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Abstract: Thermal loading, especially in fire scenarios, challenges the safety and long-term durability
of concrete structures. The resulting heat propagation within the structure is governed by the
heat conduction equation, which can be difficult to solve analytically because of the nonlinearity
related to the thermophysical properties of concrete. A semi-analytical approach for the transient
nonlinear heat conduction problem in concrete structures was established in the present work. The
nonlinearity related to the temperature-dependent thermal conductivity, mass density, and specific
heat capacity of heated concrete was taken into consideration. A Taylor series approximate solution
was first established within a small neighborhood, employing the Boltzmann transformation in
combination with the mean value theorem. Thereafter, it was extended to the whole domain by
utilizing the Bernstein polynomial. The semi-analytical approach was validated by comparing it with
the numerical results of two independent Finite Element simulations of nonlinear heat conduction
along concrete plates, subjected to either moderate or fierce thermal loading. Absolute values of the
relative errors are smaller than 5%. The validated semi-analytical approach was further applied to
prediction of the temporal evolution of the temperature field of a scaled model of a subway station,
subjected to fire disaster. The nonlinearities, related to the time-dependent surface temperature and
the temperature-dependent thermophysical properties of concrete, were taken into consideration.
The predictions agree well with the experimental measurements. The established semi-analytical
approach exhibits good accuracy and stability, providing insight into the interaction between the
thermophysical properties of concrete in the heat conduction process.

Keywords: concrete heat conduction; semi-analytical approach; high temperature; nonlinear; fire
loading

1. Introduction

Concrete structures are frequently subjected to daily temperature cycles [1,2], some-
times also to extreme weather events such as hail showers [3,4], and occasionally to acci-
dental scenarios such as fire disasters [5,6]. The resulting thermomechanical loading raises
not only macroscopic and microscopic thermal stresses [7] but also thermal decomposition
of materials [8], which is a challenge to the safety, service performance, and long-term
durability of concrete structures.

Identification of the temperature field is the prerequisite for performing a thermome-
chanical analysis of the behavior of thermally-loaded concrete structures. For example,
following the simplified “500 ◦C isotherm method” recommended by Eurocode 2 [9], con-
crete with a temperature over 500 ◦C is ignored, while that with a temperature below
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500 ◦C is considered to maintain its full strength, in quantification of the bearing capac-
ity of concrete members. More sophisticated prediction of the structural performance is
related to calibration of the thermal degradation of concrete materials [8,10] and thermal
stresses [11,12], as a result of the temporal and spatial evolution of temperature fields.
Furthermore, the heat transfer process is also influenced by the mass transfer [13,14], as a
result of vaporization and dehydration, and the cracking [15,16], as a result of mechanical
response. In this aspect, hygro-thermo-chemo-mechanical models were also proposed [17],
which is beyond the scope of this work.

Driven by the temperature difference, heat conducts within concrete, following [18]

ρT CT
∂T
∂t

= div
[
KT grad(T)

]
, (1)

with ρT , CT , and KT standing for the mass density, specific heat capacity, and thermal
conductivity, respectively. If the partial derivative of temperature with respect to time is
nonzero, i.e., ∂T/∂t 6= 0, the temperature field is time-dependent, defined as transient heat
conduction. Stationary heat conduction, in turn, is characterized by a time-independent
temperature field, i.e., ∂T/∂t = 0. Notably, the effect of mass transfer processes is not
explicitly included here for simplicity [19]. The thermophysical properties of concrete
are temperature-dependent, leading to the nonlinearity of the governing Equation (1).
Both the mass density and the thermal conductivity of concrete decrease with increasing
temperature, for example, the empirical functions of these properties recommended by [9].
This is attributed to the water loss [5] as a result of evaporation and dehydration [8]
when heated. Apart from temperature, the thermal conductivity of concrete significantly
depends on the moisture content, aggregate type, and measurement technique, leading to a
fluctuation of experimental results reported in literature [13,20]. Thermal conductivity of
concrete at room temperature generally ranges from 1.4 W/(m·◦C) to 3.6 W/(m·◦C) [21],
which decreases with increasing temperature [9]. Review studies indicate that this thermal
conductivity can decrease by around 50 % when being heated up to 500 ◦C [13,22]. The
specific heat capacity of concrete at room temperature varies between 840 J/(kg·◦C) and
1800 J/(kg·◦C) [5,21], which increases with increasing temperature. This is attributed to
the latent heat of the evaporation of free water, the dehydration of cement hydrates, and
possible transformation of aggregates [6,21]. Therefore, consideration of the nonlinearity,
related to the thermophysical properties of concrete, in a solution of its heat conduction
problem, is necessary.

The nonlinear heat conduction problem can be solved either numerically or analyti-
cally. An extensive amount of work has been found on the application of Finite Element
method in solving the heat conduction problem in concrete structures [23,24], such as pave-
ments [25], tunnel linings [26], and bridge girders [27]. For calibration of the nonlinearity of
the partial differential equation, both the mesh size and the time increments shall be set rel-
atively small. Compared to Finite Element simulations, an analytical solution is beneficial
in reducing computational efforts and demonstrating the transparent interactions between
the thermophysical parameters of concrete in the heat transfer process. The analytical
solution is well-known for several linear heat conduction problems [4,28]. Considering
the linearity of the governing equation, superposition principles are frequently utilized
for the discretization of the time-dependent thermal boundary conditions in construction
engineering [29,30]. As for nonlinear heat conduction, various analytical methods have
been developed. For example, with Kirchhoff transformation, Kim [31] transferred the
steady-state nonlinear heat conduction equation into the Laplace equation, which is easy
to solve. By employing the Adomian decomposition method, Arslanturk [32] established
an analytical solution in the form of an infinite power series. In the framework of the
Differential Transformation Method, the nonlinear differential equation, governing the heat
conduction process, can be transferred into algebraic equations in the K domain, see [33]
for details. Further developments include the homotopy perturbation method [34], the
homotopy analysis method [35], the tanh method [36], and so on. Given the mathemati-
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cal similarity between the governing equations of the heat conduction problem and the
diffusion problem, recent progress on solutions of the linear diffusion equation, utilizing
three different Ansätze [37], and of the nonlinear diffusion equation, utilizing Boltzmann
transformation [38,39], are also worth mentioning. The variable transformation technique
of the latter was also followed in the present work.

