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Abstract: Atrial Fibrillation (AF) is one of the most common heart arrhythmias. It is known to
cause up to 15% of all strokes. In current times, modern detection systems for arrhythmias, such as
single-use patch electrocardiogram (ECG) devices, have to be energy efficient, small, and affordable.
In this work, specialized hardware accelerators were developed. First, an artificial neural network
(NN) for the detection of AF was optimized. Special attention was paid to the minimum requirements
for the inference on a RISC-V-based microcontroller. Hence, a 32-bit floating-point-based NN was
analyzed. To reduce the silicon area needed, the NN was quantized to an 8-bit fixed-point datatype
(Q7). Based on this datatype, specialized accelerators were developed. Those accelerators included
single-instruction multiple-data (SIMD) hardware as well as accelerators for activation functions such
as sigmoid and hyperbolic tangents. To accelerate activation functions that require the e-function as
part of their computation (e.g., softmax), an e-function accelerator was implemented in the hardware.
To compensate for the losses of quantization, the network was expanded and optimized for run-time
and memory requirements. The resulting NN has a 7.5% lower run-time in clock cycles (cc) without
the accelerators and 2.2 percentage points (pp) lower accuracy compared to a floating-point-based
net, while requiring 65% less memory. With the specialized accelerators, the inference run-time was
lowered by 87.2% while the F1-Score decreased by 6.1 pp. Implementing the Q7 accelerators instead
of the floating-point unit (FPU), the silicon area needed for the microcontroller in 180 nm-technology
is below 1 mm2.

Keywords: Atrial Fibrillation; artificial intelligence; quantization; neural networks; RISC-V

1. Introduction

Atrial Fibrillation (AF) is prevalent in about 2% of adults and one of the most common
arrhythmias [1]. In Germany, AF is one of the top five reasons for hospitalization [2].

As McIntyre et al. found in their study with 2470 participants, 3% of patients above
the age of 65 suffer from unknown AF. The condition is estimated to result in a stroke risk
of 2% per year [3].

The probability of undetected AF increases with age, as Go et al. found in their study,
including 17,974 adults. The prevalence among individuals over the age of 90 is estimated
to be 9%, whereas it is only 0.1% among individuals below the age of 55. Over all strokes,
AF is closely associated with causing about 15% [4].

AF in patients can indicate an increased risk of death and hospitalization with the next
year, as Zink et al. point out in their study with 7107 patients [5].

To detect AF, Holter monitors are widely used. These devices are able to record an
electrocardiogram (ECG) over a couple of hours for up to a few days. The recording time is
crucial for identifying patients with AF.
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Turakhia et al. investigated the benefits of an extended monitoring period for the
detection of AF in a study with 26,751 patients. The study concluded that a recording time
of 24 h can only identify 55.2% as many subjects compared to a recording over two weeks.

The assumption that a longer recording time is beneficial can be confirmed by Dagres
et al.: investigating a group of 215 patients after catheter ablation, the study found that a
24 h Holter ECG only detected 59% of patients with AF compared to a 7-day recording.

As an alternative to today’s Holter monitors, some wearable devices, e.g., smart
watches, are able to detect arrhythmias using integrated photoplethysmogram sensors [6].
Some wearables are also able to record ECG signals when triggered manually by the user [7].
Due to the high cost or missing medical certification, these devices are not suitable for
publicly financed clinical applications.

As a compromise, modern patch ECG devices can be used. These devices are a lot
smaller and more comfortable compared to Holter monitors. The patch ECG device is an
ECG integrated in a band-aid with minimal weight. This kind of device is much more
comfortable for patients who are supposed to wear the device for up to a few weeks. These
devices are designed for single-use, reducing the effort in application for clinical staff.
Additionally, modern patch ECG devices are able to collect ECG recordings of up to two
weeks, though recording less channels than Holter monitors [8]. A one-channel ECG might
still be sufficient to detect AF [7].

Compactness and longevity brings several challenges to the development of ECG
patch devices. One of the main challenges is the demand for a low-cost solution, since the
device is supposed to be used once and then disposed of. The enhanced recording period of
up to several weeks with a light-weight power supply such as a lithium button cell battery
requires a low-power hardware platform including microcontroller and memory, as well as
specialized and optimized software.

