Therefore, it is concluded that adaptive time selection has the capability to improve the
approximation quality of DiESL.
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Figure 4.17: Crash box – average optimized mass against number of ESL times for all runs (left) and runs
converged to the best optimum (middle); number of runs converged to the best optimum
(right) (Triller et al. 2022a)

In a second comparison, the influence of LA in combination with ET and AT on the DiESL method’s
approximation quality is examined. The number of ESL times is set to nT = 31 in this investigation. The
general multistart approach is identical to the previous study, so is the definition of the best optimum group.
A tabular comparison of the results is given in table 4.6. The evaluation of group all runs using ET shows
that the average mass ∗mass increases if LA is applied, at the same time the number of runs converging to
the best optimum decreases. It seems that in this case, LA has a detrimental effect on the DiESL method’s
approximation quality. The following consideration may explain this: with LA, the tangent stiffness at
the beginning of the increment is applied to the entire deformation occuring during the increment (being
represented by an LSM). With ET, an increment may contain multiple buckling and contacting events that
would individually require different local stiffness adaptions. This holds especially for the first increment
in which the high initial velocity causes the largest deformation to the structure. The first increment is
furthermore the one in which the contact force builds up and reaches its first maximum. This behavior
can be observed in Fig. 4.15 (left) for the extremely soft design where the peak contact force reaches
its maximum in the middle of the first ET interval while the first ET time coincides with the first force

84



minimum. The same happens in the fourth interval (21–28 ms) with the third force peak. If the ESL times
are chosen without regard of the structure’s nonlinear behavior, the local tangent stiffness may yield a
worse approximation for the entirety of events occurring within the whole increment.

In combination with AT, mixed effects in both directions can be observed on both ∗mass and ∗cycle. Thus,
even in combination with AT, the local adaption of Young’s moduli does not lead to a benefit here. Maybe the
high number of elements entering the plastic range at early times (recall Fig. 4.14) provide an explanation.
The simple implementation of local adaption of Young’s moduli using a bilinear material (E = 210 GPa
and EH = 0.4 GPa) falls short of distinguishing between elements with small and those with large plastic
strains. For the chosen piecewise linear material in the analysis domain (depicted in Fig. 4.13 right)
the value of plastic strain has an impact on the slope of the yield curve, this is neglected in the linear
approximation in the design domain. In the extreme case, the plastic strain of all elements is higher than 0.
Then, for all elements the same Young’s modulus is employed, and all elements of the stiffness matrix are
scaled by the same factor compared to NLA. The DiESLs ∆f iDiESL scale accordingly and the linear static
response optimization will yield identical results then for both approaches NLA and LA. Obviously, LA in
the implemented form can only improve the DiESL method’s approximation quality if there is a mix of
plastified and non-plastified elements (Triller et al. 2022a).

Table 4.6: Crash box – averaged multistart results for local adaption of Young’s moduli in each LSM
enabled (LA), and disabled (NLA) in combination with equidistant (ET) and adaptive (AT)
selection of ESL times using nT = 31 (Triller et al. 2022a)

Young’s modulus ESL times All runs Best optimum runs ∗mass ≤ 0.55 kg

# ∗cycle ∗mass # ∗cycle ∗mass
kg kg

NLA ET 40 20.88 0.563 21 23.57 0.531
LA ET 40 20.98 0.579 17 21.65 0.531
NLA AT 40 20.35 0.555 23 22.04 0.526
LA AT 40 19.75 0.560 23 19.47 0.525
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4.3 Crash Force Optimization

In the following, the previously introduced approximations for forces in DiESL are tested. For this purpose,
a simple example (hinge model) is examined in which the contact force first increases linearly and
subsequently decreases due to plastification. In addition, the approaches are compared based on a
multistart study employing the crash box model. Subsequently, a side impact example from literature is
optimized with DiESL and compared with the respective results (Ma et al. 2020).

4.3.1 Hinge Model

Fig. 4.18 illustrates the FE-model used to examine the suitability of the approaches Inc and IncS to
approximate crash forces in DiESL. A rigid impactor collides with an initial velocity of 1 m/s into a sheet
metal of thickness x oriented perpendicular to the impactor. The plate is made of steel (Young’s modulus:
E = 210 GPa, density: ρ = 7850 kg/m3, Poison’s ratio: ν = 0.3) and bilinear material behavior is employed
(hardening modulus:EH = 0.6 GPa, yield stress: 0.25 GPa). Symmetry conditions are applied at the rear
end (opposite end with respect to the impactor) of the sheet metal as well as its middle (xz-plane). Two
rows of nodes at the rear end of the sheet have been shifted by 0.01 mm in z-direction as a perturbation to
initiate a deflection in this direction during the impact. At the front edge where the impactor hits the plate,
the translational degrees of freedom in z-direction as well as the rotational in x- and z-direction are locked.
The front node on the symmetry line is used to measure the displacement d(t) in x-direction. A contact is
defined between the impactor and the plate.

𝑣o = 1m/s

SPC

𝑥

Figure 4.18: Hinge model – FE-model of sheet metal plate being crushed by rigid impactor for the exami-
nation of contact force approximation in DiESL

For a thickness of x = 3 mm, the contact force F (t) between impactor and plate results as shown in Fig.
4.19. This force curve can be divided into 3 phases. The sheet metal’s deformation and plastic strain
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distribution of these phases are shown in Fig. 4.20 at representative times: first, there is elastic compression
of the sheet metal in the longitudinal x-direction and the contact force increases linearly. In the second
phase, the structure plastifies homogeneously, and the force level remains nearly constant until phase three
sets in with the formation of two plastic hinges and a decrease of contact force.
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Figure 4.19: Hinge model – contact force over displacements for hinge model with sheet thickness
x = 3mm and three deformation phases
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𝑑 = 0.86 mm

Figure 4.20: Hinge model – different states of deformation (right) for hinge model and corresponding
plastic strains (left).
Top: Elastic compression
Middle: Plastification
Bottom: Formation of plastic hinges
Note: Deformations are scaled by factor 10 to enlarge visibility
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Two studies were conducted to test the ability of the approaches Inc and IncS to approximate the change of
forces due to a change in design. In the first study, the DiESL approximations are computed for a plate
thickness of 3 mm using seven ESL times. Their approximation quality is evaluated for a thickness of 3.6
mm by comparing the predicted contact forces with those obtained from a nonlinear dynamic analysis. This
is a relative change of 20% and corresponds to the initial move limit δini = 0.2 used for all optimizations in
this thesis. In the second study, the two thicknesses are swapped.

In Fig. 4.21 the results of the nonlinear dynamic analyses and the DiESL approximations Inc and IncS are
shown. The results suggest, as detailed in the following, the introduction of a third DiESL approximation
scheme for negative force increments. Here, the force increment ∆F i remains constant in each iteration
(i.e. retains the value 0∆F i) if ∆F i < 0. This approach is referred to as IncC in the following, it predicted
values lie in between those of Inc and IncS. It is implemented analogously to IncS using the transformation
variable θ in the following expression:

∆F i = (1 + θi)
0∆F i

2∆ui
0∆ui + (1− θi)

0∆F i

2
, (4.7)

where

θi =

⎧⎨⎩1 if ∆F i ≥ 0

−1 if ∆F i < 0.
(4.8)
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Figure 4.21: Hinge model – contact force F over displacement d for the sheet metal’s thicknesses of
x = 3.0 mm and x = 3.6 mm computed from nonlinear dynamic analyses and predictions of
corresponding DiESL approximations developed in the design point 0x = 3.0 mm using the
approaches Inc, IncS, and IncC

The DiESL approximations are each created with seven ESL times at the design point x = 3 mm. As can
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be seen in Fig. 4.21, all approaches approximate the increase of the force due to elastic deformation very
accurately. All three approaches produce the same approximated force values because they do not differ
for rising force increments. Both the displacement and the force at the end of the associated phase are
very precisely approximated. Note that for x = 3.0 mm all three DiESL approaches predict the same values
which are identical to those of the nonlinear dynamic analysis, hence only one curve “DiESL” is plotted
for all approaches. In the following phase, the DiESL approximations underestimate the displacement
during plastification before the plastic hinges form. The computed linear static displacement decrease with
increased structural stiffness. The latter formation of plastic hinges in the nonlinear dynamic analysis can
most probably be attributed to nonlinear and/or dynamic effects. DiESL is not able to anticipate these
effects here. Phase 3 reveals the differences of the three approaches. IncC using the constant negative
force increments gives the best result (see red arrow). When using the Inc approach, the negative force
increments are exaggerated as the thickness/stiffness increases. The opposite happens with the IncS
approach where the negative force increment is reduced with the increasing stiffness. These results are
consistent with the considerations in chapter 3.1.4. It is interesting to note that the force drop hardly
changes in magnitude. This observation suggests to use the IncC approach during linear static response
optimization.

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

F
o
rc

e
F

(t
 )

 i
n
 k

N

Displacement d(t ) in mm

dyna F(3.0)

dyna F(3.6)

opti F(3.6)

opti F(3.0) incr

opti F(3.0) incr corr

opti F(3.0) incr lowbnd

Nonlinear dyn. analysis  𝑥 = 3.0 mm

Nonlinear dyn. analysis   𝑥 = 3.6 mm

DiESL              𝑥 = 3.6 mm

DiESL Inc         𝑥 = 3.0 mm

DiESL IncS 𝑥 = 3.0 mm

DiESL IncC 𝑥 = 3.0 mm

Figure 4.22: Hinge model – crash force over displacement derived in nonlinear dynamic analyses for
the sheet metal’s thicknesses of x = 3.0mm and x = 3.6mm and corresponding DiESL
approximations using the approaches Inc, IncS, and IncC starting in the design point 0x = 3.6

To investigate on how this approximations perform when the structural stiffness is reduced, the thickness
of the sheet is now reduced from 3.6 mm to 3.0 mm. The results of the second study are illustrated in Fig.
4.22. The DiESL approximations are now created for 3.6 mm and they are tested at 3.0 mm. The same
phenomena can be observed as before in inverted form. In phase 1, all approximations provide equally
good results. In phase 2, the deformation prior to the formation of the plastic hinge is overestimated. The
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faster formation of the plastic joints cannot be anticipated here either. In phase 3 the force drop predicted
by Inc is too small now as a result of the stiffness reduction. Accordingly, IncS exaggerates the force drop
to an extent that results in a negative total force and therefore provides a very unrealistic approximation.
Again, the IncC approach provides the best prediction (red arrow).

4.3.2 Crash Box

In this section the approaches Inc, IncS, and IncC are tested again using a more realistic example. We
employ the crash box model introduced in chapter 4.2.2, which is highly nonlinear and multimodal. As
explained previously, crash boxes are a substantial part of automotive crush zones. To avoid damage of
the safety cage we minimize the maximum contact force Fmax between impactor and crash box, while the
intrusion of the impactor is constrained. The target is a rectangular force displacement curve, which is
the theoretical optimum with respect to a uniform energy absorption under the given constraints. The
optimization is formulated as follows:

minFmax(x); x ∈ R12 (4.9)

subject to

d (x) ≤ 160mm; (4.10)

1.2 ≤ xj ≤ 2.0; j = 1, ..., 12 (4.11)

This is a min max optimization problem, since the maximum force Fmax must be determined as Fmax =

max
(︁
F i

)︁
in each analysis. We solve this using the β-method, where an artificial design variable β is used

and minimized instead of Fmax. Moreover, constraints F i ≤ β are added to minimize Fmax implicitly, since
the constraint Fmax ≤ β is always active.

This study uses 20 adaptively selected ESL times. As previously, the contact force between impactor and
structure is fitted and the last ESL time is set as the time of maximum intrusion td. The Young’s moduli in
the LSMs are not adopted, since no major influence of the local adaption LA has been observed for this
crash box model in the previous study.

As before the optimization problem is solved, for 40 uniformly distributed initial designs to achieve statistical
independence from the initial designs. Each method uses the same 40 initial designs, they are given in
appendix 7.2. In Fig. 4.23 the results of each method are illustrated, scattering the resulting maximum
contact force ∗Fmax over the number of cycles necessary for convergence or termination ∗cycle.
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Figure 4.23: Crash box – resulting maximum crash force ∗Fmax and corresponding cycles of all multistart
runs for the approximations: Inc (left), IncS (middle), and IncC (right)

The diagrams report a multitude of designs with ∗cycle = 40. These runs failed to converge within 40
cycles and were terminated according to equation 3.37. Table 4.7 lists the number of converged runs as
well as the averaged results of the converged runs for each method. The most runs converged using IncC,
the least using Inc. This can be seen as a confirmation of the better approximation quality demonstrated in
the previous hinge model example. Any conclusions based on the averaged results ∗cycle and ∗Fmax would
be invalid for two reasons: firstly, the numbers of converged runs are different and secondly, the initial
designs of the converged runs differ considerably between the methods. No clusters can be identified as in
the previous studies to allow for a reasonable comparison. To remedy this issue the optimization results
are investigated more deeply in order to identify suitable measures for a reasonable comparison.

Table 4.7: Crash box – number of converged multistart runs and averaged maximum contact force and
cycles for all converged runs

Approach Converged runs ∗cycle ∗Fmax
kN

Inc 12 21.25 50.26
IncS 20 24.45 49.40
IncC 27 27.0 49.29

Two attempts for extracting useful information out of the multistart runs were pursued. The first attempt
was releasing the convergence criterion on the objective’s relative change by dropping the requirement
of two subsequent cycles. This was done by re-evaluating the previously recorded optimization histories.
It yielded an abundancy of multistart runs that “converge” extremely early after a few cycles. However,
reviewing the convergence histories of these runs revealed that most “convergences” were coincidences
because a large number of design variables would still change significantly in the coming cycles. Obviously,
this attempt introduced too much randomness and was not suited for extracting meaningful data for
statistical evaluation.

91



The second attempt was executed in two steps. The first step is a manual review of all optimization histories
(converged and un-converged) and a subjective evaluation. It is illustrated in Fig. 4.24 and Fig. 4.25
with an exemplary convergence history of an un-converged run using IncC. Fig. 4.24 right shows that
most design variables are settled after 25 cycles and the design hardly changes anymore thereafter. This
behavior can be observed in most un-converged runs. We therefore determine the cycle kL after which the
design does not change significantly anymore for each un-converged optimization run by visual inspection
and subjective judgement. There is no objective criterion defined, only that at most two design variables
should change by “not too much” after cycle kL. The second step is then to determine the best feasible
design with k∗ ≥ kL, this design is referred to as best design k∗x in the following. In the example the cycle
kL = 25 (Fig. 4.24 right and Fig. 4.25 left) and the corresponding iteration iL = 50 (Fig. 4.24 left) are
marked by dashed lines. The best feasible design k∗x is marked with a green circle and is reached after
27 cycles. Fig. 4.25 (right) shows the contact force versus displacement curves of the initial (k = 0), last
(k = 40), and best (k = 27) designs as well as of the theoretical optimum.

