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Abstract: The higher heating value (HHV) is the main property showing the energy amount of
biomass samples. Several linear correlations based on either the proximate or the ultimate analysis
have already been proposed for predicting biomass HHV. Since the HHV relationship with the proxi-
mate and ultimate analyses is not linear, nonlinear models might be a better alternative. Accordingly,
this study employed the Elman recurrent neural network (ENN) to anticipate the HHV of different
biomass samples from both the ultimate and proximate compositional analyses as the model inputs.
The number of hidden neurons and the training algorithm were determined in such a way that the
ENN model showed the highest prediction and generalization accuracy. The single hidden layer ENN
with only four nodes, trained by the Levenberg–Marquardt algorithm, was identified as the most
accurate model. The proposed ENN exhibited reliable prediction and generalization performance for
estimating 532 experimental HHVs with a low mean absolute error of 0.67 and a mean square error of
0.96. In addition, the proposed ENN model provides a ground to clearly understand the dependency
of the HHV on the fixed carbon, volatile matter, ash, carbon, hydrogen, nitrogen, oxygen, and sulfur
content of biomass feedstocks.

Keywords: biomass sample; higher heating value; Elman neural network; topology tuning;
training algorithm

1. Introduction

Since fossil fuels have been used extensively for energy [1], concerns have grown over
the uncertain future of energy supplies as well as the adverse effects on the environment
caused by their direct combustion [2,3]. Consequently, environmental protection is gaining
much attention through the use of alternative energy sources [4–6]. As a renewable alter-
native to fossil fuels, energy production from biomass has gained considerable attention
due to its considerable environmental advantages [7]. The thermochemical conversion of
biomass is one of the most widely studied biofuel conversion technologies, but a strong
focus on biomass large-scale production can result in controversies.

Thus, the use of waste-oriented biomass for energy generation as a sustainable and
environmentally-acceptable method of generating energy can only be supported by using
agricultural residues, municipal solid wastes, animal manure, sewage, and food waste [8,9].

A significant variation in the chemical and structural compositions of biomaterials
used as feedstocks in thermochemical conversion results in a profound difference in the
amount of energy that they contain. The energy content of biomass is lower than that of
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coal, so to achieve the same degree of thermal efficiency, more fuel is required [10]. It is
difficult to standardize the product quality and process application due to the differences in
the chemical and physical properties of biomass feedstocks [11]. Therefore, the applicability
of biomass feedstocks in the context of energy conversion processes requires a variety of
characterization and investigations [12]. Fuel heating values are generally reported in two
ways: the lower (net) and the higher (gross) heating values [13].

In the selection and classification of feedstocks, the higher heating value (HHV) of
a fuel is a crucial property [14]. The traditional method of measuring the HHV of a fuel
sample is with an adiabatic oxygen bomb calorimeter. Liquid and solid fuel HHVs are
determined using bomb calorimeters, but this technique is time-consuming and expen-
sive [15]. Researchers can develop correlations to estimate fuel HHVs using the results
of ultimate and/or proximate analyses [16]. While the ultimate technique necessitated a
significant investment of both time and resources, the proximate analysis needed just a few
straightforward procedures to identify the fuel mix’s constituents [16]. Proximity-based
research is often more efficient and less expensive than other types of analysis. Proxi-
mate analysis, a technique for calculating the HHVs of fuels, has seen a recent surge in
use [16]. Consequently, proximate analysis is more commonly used to predict the HHVs
for fuels [17].

A wide range of empirical methodologies has been proposed to correlate the biomass
HHV with the proximate and ultimate compositional information [18,19]. By separating
cellulose, hemicellulose, lignin, and extractives from biomass, one can determine their rela-
tive amounts. In order to establish a relationship between HHV and biomass biochemistry,
several equations have been developed [20,21]. Linear [22] and non-linear [23] equations
are used extensively in the construction of these models. Because of the complexity of
biomass, explaining how the proximate analysis data relates to the final analysis data for
the HHV is challenging.

The literature includes several empirical correlations to predict the biomass HHV from
ash (A), proximate analysis (PA), ultimate analysis (UA), volatile matter (VM), and fixed
carbon (FC). For a variety of biomass, carbon (C), oxygen (O), hydrogen (H), sulfur (S), and
nitrogen (N) are the four major components [13,16].