The present study employed the Boltzmann transformation, in conjunction with the
mean value theorem and Bernstein polynomial, for solving transient nonlinear heat con-
duction of concrete. The nonlinearity related to the temperature-dependent thermophysical
properties, i.e., the mass density, specific heat capacity, and thermal conductivity, of con-
crete and the time-dependent boundary conditions was considered. For establishment of
the analytical solution, the Boltzmann variable was first introduced in order to transfer
the nonlinear partial differential equation of the heat conduction problem into a nonlinear
ordinary differential equation. By utilizing the mean value theorem, an approximate inte-
gral form of the governing equation was derived, which was solved by linearization of the
nonlinear equation and the first-order Taylor series approximation in a small neighborhood.
Finally, the semi-analytical solution for the whole domain was established from the basic
solution within the aforementioned neighborhood, by recalling the Bernstein polynomial.
The solution was validated by numerical simulations and further applied to a scaled fire
test, inspired by a three-span subway station [40]. The thermomechanical behavior of the
model in the first 30 min of the test was analyzed by a three-dimensional Finite Element
simulation, simulating a non-catastrophic fire event [41]. Notably, the thermophysical
properties of concrete were assumed to be constant in simulating the temperature field.
This provides the motivation to predict the temperature evolution over the whole heating
process, accounting for the temperature-dependent thermophysical properties of concrete.

The present study is structured as follows. Section 2 is devoted to the establishment of
the semi-analytical approach of the transient nonlinear heat conduction problem, which
was validated by comparing the numerical results with Finite Element simulations of
concrete plates in Section 3. The validated semi-analytical approach was further applied to
prediction of the temperature evolution of a scaled model of a concrete subway station in
Section 4, followed by discussions in Section 5. Conclusions are drawn in Section 6.

2. Establishment of the Semi-Analytical Approach
2.1. Boltzmann Transformation

In the case of one-dimensional heat conduction, i.e., along the x-coordinate, the gov-
erning Equation (1) is written as

ρT CT
∂T
∂t

=
∂

∂x

(
KT

∂T
∂x

)
, (2)

where the mass density, specific heat capacity, and thermal conductivity are all considered to
be temperature-dependent, i.e., ρT = ρT(T), CT = CT(T), and KT = KT(T). An isothermal
initial configuration, characterized by a reference temperature of Tre f , is considered

ini. : T(x, t=0) = Tre f . (3)

This reference temperature is considered to remain constant at infinity of a semi-infinite
solid, whereas, the interior boundary of this solid is subjected to a temperature change, i.e.,

b.c. : T(x=0, t) = Thot , T(x=+∞, t) = Tre f . (4)

An intermediate variable, U, is introduced as a function of temperature,

U = U(T) =
∫ T

Tre f

ρT CT dT , (5)
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which is defined as the integration of the volumetric heat capacity, i.e., the product of the
mass density and specific heat capacity, over temperature. The partial derivatives of U with
respect to the time t and the x-coordinate read as

∂U
∂t

=
(
ρT CT

)∂T
∂t

,
∂U
∂x

=
(
ρT CT

)∂T
∂x

. (6)

Substituting Equation (6) into Equation (2) leads to the following expression of the govern-
ing equation

∂U
∂t

=
∂

∂x

(
KT

ρT CT

∂U
∂x

)
. (7)

The initial and boundary conditions are determined by substituting Equations (3) and (4)
into Equation (5) as

ini. : U(x, t=0) = U(Tre f ) = Ure f , (8)

b.c. : U(x=0, t) = U(Thot) = Uhot , U(x=+∞, t) = U(Tre f ) = Ure f . (9)

Following the Boltzmann transformation [38,39,42], the partial differential Equation (7)
can be transferred into an ordinary differential equation. A Boltzmann variable φ is
introduced, as a function of the time t and the x-coordinate, i.e.,

φ =
x√

t
. (10)

The partial derivatives of the Boltzmann variable φ with respect to time and x-coordinate
read as

∂φ

∂t
= − φ

2 t
,

∂φ

∂x
=

1√
t

. (11)

Substituting the Boltzmann variable φ into the governing Equation (7) and recalling the
implicit differentiation result in

∂U
∂φ

∂φ

∂t
=

∂

∂φ

∂φ

∂x

(
KT

ρT CT

∂U
∂φ

∂φ

∂x

)
, (12)

which can be simplified by referring to the partial derivatives of the Boltzmann variable,
i.e., Equation (11), as follows:

−1
2

φ
dU
dφ

=
d

dφ

(
KT

ρT CT

dU
dφ

)
. (13)

Recalling Equation (5) gives access to the differential, dU = ρT CT dT, which is then
substituted into Equation (13). This leads to the ordinary differential equation, governing
the heat conduction process, as

−1
2

φ
ρT CT dT

dφ
=

d
dφ

(
KT

dT
dφ

)
. (14)

Equation (14) is a transformed version of the heat conduction Equation (2), calibrating the
relation between the temperature variable T and the Boltzmann variable φ. By setting x = 0
and x = +∞ in Equation (10), the boundary conditions Equation (4) are transformed to

b.c. : T(φ=0, t) = Thot , T(φ=+∞, t) = Tre f . (15)

So far, introduction of the Boltzmann variable facilitates the transformation of the nonlinear
partial differential equation to a nonlinear ordinary differential equation. An analytical
solution of the latter is still challenging, especially when the boundary conditions are
time-dependent.
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2.2. Analytical Solution in a Small Neighborhood

In the following, the nonlinear ordinary differential equation is first solved in a small
neighborhood. The governing Equation (14) can be written as

−1
2

φ ρT CT dT = d
(

KT
dT
dφ

)
, (16)

with its integration reading as

−1
2

∫ T

Tre f

φ ρT CT dT = KT
dT
dφ

. (17)

By referring to the mean value theorem [43], Equation (17) can be written as

−1
2

φ
[

Tre f + θ (T − Tre f )
] ∫ T

Tre f

ρT CT dT = KT
dT
dφ

, (18)

with θ ∈ ( 0 , 1 ). Taking the integral term on the left-hand-side of Equation (18) to its
right-hand-side and integrating the resulting expression leads to

−1
2

∫ 0

φ
φ
[

Tre f + θ (T − Tre f )
]

dφ =
∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT . (19)

Referring to the mean value theorem for the left-hand-side of Equation (19) again results in

1
2

φ
[

Tre f + θ
(
T + ϑ (Thot − T)− Tre f

)]
φ =

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT , (20)

with ϑ ∈ (0, 1). For the convenience of following derivation, a variable ∆T is defined:

∆T = T −
[

Tre f + θ
(
T + ϑ (Thot − T)− Tre f

)]
, (21)

such that Equation (20) can be rewritten as

1
2

φ(T − ∆T) φ(T) =
∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT . (22)

A variable T̃ = T + ∆T is introduced and substituted into Equation (22), leading to

1
2

φ(T̃ − 2 ∆T) φ(T̃ − ∆T) =
∫ Thot

T̃−∆T

KT∫ T
Tre f

ρT CT dT
dT . (23)

Within the small neighborhood of T, i.e., ∆T → 0, we have the following approximation:

T̃ = T + ∆T ≈ T . (24)

By substituting Equation (24) into Equation (23), and multiplying the resulting expression
with the two sides of Equation (22), respectively, an approximate integral form is derived:

φ(T)
∫ Thot

T−∆T

KT∫ T
Tre f

ρT CT dT
dT = φ(T − 2 ∆T)

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT . (25)
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The approximate governing equation is solved by referring to the first-order Taylor series

approximation. φ(T) in Equation (25) can be considered as a function of

(∫ Thot
T

KT∫ T
Tre f

ρT CT dT
dT

)
,

with its derivative defined as:

φ′ =
dφ(T)

d

(∫ Thot
T

KT∫ T
Tre f

ρT CT dT
dT

) . (26)

Therefore, the first-order Taylor series approximation of φ(T − 2 ∆T) reads as:

φ(T − 2 ∆T) = φ(T) + φ′

∫ Thot

T−2 ∆T

KT∫ T
Tre f

ρT CT dT
dT −

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

+ c , (27)

with c standing for the higher order infinitesimal function, reading as

c = O


∫ Thot

T−2 ∆T

KT∫ T
Tre f

ρT CT dT
dT −

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

2
 . (28)

Substituting Equation (27) into Equation (25) results in

φ(T)

∫ Thot

T−∆T

KT∫ T
Tre f

ρT CT dT
dT −

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT


= φ′

∫ Thot

T−2∆T

KT∫ T
Tre f

ρT CT dT
dT −

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

 ∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

+ c
∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT .

(29)

For simplicity, two variables, a and b, are introduced:

a =

∫ Thot
T−∆T

KT∫ T
Tre f

ρT CT dT
dT −

∫ Thot
T

KT∫ T
Tre f

ρT CT dT
dT∫ Thot

T−2∆T
KT∫ T

Tre f
ρT CT dT

dT −
∫ Thot

T
KT∫ T

Tre f
ρT CT dT

dT
, (30)

b =
−c∫ Thot

T−2 ∆T
KT∫ T

Tre f
ρT CT dT

dT −
∫ Thot

T
KT∫ T

Tre f
ρT CT dT

dT
, (31)

Substitution of Equations (30) and (31) into Equation (29) results in

φ =
φ′ − b

a

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT . (32)

This first-order nonlinear ordinary differential equation can be easily solved as

φ = v

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

a

+
b

1− a

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

 , (33)
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with v as a parameter to be determined. At this point, an analytical solution of the nonlinear
ordinary differential Equation (14) is established. The latter is transferred to an approximate
integral form by utilizing the mean value theorem, which is then solved by recalling the
first-order Taylor series approximation. Because of this approximation, the established
solution (33) is valid for within the small neighborhood of T.

2.3. Approximate Solution in the Whole Domain

The approximate solution within the whole domain is established by recalling the
Bernstein polynomial [44]. For the sake of distinguishing, the approximate solution in
the aforementioned neighborhood, i.e., Equation (33), is denoted as φ1. A variable ξ is
introduced as

ξ =
φ1

φ1,max
, (34)

with φ1,max standing for the maxima of φ1 within the neighborhood. Therefore, this variable
falls in the range of ξ ∈ [ 0 , 1 ], by considering its non-negativity. The solution in the whole
domain can be considered as a function of the solution within the small neighborhood, that
is φ = φ(ξ). The n-th order Bernstein polynomial of φ(ξ) follows

Bn(φ, n) =
n

∑
i=0

φ

(
i
n

)[(
n
i

)
ξ i (1− ξ)n−i

]
, (35)

with the binomial coefficient, defined as
(

n
i

)
= n!

i! (n−i)! . The Boltzmann variable within

the whole domain is approximated by the first-order Bernstein polynomial as

φ(ξ) ≈ Bn(φ, 1) = φ(0) (1− ξ) + φ(1) ξ . (36)

At the heated boundary surface, i.e., x = 0 and T = Thot, the approximate solution in the
neighborhood is equal to zero by recalling Equation (33), i.e., φ1 = 0, and, therefore, the
intermediate variable ξ is also equal to zero, i.e., ξ = 0. By recalling the definition of the
Boltzmann variable in Equation (10), the φ(0) in Equation (36) can be quantified as

φ(0) = φ(ξ = 0) =
x√

t

∣∣∣
x=0

= 0 . (37)

Substituting Equations (34) and (37) into Equation (36) results in

φ(ξ) ≈ Bn(φ, 1) =
φ(1)

φ1,max
φ1 , (38)

with the fraction standing for a coefficient. Taking Equation (33) into Equation (38) leads to
the approximate solution of the Boltzmann variable in the whole domain

φ ≈ v φ(1)
φ1,max

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

a

+
b

1− a
φ(1)

φ1,max

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

 , (39)

which can be written as

φ ≈ v1

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

w

+ v2

∫ Thot

T

KT∫ T
Tre f

ρT CT dT
dT

 , (40)

with parameters v1, v2, and w to be determined.
The boundary condition Equation (15) is recalled for identification of the three pa-

rameters. The approximate solution (40) is considered to achieve a minimum residual
sum of squares (RSS) of the governing Equation (14) from Tre f to Thot. Furthermore, the
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approximate solution accurately satisfy the governing equation at two random temperature
points, T1 and T2, within the boundary scenario Tre f < (T1 , T2) < Thot, as

RSS =
∫ Thot

Tre f

[
1
2

φ ρT CT
dT
dφ

+
d

dφ

(
KT

dT
dφ

)]2
dT −→ min ,

− 1
2

φ ρT CT
dT
dφ

∣∣∣∣∣
T=T1

=
d

dφ

(
KT

dT
dφ

)∣∣∣∣∣
T=T1

,

− 1
2

φ ρT CT
dT
dφ

∣∣∣∣∣
T=T2

=
d

dφ

(
KT

dT
dφ

)∣∣∣∣∣
T=T2

.