There is barely any difference between the force curves of the best and the last design. Based on this
similarity, we conclude that the convergence issues can be attributed to the chosen convergence criteria,
because the design variables as well as the contact force curve is hardly changing. Due to the non-smoothness
of the minmax optimization problem the objective function’s relative change prevents the algorithm from
converging. Fig. 4.26 and 4.27 plot the force curves for all multistart runs using IncC. With a few exceptions,
the previously described findings are confirmed. Note that appendix 7.2 contains the resulting force versus
displacement curves for the other two approaches Inc and IncS as well as parallel coordinate plots of the
resulting best designs of all runs.

Concluding, the best design k∗x obtained with the manual reviewing attempt can be used as a representative
of each optimization run and is therefore qualified to be used for a statistical evaluation and a reasonable
comparison. Furthermore, the quality of the results depicted in Fig. 4.26 and Fig. 4.27 should be
emphasized. A significant improvement of the best design compared to the initial design can be observed in
the majority of all multistart runs. The best contact force curves oscillates around the theoretical optimum
(red), and the maximum intrusion of 160 mm is never exceeded.

Table 4.8 shows the averaged objective value and the corresponding standard deviation for the best designs
k∗x for each approximation method. In average, the best objective value is reached when IncC is used.
Additionally, the standard deviation stdv is the smallest for this approach. The differences, however, are
relatively small. Furthermore, it should be repeated that the determination of kL is a subjective procedure
and the subsequent comparison therefore involves uncertainties. Hence, we cannot finally conclude,
which approach is the best. Nevertheless, it is clear the IncC approach yields good results in terms of
crashworthiness when comparing the individual best design force curves with the theoretical optimum and
those of the initial designs (in Fig. 4.26 and Fig. 4.27). This is remarkable since the crash box is a highly
nonlinear example and the initial design variables are distributed all over the design space. We therefore
conclude that IncC is a suitable approach to approximate forces in DiESL. Based on this result and the
previous findings from the hinge model, the IncC approach is applied for all following examples.
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Figure 4.24: Crash box – objective function and maximum relative constraint violation over iterations
(green circle: best feasible design; black dotted line: minimum iteration iL) (left) and design
variables over cycles (black dotted line: minimum cycle kL ) (right) demonstrating conver-
gence issues when optimizing the crash force using IncC
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Figure 4.25: Crash box – convergence criteria and maximum relative change of design variables over
cycles (green circle: best feasible design; black dotted line: minimum cycle kL) (left) and
resulting crash force for the initial (k = 0), the last cycle (k = 40) and the best cycle (k∗ = 27)
(right) demonstrating convergence issues when optimizing the crash force using IncC

Table 4.8: Crash box – averaged maximum contact force for the best designs k∗x with k∗ ≥ kL of all
multistart runs and corresponding standard deviation stdv

Approach # ∗Fmax stdv
kN kN

Inc 40 49.70 3.73
IncS 40 47.20 3.25
IncC 40 46.89 2.81
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Figure 4.26: Crash box – contact force over displacement for best designs k∗x with k∗ ≥ kL (green) and
the last designs k = 40 (blue) of multistart runs 1-20 employing IncC
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Figure 4.27: Crash box – contact force over displacement for the best designs k∗x with k∗ ≥ kL (green)
and the last designs k = 40 (blue) of multistart runs 21-40 employing IncC
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4.3.3 Side Impact B-Pillar

This section evaluates the performance of DiESL in combination with crash forces using a practical example
from literature. This time, the DiESL method is not evaluated using a multistart study but by employing
the same initial design as the literature reference. The example has been adapted from Ma et al. 2020,
who used the ESD method for optimization. To ensure the comparability with Ma’s findings no changes
have been made to the model. As shown in Fig. 4.28 this is a side impact example. In this case a rigid
pole (mass = 965 kg) with initial velocity vy = 8.3 m/s impacts into the simplified side structure of a car
containing B-pillar, upper rail, and rocker. The structure is made of aluminum (Young’s modulus: E = 64

GPa, density: ρ = 2730 kg/m3, Poison’s ratio: ν = 0.3), and a piecewise linear material is applied (yield
stress: 0.197 GPa) (Fig. 4.30). The structure is clamped at the ends of both upper rail and rocker using
SPCs locking all 6 degrees of freedom. Furthermore, the impactor’s degrees of freedom are locked except of
the translation in y-direction. For discretization 22519 fully integrated elements are employed connecting
22013 nodes. A contact between the impactor and the structure is defined in the nonlinear dynamic model
only. In the design domain neither a contact nor an impactor is modeled. Four structural nodes are selected
(red dots in Fig. 4.29) to approximate the intrusion of the impactor in the LSMs. In each LSM the respective
node closest to the impactor is used to give the incremental intrusion ∆u. The impactor’s total intrusion is
then approximated as the sum of the displacements of the closest nodes. Adaptive time selection (AT) is
used to fit 20 ESL times to the contact force curve between impactor and the B-pillar structure. The last
ESL time is set as the time of maximum intrusion td. The material in the LSMs is not adapted locally (NLA).

There are 20 sizing design variables for the sheet metal gauges (Fig. 4.28, right). Some design variables
represent multiple sheets. The design objective is to minimize the mass of the structure, while constraining
the maximum crash force Fmax to the corridor between 270 and 290 kN. Since the mass is minimized
here, the optimizer is expected to reduce the structural stiffness and thus to meet the lower bound of 270
kN. The upper bound therefore seems to be unnecessary but is kept for consistency reasons with regard
to the reference (Ma et al. 2020). Moreover, the design variables must remain between 1 and 10 mm.
Mathematically the problem is formulated as follows:

minmass (x) ; x ∈ R20 (4.12)

subject to

270 kN ≤ Fmax (x) ≤ 290 kN; (4.13)

1.0mm ≤ xj ≤ 10.0mm; j = 1, ..., 20. (4.14)
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Figure 4.29: Side Impact B-Pillar – structural nodes to approximate the pole’s intrusion in the LSMs
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Figure 4.30: Side Impact B-Pillar – strain versus stress curve of piecewise linear material

Fig. 4.31 shows the optimization history of objective, constraint violation and design variables. The
optimization terminates after 13 cycles, yielding the optimized design illustrated in Fig. 4.32. The left side
shows the deformed structure at the time of maximum intrusion and the right side is a parallel coordinate
plot of the initial design as well as the optimized designs obtained with the DiESL and ESD methods. The
ESD and DiESL results are similar with respect to the relations of thicknesses: identical parts have been
identified to be thick or thin. However, the DiESL approach leads to a significantly smaller mass than the
ESD approach does. The results are compared in table 4.9. Both methods converge after 13 cycles. The
resulting crash force is illustrated in Fig. 4.33. As expected, the lower force constraint is active for both
optimized designs. The DiESL method yields significantly better results than the ESD method. Compared
to the initial design the mass has been reduced by over 40%.
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Figure 4.31: Side Impact B-Pillar – objective function and maximum relative constraint violation over
iterations (left) and design variables over cycles (right)
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Figure 4.32: Side Impact B-Pillar – deformed structure of optimized design using DiESL (left), initial and
optimized design variables obtainer from DiESL and ESD (right)
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Figure 4.33: Side Impact B-Pillar – contact force between structure and B-pillar for initial design and
optimized design using DiESL IncC

Table 4.9: Side Impact B-Pillar – mass and Fmax(x) for initial and optimized designs from DiESL and ESD
approach (Ma et al. 2020)

Design ∗cycle mass(∗x) Fmax(∗x)
kg kN

Initial 0 21.67 338.97
ESD 13 17.71 270.20
DiESL 13 12.54 269.18
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5 Topology Optimization

So far, the DiESL method has only been tested for sizing optimization examples. It has been shown that
the method yields satisfying results for both crash relevant objectives: the optimization of stiffness as well
as energy absorption. In contrast to other state of the art optimization methods like metamodel-based
approaches the computational effort does not scale directly with the number of design variables. Thus,
the method shows great potential for the application of topology optimization. In this chapter the DiESL
method will be extended to topology optimization employing the SIMP approach. For this purpose some
adaptions of the general program flow given in chapter 3 are necessary and are elaborated in the following.
Afterwards the method is tested using different numerical examples.

5.1 General Procedure

5.1.1 Density Interpretation

For sizing optimization the result of linear static response optimization in the design domain can be
transferred directly to the nonlinear dynamic model and be analyzed. In case of topology optimization
employing the SIMP approach this becomes more complicated. Here, the normalized densities of all design
elements are used as design variables. In the standalone practical application of linear static response
topology optimization, this is usually not a problem, since the result of the optimization – the design
proposal – can be manually interpreted by expert engineers, and a detailed component can be realized.
In the ESL and DiESL methodologies, however, this process must be automated, and in each cycle the
density-based design proposal must be transformed from the design domain into a nonlinear dynamic
model in the analysis domain. The simplest solution would be to transfer the resulting densities and
corresponding material properties directly to the nonlinear dynamic model. Unfortunately, elements with
low density and therefore low stiffness can lead to problems in the nonlinear dynamic analysis. This is a
severe issue since the nonlinear dynamic analysis terminates with an error and thus leads to an unwanted
abortion of the entire DiESL optimization.

This issue has already been addressed by previous researchers (H. A. Lee and Park 2015; Bai et al. 2019) in
the context of topology optimization employing the ESL method. Their solution was to create a 0-1 design
from the resulting density field in each cycle rather than transferring the continuous density distribution
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to the nonlinear dynamic model. For this purpose, a threshold ϵvf is defined. All elements with densities
smaller or equal ϵvf are interpreted as voids and all elements with a higher density than ϵvf are interpreted
as solids. This approach is referred to as 0-1 interpretation. Lee and Park propose to set ϵvf as the value of
the volume-fraction constraint defined in the topology optimization problem. However, they also state
that this “does not always work well” (H. A. Lee and Park 2015) and further research is required to find a
technique to determine a suitable threshold.

To circumvent this issue, in the following, a new method of transferring the continuous density field to
the nonlinear model is explained. This alternative approach is based on two thresholds ϵv and ϵs: Instead
of creating a 0-1 design, only elements with a density below or equal a low threshold ϵv are interpreted
as voids and thus deleted, elements with a density above a high threshold ϵs are interpreted as solids and
assigned to the original solid material. The densities between both thresholds are transferred unchanged
to the analysis domain. For this purpose a transformation variable χi for each element i is introduced:

χi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if xi ≤ ϵv

xi if ϵv < xi ≤ ϵs

1 if xi > ϵs.

(5.1)

For all elements with χi > 0, the density χi is assigned. The remaining elements with χi = 0 are deleted
in the nonlinear dynamic model for the coming cycle. Note that this process is executed in each cycle
starting from a full design space. This means that an element deleted in one cycle may not get deleted in a
subsequent cycle. The resulting nonlinear dynamic model is called container model1 in the following.

The transformation process is illustrated in Fig. 5.12. As depicted in the middle diagram, it may happen
that islands of unconnected elements remain after deleting the void elements. Since they do not contribute
to the structure’s stiffness and cause issues during the nonlinear dynamic analysis, they must be identified
and deleted as well. The identification is done by using the ”connectivity” tool of the preprocessor ANSA.
Here, all interconnected elements are grouped. The unconnected elements can then be distinguished from
the relevant main structure by their relatively small mass and can be deleted automatically.

1The name refers to the approach’s implementation: For each material that is referenced in the design space, a set of nc material
containers is defined. Each container represents a density range of width ∆χ = (ϵs − ϵv))⁄nc such that the union of all
containers spans the entire normalized density range from ϵv to ϵs. The actual density transformation is then realized by
assigning each element in the design space to the material container associated to the respective normalized density. For
testing this approach nc = 200 has been used. Since ∆χ is very small then, the material distribution is considered to be
continuous from ϵv to ϵs in the following (Triller et al. 2022b).

2The borders of all deleted elements (white) are still shown in this illustration. Beside the elements the corresponding nodes are
also deleted.
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Figure 5.1: Interpretation of densities resulting from linear static response optimization (design domain)
for usage in subsequent nonlinear dynamic analysis (Triller et al. 2022b)

In this thesis we set the thresholds ϵv = 0.1 and ϵs = 0.9. In doing so, most of the densities are transferred
unchanged to the analysis domain, and the material distribution changes gradually from one cycle to the
next. This way, the topology can evolve continuously in a smooth way. In comparison to the 0-1 approach,
the continuity is considered as an advantage especially in the early stages of the DiESL procedure: At
the very beginning of the optimization, typically all densities are initialized with a common intermediate
value. From there, it takes a couple of cycles to evolve a discrete structure. During these early cycles in
which no discrete structure has yet evolved, the threshold ϵvf, employed in the 0-1 approach, is of major
influence on the resulting nonlinear dynamic model. This may be explained best by looking at both extreme
cases: If the densities of all elements are smaller than ϵvf, then all elements are deleted. In the other
extreme case all densities are greater than ϵvf and all elements are solid. This means either too many or
too few elements are deleted depending on the choice of ϵvf. Thus, the structure’s mass and the related
stiffness and inertia effects do strongly depend on the choice of ϵvf. This is not the case for the container
model approach presented here, since intermediate densities are kept and the number of deleted elements
remains small even at the beginning of the optimization due to the relatively small value chosen for ϵv
(Triller et al. 2022b).

The SIMP approach relates the element’s densities to their mechanical properties. The analysis domain
contains material nonlinearities, we therefore need to employ an extended SIMP approach here. As this
work is limited to the use of elasto-plastic materials, the Young’s modulus E, the yield stress σy and the
hardening modulus EH need to be related to the densities χ:

E(χ) = χpNL · E1 (5.2)

σy(χ) = χpNL · σy,1 (5.3)

EHi(χ) = χpNL · EHi,1 (5.4)

where E1 is the Young’s modulus, σy,1 is the yield stress, and EHi,1 is the hardening modulus of the
corresponding solid material. Patel 2007 uses a similar material interpolation, but different exponents are
employed for the hardening modulus and yield stress. Fig. 5.2 illustrates the nonlinear SIMP approach
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presented here for a piecewise linear elasto-plastic material for different densities χ and exponent pNL = 1.
The exponent pNL = 1 is used for illustration purposes here, but this value was also used during all
applications in this thesis for building the nonlinear dynamic model. This is different to the SIMP approach
in the linear static model using p = 3 for a specific reason. For an exponent pNL = 3 the stiffness of
elements with densities ϵv < χ < 0.4 becomes extremely small E < 0.064E1. This would cause mesh
distortion problems in the nonlinear dynamic model as described before. Fig. 5.3 exemplifies such issues
for pNL = 3. Plasticized regions with excessive deformation or so-called hedgehog effects can occur (Karev
et al. 2018). The latter can be observed especially in impact zones, where individual nodes are flying away
in the nonlinear dynamic analysis. Elements with small densities suffer from a high mass/stiffness ratio,
they are not able to retain the nodes in place if they are subjected to high contact forces like in impact
zones. Even for elements with χ ≈ 0.35 this issue can be observed in Fig. 5.3. Thus, a lower threshold
ϵv ≈ 0.4 would be necessary to resolve this issue. However, this would negate the benefits of the container
model described above. Therefore, an inconsistency between the SIMP penalty exponents used in analysis
and design domain is tolerated. For pNL = 1 the mass/stiffness ratio remains constant for densities between
ϵv and ϵs, and mesh distortion problems do not occur in the analysis domain.