Ghugare et al. found that non-linear models might fare better than linear meth-
ods when estimating the biomass HHV [24]. Since PA/UA values fluctuate so often, it
is challenging to develop a suitable non-linear empirical model without using compu-
tational models [24]. On the other hand, various machine learning models have exten-
sively been tested to prove their trusted applications in various fields [25–30], includ-
ing biotechnology [31,32]. The HHV of solid biomass was calculated using multilayer
perceptron–artificial neural network (MLP–ANN) and genetic algorithm (GA) models by
Ghugare et al. [24]. Thorough inquiries on the group were conducted. Hosseinpour et al.
determined the HHV in biomass using an iterative neural network and a modified version
of partial least squares [33]. By using the ANFIS model, Akkaya looked into the biomass’s
heating value (HV) [34]. Intending to compare the performance of various ANN topologies,
Uzun et al. devised a technique to calculate the HHV content of biomass. This was done so
that the most effective topologies could be identified [35]. When combined with domain
expertise and experimental data, the computational methods based on fuzzy inference
systems can provide accurate models, as shown by Akkaya [34]. The calorific values of
both individual and blends of biomass feedstocks may be predicted by ANN, as shown by
Jakšić et al. [13]. Pattanayak et al. derived three ANN models to determine the HHV of
different bamboo biomasses [36]. Each model was built using PA, UA, or a combination of
the two. An improved artificial neural network model with particle swarm optimization
was developed by Aladejare et al. to forecast the HHV of solid fuels like coal, lignite,
and industrial waste, as well as biomasses like agricultural waste and forest waste [37].
This was done to calculate the HHV of coal, lignite, and other industrial waste biomasses
(ANN–PSO). Statistical accuracy analysis showed that the ANN–PSO model was better
than the multivariable regression correlation to predict the biomass HHV.
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In this work, the Elman neural network (ENN), as a dynamic predictive tool with a
great degree of flexibility and outstanding simulation performance, is used for the first time
to estimate the biomass HHV. The structure-tuned ENN model can precisely anticipate the
effect of the proximate and ultimate composition terms on the HHV and help find the best
biomass type with the highest energy value.

2. Results and Discussions
2.1. Topology Tuning the ENN Model

The optimization techniques are needed to find either the maximum or minimum
value of an objective function [38,39]. This study employed two well-known optimization
scenarios, i.e., the LM (Levenberg–Marquardt) [40] and SCG (Scaled Conjugate Gradi-
ent) algorithms, to adjust the ENN’s adjustable parameters. The accuracy of the ENN
models with different sizes trained by the SCG and LM algorithms has been displayed in
Figures 1 and 2, respectively. This analysis approved that the ENN prediction accuracy is a
function of the training scenario as well as the model size. Therefore, it was necessary to
determine the most suitable ones by a comparative analysis.
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Both Figures 1 and 2 show that the model’s accuracy for predicting the training group
increased by enlarging the ENN size (increasing the number of hidden neurons). On the
other hand, the reliability of the ENN models for estimating the testing HHV samples
decreased by enlarging the model size. Since the ENN model was necessary to estimate
both the training and testing HHVs with acceptable accuracy, the best possible size of the
ENN–SCG and ENN–LM models is also shown in Figures 1 and 2. The ENN–SCG models
with the two and five hidden neurons showed enough accuracy for predicting the training
and testing datasets, while the ENN–LM only needed four hidden nodes to accurately
estimate these two datasets.

Table 1 applies five statistical indices to compare the selected ENN models’ perfor-
mance in the training and testing stages. This table also introduces the ENN models’
accuracy for predicting the whole HHV database.
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Table 1. Measuring the accuracy of selected ENN models by different indices.

Model Name Topology Dataset AARD% MAE RAE% MSE R

ENN–SCG 1 8-2-1
Training collection 4.17 0.76 51.61 1.09 0.83021
Testing collection 4.52 0.83 54.99 1.22 0.82787
The whole data 4.23 0.77 52.13 1.11 0.82914

ENN–SCG 2 8-5-1
Training collection 4.21 0.77 51.16 1.06 0.84745
Testing collection 4.63 0.85 64.51 1.20 0.77340
The whole data 4.28 0.78 52.84 1.08 0.83733

ENN–LM 8-4-1
Training collection 3.58 0.66 43.54 0.94 0.88335
Testing collection 3.94 0.73 56.28 1.03 0.82255
The whole data 3.63 0.67 45.19 0.96 0.87566

The observed numerical indices approved that the ENN–LM model had a better
performance than either the ENN–SCG 1 or the ENN–SCG 2 models. The absolute average
relative deviation percent (AARD%), mean absolute error (MAE), relative absolute error
percent (RAE%), and mean squared error (MSE) values achieved by the ENN–LM in the
training and testing stages were smaller than those obtained from the ENN–SCG models.
In addition, the correlation coefficient (R) values of the ENN–LM were higher than those
obtained by the trained ENN model with the SCG algorithm.