(41)

The flowchart of the general calculation procedure is summarized as follows:

1. Substitution of the temperature-dependent expressions of the mass density, specific heat
capacity, and thermal conductivity, i.e., ρT = ρT(T), CT = CT(T), and KT = KT(T),
into the approximate solution of the Boltzmann variable, i.e., Equation (40);

2. Determination of two random temperature points within the boundary scenario,
i.e., Tre f < (T1 , T2) < Thot, where the approximate solution of the Boltzmann vari-
able (40) accurately satisfies the governing Equation (14), i.e., the last two formulas of
Equation (41);

3. Minimization of the residual sum of squares of the result, by taking the approximate
solution of the Boltzmann variable (40) into the governing Equation (14), from Tre f to
Thot, i.e., the first formula of Equation (41);

4. Quantification of the three undetermined parameters of the approximate solution (40),
i.e., v1, v2, and w, by solving the aforementioned three formulas of Equation (41);

5. Calculation of the temperature field at each time instant by recalling the definition of
the Boltzmann variable, i.e., Equation (10).

So far, the semi-analytical approach has been established with consideration of con-
stant boundary conditions. An extension of the approximate approach to time-dependent
boundary conditions was developed as follows. The boundary conditions read as

b.c. : T(x=0, t) = Thot(t) , T(x=+∞, t) = Tre f . (42)

By referring to the definition of the Boltzmann variable in Equation (10), the x-coordinate
can be expressed as

x = φ
√

t , (43)

which can be solved by referring to Equation (40)

x =
√

t

v1

∫ Thot(t)

T

KT∫ T
Tre f

ρT CT dT
dT

w

+ v2

∫ Thot(t)

T

KT∫ T
Tre f

ρT CT dT
dT

 . (44)

Substituting Equation (43) into Equation (2) and recalling the general formula for derivative
of implicit function lead to the governing equation as follows:

ρT CT
∂x
∂t

= − ∂

∂T

(
KT

∂T
∂x

)
. (45)

For the identification of the three parameters in Equation (44), the approximate solution is
considered to achieve a minimum residual sum of squares (RSS) of the governing Equation (45)
from Tre f to Thot(t) at a time instant t3. Furthermore, the approximate solution accurately
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satisfies the governing equation for two random temperature points T1 and T2 at the time
instants of t1 and t2, respectively, as follows:

RSS =
∫ Thot(t)

Tre f

[
ρT CT

∂x
∂t

+
∂

∂T

(
KT

∂T
∂x

)]2
dT

∣∣∣∣∣
t=t3

−→ min ,

ρT CT
∂x
∂t

∣∣∣∣∣
t=t1, T=T1

= − ∂

∂T

(
KT

∂T
∂x

)∣∣∣∣∣
t=t1, T=T1

,

ρT CT
∂x
∂t

∣∣∣∣∣
t=t2, T=T2

= − ∂

∂T

(
KT

∂T
∂x

)∣∣∣∣∣
t=t2, T=T2

.

(46)

The flowchart of the general calculation procedure is summarized as follows:

1. Substitution of the temperature-dependent expressions of the mass density, spe-
cific heat capacity, and thermal conductivity, i.e., ρT = ρT(T), CT = CT(T), and
KT = KT(T), as well as the time-dependent boundary condition Thot = Thot(t), into
the approximate solution of the x-coordinate, i.e., Equation (44);

2. Determination of two random temperature points within the boundary scenario at
two random time instants, i.e., Tre f < T1 < Thot(t1) and Tre f < T2 < Thot(t2), where
the approximate solution of the x-coordinate (44) accurately satisfies the governing
Equation (45), i.e., the last two formulas of Equation (46);

3. Minimization of the residual sum of squares of the result at a random time in-
stant, by taking the approximate solution of the x-coordinate (44) into the governing
Equation (45), from Tre f to Thot(t3), i.e., the first formula of Equation (46);

4. Quantification of the three undetermined parameters of the approximate solution (44),
i.e., v1, v2, and w, by solving the aforementioned three formulas of Equation (46);

5. Calculation of the temperature field at each time instant by recalling the solution of
the x-coordinate, i.e., Equation (44).

3. Numerical Study for Validation

The approximate approach of the nonlinear heat conduction is compared with Finite
Element simulations for validation. A concrete plate, characterized by an isothermal initial
configuration of temperature Tre f , was considered. This temperature was assumed to
remain constant at the right surface of the plate, whereas the left surface was subjected to
a sudden temperature increase to Thot at the time instant: t = 0. By considering the other
surfaces to be thermally insulated, this leads to one-dimensional heat conduction along the
x-direction of the plate, see Figure 1.

top surface

bottom surface

thermally insulated surfaces

surfaces with 

thermal insulation

heat conductionleft surface right surface

Figure 1. One-dimensional nonlinear heat conduction along the x-direction of the plate.

The numerical simulations consist of two examples. Example I refers to a normal
concrete plate, subjected to a moderate fire loading below 100 ◦C, where a temperature-
dependent thermal conductivity but a constant specific heat capacity and mass density
are considered. Example II refers to a self-consolidating concrete plate, subjected to a
much more fierce fire loading, reaching the magnitude of 400 ◦C, where all the three
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thermophysical parameters are considered to be temperature-dependent. The commercial
software COMSOL Multiphysics [45] is used for the Finite Element simulations. The
commercial software Maple [46] is used for the numerical implementation of the closed-
form solution in this work.

3.1. Example I: Normal Concrete Plate, Subjected to a Moderate Fire Below 100 ◦C

The initial temperature is set equal to Tre f = 20 ◦C and the sudden temperature
increase is set as Thot = 80 ◦C, representing a moderate fire load [7,41]. As the investigated
temperature is below 100 ◦C, the dehydration process is not stimulated [5,8]. Therefore,
both the mass density and the specific heat capacity are considered to be constants for
normal concrete, which follows [9] as

ρT = 2300 kg/m3 , CT = 900 J/(kg · ◦C) , (47)

respectively. However, the thermal conductivity is still reported to exhibit a slight decrease
even in this moderate fire scenario, following [9]

KT = 2− 0.2451
(

T
100

)
+ 0.0107

(
T

100

)2
W/(m · ◦C) , (48)

with T standing for temperature in the physical unit of Celsius degree. This results in a
nonlinear one-dimensional heat conduction along the length of the plate.