Commercially available devices are usually supported by a PC or server for the
analysis of the collected ECG recordings, since screening the data of several days is time
intensive for physicians. For the analysis, artificial intelligence (AI) algorithms can be used
to detect arrhythmias. The field of AI algorithms is broad. This work is focused on a fully
connected NN as the structure offers opportunity for hardware acceleration.

NNs consist of individual neurons, inspired by the biological brain, that compute an
output value depending on weighted inputs as well as an activation function. The weights
of the NN have to be trained using labeled data. An NN at leas has an input and an output
layer. Additional layers in-between are so-called hidden layers.

For the detection of arrhythmias in an ECG, even small neural networks with only one
hidden layer have proven successful [9].

As inputs to the neural network, so-called features are computed first. These features
can be in the time or frequency domain, as well as statistical variations. Commonly used
are, e.g., the standard deviation of RR intervals or the median RR interval [10].

To reduce the energy consumption and allow real-time analysis of the data, integrating
AI within the patch ECG device is beneficial. Due to the limited power supply, customized
digital hardware, as well as optimized software, performing the neural network (NN)
inference are developed.

Besides the main application of screening patients for AF with minimal impact on their
daily life, the system may also be suitable for various other applications such as patient
monitoring in clinics or nursing homes. The developed low-power AI solution may itself
be transferred to industrial applications, such as battery powered sensors, and other vital
signals, such as EEG, as well.

2. Objective, Motivation and Previous Work

To reduce energy consumption, cost and dimensions of the device, the system will be
integrated as a system-on-chip (SoC) in an application specific integrated circuit (ASIC).
Since memory is a critical factor in the silicon area needed for the ASIC, the memory
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requirements also have to be minimized. Estimating the minimal requirements for the
hardware requires an analysis of the used algorithm and network topology [11].

As the device will be applied as a medical device, the reliable detection of AF is neces-
sary. Classification of AF on a PC or server with today’s commercial software can achieve 55
to 98% in sensitivity and 84 to 97% specificity [1]. Since the presented approach is opti-
mized for an embedded system, the goal of this work is to achieve 90% sensitivity and 80%
specificity.

To reduce the clock frequency and therefore the energy consumption, the run time of
inference in clock cycles has to be reduced. Common methods to reduce the computing
effort are the quantization of the network as well as the simplification and elimination of
calculations that do not contribute to the NN accuracy.

The datatype used is also relevant for energy consumption and cost. A 32-bit floating
point multiplication may use as much as up to 18 times more energy than an 8-bit integer
multiplication. Additionally, the area needed for the computing unit may be up to a 27
times increase in silicon area, which is an indicator of production cost [12].

As part of a previous BMBF pilot innovation competition [13], Fraunhofer IMS carried
out research on a low power signal processing system to analyze the ECG data in terms of
AF. The result was a low power ASIC for ECG signal processing, using an optimized NN.
The network was implemented as a convoluted network, using hardware with parallel
implemented multiply-accumulate units. The system performed one inference within 146
ms at a clock frequency of 12.5 MHz [14].

Since the NN was implemented in hardware, changes to the network after the ASIC
synthesis are not possible. Therefore, adapting the NN to another application or optimizing
the network structure for higher accuracy is not easy to realize. A software based approach,
on the other hand, would allow future changes in the network structure, as well as the use
of activation functions and signal preprocessing, including the methods used for feature
extraction.

Thus, a detection of AF using a microcontroller and a software framework for embed-
ded devices is a promising approach. As a follow-up project, the ARTEMIS project was
initiated to investigate a software-based approach on a signal processing ASIC including a
RISC-V-based microcontroller and on-chip memory in contrast to the fully hardware-based
approach from the previous competition. In a previous work, the minimum requirements
for this hardware platform were assessed [11] and presented at IEEE International Sympo-
sium on Medical Measurements and Applications. With respect to the identified quantized
datatype, specialized hardware accelerators have been implemented in hardware descrip-
tion language (verilog) [15], which was presented at the Joint Annual Conference of the
Austrian, German and Swiss Societies for Biomedical Engineering. This paper presents
an overview of the design decisions for the digital part as well as the results for the ASIC
implementation.