Hence, it can be claimed that the Levenberg–Marquardt had a better performance than
the Scaled Conjugate gradient algorithm to accomplish the training phase of the Elman
neural network. In addition, the LM algorithm provided the ENN model with a better
generalization ability in the testing phase. Therefore, the ENN–LM model with only four
hidden nodes (Figure 3) was selected as the best tool for predicting the biomass HHV.

It should be mentioned that all the developed ENN models have the logarithm sigmoid
and hyperbolic tangent activation functions in the output and hidden layers, respectively.
These functions help the ENN model to understand the nonlinear behavior of the biomass
HHV in different operating conditions. Moreover, the continuous and differentiable char-
acteristics of these activation functions are essential to adjust the ENN parameters by the
training algorithm.
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2.2. Performance Monitoring

This section relied on numerical and graphical investigations to evaluate how accurate
the structure-tuned ENN–LM model was in predicting the biomass HHV.

2.2.1. Training Stage

The cross-plot showing the actual versus calculated biomass HHVs for the train-
ing stage is depicted in Figure 4. The visual inspection of this figure and the observed
R = 0.88335 indicate that an acceptable agreement existed between the actual and predicted
biomass HHVs.
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The actual as well as predicted values of the biomass HHV shown in Figure 5 ap-
proved that the ENN–LM model was accurate enough in the training stage. The excellent
performance of the ENN–LM model could be further justified by the numerical values of
the statistical indices, i.e., AARD = 3.58%, MAE = 0.66, and MSE = 0.94.
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Figure 5. Actual HHV values and their counterpart estimations by the ENN–LM model.

The histogram of the residual error between the actual and the predicted values of
the biomass HHV in the training step is shown in Figure 6. This figure approved that the
training HHV samples had been predicted by the outstanding residual error ranging from
−3.5 to 4 MJ/kg. Furthermore, the standard deviation and average values of these residual
errors were very small, i.e., 0.942 and 0.071 MJ/kg, respectively.
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2.2.2. Testing Stage

The predicted HHVs by the ENN–LM model versus their counterpart actual values in
the testing stage has been illustrated in Figure 7. The acceptable value of the coefficient
of determination, i.e., R = 0.82255 showed that our small-size ENN–LM model was able
to generalize its learning to the testing HHVs. The observed deviation between the actual
and the predicted HHVs may be associated with the wide range of the involved biomass
samples and their compositions, uncertainty in the experimental data, and model errors.
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Figure 7. Estimated HHVs by the ENN–LM versus their counterpart actual values in the testing step.

The actual HHVs and their related ENN–LM predictions in the testing stage have been
simultaneously depicted in Figure 8. It can be seen that the proposed ENN–LM model
reliably interpolated these highly scattered experimental HHVs. Moreover, the numerical
values of the AARD = 3.94%, MAE = 0.73, and MSE = 1.03 approved the reasonable
agreement between the actual and the predicted HHVs of the biomass feedstocks.

It can be simply seen that the constructed ENN–LM model underestimated five and
overestimated four HHV samples in the testing stage. Since none of these HHVs were seen
by the ENN–LM model before and they were highly scattered, this level of uncertainty is
acceptable from the modeling perspective.

Figure 9 indicates that the designed ENN–LM model predicted the testing samples
of the biomass HHV with low residual errors ranging from −3 to 2.5 MJ/kg. The average
and standard deviation of the testing stage residual errors were 0.274 and 1.00 MJ/kg,
respectively. This figure also clarifies that a major part of the testing HHVs was estimated
by the residual error of ~0 MJ/kg.
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2.2.3. Overall Data

Figure 10 introduces the violin graph of the overall experimental HHVs and ENN–
LM predictions. The complete similarity between these two graphs is an indicator of the
acceptable accuracy of the structure-tune ENN–LM model for predicting the HHV of a
wide range of biomass feedstocks.
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Moreover, Table 2, which reports the experimental and predicted values of the median
and average HHVs, approves an excellent performance of the proposed ENN–LM model.
It can be seen that a slight deviation existed between the actual and modeling values.

Table 2. Key information of the violin graphs of actual and predicted HHVs.