At first thought this inconsistency may be considered a drawback of the presented approach. However, if
compared to the 0-1 approach it may rather be seen as an improvement. The reason for this is illustrated
in Fig. 5.4. The left side shows the normalized stiffness in the design domain ξi = E(xi)/E1 and analysis
domain ξNL,i = E(χi)/E1 plotted over the density xi and χi, respectively. The right side plots the difference
of each nonlinear approach (container model and 0-1 interpretation) to the linear SIMP curve∆ξi = ξNL,i−ξi.
As can be seen, the difference and hence the inconsistency is considerably worse for the 0-1 interpretation.
It must be noted that this inconsistency is more pronounced for designs with intermediate densities, i.e.
designs that are not discrete, in the design domain. Once the optimizer has converged to a discrete design,
the inconsistency becomes negligible.

𝜒 = 1

𝜒 = 0.7

𝜀

𝜎

𝜎y,1

𝜒 = 0.35

𝐸H1,1

𝐸1

𝐸H2,1

Figure 5.2: Elasto-plastic piecewise linear material model for different densitiesχ using SIMPwith pNL = 1
(Triller et al. 2022b)
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𝜒𝑖

Hedgehog effect

Figure 5.3: Mesh distortion problems during nonlinear dynamic analysis using SIMP approachwith pNL = 3
and container model density distribution: hedgehog effect (left), excessive deformation (right)
(Triller et al. 2022b)
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(left) and difference between normalized stiffness in analysis domain using container model
with pNL = 1 and 0-1 interpretation with ϵvf = 0.2 (right) (Triller et al. 2022b)
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5.1.2 Reconstruction of the LSMs Mesh Coordinates

If elements are deleted in the nonlinear dynamic model, a similar problem as described in chapter 3.3.5
occurs. This is because the elements and associated nodes are deleted only in the analysis domain but
not in the design domain. According to the container model approach, elements in the design space are
deleted deliberately in the analysis domain if their density is too low, see equation 5.1. The FE-models
used in analysis and design domain are thus non-congruent. As a consequence, the nonlinear dynamic
analysis does not provide the displacements of the deleted element nodes. However, they are necessary to
build the deformed LSMs meshes r(ti) according to equation 3.2. This issue can be solved in the same way
as previously suggested for sizing optimization in chapter 3.3.5, the procedure is illustrated in Fig. 5.5. A
dedicated reconstruction FEA is executed in the design domain. For each ESL time a subcase is created in
which the known displacements are imposed on the undeformed structure as SPCs (Fig. 5.5 bottom left,
red arrows). All nodes missing in the analysis domain are pulled along. The missing nodal coordinate
information can then be supplemented from the results of the linear static reconstruction analysis.

Analysis Domain (𝛘)

Compute deformed meshes linearly

Nonlinear 

dynamic 
analysis

Problem

• Geometry does 

not contain all 

nodes

• Deformed mesh 

coordinates 

needed for LSMs

Reconstruction

𝜒𝑖

undeformed

1

𝜖s

𝜖v

0

deformed

Prescribe deformations of known nodes Missing nodes will follow

Linear

static 
analysis

Design Domain (𝐱)

𝑥𝑖

1

𝜖s

0

𝜖v

Node

Node missing in 
analysis domain

Figure 5.5: Workaround for calculating the deformed mesh coordinates of nodes deleted in the nonlinear
dynamic model (analysis domain) (Triller et al. 2022b)
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5.1.3 DiESL Procedure for Topology Optimization

The DiESL procedure for topology optimization must be extended by two major steps: the reconstruction of
the deformed meshes and the interpretation of densities resulting of each linear static response optimization.
The resulting optimization process is illustrated in Fig. 5.6.
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Figure 5.6: General optimization process of the DiESL method for nonlinear dynamic response topology
optimization (Triller et al. 2022b)
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5.1.4 Implementation

Beside the additional steps in the program procedure, some changes in the implementation of the metho-
dology must also be made due to the used software. In the following, differences compared to sizing
optimization are explained.

Unlike in sizing optimization, the initial values of the design variables cannot be defined individually as
an input in topology optimization applications in OptiStruct. Only the single value of a homogeneously
distributed density can be specified. This is a severe issue since the DiESL methodology requires to start a
new linear static response optimization in each cycle, and we need to initialize the density distribution
obtained in the previous cycle. This can be achieved with the restart functionality of OptiStruct. With
this functionality, the linear static response optimization terminated in cycle k can be restarted in the
subsequent cycle k + 1. In between, the boundary conditions such as loads and SPCs for individual load
cases as well as the LSM meshes can be changed. But the certain optimization parameters like move limits
or iteration counter, or the value or number of design variables cannot be changed. Consequently, the
deletion of failed elements in the design domain due to heavy mesh distortion as described in section 3.3.5
is no longer possible as this would change the number of design variables.

This requires another workaround. Instead of deleting failed elements, dummy nodes not connected to the
structure are assigned to the respective elements such that they no longer participate in the structure’s
deformation and pass the element quality check. These dummy nodes are defined as a preprocessing step
before starting the DiESL optimization for each used element type. Their degrees of freedom are all locked
using SPCs. Consequently, failed elements assigned to the dummy nodes as well as their corresponding
design variable remain in the model but do not have any influence on the remaining structure. Note that
all failed elements of the same type (e.g. quad, hexa) share the same dummy nodes.

Another consequence is that the previously introduced move limit strategy cannot be employed for topology
optimization. This is because the move limits are changed by OptiStruct internally in each iteration. Their
value is saved to and retrieved from the restart file containing the design variables leaving no possibility
for user control. The exact functionality of the employed move limit strategy has not been disclosed by
Altair, except that the initially defined move limit δini is never exceeded. As before we use δini = 0.2 in the
following. Since the exact strategy is unknown, we cannot assume that the move limits decrease during
the optimization like it was the case with the previously applied strategy. This eliminates the motivation
for employing the termination criterion 3.37 regarding the cycles. Hence, this criterion is not applied for
topology optimization.

Instead, we employ a new convergence criterion based on the structure’s discreteness, which is defined as
follows (HyperWorks 2021):

D(x) =

∑︁nE
i xiVi if xi ≥ 0.9∑︁nE

i xiVi
, (5.5)

108



where Vi is the volume of the i-th element. This means, the discreteness D(x) gives the mass fraction of
all elements with densities greater or equal 0.9 to the overall mass. D(x) = 1 therefore corresponds to a
design with no low or intermediate densities which is very close to a 0-1 design. The new criterion relates
to the relative change of discreteness

kD̄ =
|D(kx)−D(k−1x)|

|D(kx)|
≤ ϵD. (5.6)

For all following examples we use ϵd = 0.02. Since this criterion is well suited for preventing early and
coincidental convergence, the criterion on the relative change of the objective function (equation 3.35) is
relaxed such that it only has to be fulfilled in one cycle, i.e. in the current but not in the previous cycle.

In addition, it has turned out to be useful to increase the maximum number of iterations per cycle to
maxiter = 4. Based on the author’s experience, topology optimization runs usually require almost twice the
number of iterations as sizing optimizations, which is supported by the increased number of iterations.

Furthermore, the minimum member size control is used in all examples. This is a topology optimization
specific parameter that specifies a lower bound on the geometrical extension of structural members formed
during topology optimization. A structural member cannot be smaller in lateral direction (height/width)
than the parameter MINDIM. This can for example be accomplished by constraining the difference in
density of two neighboring elements xi and xk

|xi − xk| ≤
dist(i, k)

MINDIM
(5.7)

where dist(i, k) is the distance between the centers of two elements i and j (Harzheim 2014). Hence, if
an element has density ρ = 1 then the densities of all elements within the distance MINDIM/2 must be
larger than or equal to ρ = 0.5. The OptiStruct parameter MINDIM is activated by default when using
MMO for topology optimization and cannot be disabled.

Additionally, the OptiStruct parameter TOPDISC is employed in the following examples. This is to enhance
the resulting structures discreteness (HyperWorks 2021). Unfortunately, the OptiStruct manual does not
provide any information about how this is accomplished. The minimum configurable value for MINDIM and
thus the minimum width of the forming structures is two times the average element size in combination
with TOPDISC.

109



5.2 Examples

In the following the proposed method is tested employing different numerical examples. The first example
focuses especially on the functionality of the proposed method. An important evaluation criterion for
this purpose is the result’s interpretability. The discreteness index D(∗x) is a good indicator in terms of
interpretability. As the interpretation of a result with D(∗x) = 1 is trivial, it can be stated: the higher
D(∗x), the easier the result’s interpretation. According to OptiStruct the discreteness should be at least
0.5 to prevent interpretation difficulties (HyperWorks 2021). Additionally, two different strategies for
interpretation will be employed. The performance of the resulting 0-1 interpretations and the respective
container models will be compared to evaluate the interpretability. Furthermore, the first example is
intended to study the capability of the DiESL method to account for inertia effects, as the ability of the ESL
method to do so has been questioned in the past (Stolpe et al. 2018). Also, the ESL and DiESL method are
compared using this example.

The second example is more practice related, it contains a large number of elements. This example has
been adopted from literature. Originally it had been used to assess the GHT (Ortmann and Schumacher
2013; Ortmann 2015). Thus, the structural performance of the results stated in literature are used for
comparison and for assessing the DiESL method’s results.

Finally, the IncC approach for the incorporation of forces into the optimization problem is tested for topology
optimization employing another practice relevant example.

5.2.1 Simple Beam subjected to Impact

The first example used for testing the DiESL method for topology optimization is a simple beam structure
subjected to an impact by a rigid pole. This is illustrated in Fig. 5.7. The beam structure is clamped at both
ends using SPCs. A pole with initial velocity v0 hits the beam at its middle. The pole’s rotational degrees of
freedom and the translational degrees of freedom in x- and z-direction are locked. Again, for the sake of
computational effort and numerical stability symmetry conditions are applied and only a quarter of the
original model is analyzed.

A similar example has been used by Patel 2007 to test the HCA. Compared to Patel, some changes to
the model have been made, which is why a direct comparison of results is not valid here. Nevertheless,
an important finding of Patel was that depending on the pole’s initial velocity, the HCA optimization
schemes yields different results and the method is therefore capable of handling inertia effects. For
examining the handling of inertia effects by the DiESL method, three different sets of initial velocity
v0 and mass massi of the impactor, each defining one nonlinear dynamic load case, are studied here:
{(10m/s, 65.7 kg) ; (40m/s, 65.7 kg) ; (150m/s, 4.69 kg)}. The impactor’s mass is reduced in the last set to
instate the same kinetic energy as in the set with v0 = 40 m/s.

110



𝑣0

c
o
n
s
tr

a
in

e
d

200 mm

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

e
ff

e
c
ti
v
e

s
tr

e
s
s
 i
n

 G
P

a

effective plastic strain

z
y

x

Figure 5.7: Simple beam – nonlinear FE-model of the beam exposed to an impact (left); piecewise linear
material model (right) (Triller et al. 2022b)

The optimization’s objective is to minimize the pole’s intrusion d(x) while the beam’s mass massb is
constrained. Mathematically this stiffness optimization is stated as:

min d (x) ; (5.8)

subject to

massb (x) ≤ 4.33 kg; (5.9)

The mass constraint of 4.33 kg corresponds to a mass fraction of 20 % compared to a design with all
solid elements. For all examined load cases the optimizer is initialized with a homogeneously distributed
density of χi = xi = 0.2 such that the mass constraint is active. The nonlinear dynamic model defines
contact between impactor and beam as well as self-contact within the beam structure. The linear static
model defines neither contact nor an impactor. The pole’s intrusion is approximated by averaging the
y-displacement of one column of structural nodes in the impact zone (i.e. along the symmetry line in
z-direction in the middle of the beam). The beam structure consists of aluminum (Young’s modulus: E = 70

GPa, density: ρ = 2700 kg/m3, Poison’s ratio: ν = 0.33), and piecewise linear material behavior is applied
(Fig. 5.7, right). The beam consists of 8000 cubic elements with an edge length of 10 mm, its total number
of nodes is nN = 9471. The minimum member size control parameter is set to the default OptiStruct
value of three times the average element size (MINDIM = 30 mm). 20 adaptively selected ESL times are
employed. Again the contact force curve between impactor and beam structure is used for adapting the ESL
times. The optimization problem is solved for each of the three given load cases individually. Afterwards
the results are compared visually.

In Fig. 5.8 the optimization history of the v0 = 40 m/s load case is shown as an example. In addition to
the objective function’s history, the relative change of objective function, the relative constraint violation,
and the discreteness D as well as its relative change is plotted. The optimization converges after 26 cycles
reaching a discreteness of almost 80%. It may seem unusual that the constraint violation increases up to
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12% in cycle 3 and gradually declines thereafter until convergence is reached. This behavior is a side effect
of the optimization parameter TOPDISC in OptiStruct, used to increase the structure’s discreteness. It is
also remarkable that the objective value (i.e. the beam’s intrusion) at the beginning of the optimization
has a similar value as the final result. Apparently, the initial structure with a homogeneously distributed
density of χi = 0.2 has a similar stiffness as the resulting container model. This effect can mainly be
attributed to the choice of pNL = 1 for the transferring the densities from the design domain to the analysis
domain according to equations 5.2 to 5.4. At this point it is important to remember that the intermediate
initial densities are an artificial construct to define continuous design variables. They do not represent a
real material, and in that sense the initial design is an invalid design.

