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Abstract: In recent years, energy prices have become increasingly volatile, making it more challeng-
ing to predict them accurately. This uncertain market trend behavior makes it harder for market
participants, e.g., power plant dispatchers, to make reliable decisions. Machine learning (ML) has
recently emerged as a powerful artificial intelligence (AI) technique to get reliable predictions in
particularly volatile and unforeseeable situations. This development makes ML models an attractive
complement to other approaches that require more extensive human modeling effort and assumptions
about market mechanisms. This study investigates the application of machine and deep learning
approaches to predict day-ahead electricity prices for a 7-day horizon on the German spot market
to give power plants enough time to ramp up or down. A qualitative and quantitative analysis
is conducted, assessing model performance concerning the forecast horizon and their robustness
depending on the selected hyperparameters. For evaluation purposes, three test scenarios with
different characteristics are manually chosen. Various models are trained, optimized, and compared
with each other using common performance metrics. This study shows that deep learning models
outperform tree-based and statistical models despite or because of the volatile energy prices.

Keywords: electricity price forecasting; machine learning; deep learning; German spot market;
short-term; time series

1. Introduction

Accurate energy market forecasts are increasingly important for power plant operators
and other energy suppliers. They allow reacting to supply and demand changes early
by reserving generating capacity or shutting down power plant units. This dispatching
approach is required to regulate the power grid. It allows operators to adjust to energy
shortages or overproduction and accommodate the prioritized renewable energies into
the grid. However, large industrial consumers are also increasingly interested in linking
their demand to the price signal, which enables them to respond to price fluctuations and
optimize electricity-intensive production costs. The need for reliable forecasts on the energy
market is more important than ever due to the developments in exchange prices since
October 2021 and the growing share of prioritized renewable energy sources. However,
the relevant time-frame for production planning in the range of several days is hardly
considered in the research on energy price predictions [1]. Furthermore, the market is more
and more volatile and reacts increasingly sensitively to political, social, and secondary
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events [2–7], which are reflected in immediate trends (see Figure 1). Changes in the
market mechanisms and the increased volatility invalidates most of the historical data.
Instead, prediction methods are needed that work with limited historical data. We consider
these requirements by using a scenario based approach. Each scenario uses different
training and test sets with relatively few samples. Each scenario corresponds to a different
market behavior.

Figure 1. History of day-ahead electricity prices on the German spot market (grey: hourly prices on
the European Energy Exchange (EEX), black: 7-day moving average), hatched area: data set used
for experiments [8].

The price trend has increased over time, and the day-ahead price fluctuations increased
firmly along. In addition, day-ahead volatility has, at times, increased many times. Price
jumps of several hundred EUR/MWh can be observed. Since these market scenarios have
been unseen in the German market so far, with little data available, it is challenging to
build robust models that reliably predict short-term prices for the next seven days. The
German energy market is particularly interesting for this study as it has a unique, constantly
changing market environment due to the predetermined exit path of conventional power
plants and a very regionally specific increase in the number of renewable power plants.
In addition, there are well-documented and publicly available data sets for this market that
can be used. It is also interesting for the interpretation of the forecasts to be able to explain
the occurrence of extreme values or to be able to evaluate the failure to predict specific
events retroactively accurately.

There exist many different approaches for the prediction of energy prices. The follow-
ing subsection introduces a derived taxonomy of multiple methods used in this work. On a
very high level, we can separate approaches based on explicit modeling and data-driven
methods. Explicitly modeling means that human experts model the market dynamics,
behavior of market participants, and physical relationships based on assumptions. On the
other hand, data-driven models are entirely derived from historical data utilizing recent
advances in machine learning, especially in deep learning. Hence, machine learning has
become very attractive for energy price predictions. Data-driven models can complement
explicit, human-in-the-loop models and serve these experts to validate their assumptions
for their modeling approaches. However, they can also be used as an independent al-
ternative. This work compares standard regression models that can be produced with
popular ML modeling frameworks for predicting day-ahead electricity prices on the Ger-
man Power Exchange. The model selection includes LSTM, CNN-LSTM, ARIMA, decision
tree, random forest, gradient boosting tree, k-nearest-neighbor, support vector machines,
and a Naive forecaster. This study aims to find a robust standard AI model for forecasting
day-ahead prices in a highly volatile and changing market environment. This study is
divided into 6 sections. Section 1 gives an introduction into the market behaviour and
where the selected models take place in the model taxonomy. Sections 2 and 3 elaborate the
methodology and experimental setup. Section 4 presents the results from a quantitative as
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well as qualitative perspective. The last two sections discuss the findings, summarize this
article and demonstrate possible future work.