As for the numerical simulation, the length and the width of the plate in Figure 1 are
taken as ` = 1.0 m and b = 0.3 m, respectively. Notably, the width of the plate does not
intervene in quantification of the temperature field. The length is set to be long enough in
order to satisfy the assumption of the semi-infinite boundary condition, which is validated
by the following quantified results. The Finite Element mesh consists of 12,520 quadratic
Lagrange elements, which has been checked by a convergence study. The characteristic
size of the elements is 0.005 m, see Figure 2. The time step size and the tolerance are set
equal to 0.01 min and 0.001, respectively.

(a) (b)

20      30      40       50      60       70      80

20      30      40       50      60       70      8020      30      40       50      60       70      80

(c) (d)

Example I

(c) (d)

Figure 2. Numerical simulations of the transient nonlinear heat conduction along the length direction
of the plate: (a) the Finite Element mesh, and the quantified temperature field at time instants of
(b) 10 min, (c) 60 min, and (d) 180 min after the thermal shock.

The numerically quantified temperature field of the concrete plate at the time instant
of 10 min, 60 min, and 180 min after the sudden temperature increase is illustrated in
Figure 2b–d, respectively. Heat progressively propagates from the hot end to the cold end,
leading to a growing heated region over time. However, because of the thermal inertia
of concrete, the speed of the heat conduction process is rather slow. At the time instant
of 180 min after the thermal shock, the temperature of the right half side of the plate still
remains constant at 20 ◦C, see Figure 2d. By recalling the definition of the Boltzmann



Entropy 2023, 25, 583 11 of 22

variable φ = x/
√

t, the temporally- and spatially-dependent temperature in Figure 2 can be
presented as a function of the Boltzmann variable, see the circular markers in Figure 3a. The
temperature is nonlinearly distributed along the length of the plate and large temperature
gradients are observed in the vicinity of the heated surface.

The semi-analytical solution follows from substituting Equations (47) and (48) into
Equation (40). The three parameters v1, v2, and w are identified by solving Equation (41),
setting T1 = 21 ◦C and T2 = 50 ◦C. The latter are random numbers within the range of
(20 ◦C , 80 ◦C). The identified parameters read as

v1 = −21058.6888 , v2 = 2614.2946 , w = 1.2010 . (49)

The semi-analytical solutions is compared with the Finite Element simulation and agrees
fairly well with the latter, see Figure 3a. The relative error of the semi-analytical solution,
by taking results of the numerical simulation as the reference, is quantified as

ε =
Tana − TFEM

TFEM
× 100 % , (50)

whose absolute value is found to be smaller than 4 %, see the squares in Figure 3a. The
distribution of the temperature field along the length of the plate at the time instants of
10 min, 60 min, and 180 min after the sudden temperature increase is shown in Figure 3b,
respectively. Within the first 10 min, only 0.11 m-thick concrete, close to the heated surface,
is influenced by the thermal shock. This thickness increases as the heat conducts progres-
sively, until a magnitude of 0.44 m at the time instant of 180 min after the application of
the sudden heating. Therefore, the temperature at the surface x = ` is still equal to the
reference temperature, satisfying the assumption of semi-infinite boundary condition as in
Figure 1.
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Figure 3. Comparison between the temperature field quantified from the semi-analytical solution and
from the Finite Element simulation: (a) as a function of the Boltzmann variable φ = x/

√
t, (b) along

the length of the plate at the time instants of 10 min, 60 min, and 180 min after the sudden temperature
increase, considering a temperature-dependent thermal conductivity while a constant mass density
and specific heat capacity.

3.2. Example II: Self-Consolidating Concrete Plate, Subjected to a Fierce Fire Reaching 400 ◦C

In the following exemplary study, the initial temperature was still set equal to
Tre f = 20 ◦C, whereas the sudden temperature increase was taken as Thot = 400 ◦C,
representing a much more fierce fire scenario compared to that of Example I. All the three
related thermophysical parameters were assumed to be temperature-dependent. For dis-
tinguishing with Example I, the self-consolidating concrete (SCC) is considered, with its
thermal conductivity follows [47],

KT = 3.12− 0.0045 T W/(m · ◦C) , (51)
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and the product of its mass density and specific heat capacity follows [47],

ρT CT =
(

2.4 + 0.001 T
)
× 106 J/(m3 · ◦C) , (52)

where T standing for temperature in the physical unit of Celsius degree.
As for the numerical simulation, the geometrical dimensions of the plate and the Finite

Element mesh are the same as those of Example I. The numerical simulated distribution
of the temperature, at the time instant of 10 min, 60 min, and 180 min after the sudden
temperature increase is illustrated in Figure 4b,c,d, respectively. Similarly, heat propagates
slowly from the hot end to the cold end in this transient scenario. The limited heated
region is related to a significant temperature gradient close to the thermally-loaded surface,
especially right after the thermal shock, see Figure 4b. The large temperature gradients
leads to incompatible thermal eigenstrains, as a product of the temperature change and
thermal expansion coefficient, which can result in remarkable thermal stresses [2,4]. This
is considered to be one of the main mechanisms of surface spalling of concrete structures,
subjected to high temperature [48,49]. The quantified temperature evolution can also be
presented as a function of the Boltzmann variable φ = x/

√
t, see the circular markers in

Figure 4a.

(a) (b)

(c) (d)

Example II

(c) (d)

20      100   150   200   250  300  350   400

20      100   150   200   250  300  350   40020      100   150   200   250  300  350   400

Figure 4. Numerical simulations of the transient nonlinear heat conduction along the length direction
of the plate: (a) the Finite Element mesh, and the quantified temperature field at time instants of
(b) 10 min, (c) 60 min, and (d) 180 min after the thermal shock.