3. Development and Optimization of the NN

The first step towards an efficient detection is the development of a signal prepro-
cessing algorithm. It preprocesses the signals and also chooses the best ECG channels,
since the analog front-end is able to switch between several electrodes. The algorithm
then segments the best signals into time windows and extracts a total of 13 scalar features
from the recorded data. These 13 features contain information about the detectable and
distinct sections of an ECG signal, such as QRS complex, P and T wave, as well as the
related distances between the sections. The mean value, drift and many more criteria are
also taken into account, including a data point for signal quality.

These features were then used to train a floating-point based NN (Section 3.1) as
proof-of-concept. The net was then quantized (Section 3.2), expanded (Section 3.3) and
simplified (Section 3.4).
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The goal of the quantization and optimization process was to access minimal re-
quirements in energy consumption, runtime and memory as well as to propose a suitable
datatype for customized accelerators.

Database

The data were acquired by Charité—Universitätsmedizin Berlin in the clinical trial
“Telemedical Interventional Monitoring in Heart Failure” (TIM-HF, NCT00543881) and
include 22,400 ECG recordings of 354 heart failure patients [16]. Charité is a partner of
Fraunhofer IMS in the ARTEMIS project. For training, 16,000 samples were used. The
remaining 6400 samples, 3200 positive and 3200 negative samples were used for testing.

3.1. Floating-Point-Based MicroNet

The 13 extracted features were used to train a so-called MicroNet, with only one
hidden layer and two output nodes (Table 1). Since the labels for the data points were
only two values, for AF or no AF, in the recording the two output nodes were normalized
to the value range of 0 to 1, to match the labels using a softmax activation function. The
classification then was assessed by which of the outputs were higher. The number of nodes
in the hidden layer, as well as the activation function, have an impact on the accuracy of
the NN. Empirically, 27 nodes in the hidden layer with a softsign activation function were
sufficient to achieve the required accuracy levels (Table 2).

Table 1. Different MicroNet versions with their structures.

Net Data Run in Structure Activ. Funct. Notice
Abbrv. Type HL Out.

1F FP32 AIfES 13–27–2 Softsign Softmax w. sw float

1FPU FP32 AIfES 13–27–2 Softsign Softmax w. FPU

1Q Q7 AIfES 13–27–2 Softsign Softmax

2P Q7 Python 13–32–2 Sigmoid Softmax

2A Q7 AIfES 13–32–2 Sigmoid Softmax

3 Q7 AIfES 13–32–2 Sigmoid ReLU

4 Q7 AIfES 13–32–1 Sigmoid ReLU

4A Q7 AIfES 13–32–1 Sigmoid ReLU Adj. Offset

4SHW Q7 AIfES 13–32–1 Sigmoid ReLU Special HW

Table 2. Different MicroNet versions with their results in accuracy, sensitivity, specificity, F1-Score,
parameter memory, flexible memory and run-time. Arrows indicating the goal for optimization.

Net Acc. Sens. Spec. F1 P. Mem. Fl. Mem Run-Time
Abbrv. in % in % in % in % in Bytes in Bytes in cc

↑ ↑ ↑ ↑ ↓ ↓ ↓
1F 88.2 93.1 83.3 88.8 1736 216 158,122

1FPU 88.2 93.1 83.3 88.8 1736 216 66,894

1Q 81.3 77.3 86.6 81.1 560 64 54,695

2P 85.3 91.2 80.5 86.6 N. A. N. A. N. A.

2A 85.2 90.4 82.3 86.8 652 72 66,295

3 81.1 93.2 77.1 86.3 652 72 65,943

4 86.0 86.5 85.6 86.1 616 72 61,857

4A 86.0 90.1 81.8 86.5 616 72 61,857

4SHW 81.6 87.8 75.4 82.7 616 72 8587
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For inference and feature extraction, the AIRISC was used. The AIRISC was developed
at Fraunhofer IMS and implements the RC32IMFC set of instructions [17]. Additionally,
customized hardware can also be integrated into the AIRISC to further accelerate NN
inference. It will be produced as an SoC later in the project, with special attention to mem-
ory and timing requirements. On the software side, the framework artificial intelligence
for embedded systems (AIfES) was used [18]. For rapid prototyping purposes and the
investigation of timing results, a Field-Programmable Gate Array (FPGA) board was used
to estimate the performance of an ASIC implementation during use. Because of the lower
frequency and higher energy consumption, an FPGA itself is not a suitable technology for
the patch integrated solution.