1.1. Related Work

The German day-ahead market is a blind auction. Hour increments of the next day’s
electrical energy are traded daily. Market participants send two types of orders to the
auction: First, for each delivery period, orders reflecting their willingness to buy or sell
for all price ticks between the minimum and maximum price of the auction and a given
quantity. Second, block orders link several delivery periods. The Power Exchange creates
demand and supply curves based on the buy and sell orders. Both for each hour of
the following day. The intersection of both results in the market clearing price (MCP),
the day-ahead electricity price [9].

Many approaches have been attempted to predict Germany’s hourly day-ahead elec-
tricity price. Many publications deal with workflow, feature engineering, pre-processing,
training, validation, and forecasting. The literature review of Weron et al. [10] and
Lago et al. [11] gives a comprehensive overview of previous work, primarily focusing
on feature engineering and models. Besides the German electricity market, other European
countries are also investigated [12], considering couplings within the European electric-
ity markets [13,14]. The class of deep learning models, especially LSTM and CNN or a
combination, dominate the ranking for high-performance model candidates for predicting
electricity prices using training and validation data before 2020 [15–19]. To evaluate the
German spot market under lockdown conditions of COVID-19 and the Russo-Ukrainian
War with training and validation data after 2020, research on the impact of the reduced elec-
tricity demand on the spot price in several countries, including Germany is necessary [2–7].
Also, the impact of the Russo-Ukrainian War on energy markets in general and electricity
processes with possible changes of the market mechanisms as a response to increased gas
and electricity prices is already investigated [20,21]. Here we see an apparent deficit for the
German spot price market: the models have been tested on outdated data and are often
highly individualized [22,23]. It is interesting to see how the models deal with the changed
volatility and price levels. In this study, we re-evaluate proven model candidates on recent
market data. We aim to close the gap to see how the models perform under real-world
conditions. No research could be found on modeling electricity prices shaped with trends,
up/down peaks and spikes, acyclical day-ahead behavior, and offsets within a forecast
horizon of 168 h and evaluated model performance.

1.2. Techniques for Energy Market Prediction

Predictions about the energy market, especially energy prices, are highly relevant
economically. Unsurprisingly, a large number of different approaches exist. Weron et al. [10]
show an attempt to classify modeling approaches according to the state of knowledge at
that time, which we extended to capture the methods considered in this comparative study:

Multi-Agent Approaches
Model the behavior of different actors on the market by algebraic or differential
equations and solve the equation systems to find the market equilibrium, such as
the Nash Cournet Framework or Supply function equilibrium. Borenstein, Bushnell,
and Knittel [24] or Cabero et al. [25] are worth mentioning for a sample application of
the former and, e.g., Baldick et al. [26] of the latter one, respectively. An alternative ap-
proach is to simulate the market with the help of agent-based simulation models. This
modeling approach is very flexible but requires many assumptions. Here, e.g., Guerci,
Rastegar and Cincotti [27] can be referred to for further details.
Fundamental or structural models
These models explicitly incorporate fundamental physical and economic relationships
in energy production and trading and predict prices with the help of the resulting over-
all model. These models require detailed information about plant and transmission
capacities and demand patterns. They also require assumptions about the physical
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and economic relationships in the market. See, e.g., Kanamura and Ohashi [28],
Coulon and Howison [29], or Aïd, Canou, and Langrene [30] as illustrative examples.
Reduced-form models
This class of models is inspired by financial models of price dynamics, where the
intention is usually not to provide a precise hourly forecast. Instead, they aim to
capture the characteristics of daily electricity prices, mainly as an input to risk analysis.
Jump diffusion models (see Carea and Figueroa [31]) and Markov regime-switching
models (see Hamilton [32]) can be considered as typical examples.
Statistical models
Statistical forecast of the current price by a mathematical combination of previous
prices and/or previous or current values of exogenous factors. Among others, expo-
nential smoothing (see Cruz, Muñoz, Zamora, and Espinola [33]), regression models
(e.g., Kim, Yu and Song [34]) or AR-type time series models (see Cuaresma, Hlouskova,
Kossmeier, and Obersteiner [35]) are typical approaches in that regard.
Computational intelligence models
They are supposed to be nature-inspired computational techniques. Weron et al. [10]
names here neural networks and support vector machines. See Chen, Dong, Meng,
Xu, Wong, and Nagan [36], Garcia-Ascanio and Mate [37], Gareta et al. [38], or Man-
dal et al. [39] for the usage of neural networks, and Sansom, Downs, and Saha [40],
among others, for SVM usage related to Energy Price Forecasting. To reflect the
change in the perception of these methods in recent years, we decided to refer to this
model type as a machine learning model.