Figure 5.8: Simple beam – objective function and maximum relative constraint violation over iterations
(left) and convergence criteria over cycles (right) using DiESL and v0 = 40 m/s (Triller et al.
2022b)

For the same reason, the resulting container model needs to be interpreted and transferred to a 0-1 design.
The resulting container model is shown on the left side of Fig. 5.9. As can be seen, this still contains
intermediate densities, in particular a connection in the area between the impact zone and the structure’s
rear part (Fig. 5.9 dashed ellipse). During interpretation the question arises whether this connection
should be maintained or discarded. In this example, it would be possible to quickly find out whether or
not the connection has a decisive influence on the structural behavior by testing both options. Since in
practice there is usually more than one feature at disposal, this can become more laborious. The following
interpretation scheme is performed and tested to address this issue: The design is interpreted two times
according to two different well-defined strategies. Both strategies focus on achieving the container model’s
performance with a 0-1 design in a nonlinear dynamic analysis. For this purpose, the two threshold values
εv and εs are set equal to prevent any intermediate densities. Then the value εv = εs is determined using
bisection such that either one of the following conditions are fulfilled (Triller et al. 2022b):
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1 The objective function’s value of the 0-1 model and the container model are equal.

2 The mass constraint is active.

In the following it will be referred to the first and the second strategy as ”same objective” and ”same con-
straint”, respectively. Usually, it is not possible to find a threshold that fulfills both conditions simultaneously.
If this common threshold exists, it is a hint that the solution is robust (Triller et al. 2022b). In Fig. 5.9
right both 0-1 interpretations are illustrated. They are very similar in their appearance. The intermediate
density connection between front and back does not show up in either design, it seems to have a negligible
influence. Table 5.1 reports the used thresholds as well as the model’s performance indicators are listed:
the intrusion d(∗χ), discreteness index D(∗x), and beam’s mass massb(∗χ). For all three load cases there
is never a big difference between the chosen thresholds εv and εs. The same applies to the corresponding
performances d(∗χ), D(∗x), and massb(∗χ) such that no significant trade-off between both designs has
to be made. It is worth mentioning that the massb(∗χ) of all container models is considerably smaller
than the defined constraint 4.33 kg. This is caused by the deletion of elements in the container model with
densities smaller than εv = 0.1. In the design domain all elements with low density are preserved such
that the mass constraint is active during inner loop iterations.

Based on the high similarity of both interpretations with the corresponding container model, we conclude
that the introduced procedure for topology optimization with DiESL yields easy-to-interpret designs. This
is also indicated by the relatively high discreteness value of all results. For sake of simplicity, we will use
the container models in all following illustrations and comparisons of this simple beam example. This is
also justified by the high similarity of the container models and both 0-1 interpretations.

𝜒𝑖
Interpretation

Container model Same objective

Same constraint

Figure 5.9: Simple beam – container model in final cycle=26 for v0 = 40 m/s (left) as isometric (top) and
top view (bottom); corresponding 0-1 interpretations as top view (right) using “same objective”
(top) and “same constraint” (bottom) strategies (Triller et al. 2022b)
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Table 5.1: Simple beam – optimization results using DiESL and corresponding interpretations (Triller et al.
2022b)

v0 Ekin,0 Model type ∗cycle ϵv ϵs d(∗χ) D(∗x) massb(∗χ)
m/s kJ mm kg

10 3.3
Container model 33 0.1 0.9 13.2 0.82 4.17
Same objective 0.355 13.3 1.0 4.36
same constraint 0.37 13.4 1.0 4.33

40 52.6
Container model 26 0.1 0.9 128.1 0.77 4.16
Same objective 0.37 128.0 1.0 4.28
Same constraint 0.355 127.3 1.0 4.32

150 52.6
Container model 23 0.1 0.9 113.9 0.79 4.16
Same objective 0.4 113.9 1.0 4.36
Same constraint 0.35 112.3 1.0 4.32

In order to check the plausibility of the results obtained for each load case, a cross validation is performed,
where each optimal structure is exposed to the other load cases for which it had not been optimized. Table
5.2 shows the results of this cross validation. It must be read as follows: Each column ”Optimum v0 = ...”
corresponds to a design obtained by the optimization of the load case with the respective initial velocity v0.
Each row corresponds to the actual conditions applied to each design. Comparing the intrusions in any
row, it can be observed that exactly one structure performs best, namely the one that had been optimized
for the respective load case. The difference between the best and worst performing structure in each row
is sufficiently big to assume that the best solutions are distinct. This confirms the plausibility of each
optimization result.

Table 5.2: Simple beam – cross validation: resulting intrusions d(∗χ) for the optimal structures (Fig. 5.11)
resulting of the nonlinear dynamic load cases subjected to each of the three load cases (Triller
et al. 2022b)

Optimum v0 = 10m/s Optimum v0 = 40m/s Optimum v0 = 150m/s

actual v0 d(∗χ) d(∗χ) d(∗χ)
m/s mm mm mm

10 13.2 14.0 14.9
40 178.3 128.1 142.8
150 136.2 120.9 113.0

As a next step, the resulting structures are discussed and compared on a visual basis. As a reference, a
linear static load case is introduced, it is illustrated in Fig. 5.10. Instead of the impactor, a static force
is imposed in the impact zone. The nodes in the impact zone are connected by rigid elements (RBE2,
blue line) to distribute the loading across the entire zone. The optimization problem defined previously in
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equation 5.8 and 5.9 is solved for this linear static load case. Note that this is a conventional linear static
response optimization purely within OptiStruct and the DiESL method is not applied.

constrained

z
y

x
𝐅𝐭𝐨𝐭

Figure 5.10: Simple beam – linear static load case for comparison with DiESL and ESL results for nonlinear
dynamic response optimization (Triller et al. 2022b)

Fig. 5.11 presents the optimized designs of both linear static and all dynamic load cases as iso-surface
of the respective container models. Each iso-surface is created for a density χi ≥ 0.4. For each load case,
an isometric (left) as well as a front, top, and rear view (right, top to bottom) are given. For the linear
static load case, the most prominent structural part is a diagonal connection between the impact zone
and the rear part of the clamping (dashed ellipse). This connection is mainly loaded by compression. The
dynamic load case with v0 = 10 m/s contains similar diagonal compression loaded structural members but
they are less dominant. The two designs optimized for the higher velocities do not have these members at
all. Instead, the tensile loaded connection between the rear part of the impact zone and the front part of
clamping (bottom right, dotted ellipse) becomes dominant.

Furthermore, it can be observed that with increasing velocity more mass accumulates in the structure’s
centre. This indicates the increasing influence of inertia effects. The more mass is accumulated in the impact
zone, the higher is the structure’s tendency to resist accelerations (Triller et al. 2022b). As mentioned
before, this trend has also been observed by Ivarsson et al. 2018, who optimized similar 2D structures using
the adjoint method. However, recall that the computational effort using the adjoint method is extremely
high and exceeds that of the DiESL method by far. Based on the above findings, we conclude that the
DiESL method is able to take inertia effects into account.

As a next step, it is examined how the ESL method performs for the load cases v0 = 10 m/s and v0 = 40

m/s. The container model approach, as detailed before, is used here in the exact way as for the DiESL
method. Since the ESL method employs the undeformed mesh geometry for each auxiliary load case, no
MMO is performed and there is no need to reconstruct deformed meshes. The resulting container models
are illustrated in 5.12. The same iso-surface visualization as before is used. Both results are dominated
by the compression loaded connection between the impact zone and the clamping’s rear. In table 5.3 the
performance indicators of the resulting container models are given. The ESL method needs less cycles to
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converge. However, the result’s discreteness is smaller for both load cases than for the respective results
obtained with the DiESL method. In terms of intrusion, it can be seen that for v0 = 10 m/s the ESL method
performs slightly better than the DiESL method. However, the resulting structures are quite similar, both
are dominated by the compression loaded member. Since the intrusion for this load case is relatively small
compared to the structure’s overall dimensions, the DiESL method obviously draws no substantial benefits
from employing the deformed mesh geometries and from following the displacement path incrementally
(Triller et al. 2022b). For the initial velocity v0 = 40 m/s the intrusion rises significantly, and here the
DiESL method outperforms ESL by far. The deformed container models are illustrated in Fig. 5.13 at the
time of maximum intrusion. The compression loaded members created by the ESL method buckle and
cause an excessive intrusion, this does not happen in the tensile loaded DiESL design. Obviously, the ESL
method is not able to incorporate the geometric nonlinearities and inertia effects as DiESL does.
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𝑠
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𝑚

𝑠

Figure 5.11: Simple beam – resulting container model in iso-surface visualization (χiso = 0.4) for linear
static load case (top left) and using DiESL: v0 = 10 m/s (top right), v0 = 40 m/s (bottom left),
and v0 = 150 m/s (bottom right) (Triller et al. 2022b)

Table 5.3: Simple beam – optimization results using ESL (Triller et al. 2022b)

v0 ∗cycle ϵv ϵs d(∗χ) D(∗x) massb(∗χ)
m/s mm kg

10 10 0.1 0.9 12.9 0.65 4.16
40 21 0.1 0.9 233.1 0.69 4.17
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Figure 5.12: Simple beam – resulting container model in iso-surface visualization (χiso = 0.4) using ESL
for v0 = 10 m/s (left) and v0 = 40 m/s (right) (Triller et al. 2022b)

ESL DiESL

Figure 5.13: Simple beam – deformed container model in iso-surface visualization (χiso = 0.4) using ESL
(left) and DiESL (right) for v0 = 40 m/s (Triller et al. 2022b)
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5.2.2 Rocker Profile

The next example is a more practical simplified side impact example, which original has been used for testing
the GHT approach (Ortmann and Schumacher 2013; Ortmann 2015). As illustrated on the left side of Fig.
5.14, this is an extruded rocker profile and parts of a crossbeam with an initial velocity v0 = −8.05556m/s

in y-direction colliding with a rigid pole. The GHT has been used to optimize the extruded rocker profile.
The intrusion of the pole into the rocker is minimized, while the rocker’s mass massR is constrained.
Additionally, the rocker’s bending stiffness kB and torsional stiffness kT are constrained. For this purpose,
two additional linear static load cases are incorporated into the optimization. These are illustrated on the
right side of Fig. 5.14. Here, the rocker is clamped at one end and subjected to a force of 1 kN and torque
of 0.5 kNm for the bending and torsional load case, respectively. Both loads are applied to a central node
that is rigidly connected to all nodes around the circumference of the rocker’s end. The initial rocker design
has no support structures inside, the outer profile thickness is 3.5 mm for each panel. It yields an initial
deflection dB,ini = −0.1932 mm and an initial rotation rT,ini = 1.773 mrad for the bending and torsional
load case, respectively. The optimized design must have at least half the stiffness of the initial unfilled
profile for both linear static load cases. Furthermore, the thicknesses ζi of the resulting profile structure
are constrained to be between 1.6 and 3.5 mm. The optimization problem is therefore defined as:

min d (x) ; (5.10)

subject to

massR (x) ≤ 2.801 kg; (5.11)

kB (x) =
dB(x)

dB,ini
≥ 0.5 (linear static); (5.12)

kT (x) =
rT(x)

rT,ini
≥ 0.5 (linear static); (5.13)

1.6mm ≤ ζi ≤ 3.5mm (5.14)

The application of the GHT in this case is advantageous with respect to pre-processing and interpretability
since the topology of the extruded rocker profile can be described using 2D graphs. The shell structures
described by these graphs can then directly be modeled and simulated. If a density-based approach, as
in DiESL, is applied some obstacles arise. Then, the rocker profile needs to be filled with solid elements.
These elements need to be sufficiently small to model the targeted profile structure with thicknesses in
the range of 1.6 to 3.5 mm. The minimum member size option MINDIM in OptiStruct is used to support
this topic. However, OptiStruct has a limitation on the smallest value for MINDIM, it must be at least two
times the average element size MINDIM≥ 2 · T̄ . Hence an average element size T̄ = 0.8 mm would be
necessary to realize structures with a minimal thickness of 1.6 mm. Fig. 5.15 shows the rocker filled with
solid elements from a side view perspective using two different averaged element sizes. On the left side,
the averaged element size in the yz-plane is Tyz¯ = 5 mm. This average element size has been used for the
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outer profile shell structure in the original publication (Ortmann and Schumacher 2013). On the right
side of Fig. 5.15 the averaged element size Tyz¯ = 1.6 mm is employed, which can be considered as a very
fine discretization already. Employing regular elements with an average edge length of approximately
T̄ = 1.6 mm in each dimension x, y, and z would result in more than 2.400.000 elements. Cutting the
average element length T̄ in half would lead to an eightfold increase in the number of elements. Reducing
T̄ further than 1.6 mm is therefore inconceivable, since the handling of 2.400.000 elements already requires
the computation on an HPC. This is complicated by the fact that no HPC was available at the time this
work has been done.

Bending

1 kN

0.5 kNm

Torsion

constrained
constrained

𝑣𝑜

Nonlinear dynamic load case Linear static load cases

1
6
0
 m

m

Figure 5.14: Extruded Rocker Profile – Nonlinear dynamic and linear static load cases

ത𝑇𝑦𝑧 ≈ 5 mm ത𝑇𝑦𝑧 ≈ 1.6 mm

Figure 5.15: Extruded Rocker Profile – Finite element discretization of yz-plane using the average element
size Tyz¯ = 5mm and Tyz¯ = 1.6mm
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For the above reasons, the following two related issues need to be solved before optimizing this example:

1 The number of elements must be reduced according to the available computing capacity: a desktop
computer with 48 CPU: Intel(R) Xeon(R) Silver 4116; CPU speed 2.1 GHz; 64 GB RAM.

2 The structural behavior of profile members with a thickness of 1.6 mm must be modeled using larger
solid elements.

Reducing the number of elements

The following changes are made to the shell model compared to Ortmann and Schumacher 2013 before
creating the solid topology design space, they are illustrated in Fig. 5.16. First, symmetry conditions are
employed and only half of the rocker is simulated. It is shown on the left side of Fig. 5.16. Note that
the right side of that figure shows the right half of the original full model for comparison. Secondly, the
shell element aspect ratio is varied for the outer profile structure following this consideration: Most of the
deformation occurs in the yz-plane, deformations in x-direction are negligible. Therefore, the mesh must
be fine in the yz-plane and may be coarse in x-direction. Furthermore, deformations are largest in the
middle of the rocker where the pole is hit, while they are minuscule at the far end of the rocker. Therefore,
the mesh may be even coarser in x-direction near the far end. This is implemented with a varying element
length in x-direction. The resulting aspect ratios of elements Tx : Tyz are approximately 3 in the middle
(black dashed frame) and approximately 20 at the far end (red dashed frame). These two changes allow
for a relatively small average element size of Tyz¯ = 1.6 mm in the yz-plane. Then, the number of elements
for the rocker (outer shell and solid design space) is 121864. This can be simulated on a desktop computer.
To assure comparability between the original model and the modified, the maximum intrusion of both are
compared visually and quantitatively. Fig. 5.16 shows both deformed models at the time of maximum
intrusion (recall that only the right half of the original full model is shown). Also, in table 5.4 the value of
the maximum intrusion d is given. There are only small differences, and the modified model is considered
to give valid results.