The run-time increases when using a microcontroller without a floating-point unit
(FPU, Table 2). The FPU is one of the largest modules in the silicon area needed or
FPGA resources used. Hence, for the ASIC implementation a software approach that
does not require an FPU would simplify the design and reduce the area footprint, power
consumption and production cost. For a 32-bit floating point multiplication unit, 27 times
more silicon area is needed compared to the 8-bit integer [12].

3.2. Direct Quantization Using AIfES

Besides using floating point datatypes, AIfES enables the use of functions for quan-
tization as well as optimized functions for the inference of quantized NNs. It is possible
to use it with 32-bit fixed-point quantization (Q31) or an 8-bit fixed-point quantization
(Q7, Table 3). Since the memory required by the NN is costly to implement in the ASIC, the
smaller 8-bit quantization was chosen to be used in this preliminary work. The framework
quantizes all weights and bias coefficients, as well as the input automatically.

Table 3. Q7 datatype in the hardware modules.

Sign Integer Fragments

Bit-
Number 7 6 5 4 3 2 1 0

Value +/− 2 1 1
2

1
4

1
8

1
16

1
32

The network structure was kept identical and no retraining has been performed
on the previous 32-bit floating-point (FP32) NN. Since even a quantization from FP32
to 8-bit floating-point (FP8) causes losses [19], it was to be expected that losses occur
with the 8-bit fixed point integer quantization. The advantages are memory and timing
requirements (Table 2).

3.3. Compensating Quantization Losses

One common way to compensate for quantization losses is to add more nodes or layers
to the NN topology [20]. However, to implement an expanded MicroNet, more coefficients
are necessary; thus, the network must be retrained. At the time of this study, AIfES was not
able to perform the training itself. Therefore, the Python based Keras framework was used
to train the expanded MicroNet [21]. Since the mathematical approximation for sigmoid is
the most accurate in AIfES compared to the other activation functions, sigmoid was used
in the hidden layer.

Empirically, the addition of five more nodes in the hidden layer results in acceptable
accuracy (Table 2) in terms of the requirement after training in Keras. The new structure of
the net is 13–32–2 (Figure 1), which later was also used to evaluate the specialized hardware.
The training cycle was repeated until the sensitivity and specificity reached the required
minimums.
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Hidden Layer

Input Layer

Output Layer

AF

Softmax

Figure 1. Schematic of the MicroNets used in this project to evaluate the hardware. Structure of
the NNs is 13–32–2. The NNs differ in their activation function (AF) in the hidden layer, therefore
marked in blue.

After completion of training with Keras, the resulting coefficients are able to be
directly used in AIfES. AIfES is optimized for embedded systems and has different ap-
proximations for mathematical functions, such as the sigmoid function. Due to this fact,
the results of the MicroNet in AIfES are slightly different from the results in Keras. The
expansion of the hidden layer results in slightly increased inference time and memory
requirements (Table 2).

3.4. Simplification

The result of the output layer is directly and monotonically dependent on the input of
the output nodes. Therefore, the result of the classification can already be retrieved from
the sum of input values through the two output nodes. The activation function softmax is
only necessary within training and fulfills the function of normalizing the incoming values
to a range between 0 and 1. This is the reason why, in theory, the activation function of
the output layer has no impact on the results of the network during inference. Thus, to
further decrease memory and timing requirements, the network was simplified by changing
the output activation function to rectifier linear unit (ReLU) as one of the fastest in the
framework.

To further simplify the network, the output layer was reduced to one node. Without
new training, the existing weights between hidden layer and output layer had to be
subtracted, so that the resulting single output node can identify AF by the algebraic sign of
the output value.

Since the NN has 13 input nodes and 32 nodes in the hidden layer, the first 13 · 32 = 416
weights, as well as the following 32 biases of the hidden layer, remain the same. Only
the 64 weights for the connections between hidden and output layer have to be combined
to 32 resulting weights wr, by subtraction of the original weights wo (Equation (1)). The
bias of the output layer itself also has to be combined. This recalculation can be described
by the following formula:

wr,j =

{
wo,i, i ≤ 416
wo,i − wo,i+1, i = 2 · k > 416, k ∈ N.