Similarly, the semi-analytical solution of the nonlinear heat conduction is established,
by substituting Equations (52) and (51) into Equation (40). The three parameters, v1, v2,
and w, are identified by solving Equation (41), setting T1 = 21 ◦C and T2 = 197 ◦C. The
latter are random numbers within the range of (20 ◦C , 400 ◦C). The identified parameters
read as

v1 = −11, 824.8806 , v2 = 7213.9428 , w = 1.0500 . (53)

A comparison of the semi-analytical solution with the Finite Element simulation is illus-
trated in Figure 5, which agrees well. The relative errors of the semi-analytical solution,
compared to the Finite Element simulation, are quantified by recalling Equation (50), with
their maximum absolute values smaller 5 %, see Figure 5a. This validates the applicability
of the established semi-analytical approach for fierce fire scenario, where the temperature-
dependence of all the three thermophysical properties, i.e., the mass density, specific heat
capacity, and thermal conductivity, are activated. The temperature distributions along the
x-coordinate of the plate at the time instant of 10 min, 60 min, and 180 min after the thermal
shock are illustrated in Figure 5b. The temperature is nonlinearly distributed along the
length of the plate, with significant temperature gradients prevailing in the vicinity of the
heated surface. This leads to the mismatch of the expansive thermal eigenstrain of concrete
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and, thus, compressive stresses in parallel to the heated surface, which may lead to brittle
spalling of the surface concrete [48,49]. At the time instant of 10 min after the thermal shock,
the outermost 0.14 m-thick concrete is heated. As heat conduction proceeds, this thickness
progressively increases to around 0.58 m at time instant of 180 min after the application
of the sudden heating. The temperature at the far-field boundary keeps constant at the
reference temperature.
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Figure 5. Comparison between the temperature field quantified from the semi-analytical solution
and from the Finite Element simulation: (a) as a function of the Boltzmann variable φ = x/

√
t,

(b) along the length of the plate at the time instants of 10 min, 60 min, and 180 min after the sudden
temperature increase, considering a temperature-dependent thermal conductivity, mass density, and
specific heat capacity.

4. Application to a Fire Test

The validated semi-analytical approach of the transient nonlinear heat conduction
problem was further utilized for prediction of the temperature evolution of a scaled model
of a subway station. The tested model was subjected to a real fire loading scenario, resulting
in a time-dependent surface temperature. The setup and the experimental measurements
of the fire test will be presented first, followed by comparison with the prediction from the
semi-analytical approach.

4.1. Experimental Results of a Fire Test of a Subway Station

The tested structure was stimulated by the station hall layer of a typical subway
station in China, in the form of a closed-cell reinforced concrete frame. The tested model
represents the substructure at a reduced geometric scale of 1:4, see Figure 6 and details
in [40]. Geometrical dimensions of the model read as 5261 mm in width, 1880 mm in height,
and 1200 mm in axial length. Its cross section was subdivided into three spans by two
rectangular columns in-between. The concrete used for the tested structure was normal
concrete of grade C50, in accordance with [50]. The type of the steel bars was Grade
HRB400, according to Chinese standard [51].

As for the test setup, the structural model was placed sidelong on the top of a furnace
and closed with a fire-resistant cover. Vertical and horizontal earth pressure were simulated
by hydraulic jacks acting on the top slab and the right wall, as three sets of concentrated
loads. The bottom slab and on the left wall were supported by hinge supports, see Figure 7.
The magnitudes of the applied concentrated loads are presented in Table 1. After the
application of the mechanical loading, the fire test started. The structure was heated by
eight burner nozzles in the furnace, with the temperature of the inside air following the
designed temperature history, see the solid graph in Figure 8. The temperature increased
quickly to a magnitude of around 500 ◦C within the first 10 min and then kept almost
constant till the time instant of 120 min. It was followed by natural cooling of the structure
by the termination of the applied fire loading. The designed temperature history was
determined by simulating the unfavorable fire scenarios in subway station, see [40] for
details. The evolution of the air temperature of both the left span and right span of the
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structure was monitored during the test, which generally agrees well with the designed
temperature curve, see Figure 8.
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Figure 6. Geometric dimensions of the scaled model of the station hall of a subway station in the fire
test: (a) front view, (b) left view, and (c) 3D view (unit: mm), after [40].
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Figure 7. The fire test: (a) the mechanical loading and supports (unit: mm) and (b) the testing setup,
after [40].

Table 1. Magnitude of the mechanical loading, applied to the scaled model.

Loading P1 P2 P3

magnitude [kN] 192.0 151.2 120.0
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Figure 8. Temperature history of the air in the furnace, applied to the scaled model, after [40].
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Thermocouples were placed at midspan of the three cells of top slab, and at the
geometric centers of the bottom slab, of the right column, as well as of the right wall.
Six thermocouples were placed equidistantly along the thickness of the right cell of top
slab, see the elliptic marker in Figure 7a, in order to monitor the ingress of heat during
the fire test. These readings were considered in the following comparison of the semi-
analytical solution, as the measurements of temperature along the thickness are integral
and detailed [40]. The experimental results are illustrated in Figure 9. The temperature
close to the heated inner surface of the top slab increased to a magnitude of 230 ◦C around
120 min after the start of the heating process, which is far smaller than that of the heated air.
This is attributed to the natural convection between the air and the structure, as well as the
thermal inertia of concrete. With the increase of the distance away from the heated surface,
the measured temperature change decreases. The temperature of the outermost surface,
i.e., 210 mm away from the heated surface, remained almost constant throughout the fire
test, see Figure 9. This provides the motivation to take the nonlinear heat conduction
along the thickness of the top slab as a semi-infinite problem in the following analysis.
Furthermore, one-dimensional heat conduction was found to be predominate in the heat
transfer process along the top slab of the tested model [41], which was also adopted in the
following analysis.
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0

50

100

150

200

250

Figure 9. Experimental measured temperature evolution along the thickness at the right span of the
top slab, after [40].

4.2. Prediction of the Temperature Field and Discussion

The tested model of the subway station was stored inside the laboratory before the fire
test, leading to an isothermal initial configuration. The initial reference temperature was set
equal to Tre f = 5 ◦C, see the measurements at the time instant, t = 0 min, in Figure 9. As
regards the boundary conditions, the evolution of the temperature at the inner surface of
the top slab was considered to follow the measurements at a distance of 2 mm away from
the heated surface, see the circular markers in Figure 9. For the sake of integration and
differential in the establishment of the semi-analytical solution, the measurements were
fitted by a polynomial as

Thot(t) =
(

1.04699774× 10−20 t6 − 2.44761334× 10−16 t5 + 1.86813256× 10−12 t4

− 4.43751926× 10−9 t3 − 7.65041066× 10−6 t2 + 7.321609883× 10−2 t + 5
)
◦C ,

(54)

with t standing for time in physical units of seconds. It is very similar to the readings of
the thermocouple, see the solid graph Figure 9. The temperature at the outer infinity was
considered to stay constant at the reference temperature Tre f = 5 ◦C, stimulated by the
measurements at 210 mm away from the heated surface, see Figure 9.