Table 5.4 also reports the overall averaged element size T̄ , the averaged element size Tyz¯ in yz-plane, and
the lower bound of the parameter MINDIM imposed by OptiStruct. Since an extruded profile is optimized
here, the densities must be constant in x-direction. The OptiStruct extrusion constraint is defined to obtain
such constant cross-sections in z-direction. Then, all elements lying in a row in z-direction are combined to
a group and assigned to the same design variable, such that the optimization problem effectively is reduced
to a 2D problem. Consequently, it would be logical to use the average element size in the yz-plane Tyz¯ to
calculate the MINDIM parameter’s lower bound. Unfortunately, this is not the case and OptiStruct uses the
overall average element size T̄ , which can be considered an unnecessary limitation on MINDIM. Hence,
the minimum width of the forming structures is 6.4 mm using the half model with mixed aspect ratio.
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Figure 5.16: Extruded Rocker Profile – FE-mesh and deformation of full model (T̄ = 5mm) and half model
with mixed aspect ratio (Tyz¯ = 1.6mm) for an outer profile thickness ζouter = 3.5mm

Table 5.4: Extruded Rocker Profile – Intrusion of pole into rocker employing different meshs and symmetry

Mesh # Elements Maximum Intrusion averaged Element Lower Bound
Solids included d Size MINDIM

T̄ Tyz¯

mm mm mm mm

full 86244 68.80 5 5 10
half 43122 68.78 5 5 10

mixed aspect ratio 121864 69.26 3.2 1.6 6.4

Modeling sub-scale structures using solid elements

The second challenge is to model the stiffness of thin structures with a thickness ζ by structures with
a greater thickness Z. This is required because the minimum permissible thickness of the structures in
the design space MINDIM = 6.4 mm is greater than the minimum profile thickness ζL defined in the
optimization problem in equation 5.10 to 5.14. This is illustrated in Fig. 5.17.

Design space

𝐸𝐷𝑒𝑠𝑖 = 𝑠 ⋅ 𝐸𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝜌𝐷𝑒𝑠𝑖 =
𝜁

𝑍
⋅ 𝜌𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝐸𝐷𝑒𝑠𝑖
𝜌𝐷𝑒𝑠𝑖

𝑍 𝜁

Real sheet metal
𝐸𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝜌𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

Figure 5.17: Extruded Rocker Profile – Scaling of solid element material properties to model sub-scale
sheet metal with thickness ζ
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The subscript Desi denotes all measures in the design space and the subscript Material the measures of the
real sheet metal to be modeled. To achieve mass equality in both models, the density in the design space
must be adjusted as follows:

ρDesi =
ζ

Z
· ρMaterial. (5.15)

Please note that the properties with the subscript Desi cover both the design and the analysis domain
and should not be confused with the adaptions regarding the SIMP approach. The same applies for the
mechanical properties, the Young’s modulus EDesi, the yield stress σy,Desi and the hardening modulus EH,Desi.
These also need to be scaled in the design space to account for the thickness difference between ζ and Z.
For this purpose, we define the scaling factor s:

EDesi = s · EMaterial, (5.16)

σy,Desi = s · σy,Material, (5.17)

EH,Desi = s · EH,Material. (5.18)

In the following, the scaling factor s is determined empirically employing a representative design with a
horizontal connection member of variable thickness ζ (Fig. 5.18). The deformation behavior of both rocker
and crossbeam is examined for both representations of the member: real sheet metal representation using
shell elements with thickness ζ and design space representation using solids with an overall thickness of
Z. The objective is to determine a scaling factor s for which the deformation behavior is similar for both
representations. This is done both visually by comparing the deformation behavior and numerically by
comparing the values of maximum intrusion.

𝜁

Figure 5.18: Extruded Rocker Profile – example used to determine scaling factor s: undeformed (left),
deformation at time of maximum intrusion for ζ = 1.6 mm (right)

In a first attempt, the design space representation is correlated to the real sheet metal representation
according to the following consideration: The mesh of the design space has an average element size
T̄ yz = 1.6 mm in the modified model. According to the limitation in OptiStruct, the minimum member size
is MINDIM = 6.4 mm (table 5.4). This value is designated to represent the lower bound of the structural
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members ζL = 1.6 mm according to equation 5.14. Consequently, MINDIM/ζL = 4 rows of solids are
employed to model the smallest sheet thickness ζL = 1.6 mm. These solids are distributed symmetrically
around the center line of the horizontal connection member. Note that for that reason, only even numbers
of solid rows (4, 6, 8, 10) were chosen.

Fig. 5.20 shows the rocker’s deformation for both representations shell (top row) and solid (bottom row)
and for different thicknesses ζ = Z/4 of the horizontal connection member (columns). Note that each solid
member model in the bottom row represents the shell model with the given thickness ζ in the same column.
Note also that the four thickness values cover the entire valid range according to equation 5.14. Their
values are determined by the requirement of even numbers of corresponding solid rows. This comparison
shows visually that both the maximum intrusions and the deformation behavior of the rocker’s outer profile
structure are represented good by each solid connection member model. However, the deformation of the
connection member itself cannot be approximated very well. Furthermore, for the thicknesses ζ = 3.2

mm and ζ = 4.0 mm, the deformation of the crossbeam does not match well. A possible reason for the
mismatches is the thickness ratio Z/ζ = 4 being too large.

Fig. 5.19 plots the maximum intrusion d over the thickness ζ and Z/4 for a number of simulation runs
using different scaling factors s employed to model the solid connection member. As can be seen, the
maximum intrusion of the shell elements (blue in Fig. 5.19) is fitted best using the scaling factor s = 0.05.
The deformed rocker structures for this scaling factor are shown in Fig. 5.20.
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Figure 5.19: Extruded Rocker Profile – maximum intrusion depending on the thickness ζ and Z/4 using
shell and solid representation of the connection member for different scaling factors s. Four
rows of solids with a total thickness Z = 6.4mm correspond to the shell thickness ζ = 1.6mm
(Thickness ratio Z/ζ = 4)
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𝜁 = 1.6 mm

𝑍 = 6.4 mm

𝜁 = 2. 4 mm 𝜁 = 3.2 mm 𝜁 = 4.0 mm

𝑍 = 9.6 mm 𝑍 = 12.8 mm 𝑍 = 16.0 mm
4 rows of solids 6 rows of solids 8 rows of solids 10 rows of solids

Figure 5.20: Extruded Rocker Profile – Deformed structures at time of maximum intrusion using connec-
tion member representation with shells of thickness ζ (top) and solids with a total thickness
of Z and scaled stiffness using s = 0.05 (bottom). Four rows of solids with a total thickness
Z = 6.4mm correspond to the shell thickness ζ = 1.6mm (Thickness ratio Z/ζ = 4)
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A second attempt aimed at a better match in the resulting deformation behavior between shell and solid
representation of the connection member. The previous consideration has been adapted to obtain thinner
members, i.e. with less rows of solids. This can be achieved by ignoring the MINDIM restriction and
defining 2 rows of solids instead of 4 to represent the smallest sheet thickness ζL = 1.6 mm. The new
thickness ratio according to this approach is then Z/ζ = 2. As a consequence, it is not possible to represent
the minimum sheet thickness ζL = 1.6 mm by corresponding solid structures using a 0-1 design. The
minimum sheet thickness of 1.6 mm can only be modeled using intermediate densities. Note that in this
attempt, only 2, 4, and 6 numbers of rows are needed to cover the permitted range for the thickness ζ.

Fig. 5.21 plots the maximum intrusion d over the thicknesses ζ = Z/2 according to the second attempt for
different scaling factors s. The best approximation is obtained using the scaling factor s = 0.2. As before,
the deformed rocker structures are shown in Fig. 5.22 for this best scaling factor. The deformation plots
suggest that with this attempt both the crossbeam and the outer profile are approximated better for all
thicknesses when compared to Fig. 5.20. However, the deformation of the connections member still cannot
be approximated perfectly.

In the following, optimization results will be computed for both scaling factors. The results will ultimately
be used to evaluate which scaling factor is more suitable for modeling sub-scale structures.
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Figure 5.21: Extruded Rocker Profile – maximum intrusion depending on the thickness ζ and Z/2 using
shell and solid representation of the connection member for different scaling factors s. Two
rows of solids with a total thickness Z = 3.2mm correspond to the shell thickness ζ = 1.6mm
(Thickness ratio Z/ζ = 2)

125



𝜁 = 1.6 mm 𝜁 = 3.2 mm 𝜁 = 4.8 mm

𝑍 = 3.2 mm 𝑍 = 6.4 mm 𝑍 = 9.6 mm
4 rows of solids 6 rows of solids2 rows of solids

Figure 5.22: Extruded Rocker Profile – Deformed structures at time of maximum intrusion using connec-
tion member representation with shells of thickness ζ (top) and solids with a total thickness
of Z and scaled stiffness using s = 0.2 (bottom). Two rows of solids with a total thickness
Z = 3.2mm correspond to the shell thickness ζ = 1.6mm (Thickness ratio Z/ζ = 2)
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Detailed description of Rocker FE-model

In addition to the previously described specifications of the considered load cases, according to Ortmann
2015 there are some further characteristics which are detailed in the following. Furthermore, the applied
boundary conditions for enforcing symmetry and all necessary adoptions in the model used in the design
domain are explained. On the left side of Fig. 5.23 the rocker’s outer profile structure, the crossbeam,
the rigid pole as well as all applied boundary conditions are illustrated. As described before, only half of
the rocker is modeled. This is accomplished by applying SPCs at the rocker’s and crossbeam’s center. At
the rocker’s other end the translational degrees of freedom in z-direction are locked to prevent the rocker
from buckling in the z-direction. Since this model is only a substructure of a car’s overall body, additional
mass and kinetic energy is added by a rigid wall with a mass of 42.5 kg, which has the same initial velocity
v0 = −8.05556 m/s in y-direction3. This rigid wall faces the crossbeam at the rear end. Contact between
the rigid wall and the crossbeam as well as all remaining surfaces is defined in the nonlinear dynamic
model. Additionally, a large portion of the crossbeam is guided by locking all degrees of freedom except the
translation in y-direction. This is intended to achieve a similar deformation behavior as in the full car. The
rocker and the crossbeam are made of aluminum (Young’s modulus: E = 70 GPa, density: ρ = 2700 kg/m3,
Poison’s ratio: ν = 0.33), which is modeled with a piecewise linear material (Fig. 5.23, right) in the
nonlinear dynamic model.
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Figure 5.23: Extruded Rocker Profile – FE-model and applied boundary conditions (left); piecewise linear
material model (right)

3Due to the symmetry conditions the rigid wall’s mass is half compared to Ortmann 2015
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Except for the rigid wall, the same model is employed in the design domain. The Young’s moduli are
not adopted locally, which means E = 70 GPa is applied for all elements. In contrast to all side impact
examples examined before, the rigid pole is fixed here and the initial velocity is applied to the structure.
Therefore, it is necessary to model the pole and its contact with the rocker in the design domain as well.
Otherwise, the rocker would be unbound and the DiESLs would cause infinite displacements in y-direction.
For the same reason, the contact cannot be modeled as in the previous examples. There, the stiffness of
contact elements had been set to minimal values to eliminate their impact on the remaining structure.
Here, very stiff contact elements between the pole and the rocker are required, to ensure the rocker is
bound to the pole. This is accomplished by setting the parameter GPAD = 1.5 mm in the contact definition
between rocker and pole in OptiStruct. In doing so, closed and hence very stiff contact elements are created
between the rocker’s nodes and the pole’s surface whenever their distance is smaller than 1.5 mm. This
is not a realistic contact definition, but is necessary to keep the DiESL method running. In this case, it is
possible that the unrealistic contact elements have an influence on the optimization result. A node at the
middle of the crossbeam facing the rigid wall is used to measure the intrusion d(x) (Fig. 5.23, red dot).

Optimization Strategies

The technique described above for modeling sub-scale structures imposes a new challenge on the interpre-
tation of the optimization results. The resulting density field needs to be interpreted and translated into
a shell structure design. This means the interpretation strategies introduced in section 5.2.1 cannot be
employed here. The challenge here is to identify locations where shell structures should be placed and to
determine their thickness. To address this challenge, two different optimization strategies are pursued in
the following. Both can be split into two phases, conception and fine-tuning. In the conception phase, the
topology of the rocker profile is optimized and interpreted afterwards to obtain a shell structure design, this
is referred to as conceptional design. The fine-tuning phase aims at optimizing the individual thicknesses
of the shell members created in the conceptual design. The interpretation of the density field obtained
from topology optimization is thus simplified, since the thicknesses of the representative shell structure
members do not have to be determined manually.

The first strategy is illustrated in Fig. 5.24. It starts with a topology optimization of the rocker’s inner profile.
The shell thickness of the outer profile is kept constant ζouter = 1.6 mm during topology optimization. It
turned out that the linear static load cases have no influence on the optimization’s outcome. Consequently,
they are omitted during the conception. This means a relaxed optimization problem is solved here, where
the intrusion d(x) is minimized and the mass is constrained massR ≤ 1.400 kg 4. After the conceptual
design has been derived, the structure is fine-tuned. Then, the linear static load cases are included for
verification and the optimization problem as defined in equation 5.10 and following is solved. The initial

4Compared to Ortmann and Schumacher 2013 only half the mass massR is used here to attribute the employed symmetry
condition.
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sheet thicknesses are set to 0ζi = 2.0, this also includes the thicknesses of the outer rocker profile which
are optimized as well during the fine tuning.
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• No linear static load cases

• Sheet thickness of outer rocker profile at 

minimum of 1.6 mm

• mass constraint 𝑚𝑎𝑠𝑠R ≤ 1.400 kg

• linear static load cases included

• Sheet thickness of outer rocker profile is 

optimized as well

• mass constraint 𝑚𝑎𝑠𝑠R ≤ 1.400 kg

Figure 5.24: Extruded Rocker Profile – Optimization Strategy 1: pure topology optimization with subse-
quent sizing optimization of interpreted topology

The second strategy differs only in the conception phase from strategy 1 as illustrated in 5.25. Here, the
topology is derived in two steps. First, a pure topology optimization is performed with an adapted mass
constraint which is reduced by the factor 0.6 to save some mass for the second step. With less mass granted
the optimizer is expected to create less connection members inside the profile. The following interpretation
is optimized again in a second step. This is a combined sizing and topology optimization. For this purpose
the previously derived profile design is filled with solids. The topology of the solids is then optimized, while
simultaneously optimizing the thicknesses of the derived inner profile structure. The initial thicknesses is
set to 0ζi,inner = 2.0 mm. In this combined optimization the original mass constraint is used and the outer
profile’s thickness is kept constant ζouter = 1.6 mm. This strategy aims at reducing uncertainties involved
during the interpretation. The optimizer now can react on previously made decisions and can mitigate
possible misinterpretations in the second combined optimization.