(1)

After the adjustments, the net now requires 449 weights wr,j, where j ∈ [1, 449]. To
adjust the quota of sensitivity and specificity with regard to the criteria specified, the bias
of the output nodes was manually adjusted from 0.53 to 0.9, which had a minimal impact
on accuracy and F1-score (Table 2).

4. Specialized Hardware Accelerators

The basic structure of a generic NN consists of neurons and weighted connections
between those (nodes and lines in the schematic representation in Figure 1). The input
nodes are the features, the input values were extracted from the signal. The output nodes
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are the output values of the NN. In between these two groups of nodes (layers), hidden
layers were used to process the input signals. Hidden layers and output layer in AIfES use
activation functions to compute their output. Every line resembles a multiplication of the
value of the previous node with a weight. The weighted inputs were then accumulated in
the following nodes.

This general structure of neural networks allows many approaches to accelerate
the use of the network for the classification of the input, the so-called inference. In this
section, accelerators for neural network inference are presented that accelerate the activation
functions in the nodes (Section 4.2) as well as the multiplications in-between (Section 4.3).
The accelerators’ impact was then evaluated using small NNs.

The software framework AIfES features various activation functions. Commonly used
are, e.g.,

• Sigmoid;
• Hyperbolic Tangent (tanh);
• Softmax; and
• Rectifier Linear Unit (ReLU).

ReLU only evaluates the sign of the input. If the input is positive, it is forwarded;
otherwise, 0 is the output of the node. This principle is fast with the standard set of
instructions; therefore, in this approach, it is not accelerated with specialized hardware.

Softmax function is defined as

σ(z)i =
ezi

∑K
j=1 ezj

. (2)

Due to the division, a complete hardware implementation of the softmax function
would require a lot of resources. To accelerate the nodes using the softmax function, the
e-function in the computation is accelerated using specialized hardware.

Sigmoid- and tanh-functions will be implemented in a combined hardware accelerator
module as there is a mathematical relation between the two.

4.1. MicroNets for Evaluation

Since three different accelerators for activation functions were implemented, three
similar NNs were trained to evaluate the performance of the hardware. Each of the
networks have the same structure, using 13 input features and one hidden layer with 32
nodes as well as two output nodes (Figure 1). To reduce memory requirements, the NN
was quantized to an 8-bit fixed-point datatype (Q7) in the software and corresponding
hardware modules.

4.2. Accelerating the Nodes

In this section, the implementation of the hardware accelerator for the tanh-function is
discussed. The goal of the chosen approach was to minimize hardware resources required.
Hence, linearization, and as few data points in look-up tables as possible, were used.

Therefore a valid area for linearization,

tanh(x) ≈ x, (3)

is determined. The maximum error for the linearization was set to be below the quantization
error of 1

32 , which is the lowest value represented in the Q7 interpretation of the hardware
module (Table 3). Using MATLAB [22], the intersection of the according error band around
the mathematical tanh-function with its linearization is found at x = 0.4671.

The tanh-function has an asymptotic final value of

lim
x→∞

tanh(x) = 1. (4)
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Therefore, to achieve maximum accuracy with the Q7 datatype, an approximation
for the area between x = tanhL(x) = 0.4671 and tanh(x) = 1 has to be found. Common
methods for these approximations in hardware are look-up tables (LUTs), more specifically
range addressable look-up tables (RALUTs) [23].

The difference between standard LUTs and RALUTs is that the values of an LUT are
defined by its x-values. Especially with quantized datatypes, it is possible that several
x-values correspond to the same y-value. This results in high memory requirements.
Additionally, the error for the y-values is different for each x-value. In RALUTs, this
problem is avoided by choosing the y-values first. The y-values are chosen equidistantly
over the range that has to be covered. In this case, from 0.4671 to 1.

Due to the quantization, this results in 18 entries in the RALUT to cover every possible
number.