Index Formula Actual HHV Estimated HHV

Median HHV Med = (HHVn/2 + HHVn/2+1 )/2 18.28 18.32
Average HHV HHV = ∑n

i=1 HHVi/n 18.21 18.11

3. Materials and Methods
3.1. Elman Neural Network

Based on Figure 11, the Elman neural network (also known as the recurrent neural
network) is made up of the input, hidden, context, and output layers. Indeed, the ENN is
a multilayer perceptron neural network with a feedback connection between the hidden
and input layers [42]. As Figure 11 shows, the context layer gets its inputs from the hidden
layer’s output. This internal feedback connection increases the network’s ability to process
dynamic systems. ENNs possess short-term memory capabilities and are widely used as a
means of managing either classification or approximation problems [42].
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3.2. Data Collection

A model was developed to estimate the HHV of biomass data using eight independent
variables, including FC, VM, ash contents on a dry basis, C, O, H, S (ash-free distribution),
and N as inputs. Based on the input data (X1 to X8), the modeling method seeks to find y
that best fits the data as follows:

y(X1, X2, X3, X4, X5, X6, X7, X8) (1)

where X1, X2, X3, X4, X5, X6, X7, and X8 refer to the model inputs which are FC, VM, Ash,
C, H, O, N, and S content of a biomass sample, and y denotes HHV.

The modeling procedure used 532 biomass data sets alongside their corresponding
HHVs for use in the simulations. Table 3 presents the dependent/independent variables
and their statistical information.

Table 3. Ultimate/proximate composition analysis and HHV of the studied biomass.

Variable (Unit) Analysis Type Average Standard Deviation Minimum Maximum Observations

Fixed carbon (wt%)
Proximate

17.49 6.71 0.00 59.30 532
Volatile matter (wt%) 75.30 8.91 7.70 92.70 532

Ash (wt%) 6.21 6.98 0.10 67.10 532
C (wt%)

Ultimate

45.88 5.67 14.61 97.18 532
H (wt%) 5.88 0.99 0.41 11.55 532
O (wt%) 43.26 7.16 0.00 81.80 532
N (wt%) 1.04 1.07 0.00 6.75 532
S (wt%) 0.19 0.34 0.00 4.90 532

HHV (MJ/kg) - 18.21 1.97 11.15 24.80 532

3.2.1. Data Distribution in Model Development and Validation Stages

The researchers randomly took 452 out of 532 available data patterns to use in the
training stage. In addition, the overtraining was monitored by the remaining 80 samples to
use as test data. Consequently, 85% of the dataset was used for training, while 15% was
chosen randomly for testing.
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3.2.2. Accuracy Evaluation

With the use of statistical testing, the most promising ideas were whittled down to
a select few. Metrics like residual error (Equation (2)), standard deviation (Equation (3)),
mean absolute error (Equation (4)), relative absolute error (Equation (5)), mean square error
(Equation (6)), coefficient of determination (Equation (7)), and average absolute relative
deviation (Equation (8)) abbreviated by RE, SD, MAE, RAE%, MSE, R, and AARD% were
computed to assess the quality of the developed models. Each of these variables is defined
in a different way using the following equations [43,44]:

RE = HHVact
i − HHVest

i i = 1, 2, . . . , n (2)

SD =
√

∑n
i=1 (1/n) ×

(
REi − RE

)2 (3)

MAE = (1/n) × ∑n
i=1

∣∣HHVact − HHVest∣∣
i (4)

RAE% = 100 × ∑n
i=1

∣∣HHVact − HHVest∣∣
i/∑n

i=1

∣∣∣HHVact
i − HHVact

∣∣∣ (5)

MSE = (1/n) × ∑n
i=1

(
HHVact − HHVest)2

i (6)

R =

√
1 −

{
∑n

i=1 (HHVact − HHVest)2
i /∑n

i=1

(
HHVact

i − HHVact
)2
}

(7)

AARD% = (100/n) × ∑N
i=1

∣∣HHVact − HHVest∣∣
i/HHVact

i (8)

4. Conclusions

In this research, a systematic procedure was followed to construct the efficient Elman
neural network model to anticipate the higher heating value of biomass feedstocks. The
ENN topological features and its training algorithm are well-determined by a systematic
procedure. The appropriate training algorithm and the optimum number of hidden neu-
rons of the ENN have been determined by a combination of trial-and-error and sensitivity
analysis. The proximate (fixed carbon, volatile matter, and ash) and the ultimate (carbon,
oxygen, hydrogen, sulfur, and nitrogen) composition analyses of the biomass are the inde-
pendent variables used to estimate the HHV. The results showed that the ENN with only
four hidden nodes trained by the Levenberg–Marquardt algorithm should be introduced as
the best tool for estimating the HHV of the biomass. This structure-tuned ENN predicted
the HHV of 532 biomass samples with outstanding accuracy (i.e., MAE = 0.67, MSE = 0.96,
and AARD = 3.63%). The perfect compatibility between the actual HHVs and their associ-
ated predicted values by the ENN was also approved by different graphical investigations,
including cross-plot, violin graph, and residual error monitoring. Our reliable ENN model
could be easily employed to choose a biomass feedstock with the highest HHV as a fuel
source. Since the bomb calorimeter analysis is not always available, interested readers may
conduct the HHV modeling by ignoring this type of information.
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