In all following topology optimizations, the initial densities are set such that the respective mass constraint
is active at the beginning. Due to the high number of elements only ten ESL times are used for all
optimizations. The ESL times are selected adaptively in each cycle by fitting the nonlinear contact force
curve between rocker and pole.
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Figure 5.25: Extruded Rocker Profile – Optimization Strategy 2: first pure topology optimization then
combined topology/sizing optimization in conception phase

Results

Four optimizations were conducted, they are the combination of the two strategies with the two thickness
ratios Z/ζ = 4 and Z/ζ = 2 (using scaling factors s = 0.05 and s = 0.2, respectively). First, strategy
1 using thickness ratio Z/ζ = 4 and scaling factor s = 0.05 is employed. In Fig. 5.26 the results of
each step are illustrated. The left side shows the resulting density field from the topology optimization.
As can be seen, a discrete structure has evolved. This is also indicated by the high discreteness index
D(∗x) = 0.84. The resulting density field suggests to use two major connections between the front and
rear of the rocker. They are located close to the top and bottom end of the crossbeam, respectively. The
shell member interpretations are positioned such that they are approximately in the middle of the areas of
high-density elements. This interpretation has been performed manually, no additional iterations have
been performed and no competing interpretations have been evaluated. The interpretation is depicted on
the left side by dotted white lines and shown separately in the middle of Fig. 5.26. The result of the sizing
optimization is depicted on the figure’s right side. The thickness of both main connection members are at
the upper bound of 3.5 mm. The smaller parts seem to be less important since their thickness is at the
lower bound of 1.6 mm. The outer profile has a thickness of ζouter ≈ 2.0 mm.
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Figure 5.26: Extruded Rocker Profile – Optimization results and corresponding interpretations employing
strategy 1 and thickness ratio Z/ζ = 4 (respective scaling factor s = 0.05)

In the same manner as described before, Fig. 5.27 shows the results of strategy 1 in combination with the
thickness ratio Z/ζ = 2 and scaling factor s = 0.2. As to be expected, the resulting structure is much more
filigree than the one for Z/ζ = 4 and therefore easier to interpret. However, the resulting structure is also
less discrete, which is reflected by D(∗x) = 0.68. The optimizer seems to use the intermediate densities to
model structural parts with thicknesses less than ζ = 3.2 mm. This is confirmed by the outcome of the
sizing optimization, where a similar thickness distribution is derived as before for Z/ζ = 4.
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Figure 5.27: Extruded Rocker Profile – Optimization results and corresponding interpretations employing
strategy 1 and thickness ratio Z/ζ = 2 (scaling factor s = 0.2)
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Fig. 5.28 shows the results of the second strategy employing Z/ζ = 4 and s = 0.05. The strategy includes
an additional topology optimization. The results of the optimizations are shown in the top row and the
interpretations in the bottom row. Like before, the interpretations are also indicated in the density fields
by white dotted lines. As can be seen, during the first topology optimization, a large connection member
forms from the lower end of the crossbeam to the front of the rocker. Accordingly, it appears to have a
greater influence on the intrusion than the upper connection member in the previous examples. The upper
connection is formed during the subsequent combined sizing and topology optimization. However, the
thickness of the lower connection does not reach the upper limit of 3.5 mm, as indicated by the previous
results. This contrasts with the resulting thickness distribution in the subsequent sizing optimization. Here,
the results are again very similar to those of the previous sizing optimizations. During both topology
optimizations, again a relatively high discreteness is reached. The first optimization yields D(∗x) = 0.82

and the second D(∗x) = 0.85.

Topology optimization Sizing

N
o
rm

a
liz

e
d
 D

e
n
s
it
y 
𝐱
∗

T
h
ic

k
n
e
s
s
 in

 m
m

In
te

rp
re

ta
ti
o
n

In
te

rp
re

ta
ti
o
n

Siz. and Topology optimization

Figure 5.28: Extruded Rocker Profile – Optimization results and corresponding interpretations employing
strategy 2 and thickness ratio Z/ζ = 4 (scaling factor s = 0.05)

Fig. 5.29 shows the results of the second strategy in combination with Z/ζ = 2 and s = 0.2. Again,
all optimization results are shown in the top row and the corresponding interpretations below. The
previous findings are reconfirmed here: Using Z/ζ = 2, much more filigree structures form. The resulting
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discreteness values also indicate that intermediate densities are utilized by the optimizer to circumvent
the MINDIM constraint. The first optimization yields D(∗x) = 0.55 and the second D(∗x) = 0.7. Again,
during the first topology optimization only the lower connection member forms, and the upper connection
forms in the second step. The resulting thickness distribution derived from sizing again is very similar to
the previous one. The fact that all four optimizations yield these same distinct load paths can be seen as a
confirmation of the optimality and robustness of this design.
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Figure 5.29: Extruded Rocker Profile – Optimization results and corresponding interpretations employing
strategy 2 and thickness ratio Z/ζ = 2 ( scaling factor s = 0.2)

The resulting mass mass(∗x), intrusion d(∗x), the relative bending and torsional stiffnesses kB and kT,
as well as the number of nonlinear dynamic analyses is given in table 5.5 for all employed strategies
and thickness ratios as well as for the GHT (Ortmann and Schumacher 2013; Ortmann 2015). Ortmann
provides two different results for this example, the abbreviation GHT 2013 is used for the first and GHT
2015 for the second. The major difference seems to be that in Ortmann and Schumacher 2013 a uniform
thickness of the whole profile structure is enforced, whereas in Ortmann 2015 structural members are
distinguished between inner profile and outer profile and their thickness ratio is optimized. Ortmann
2015 does not disclose explicit information regarding the differences to the previous publication. We
can therefore not rule out that there are further differences than the ones described. All results in table
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5.5 satisfy the constraints on torsional and bending stiffness by far. The best performance in terms of
objective value is achieved by GHT 2015. The DiESL method yields close performance using strategy
2 and the thickness ratio Z/ζ = 4. The worse performance of the DiESL method may be attributed to
the necessity of scaling the element stiffness in the design space or due to poor interpretations of the
topology results. The easiest way to address this issue would be to remove the unnecessary limitation
in OptiStruct, by eliminating the MINDIM parameter’s lower bound. This could potentially decrease the
minimum size of members to be formed during topology optimization by half. Then, the scaling factor may
not be necessary in terms of stiffness, as we observed that the optimizer also utilized intermediate densities
to model members smaller the limit defined by MINDIM. This way the DiESL method’s results may be
improved while simultaneously keeping the computational effort low. Reviewing the number of nonlinear
analyses necessary for convergence, the benefits of the DiESL methodology compared to GHT become
evident. For DiESL, the overall number of nonlinear analyses is given as both sum and contributions of
each individual optimization step. The individual contributions are listed besides as a summing of sizing
and topology optimization contributions in chronological order. As can be seen, DiESL clearly outperforms
GHT by far.

Table 5.5: Extruded Rocker Profile – Performance of optimized designs obtained using different DiESL
optimization strategies and thickness ratios compared to the GHT (Ortmann and Schumacher
2013; Ortmann 2015)
Note: For the sake of comparability the masses resulting of the GHT are reduced by half

Approach thickness ratio Z/ζ s mass(∗x) d(∗x) ∗kB ∗kT # nonlinear analyses
kg mm % %

Strategy 1 4 0.05 1.400 29.85 68.7 64.6 30=24+6
Strategy 1 2 0.2 1.399 31.08 68.7 62.1 40=30+10
Strategy 2 4 0.05 1.400 26.58 68.1 65.3 38=24+9 +5
Strategy 2 2 0.2 1.399 28.88 65.5 62.0 51=23+19+9
GHT 2013 - - 1.400 29.78 77.3 66.7 ≈3500
GHT 2015 - - 1.400 25.87 68.4 56.1 3128
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5.2.3 Reinforced Rail

So far, only displacement and mass responses have been involved in the topology optimization problems.
In the following, the IncC approach for the consideration of forces in DiESL is tested for a topology
optimization application. The structural component investigated is a rail structure reinforced by an additive
manufactured rib. The component is part of the occupant compartment and should therefore be as stiff
as possible. In Fig. 5.30 the part as well as the considered load case are illustrated. The component is
clamped in all degrees of freedom at the right end employing an SPC and an RBE2 spider. At the upper
end another RBE2 spider is attached. An extremely stiff spring element connects the RBE2’s independent
node and node 108 to measure the reaction force F . The rail is deflected, by applying a constant velocity
v = 1 m/s at node 108 for 50 ms. The direction of v is in the xz-plane at an angle of 25° to the x-axis. In
addition, there is a rigid shell structure behind the rail (guide) to prevent it from buckling in this direction.
The guide represents other components in the vehicle at the same location. This load case models a test
bench on which the deformation behavior of the rail during a front crash is simulated. A more detailed
specification of the component’s place in the car as well as the test bench cannot be made due to the
confidential agreement with Opel Automobile GmbH.

SPC123456

guide

RBE2

RBE2

RBE2

𝑣 = 1
𝑚

𝑠
Node 108

Figure 5.30: Reinforced Rail – description of FE-model and load case
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The rail structure as well as the rib are made of steel (Young’s modulus E = 210 GPa, Poison’s ratio
ν = 0.33). For both, strain-rate dependent visco-plastic material behavior is assumed. A more precise
specification of the material can also not be made here for reasons of confidentiality.

The rib is manufactured using wire arc additive manufacturing. In this process, metal is deposited layer by
layer onto a carrier structure. Fig. 5.31 illustrates the discretization of the rib by fully integrated hexa
volume elements. The height of the elements in y-direction is 1 mm, this exactly represents the height
of a deposit layer. The length of the elements in the thickness direction of the rib is 3 mm such that only
one element is used in thickness direction. The rib is connected to the beam structure by a ”contact tie”
option. This creates extremely stiff elements between the bottom nodes of the rib and the underlying rail
structure. The rib consists of 3942 hexa elements and the support structure consists of 3757 shell elements.
The overall number of nodes is 16789.

Figure 5.31: Reinforced Rail – discretization of rib using volume elements

The shape of the rib shown was largely derived from design space restrictions. The rib can hardly be
enlarged because other manufacturing processes require the remaining space. The optimization goal is
therefore not to completely redefine the shape of the rib but to reduce the mass of the existing rib massr

and thus indirectly decrease the necessary production cycle time. In doing so, the stiffness of the structure
must be maintained such that buckling of the structure and thus possible injuries to the occupant are
prevented. As shown in 5.32, the stiffening effect of the rib significantly contributes to preventing buckling.
This is also reflected in the maximal reaction force Fmax measured at the previously described spring, which
is 15.7 kN without rib and 20.1 kN with rib.
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With ReinforcementNo Reinforcement

Figure 5.32: Reinforced Rail – maximum deformed rail with (right) and without reinforcement (left)

To generate several design proposals with different masses, we maximize Fmax measured at the spring
element at node 108, while constraining the mass of the rib:

maxFmax (x) ; (5.19)

subject to

massr (x) ≤ λ · 95.2 g; (5.20)

where the mass of the original rip is 95.2 g. The constraint is varied between λ = 0.4 and 0.9.

Compared to the previously explained nonlinear model, some adjustments have been made to the model
employed in the design domain. First, the rigid guide on the rear side of the rail is omitted to avoid a
contact definition. In addition, a local coordinate system is defined at the deflected node. The coordinate
system is rotated such that the x-axis coincides with the displacement direction of node 108. This way, an
SPC can be applied restricting the direction of motion of node 108 to the x-direction in the local coordinate
system. The reaction force F can then be approximated using the IncC approach from the incremental
displacement in the x-direction in each LSM.

The nonlinear problem is approximated using nT = 20 adaptively selected ESL times by fitting the reaction
force. The MINDIM parameter is set to 3 mm but it plays a subordinate role here. Much more important is
a draw direction constraint defined in the negative y-direction. This guarantees the manufacturability of
the resulting design proposal, because then material can only be removed starting from the top of the rib.
This is handled by OptiStruct internally, but can for example be accomplished by constraining the densities
in the defined direction: 0 ≤ ρi ≤ ρi+1 ≤ ... ≤ ρm, where ρm is the density of an element closest to the rail
structure and ρi the density of an element above, in the defined direction. In other words this ensures that
no holes are evolving and each layer can be added on top of a previous layer. Since a constant velocity is
imposed in the presented problem (cf. roof crush load case) inertia effects do not play a role here. Hence,
elements with a high mass/stiffness ratio are not expected to cause issues in the nonlinear analysis, as it
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has been exemplified in section 5.1.1. To increase the consistency between analysis and design domain,
the SIMP exponent in the analysis domain pNL = 3 is used here.

Table 5.6 summarizes the optimization results for all mass fractions λ, it also includes the original rib
(λ = 1) and no rib (λ = 0). The table lists the cycles necessary for convergence ∗cycle, the container
model’s maximum reaction force Fmax(∗χ) relative to that of the original full rib, and the discreteness
D(∗x). All optimizations converge after few cycles already. The discreteness of all runs with λ ≥ 0.6 is
extremely high, such that the container models can be expected to yield similar results as corresponding
0-1 interpretations. However, the discreteness of the remaining runs still is sufficiently high. All container
models achieve a relatively high maximum reaction force Fmax when compared to the original rib. This
means the mass of the rib can be reduced considerably without significant influence on the maximum
reaction force Fmax.

Table 5.6: Reinforced Rail – optimization results varying the mass fraction by λ

λ ∗cycle Fmax(∗χ)/Fmax(full rib) D(∗x)
%

1.0 100 1.0
0.9 4 99.9 0.89
0.8 7 99.3 0.91
0.7 6 98.4 0.90
0.6 13 98.3 0.94
0.5 7 98.2 0.75
0.4 7 97.5 0.72
0. 78.1 0.

In Fig. 5.33 the resulting optimal container models are illustrated at time t = 50, where the rail’s
deformation is maximal. The left straight portion of the rib obviously has the greatest influence on Fmax, as
it never gets eliminated even for small λ. Portions at the right end and in the middle, on the other hand,
seem to be rather unimportant and begin to vanish as λ is reduced.