Since the tanh-function is symmetric to the origin (Equation (5)), the same combi-
nation of linearization and RALUT can be used for negative input values. Therefore,
multiplexers and inverters were used for the sign conversion (Figure 2). The results of the
implementation are presented in Figure 3.

tanh(x) = −tanh(−x). (5)

x

-x

|x|

x[7]

1

RALUT y|y|

-|y|

IF

M M
M

Figure 2. Schematic of the hardware that approximates the tanh-function. Due to the symmetry, the
result is calculated for the absolute |x| of the input x choosing either a linearization, RALUT or border
value.

The sigmoid function is approximated using the module for tanh and the following
mathematical relation:

S(x) =
tanh( x

2 ) + 1
2

. (6)

The division by two was implemented by shifting operations. The resulting approxima-
tion resembles the tanh-implementation because of the obvious combination of linearization
and RALUT (Figure 3). The functionality of sigmoid and tanh-function were combined
in one module, the submodule for the sigmoid function only implements the addition
of one and the shifting operation of the output. The shifting operation at the input as well
as multiplexing were performed in a combined module.

As mentioned, the softmax function was accelerated by accelerating the contained
e-function in this approach. The accelerator for the e-function was restricted to the interval
between between −1 and 1 for input values. If values outside this range occur in the
program, they can still be calculated by multiplication with the Euler constant, respectively.



Sensors 2023, 23, 2703 9 of 17

-3 -2 -1 0 1 2 3
x

-1

-0.5

0

0.5

1

y

Tanh Function
Tanh Approx.
Sigmoid Function
Sigmoid Approx.

Figure 3. Plot of the mathematical hyperbolic tangent function (blue) and its hardware-implemented
approximation (red), as well as the mathematical sigmoid function (green) with its approximation
(magenta). Steps originate from the quantization (Q7) in the area of linearization, and from the
RALUT.

The approximation used is based on the cordic algorithm [24]. Therefore, it approx-
imates the hyperbolic sine and cosine in several steps. Each computing step calculates

xi+1 = xi + σiyi2−i, (7)

yi+1 = yi + σixi2−i, (8)

zi+1 = zi − σi · atanh(2−i), (9)

with

σi =

{ −1, zi < 0
+1, zi > 0.

(10)

The starting values are defined as

x1 = P′, y1 = 0, z1 = φ. (11)

P′ = 1.2075 is a constant, φ is the input value [24]. For the inverse hyperbolic tangent
(atanh), a small LUT is implemented for the relevant values.

The last y-value represents the sinh(φ), the last x-value the cosh(φ).

ym+1 ≈ sinh(φ), (12)

xm+1 ≈ cosh(φ), (13)
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The result of the exponential function can be computed by Equation (14).

exp(φ) =
{

cosh(φ)− sinh(φ), φ ≤ 0
cosh(φ) + sinh(φ), φ > 0,

(14)

and therefore is approximated by Equation (15).

exp(φ) ≈
{

xm+1 − ym+1, φ ≤ 0
xm+1 + ym+1, φ > 0.

(15)

In the presented hardware, three stages of the cordic algorithm were implemented.
For a Q7 datatype, eight stages in total are necessary. The resulting approximation is shown
in Figure 4. To achieve an operating speed of up to 100 MHz on the FPGA, the cordic
algorithm was split into a three-step pipeline to reduce the timing critical paths.

-1 -0.5 0 0.5 1
x

0

0.5

1

1.5

2

2.5

3

3.5

4

y

Approx.
e Function

Figure 4. Plot of the mathematical e-function (blue) as well as the hardware-implemented approxi-
mation (purple). The algorithm is used in the range from −1 to 1.

4.3. Accelerating the Multiplications and Accumulations

The RISC-V P-Extension features various so-called single instruction multiple data
(SIMD) operations. These operations can access 32-bit input registers, process multiple 8-
or 16-bit values in parallel and write the result in a 64-bit result register. The result is then
saved into memory in two 32-bit write operations.

For a Q7-based NN, up to four 8-bit multiplications in parallel may accelerate the
inference by about a factor of 4. Hence, this is implemented as a modification of the existing
multiplication module in the AIRISC.