The thermophysical properties of the normal concrete, consisting the scaled model of
the subway station, were considered to follow the Eurocode [9]. The thermal conductivity
of normal concrete reads as Equation (48). The temperature-dependent mass density
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and specific heat capacity read as piecewise functions of temperature, with their product
following [9]

ρT CT =



2300× 900 J/m3 ·◦ C , 20 ≤ T < 100 ◦C ,

2300×
[
900 + (T − 100)

]
J/m3 ·◦ C , 100 ≤ T < 115 ◦C ,

2300
[

1− 0.002
(

T − 115
85

)]
×
[
900 + (T − 100)

]
J/m3 ·◦ C , 115 ≤ T < 200 ◦C ,

2300
[

0.98− 0.003
(

T − 200
200

)]
×
[

1000 +
T − 200

2

]
J/m3 ·◦ C , 200 ≤ T < 400 ◦C .

(55)

Given the fact that the steel reinforcements barely influence the heat conduction pro-
cess [7,52,53], the semi-analytical solution is established based on the aforementioned
thermophysical parameters of concrete, rather than separately considering those parame-
ters for concrete and steel.

Given the time-dependent temperature of the inner surface of the top slab, the semi-
analytical solution of the nonlinear transient heat conduction along the thickness of the
top slab follows from substituting Equations (48) and (55) into Equation (44). The three
parameters v1, v2, and w are identified by solving Equation (46) for two random temperature
points T1 = 5.1 ◦C and T2 = 15 ◦C at the time instants of t1 = t2 = 152 min, respectively.
The time instant t3 is also set to be equal 152 min for simplicity. The identified parameters
read as

v1 = −370, 132.1236 , v2 = 1614.4953 , w = 1.5000 . (56)

The semi-analytical solution agrees well with the the measured temperature evolution at
different positions of the top slab of the heated model, see Figure 10. The maximum tem-
perature difference between the semi-analytical solution and the measurement amounts to
25.7 ◦C at the position of 30 mm away from the heated surface, around 100 min after the start
of the fire disaster. This can be attributed to the uncertainty of the temperature-dependent
thermophysical properties of heated concrete. A more precise prediction of the temper-
ature evolution would require measurements of these properties at high temperatures.
The agreement between the semi-analytical solution and the experimental measurements
demonstrates that, on the one hand, the applicability of the established semi-analytical so-
lution and, on the other hand, the fact that heat predominantly conducts one-dimensionally
along the thickness of the heated top slab in the investigated fire scenario.
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Figure 10. Comparison of the experimentally measured [40] and model predicted temperature
evolution during the fire test.

5. Discussion
5.1. Comparison with the Results Obtained by Linear Heat Conduction

From the point of view of practical engineering, the analytical solution of linear heat
conduction is frequently used [4,54]. Sorgner et al. [54] presented an engineering mechanics
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analysis of the subway station in the first 30 min of the aforementioned test, standing for
a moderate fire scenario. By considering constant thermophysical properties of concrete,
the superposition principle was applied to the resulting linear heat conduction problem, in
order to quantify the temperature field. Therefore, the continuous temperature evolution
of the heated surface of the top slab is discretized in step-wise fashion, referring to a tem-
perature increment ∆Thot,k = Thot(tk)− Tre f at time instant tk (k = 1, 2, . . . , Ni). Solution of
the temperature evolution, resulting from an individual temperature increment, is straight-
forward and summation of these elementary solutions gives access to the temperature field
of the top slab as [54]

T(x, t) = Tre f+
Ni

∑
k=1

∆Thot,k

(
1
2
+

z
h

)
+

∞

∑
n=1

∆Thot,k (−1)n

n π
sin
(

2 n π
z
h

)
exp

[
−(2 n π)2 a〈t− ti〉

h2

]
+

∞

∑
n=1

∆Thot,k (−1)n

(2n− 1)π
cos
[
(2n− 1)π

z
h

]
exp

[
−(2n− 1)2π2 a〈t− ti〉

h2

]
,

(57)

where 〈·〉 stands for the Macaulay operator. Notably, the origin of coordinates is set at the
middle of the plate for this analytical solution.

The temperature fields of the top slab, obtained from the engineering mechanics analy-
sis [54] and the semi-analytical approach, were compared, see Figure 11 for the results at the
time instant of 30 min after the start of the fire. Generally, the quantified temperature fields
are quite similar and agree well with the experimental measurements, see the circular mark-
ers in Figure 11. The former analysis was conducted by assuming constant thermophysical
properties of concrete, whereas their temperature-dependence is considered in application
of the semi-analytical approach. As regards the time-dependent boundary condition, the
continuous temperature history is fitted by a polynomial and directly substituted into
Equation (44) in the semi-analytical approach, instead of discretization. The similarity of
the presented results also indicates that the temperature-dependence of the thermophysical
properties is of minor importance for the investigated moderate fire scenario, where the
temperatures of concrete at all positions are virtually smaller than 100 ◦C. However, the
nonlinearity of the heat conduction problem, related to the temperature-dependent thermo-
physical properties of concrete, shall be addressed in case of fierce fire scenarios. This is
discussed in the following.
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Figure 11. Comparison of the temperature fields obtained by Sorgner et al. [54] for linear heat
conduction and by the semi-analytical approach for heat conduction.

5.2. Discussion on the Nonlinearity Related to the Thermophysical Properties

The influence of the nonlinearity related to the thermophysical properties of concrete
on the heat conduction process is discussed in the following. Both the initial and boundary
conditions follow those of Example II, that is Tre f = 20 ◦C and Thot = 400 ◦C. Three sets, the
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mass density ρT , specific heat capacity CT , and thermal conductivity KT , of concrete were
investigated.

• S-I: All three thermophysical parameters were considered to be temperature-dependent,
following those of Example II, i.e., Equations (51) and (52).

• S-II: The thermal conductivity was considered to be temperature-dependent, following
Equation (51), whereas both the mass density and the specific heat capacity were
considered to be constant, with their product equal to the value of Equation (52) by
setting T = 20 ◦C, i.e., ρT CT = 2.42× 106 J/(m3 · ◦C).

• S-III: All three thermophysical properties were considered to be temperature-independent,
reading as the values of Equations (51) and (52) by setting T = 20 ◦C, i.e.,
KT = 3.03 W/(m · ◦C) and ρT CT = 2.42× 106 J/(m3 · ◦C).