Fig. 5.33 also allows for an analysis of the rail’s deformation behavior. It is obvious that with decreasing λ,
buckling increases in the area encircled by the yellow dashed line. This is also reflected In Fig. 5.34 where
the force fraction F (∗χ)/Fmax(full rib) relative to the full rib design is plotted over the displacement of node
108. After reaching the peak force, each curve drops with a different slope. This slope of the force drop
becomes steeper as λ is reduced. Although it has not been targeted directly in the optimization problem’s
formulation, it is desirable to maintain the reaction force as high as possible after the maximum has been
reached. For λ = 0.7 the force drop is still relatively small compared to the full rib design. Hence, this result
can be considered as a good trade-off between performance and mass. For this reason, an interpretation is
derived according to the strategy defined in chapter 5.2.1 for the λ = 0.7. The threshold ϵv = ϵs = 0.26

yields an interpretation where both the mass constraint is active and the objective is approximately the
same as in container model design (table 5.7).
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Figure 5.33: Reinforced Rail – maximally deformed rail with optimized rip for various mass fractions λ
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Figure 5.34: Reinforced Rail – Force fraction with regard to the full rib design over displacement for all
optimization results varying the mass fraction λ
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Table 5.7: Reinforced Rail – optimization results λ = 0.7 and corresponding interpretation

Model type ∗cycle ϵv ϵs Fmax(∗χ)/Fmax(full rib) D(∗x) massr(∗χ)
% g

Container model 6 0.1 0.9 98.4 0.9 65.5
0-1 Interp. same obj. & constr. 0.26 98.7 1.0 66.6

The resulting 0-1 interpretation is shown in Fig. 5.35 at the time of maximum deflection t = 50 ms.
Obviously, this interpretation still contains irrelevant parts (e.g. small island at the right end) and can
potentially be optimized further. The structural performance, however, is slightly improved compared to
the container model, as the rail buckles less. This can also be seen in Fig. 5.36, where the force fraction
F (∗χ)/Fmax(full rib) relative to the full rib design is plotted over the displacement of node 108 for the
container model (λ = 0.7), the corresponding 0-1 interpretation, the full rib design, and the rail without
rib. The 0-1 interpretation shows almost the same performance as the full rib design, although the mass
has been reduced by 30%. It can be expected that the production cycle time can also be significantly
reduced using this interpretation. We can therefore conclude that the consideration of forces in DiESL for
the purposes of topology optimization works well and can be a valuable tool when optimizing real world
problems.

Container model 𝜆 = 0.7

0-1 Interpretation

Figure 5.35: Reinforced Rail – interpretation of optimized rip for λ = 0.7
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Figure 5.36: Reinforced Rail – Force fractionwith regard to the full rib design over displacement of resulting
container model for λ = 0.7 and corresponding 0-1 interpretation compared to full rib- and no
rib-design
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6 Summary, Discussion, and Outlook

This thesis deals with structural optimization in the context of crashworthiness design. These kinds of
problems involve nonlinearities in geometry, material, and from contact. Sensitivities are either very
expensive to compute or not even available, and efficient gradient-based optimization methods cannot be
employed directly. The DiESL method provides a workaround by creating linear static auxiliary load cases
which in turn enable gradient-based optimization.

The DiESL approach is extended in this thesis by several features. For this purpose, the necessary theoretical
basics of structural optimization have been elaborated in chapter 2, and an overview of competing methods
for nonlinear dynamic response optimization has been given. Afterwards, the DiESL method has been
presented in chapter 3 with a brief discussion of various response types. Furthermore, two potential
improvements have been elaborated in chapter 3. The first is the adaptive selection of ESL times. A time
dependent quantity that represents the nonlinear structural behavior (e.g. a contact force curve) is fitted
by a piecewise linear curve. The resulting breakpoints are used as ESL times. The second extension is
the local adaptation of the Young’s moduli (LA) on element level in all linear sub models (LSMs) to give
a better approximation of the elements’ stiffness change due to plasticization occurring in the nonlinear
dynamic analysis. To achieve this, the elements in the LSMs are assigned to one of two materials using the
nonlinear Young’s or tangent modulus, respectively. To enable a robust application of the methodology in
the industrial context, two additional features were presented. One is a simple automatism for handling
failed elements in deformed LSMs, the other is a methodology for handling non-congruent models in
analysis and design domain. Furthermore, several approaches for the incorporation of contact forces into
the auxiliary DiESL optimization problem have been developed. They establish relationships between the
contact force and a representative nodal displacement in direction of the force. This aims to enable the
optimization of the energy absorption behavior of crash structures in addition to stiffness optimization
applications using DiESL. The treatment of contact forces is not trivial in the design domain because all
ESLs are held constant during linear static response optimization, so the use of nodal forces is prohibitive.
Three approaches were presented within this thesis to quantify contact forces for linear static response
optimization. The first approach Inc relates the force increment to a reciprocal displacement increment. A
modification IncS uses Inc for rising force increments but inverts the behavior for falling force increments.
The third approach IncC is like IncS but a negative force increment is kept constant independently of the
displacement increment.
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In chapter 4, the DiESL method and all presented extensions have been tested for various sizing optimization
examples and the results were compared with competing methods. Most of the comparisons were made
based on multistart studies, in which the initial designs were uniformly distributed over the design space,
such that a statistical independence between the results and the initial designs can be expected.

The first example is a simple side impact, it demonstrated the advantages of DiESL over both the ESL
method and a metamodel-based approach. The mass of the structure has been minimized with a constraint
on the impactor’s intrusion. It turned out that the DiESL method, in contrast to the ESL method, converges
to a true optimum of the nonlinear dynamic problem. It can be assumed that the found optimum is a
true optimum, because the metamodel-based approach converged to a similar design. The fundamental
advantage of the DiESL methodology over the metamodel-based approaches is that the computational
effort involved does not scale directly with the number of design variables. This advantage already became
evident for the examined side impact example, although only seven design variables had been defined. The
number of nonlinear analyses necessary for convergence was ten times smaller for DiESL compared to the
metamodel-based approach. For applications with many design variables such as topology optimization,
metamodel-based approaches are therefore not an alternative.

The next study examined the adaptive selection of ESL times (AT) and the local adaptation of the Young’s
moduli (LA) as well as the combination of both. For this purpose, the same side impact example with
bilinear material behavior and a highly nonlinear crash box example with piecewise linear material behavior
have been used. In both examples the structure’s mass was minimized while the intrusion of an impactor
was constrained. Three criteria were defined to evaluate the extensions’ influence on the DiESL method’s
approximation quality: the average number of cycles required for convergence, the number of multistart
runs converging to the best optimum found, and the resulting average objective value. The number of ESL
times nT has been varied systematically as a parameter. The benefits obtained with the adaptive selection
of ESL times depend on the example. For the side impact, the following observations have been made:
For sufficiently large numbers of ESL times, the AT has no significant influence on the chosen criteria.
For only few ESL times, the number of cycles necessary for convergence can be reduced using AT. For
the crash box example, AT leads to significant improvement of all criteria: With AT the DiESL method
convergences faster and more often to the presumed global optimum. Also, the average objective value
is better for all multistart runs. If the number of ESL times is reduced, these advantages become more
pronounced. Adaptive selection of ESL times therefore can be used to reduce the computational effort
without drastically reducing the approximation quality as it is the case with equidistant spacing. This is
especially advantageous for large models or if computational resources are limited. It is plausible that the
differences between both approaches grows smaller with increasing number of ESL times nT because in
that case the spacing of ESL times grows smaller and hence the exact placement of ESL times becomes less
significant. The influence of AT is larger in the crash box example compared to the side impact example.
This is likely to be caused by the degree of structural nonlinearities forming in the course of the deformation,
it is much higher for the crash box. Here, the deformation behavior strongly depends on the repeated and
successive formation of contacts and plastic hinges, this is not the case for the side impact. This difference
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is reflected in the shape of the contact force curve, it is relatively smooth for the side impact and oscillates
wildly for the crash box. It can therefore be concluded that AT leads to a considerable improvement of the
DiESL method’s approximation quality in the presence of sufficient structural nonlinearities. However, in
some cases the usage of ET may also be beneficial, for example if structural responses like velocities or
accelerations need to be approximated employing finite differences of ESL times.

The optimal number of ESL times nT is a user defined parameter. At the beginning of an optimization
there is little information to guide the user in the choice of a reasonable value. A trade-off between
computational effort and approximation quality is required. To address this, the algorithm could be
extended. Furthermore, the number of ESL times nT could be optimized in addition to their distribution.
This may be accomplished by simply computing the sum of squared residuals (SSR) for a predefined range
of nT values and selecting the smallest nT still satisfying the predefined accuracy requirement. The SSR
gives a number to classify the accuracy of the fits and could therefore be used as measure of the expected
approximation quality.

The local adaption of the Young’s moduli (LA) also yielded different results for the examples examined. For
the side impact example, where a bilinear material behavior is employed in the analysis domain, a new
and better optimum was found by employing LA. This optimum has been found using LA only and the
accompanying increased accuracy of the DiESL approximation. The reason for this has been illustrated
by comparing the contour lines of constraint and objective for the original nonlinear dynamic problem
and the DiESL method’s approximation with and without LA. This advantage could not be observed for
the crash box example, where a piecewise linear material model has been applied in the analysis domain.
Here, the combination of ET with LA yielded worse results than ET without LA. Combining AT with LA
did not show comparable disadvantages, but no improvements could be observed either. This may be
attributed to the ratio of plasticized and non-plasticized elements. The crash box plasticizes already at very
early stages of the deformation process such that most elements are in the plastic domain. The bilinear
material model employed in the design domain is not able to distinguish between elements with small and
with high plastic strains, it only accounts for one hardening modulus. This is different for the side impact
problem. First, the material model for the nonlinear dynamic analysis is bilinear only and second, a smaller
portion of the structure plasticizes here, whereas a significant portion remains in the elastic range for the
entire deformation process. It therefore can be concluded that LA in the current bilinear implementation
only improves the approximation quality if neither the elements in the elastic nor in the plastic domain are
dominating the structure’s behavior (Triller et al. 2022a). Extending the bilinear material model used in
the design domain to a piecewise linear material model could potentially mitigate this drawback. Elements
with small strains would be assigned to a higher hardening modulus than elements with high plastic strains.
The linear static response optimization would thus be able to distinguish between elements with high and
small structural stiffness, even if all elements are plasticized.

The next study examined the approaches to integrate contact forces as responses into the optimization
problem, e.g. as objective function or constraint. A simple hinge model has purposely been designed such
that the contact force first increases linearly and then drops due to the formation of plastic hinges. It turned
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out that in the falling phase of the contact force, the negative force increment stays constant independently
from the structure’s stiffness. This behavior is best represented by the IncC approach.

Afterwards all approaches have been tested on the crash box model by means of a multistart study. The
maximum contact force between impactor and structure was minimized while the impactor’s intrusion
was constrained. This was to target an optimal energy absorption behavior. Convergence issues have been
observed for all approaches with Inc and IncC having the most and least issues, respectively. A detailed
analysis of the un-converged optimization histories revealed that most of the convergence issues could
be attributed to the objective function’s high sensitivity with respect to the design variables. To allow
for a reasonable comparison of all multistart results, a best representative design has been determined
manually for each optimization run. A design has been considered representative if the design was feasible
and the design variables only differ “slightly” compared to the previous cycles. Comparing these best
points, the IncC approach statistically provided the best results with the greatest reliability. However,
the advantage over the IncS approach is relatively small and the manual procedure to determine the
representative runs involves uncertainties, such that a final conclusion on which approach is best could not
be made. Nevertheless, the visual comparison of the resulting design’s contact force curves for IncC with
the theoretical optimum confirmed the result’s high quality. The approach has therefore been considered
useful to handle contact forces with DiESL and has been applied for all following examples involving crash
forces.

Afterwards, the IncC has been tested again employing an example from literature. This is a side impact
example including a B-Pillar and has originally been used to test the ESD method. The structure is defined
by 20 design variables. The structure’s mass has been minimized while the contact force must remain
within a predefined corridor. The structure’s mass has been reduced by 42% with the DiESL method
compared to the initial design. In contrast, the ESD method reduced the mass by only 18%. The number
of nonlinear dynamic analyses was identical for both methods. However, the difference in mass reduction
is significant in favor of the DiESL method.

In chapter 5 the DiESL method has been extended to topology optimization. The SIMP approach has been
utilized to relate the density design variables to the mechanical properties of an elasto-plastic material,
namely Young’s modulus, yield stress, and strain hardening modulus. To prevent mesh distortion problems,
a penalty exponent pNL = 1 has been used in the analysis domain for all nonlinear dynamic examples, this
is a deviation from the exponent p = 3 in the design domain. To further address this issue, elements with
very small densities have been deleted from the nonlinear dynamic FE-model. The previously developed
mechanism for handling non-congruent models has been applied to reconstruct the nodal coordinates of
the elements deleted in the analysis domain. Intermediate densities have been transferred unchanged from
the design domain to the analysis domain to enable a continuous and smooth change of design from cycle
to cycle.

The proposed method has been tested using three examples. The first was a simple beam structure impacted
by a rigid pole. Again, the pole’s intrusion has been minimized while the structure’s mass was constrained.
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Three dynamic load cases were defined in which the pole’s initial velocity and mass have been varied to
examine the influence of inertia effects on the resulting optimized structures. The DiESL method yields
discrete and hence easy-to-interpret designs for all load cases. The plausibility of each result has been
confirmed by a cross validation where each optimal structure has been exposed to the remaining other load
cases. For each dynamic load case exactly one design performed best, namely the design that had been
optimized for the respective load case. Furthermore, the resulting designs of all dynamic load cases and an
additional linear static load case have been compared and discussed on a visual basis. It has been found
that the two designs obtained with the linear static and the slowest dynamic load case bear strong similarity
in that they developed a compression loaded member as main load path. For higher initial velocities the
optimal structures change significantly, most prominent are the development of tensile loaded members
and accumulation of mass in the impact zone. It can therefore be concluded that the DiESL method is able
to handle inertia effects. The good quality of the DiESL method’s results could further be confirmed by
comparing it to the standard ESL method. For both small and high velocities the structures obtained with
the ESL method are dominated by the characteristics of the linear static load case design, most prominently
by the compression loaded members. This reconfirms the superiority of the DiESL method over the ESL
method. For the high velocity load case, the DiESL method outperforms the ESL method by far, this is
mainly due to buckling of ESL’s compression loaded members. Moreover, the DiESL method yields more
discrete and thus easier-to-interpret structures than the ESL method does.