To avoid having several redundant multiplication blocks, the multipliers can be
combined to feature multiplications for bigger datatypes. The requirement for the 8-bit
SIMD multiplication is four 8-bit multipliers (Figure 5). For future applications, a 16-bit
SIMD is also integrated in the circuit using two 16-bit multipliers.
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32-bit input registers

· · · ·

8-bit 8-bit 8-bit 8-bit

16-bit 16-bit 16-bit 16-bit
Two 32-bit output registers

8-bit 8-bit 8-bit 8-bit

Figure 5. The SMUL8 instruction as an example of the SIMD instructions in the p-extension of the
RISC-V ISA [25]. Eight 8-bit input values are accessed in two 32-bit words, multiplied and saved in
four 16-Bit values in the 64-bit result.

As the binomial equations (Equation (16)) illustrate, to correctly compute the result
of a multiplication with numbers that are segmented in two, four multipliers and a three
input adder for the results are needed.

(a + b) · (c + d) = a · c + a · d + b · c + b · d. (16)

Hence, the four 8-bit multipliers can be connected to one 16-bit multiplier. Taking into
account also the two 16-bit multipliers for 16-bit SIMD operations, three 16-bit operations
can be executed in parallel by the hardware. To compute 32-bit multiplications with
minimal additional hardware resources, one additional 16-bit multiplier is integrated as
well as the adder for the result (Figure 6). To correctly sum the interim results, shifters have
to be used as well.
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32-bit write operations.

5. Results and Discussion

Though the original, floating-point-based NN shows the highest F1-score with 88.8%
(1F, Table 2), after quantization and optimization most of the loss is compensated, resulting
in an increase of F1 score 2.3 percentage points (pp) less than the original
(4A, Table 2, Figure 7). Percentage points are used to express a difference between two
percentage values using subtraction. In runtime for the inference, 7.5% are saved. Memory
requirements were reduced by 64.9%.

The designed hardware accelerators for a hyperbolic tangent and sigmoid show a
maximum absolute error lower than two times the value of the least significant bit. The
maximum error for the e-function is within 0.1912 for the range up to e satisfactory (Table 4).
With regard to the hardware effort, the accelerators for SIMD and activation functions
combined require less in all criteria (Figure 8, Table 5). The results for an ASIC synthesis
are presented in Table 6. The accelerators achieved a reduction in runtime of up to 85.6 %
(SFS/SFH, Table 7) and as little as 9489 clock cycles (cc). The maximum F1-Score of the NN
for testing was 86.83 % (SGS, Table 7).

Figure 6. Combining the multipliers from 8- and 16-bit SIMD (M8, M16) together with an additional
16-bit multiplier to achieve a 32-bit multiplication in the 64-bit result. The result is then saved in two
32-bit write operations.
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5. Results and Discussion

Though the original, floating-point-based NN shows the highest F1-score with 88.8%
(1F, Table 2), after quantization and optimization most of the loss is compensated, resulting
in an increase of F1 score 2.3 percentage points (pp) less than the original
(4A, Table 2, Figure 7). Percentage points are used to express a difference between two
percentage values using subtraction. In runtime for the inference, 7.5% are saved. Memory
requirements were reduced by 64.9%.

The designed hardware accelerators for a hyperbolic tangent and sigmoid show a
maximum absolute error lower than two times the value of the least significant bit. The
maximum error for the e-function is within 0.1912 for the range up to e satisfactory (Table 4).
With regard to the hardware effort, the accelerators for SIMD and activation functions
combined require less in all criteria (Figure 8, Table 5). The results for an ASIC synthesis
are presented in Table 6. The accelerators achieved a reduction in runtime of up to 85.6 %
(SFS/SFH, Table 7) and as little as 9489 clock cycles (cc). The maximum F1-Score of the NN
for testing was 86.83 % (SGS, Table 7).

1F 1Q 2P 2A 3 4A
0.6

0.7

0.8

0.9

1

MicroNet Versions

Accuracy Sensitivity
Specificity F1-Score

Figure 7. Accuracy (blue), sensitivity (red), specificity (green) and F1-Score (purple) for the different
versions of the MicroNet.

LUT FF N A P
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Hardware Features
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Figure 8. Additional look-up tables (LUT), flip-flops (FF), NAND equivalents (N), silicon area (A)
and power (P) needed for the SIMD accelerators (SIMD), the accelerators for the activation functions
(AF) and the floating point unit (FPU).
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Table 4. Maximum absolute error in the x-range of x ∈ [−1 : 1] for the accelerators compared to the
mathematical function.