The semi-analytical solution of the heat conduction, considering thermophysical prop-
erties of S-II and S-III, was established, following the aforementioned strategy. Generally,
heat propagates similarly along the length of the plate, whereas the speed of the conduction
process differs. Temperature distributions along the length of the plate at the time instant of
180 min for the three investigated scenarios are illustrated as Figure 12a. Apparently, heat
intrudes faster in case of S-III, compared to that of S-I and S-II. For example, at the time
instant of 180 min, the magnitude of 100 ◦C is reached at the depth of 0.1675 m, 0.1685 m,
and 0.2062 m for S-I, S-II, and S-III, respectively; the magnitude of 200 ◦C is reached at
the depth of 0.0817 m, 0.0825 m, and 0.1163 m for S-I, S-II, and S-III, respectively. This is
attributed to the temperature-independence of the thermal conductivity in case of S-III. The
latter stays constantly equal to 3.03 W/(m ·◦ C), whereas the ones for S-I and S-II decreases
progressively with increasing temperature, following Equation (51). However, the influence
of the temperature-dependence of the mass density and the specific heat capacity is of
minor importance; see the comparison of the solid and dashed graphs in Figure 12a. Finally,
it is worth mentioning that analytical solution is available in case of linear transient heat
conduction, i.e., S-III, reading as [55,56]

T(x, t)− Thot
Tre f − Thot

=
2√
π

∫ z

0
exp−η2

dη , (58)

with its right hand side standing for the error function of z = x/
√

4 KT
ρTCT

t. This classical
analytical solution agrees well with the presented semi-analytical solution, see the circular
markers in Figure 12a, which further validates the established solution.
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Figure 12. (a) The temperature distribution and (b) the corresponding thermal diffusivity along
the length of the plate at the time instant of 180 min, considering temperature-dependent, partly
temperature-dependent, and temperature-independent thermophysical properties of concrete.

For clarification of the nonlinearity related to the thermophysical parameters, the
corresponding profile of thermal diffusivity aT at the time instant of 180 min is illustrated
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as Figure 12b. It is quantified as the thermal conductivity divided by the product of the
mass density and the specific heat capacity

aT =
KT

ρT CT
. (59)

The thermal diffusivity stands for the rate at which heat can transfer from the hot end
to the cold end within the concrete plate. In the case of S-III, the thermal diffusivity
remains constant as 1.25× 10−6 m2/s along the x-coordinate, as a result of the temperature-
independent mass density, specific heat capacity, and thermal conductivity of concrete.
However, it varies significantly in the case of S-I and S-II, reading as 0.47× 10−6 m2/s and
0.55× 10−6 m2/s, respectively, at the heated surface with the temperature of concrete as
400 ◦C and equally as 1.25× 10−6 m2/s at the far-field boundary with the temperature of
concrete as 20 ◦C, see Figure 12b. This leads to the faster intrusion of heat for S-III and,
therefore, a higher temperature, compared to that of S-I and S-II. Decrease of the thermal
diffusivity of concrete at high temperature is attributed to the decrease of thermal conduc-
tivity, as well as the increase of the mass density and specific heat capacity of concrete. The
former contribution dominates, which results in the similar thermal diffusivity in the case
of S-I and S-II, see the solid and dashed graphs in Figure 12b.

6. Conclusions

In the present paper, a semi-analytical approach to transient nonlinear heat conduction
in a concrete structure, subjected to a time-dependent/independent thermal boundary
condition, was established. Following the Boltzmann transformation of the partial dif-
ferential equation to ordinary differential equation, the mean value theorem and Taylor
series approximation were used for the solution in a small neighborhood, which was
extended to the whole domain by utilizing the Bernstein polynomial. The established
semi-analytical approach was first validated by comparing the numerical results with
Finite Element simulations and then applied to a fire test. In this respect, the following
conclusions are drawn:

• The nonlinearity, related to the temperature-dependent mass density, specific heat
capacity, and thermal conductivity of concrete, was taken into consideration. The
semi-analytical approach was validated by comparison with two independent Finite
Element simulations of heated plates, consisting of normal and self-consolidating
concrete, respectively. Absolute values of the difference of the semi-analytical solution,
with respect to the numerical results, are smaller than 5% in both exemplary studies.

• By referring to the definition of the Boltzmann variable, the semi-analytical solution
was further extended to consideration of a time-dependent thermal boundary condi-
tion, which is commonly encountered during the service life of concrete structures.
The extended solution was compared with the experimental measurements of a fire
test of a scaled concrete subway station. Satisfactory agreement was achieved.

Therefore, the established approach demonstrates its accuracy and stability in solving
the transient nonlinear heat conduction problem in concrete structures. From the quantified
temperature fields of the investigated scenarios, the following conclusions were drawn:

• Because of the rather small thermal conductivity, concrete generally exhibits good
thermal insulation performance. Therefore, the established semi-analytical approach
of the nonlinear heat conduction for a semi-infinite plate can still be widely used in real
scenarios, such as the presented examples of the concrete plates and slabs in a subway
station, subjected to either moderate or fierce fire loading.

• The thermal insulation property also leads to significant temperature gradients in
the vicinity of the heated surface and, therefore, strong nonlinearity of the thermal
eigenstrain, as a product of the temperature difference and the thermal expansion
coefficient of concrete. This nonlinearity governs the resulting thermal stresses of
concrete structures [4,30]. In the case of a fire test of the scaled model of a subway
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station, tensile cracking can occur at the inaccessible exterior surface, which is a threat
to the long-term durability.

As for the maintenance of concrete structures exposed to potential fire loading, the
following recommendations can be made from the present study:

• It is recommended to position enough thermocouples close to the fire-exposed surface.
With the knowledge of the temperature evolution of the heated surface, the established
semi-analytical approach provides access to the evolution of the temperature fields
within concrete structures, serving as the basis for the following thermomechanical
analysis and damage evaluation.

• It is recommended to carry out careful inspection of the thermally-loaded concrete
structures. The strong nonlinearity of the temperature field is very likely to result in
significant thermal stresses and potential thermal cracking.

Finally, it is worth mentioning that the presented semi-analytical approach was estab-
lished by assuming semi-infinite boundary conditions, which is applicable to some heating
scenarios because of the thermal inertia of concrete; for example, the presented fire test
with a heating duration of 2 h and a maximum air temperature of around 500 ◦C. However,
in the case of even more fierce fire disasters, for example the Channel Tunnel fire with a
heating duration of about 10 h and a maximum air temperature up to 700 ◦C [57], extension
of the present work to finite boundary conditions is required. Moreover, the coupled-effect
of mass transfer processes, including the latent heat of vaporization and dehydration, shall
also be incorporated in future development of the semi-analytical approach.
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