The second topology example was a more practice relevant one, an extruded rocker profile colliding with a
rigid pole. Here, the topology of the rocker profile has been optimized. The intrusion of the structure has
been minimized while the rocker’s mass was constrained. This problem has originally been used to test the
Graph and Heuristic Topology optimization (GHT) which is especially well suited for optimizing extruded
profile structures. In contrast, when employing the DiESL method some obstacles occur. Sufficiently small
elements must be used in the design space to model a good representation of the small thicknesses of the
resulting profile members. This results in a huge number of elements increasing the computational costs.
The simulations had to be conducted using a desktop computer with limited resources, and OptiStruct
imposed (potentially unnecessary) limitations on the minimum size of profile members, therefore a larger
element size than required had to be used in the design space. Consequently, a workaround for modeling
sub-scale structures has been developed. Both element densities and stiffnesses have been scaled in the
design space such that they are mimicking the behavior of smaller shell structures. For this purpose, two
different scaling factors have been determined empirically.
Two different strategies have been employed for gradually optimizing the rocker’s profile. Both strategies
involve the major steps topology optimization, interpretation, and sizing optimization. The combination of
both strategies and scaling factors yielded four similar results, the best of which has been slightly worse than
the result reported for the GHT. The DiESL method’s inferiority may be attributed to bad interpretations or
inaccuracies due to the scaling. Both of these sources of inaccuracy may be eliminated if the minimum
member size during topology optimization could be reduced. This may be achieved either by decreasing
the element size and executing the linear static response optimization problem on a high performance
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cluster (HPC) or by enabling smaller member sizes in OptiStruct. Nevertheless, some advantages of the
DiESL method over the GHT method became apparent. The total number of nonlinear dynamic analyses
was about 50 with DiESL and 3500 with GHT, this is a ratio of 70. Also, it should be emphasized that
the GHT today is no alternative when optimizing three dimensional structures, in contrast to the DiESL
method.

The third example used for the evaluation of topology optimization was also a practice relevant one with
forces involved in the optimization problem. A rail has been reinforced by a rib that is applied to the rail
using additive manufacturing, more specifically seam welding. The rail is originally part of the occupant’s
safety compartment of a car and should therefore be as stiff as possible to protect the occupant during a
front crash. The model examined here represents a component test bench to simulate the rail’s deformation
behavior and resistance when deformed with a constant velocity. The optimizations target was to reduce
the rib’s mass and therefore the related production cycle time without significant loss of stiffness. For this
purpose, the maximum reaction force of the rail has been maximized using the IncC approach while the
mass has been constrained. In order to derive several design proposals, the mass constraint has been varied
between various fractions of the original rib’s mass. Since a constant velocity is applied to the structure here
and thus no inertia effects are involved, the same SIMP penalty exponent pNL = p = 3 has been used in the
analysis and design domain without running into mesh distortion problems. Most of the design proposals
could be obtained with a small one-digit number of cycles and featured a very high discreteness value. The
best trade-off between mass reduction and performance loss has been identified for mass fraction of 70% of
the original rib. The corresponding 0-1 interpretation yields an almost identical force versus displacement
curve as the original rib design and therefore maintains the rail’s stiffness. The mass reduction of 30% can
be expected to yield a similar reduction in production cycle time and thus cost. Based on this example, it
can be concluded that the IncC approach yields valuable results for topology optimization problems where
a force is maximized. Future work should further examine the DiESL method’s capability to optimize the
energy absorption behavior by means of topology optimization and therefore target an almost rectangular
force versus displacement curve. Furthermore, dynamic effects should be considered in the example.

A frequently observed problem in the studied examples was the oscillation of design variables during several
subsequent cycles. This behavior is generally undesirable, as it usually does not lead to an improvement
in design. This is particularly frustrating since during the optimization process, information about these
repetitive design points have already been obtained by nonlinear dynamic analyses. However, information
from previous cycles do not have any influence on the search direction and step size in the following
cycles. The utilization of this unused information in the algorithm therefore offers additional potential
for improvement. Maybe it can be utilized to define individual move limits for each design variable
and thus avoid unnecessary oscillations. For sizing optimization, the relationship between the design
space spanned by the individual move limits and the optimization history, i.e., all previously collected
information, could potentially be established by a neural network. For this purpose, however, it would be
necessary to investigate on how strongly the neural network’s predictability depends on the example under
consideration.
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In this thesis the DiESL method has been compared to various alternative methods for nonlinear dynamic
response optimization. Overall, the DiESLmethod highlights itself by the comparatively small computational
effort required. It enables the handling of a huge number of design variables in contrast to metamodel-based
approaches, including topology optimization for nonlinear dynamic problems as exemplified. Additionally,
the DiESL method yields significantly better results than the ESL and ESD method. This also applies for
sizing and topology optimization problems involving contact forces. The DiESL method can therefore be
considered suitable for the optimization of crash structures including responses with regard to stiffness
and energy absorption behavior. Hence, nothing should prevent the optimization of full-size automotive
problems on an HPC. Besides, the DiESL method may also be a valuable tool in other areas where
nonlinearities in material or geometry are dominating the structural behavior.
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7 Appendix

7.1 Side Impact

Table 7.1: Uniformly distributed initial designs for side impact multistart study generated using STOA

run # 0x1 0x2 0x3 0x4 0x5 0x6 0x7
mm mm mm mm mm mm mm

1 0.5 2.5833 2.167 3 2.5833 0.5 0.9167
2 3 0.5 0.5 0.5 0.5 1.75 0.9167
3 2.167 1.33 3 0.5 3 2.5833 2.167
4 1.33 0.5 3 2.167 1.75 0.5 3
5 0.5 3 0.9167 2.167 0.9167 1.33 2.167
6 2.167 2.5833 1.75 1.33 1.75 2.167 1.33
7 3 0.9167 1.75 3 0.9167 2.5833 3
8 0.5 1.75 1.33 0.5 1.75 0.9167 0.5
9 1.75 3 0.5 1.33 2.5833 2.5833 0.5
10 3 1.75 3 2.5833 2.5833 1.33 1.33
11 0.5 0.9167 3 1.33 0.5 3 2.5833
12 1.33 2.5833 0.5 2.5833 1.33 3 2.167
13 2.5833 0.5 2.167 1.33 3 1.33 1.75
14 1.75 1.33 0.9167 1.75 0.5 0.5 1.33
15 0.5 2.167 0.5 1.75 3 2.167 3
16 2.167 0.5 0.9167 3 2.167 3 0.5
17 1.33 2.167 1.75 0.9167 0.5 1.33 0.5
18 2.5833 3 1.75 0.5 1.33 0.5 2.5833
19 3 1.33 2.167 2.167 1.33 2.167 0.5
20 1.75 2.5833 2.5833 0.5 2.167 1.33 3
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Figure 7.1: Side impact – contour lines of objective mass (grey) and maximum intrusion d for the nonlinear
dynamic problem, the DiESL and ESL approximation for
region 1: design point x1 = 0.5mm;x4 = 1.98mm;x5 = 2.73mm; d(x) = 199.1mm (left) and
region 2: design point x1 = 0.8mm; x4 = 0.6mm;x5 = 3mm; d(x) = 200.6mm (right).
Notes:
(1) All design variables x2, x3, x6, x7 are set to the lower bound (0.5mm)
(2) The assumptions made to identify the two 2D ranges for plotting the contour lines do not
necessarily apply for the ESL method
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7.2 Crash Box

Table 7.2: Crash box – uniformly distributed initial designs for multistart study generated using STOA.
Designs for smaller design space are scaled accordingly

run # 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0x10 0x11 0x12
mm mm mm mm mm mm mm mm mm mm mm mm

1 0.7 2.1 2.5 0.9 1.9 0.7 1.9 2.3 1.1 2.1 0.5 2.3
2 1.9 1.1 0.7 1.9 0.9 2.1 1.1 1.3 2.5 0.7 2.1 2.3
3 1.1 1.7 1.7 0.5 0.5 1.7 2.5 0.7 1.3 2.1 2.1 1.1
4 2.3 1.7 0.7 2.5 1.5 2.5 1.9 1.7 0.7 0.9 0.7 0.7
5 0.7 0.5 1.3 1.3 0.5 2.1 2.1 1.7 1.5 2.5 1.5 1.5
6 1.9 1.7 2.3 1.7 1.9 1.3 0.5 1.1 2.1 2.5 1.3 0.5
7 2.5 0.9 0.5 2.5 0.9 1.3 0.7 0.5 0.5 2.1 2.5 1.5
8 0.5 0.5 1.1 0.9 2.1 2.5 0.7 2.5 2.1 1.3 2.1 1.9
9 1.5 2.3 2.1 1.7 0.5 0.7 1.1 2.5 0.9 1.7 2.5 0.7
10 1.7 1.3 1.7 0.9 0.9 0.5 1.5 1.7 1.7 1.7 1.3 2.5
11 2.3 2.5 2.5 1.3 1.7 1.7 0.7 1.1 2.5 1.7 0.9 1.7
12 2.5 0.5 0.7 1.7 2.5 1.7 1.5 2.1 1.9 1.1 0.5 1.3
13 0.7 2.5 1.5 0.5 1.1 2.5 1.1 0.5 1.9 0.5 1.3 0.9
14 1.1 0.7 2.3 2.1 2.5 2.5 2.1 1.9 0.5 1.7 1.7 2.3
15 0.7 1.9 1.7 2.5 2.5 1.1 2.3 1.3 0.9 1.3 0.9 0.5
16 2.1 1.1 1.9 1.3 2.5 0.9 1.9 0.7 2.1 0.5 2.5 2.5
17 2.5 2.5 1.9 0.9 1.3 2.1 0.5 0.9 0.9 0.9 1.7 1.1
18 1.3 2.1 2.3 2.5 0.5 1.5 1.5 0.9 2.5 0.5 1.9 1.9
19 0.5 0.9 1.3 2.1 1.9 1.5 1.1 2.1 1.3 0.9 0.9 2.5
20 0.5 0.7 0.7 1.3 1.3 0.7 2.5 0.5 1.7 2.3 1.9 0.5
21 0.9 1.3 0.5 0.5 0.7 0.9 2.1 2.5 2.5 0.9 0.5 0.5
22 0.7 1.7 1.1 2.1 1.3 0.5 1.7 1.5 2.5 1.9 2.5 1.3
23 1.7 1.7 0.9 1.3 2.3 2.3 1.1 0.9 0.5 1.3 0.5 2.1
24 1.5 0.5 2.5 0.5 1.5 1.1 0.5 1.5 0.5 0.7 1.9 2.5
25 1.9 2.3 0.5 0.9 1.5 2.3 2.5 1.9 1.5 0.5 0.9 1.3
26 1.1 1.1 2.5 1.7 2.3 0.5 2.3 0.5 1.5 0.9 2.3 1.9
27 2.3 2.1 1.3 1.7 0.9 0.9 2.5 1.5 2.3 1.3 1.7 0.9
28 1.3 0.7 1.1 0.5 0.9 2.3 1.9 2.1 0.9 2.5 2.3 1.7
29 2.1 2.1 0.7 2.3 1.1 0.5 0.9 2.5 0.5 2.5 0.9 1.1
30 2.3 1.1 1.5 0.9 0.5 1.9 1.3 2.1 0.5 1.9 1.1 0.5
31 1.5 1.3 2.3 2.3 1.7 2.1 1.9 0.5 1.3 1.3 1.1 1.3
32 1.5 2.5 0.9 2.5 0.7 0.5 2.5 2.1 2.1 1.5 1.5 2.3
33 2.3 0.7 2.1 1.1 2.1 0.5 0.5 1.3 1.3 0.5 0.5 1.5
34 0.9 2.1 1.7 1.9 1.7 2.5 0.5 2.1 1.5 2.3 2.5 2.1
35 1.9 1.5 1.3 0.5 2.5 0.5 0.7 0.9 1.1 2.3 1.1 0.7
36 0.5 2.1 1.9 0.5 2.3 1.3 1.3 1.3 0.7 1.7 1.5 1.3
37 1.9 2.5 1.7 2.1 2.3 1.9 1.9 2.5 2.3 1.1 1.9 1.5
38 2.5 1.7 1.3 0.7 1.7 1.1 1.3 2.5 1.7 0.5 2.3 2.3
39 2.5 1.3 2.5 2.1 0.5 2.3 0.9 1.3 2.1 2.3 0.7 0.9
40 1.1 1.3 0.7 1.5 1.9 1.9 0.7 1.5 0.9 0.5 1.5 2.1

154



Initial theoretical optimum best last

Figure 7.2: Crash box – contact force over displacement for the best designs k∗x with k∗ ≥ kL (green)
and the last designs k = 40 (blue) of multistart runs 1-20 employing Inc
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Initial best lasttheoretical optimum

Figure 7.3: Crash box – contact force over displacement for the best designs k∗x with k∗ ≥ kL (green)
and the last designs k = 40 (blue) of multistart runs 21-40 employing Inc
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Initial best lasttheoretical optimum

Figure 7.4: Crash box – contact force over displacement for the best designs k∗x with k∗ ≥ kL (green)
and the last designs k = 40 (blue) of multistart runs 1-20 employing IncS

157



Initial best lasttheoretical optimum

Figure 7.5: Crash box – contact force over displacement for the best designs k∗x with k∗ ≥ kL (green)
and the last designs k = 40 (blue) of multistart runs 21-40 employing IncS

158



1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Th
ic

kn
es

s 
in

 m
m

Inc

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Th
ic

kn
es

s 
in

 m
m

IncS

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Th
ic

kn
es

s 
in

 m
m

IncC

𝑥1 𝑥2 𝑥3 𝑥4 𝑥6𝑥5 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

𝑥1 𝑥2 𝑥3 𝑥4 𝑥6𝑥5 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

𝑥1 𝑥2 𝑥3 𝑥4 𝑥6𝑥5 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

Figure 7.6: Crash box – best designs k∗x with k∗ ≥ kL of all multistart runs employing Inc (top), IncS
(middle), and IncC (bottom)
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7.3 Side Impact B-Pillar

Table 7.7 reports the averaged elapsed compute times per cycle for nT = 6 and nT = 20 for the Side Impact
B-Pillar model consisting of 22013 nodes.

Table 7.3: Averaged elapsed compute time per cycle for nT = 6 and nT = 20 on desktop computer with
48 CPU: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, CPU speed 2100 MHz, 49368 MB RAM,
130468 MB swap

nT averaged time elapsed # cores
s

6 503 13
20 663 41

This is also illustrated in Fig. 7.7. Here, the total time is given as a stacked bar. Each part of the bar
represents the averaged time per cycle of an computational operation as it was implemented in python. To
get a connection to the previously described program flow, the program flow as implemented in Python is
given in Fig. 7.8 and the major operations are briefly explained in the following. Each of these operations
efforts pre- and post-processing steps, which are denoted by ”.pre” and ”.post”, respectively:

nonlin Nonlinear dynamic analysis
comprgrid Reconstruction of deformed meshes (not required in this example)
compforc Calculation of ESLs
optimize Linear static response optimization

0 100 200 300 400 500 600 700

Averaged elapsed time per cycle in s

nonlin nonlin.post compforc.pre compforc compforc.post optimize.pre optimize

𝑛T = 6

𝑛T = 20

Figure 7.7: Side Impact B-Pillar – elapsed compute time per cycle illustrated for different computational
operations for different nT
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Figure 7.8: Program flow as implemented in Python
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