Accelerator Error

tanh(x) 0.0610

S(x) 0.0320

exp(x) 0.1912

Table 5. Resources needed for the additional hardware on the FPGA. The relative values are referring
to the AIRISC without the FPU, accordingly 11,350 LUTs and 4557 FFs.

Functionalities Add. LUTs Add. FF rel. LUTs rel. FF

Tanh-, Sgm-, e-Fct. 171 41 1.5% 0.90%

SIMD 1416 161 12.4% 3.53%

Table 6. Synthesis results for the ASIC in 180 nm technology.

Width 975 µm

Length 975 µm

Area 0.951 mm2

NAND-Eq. 61,150

Max. Frequency 30 MHz

Table 7. Results for the three MicroNets with their different activation function, abbreviation (Abrv.)
for Figure 9, if hardware accelerators were used (HW) or purely software activation functions, runtime
(RT) without and with SIMD in clock cycles as well as accuracy, Sensitivity, specificity and F1-Score
to evaluate the performance of the hardware. Arrows indicating the direction of optimization.

Activation Abrv. HW or RT w/o RT w. Acc. Sens. Spec. F1
Function SW SIMD SIMD

Used in cc in cc in % in % in % in %
↓ ↓ ↑ ↑ ↑ ↑

Tanh THS SW 63,463 10,106 82.63 78.29 86.97 81.84
THH HW 63,180 9489 81.69 78.16 85.21 81.02

Sigmoid SGS SW 66,312 12,077 85.23 90.34 82.25 86.83
SGH HW 58,418 10,073 79.31 92.26 69.86 82.97

Softmax SFS SW 67,538 11,166 84.17 86.02 84.78 85.49
SFH HW 65,998 9700 86.03 87.04 85.03 86.17

Using the specialized hardware on the previously optimized NN (4A, Figure 9)
achieved the lowest runtime in inference with 8587 cc but at a loss of 6.1 pp (4SHW) com-
pared to the floating-point-based micronet (1F/1FPU). This may come from the error of the
hardware approximations.

An on-chip memory of 64 kB appears to be realistic for the inference, as the combined
inference results and model parameter memory is below 1 kB and the program memory
can be reduced below 56.708 kB. The memory has a significant impact on silicon area and
power consumption (Figure 10).

If the inference should be executed once per second, a clock frequency of 8.6 kHz would
be sufficient with the specialized accelerators. However, this only covers the inference, not
signal preprocessing or feature extraction. These additional calculations were responsible
for up to 54% of energy consumption in the Hinkelstein project [14]. The impact in this work
is expected to be similar.
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Figure 9. F1-Score (y-axis) vs. run-time in clock cycles on the AIRISC plotted for the different
MicroNet versions. The FP-based MicroNet (1F) achieves the highest F1-Score, though also requires
highest run-time. The extended, quantized net (4A) compensates most of the quantization loss in the
directly quantized MicroNet (1Q). The specialized accelerate reduce runtime a lot (4SHW).
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Figure 10. Impact of memory installed with an AIRISC microprocessor to power consumption and
silicon area needed.

6. Conclusions and Outlook

Due to the positive results presented with the described accelerator architecture, the
ASIC may be implemented without an FPU. The performance of the NN may be further
optimized by using the hardware approximations in training. An adaption or optimization
of the feature extraction to the analog frontend used in the device might also prove to be
beneficial. As the quality of ECG recordings was good, the device has to be tested in the
field to prove the performance.

Besides the power consumption, memory required is assumed to be the limiting factor
for AI algorithms on the SoC as it has a significant impact on silicon area.

If the evaluation of the developed device is positive, it can be adapted to several appli-
cations, e.g., for telemedical observation of patients, informing medical staff if necessary.
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Future approaches to optimizing the AIRISC for AI algorithms could be supplementary
accelerators for even smaller datatypes, as sub-byte-to-single-bit datatypes have proven
useful for some applications [26]. An other approach could be the use of a small embedded
FPGA to allow reconfiguration of the device with respect to the application, as it was
implemented with different RISC-V cores [27].
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