The focus of this work is price forecasts for the spot market. Therefore, reduced-
form methods were not further investigated, focusing on modeling market dynamics
and providing input to risk analysis. Multi-agent approaches and fundamental models
require much information about the market and assumptions about the physical and
economic relationships. Making valid assumptions based on limited information and an
increasing number of market actors is a challenging task. Hence, this work focuses on a
statistical model and the taxonomy class that Weron et al. [10] referred to as a computational
intelligence model. We decided, however, to call them machine learning-based approaches.
Figure 2 shows the different models we evaluate in our work in the context of the taxonomy
suggested by [10]. The following sections discuss the models in more detail.

Figure 2. The approaches evaluated in this work in the context of the taxonomy adapted and modified
from Weron et al. (* The model class computational intelligence has been extended and renamed) [10].

2. Models

The following subsections briefly introduce each model considered in our experimental
study. The ordering follows the modified taxonomy from [10] as shown in Figure 2.
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2.1. Statistical

A classical approach to energy price forecasting involves using statistical models,
such as AR, ARMA, ARIMA, and related methods, based on mathematical operations on
historical prices.

1. ARIMA Autoregressive integrated moving average (ARIMA) is a statistical time-
series forecasting method combining an auto-regressive part [41], differentiating,
and a moving average process. In this model, the future value is assumed to be a
linear function of past observations and random errors. ARIMA models are widely
used due to advantages such as simple structure and low computational complexity,
as well as stable forecasting performance and capability to incorporate the seasonality
factor prevailing in electricity price developments. In the presence of spikes, however,
statistical methods perform relatively poorly. In addition, they struggle to capture the
nonlinear fluctuation of market prices [10,42–44].

2.2. Machine Learning

Machine learning techniques have been widely adopted for energy price forecast-
ing. They attempt to discover patterns in historical data and create predictions based on
characteristic patterns.

2.2.1. Non Deep Learning

Canonical machine learning models include, for example, SVMs, kNN, and tree-
based techniques. Existing literature reveals mixed results regarding their capability
of appropriately forecasting electricity prices [15,45,46]. However, since some authors
demonstrate their efficiency and advocate the utilization of SVMs [40,47–49] as well as of
tree-based-techniques [50,51], we opted to include them in the present model comparison.
Only a few studies assessed kNN on forecasting time series data, although it could be
shown that they can outperform simple statistical methods under certain constraints [52].
The Naive forecaster is described in Section 2.2.3 and is used as a baseline model for
our work.

kNN
K-nearest-neighbors (kNN) is a training-free method that makes predictions by aver-
aging observations with features closest to the input sample. The method of k-nearest
neighbors is conceptually simple and explainable. They do not make assumptions
about the data and work well with non-linear relationships, often producing accurate
predictions. However, the method becomes unfeasible with large data sets or numer-
ous features. kNNs are unable to extrapolate beyond the range of the training data
and are sensitive to noisy and irrelevant features. Another limitation is sensitivity to
the number of neighbors k to be compared with, and the chosen neighbor distance
metric [53].
SVM
Support vector machines (SVMs) work by detecting a hyperplane in a higher dimen-
sional space with minimal distance to the fitted observations [54]. SVMs can solve
linear and non-linear problems due to the ‘kernel trick’, implicitly mapping their
inputs into high-dimensional feature spaces and then using simple linear functions to
create linear decision boundaries in the new space. SVMs have become a common
energy price forecasting method due to a variety of strengths, such as good approxi-
mating accuracy and generalization ability to unseen data, superior performance for
small-scale training data, tolerance to redundant and highly interdependent features,
as well as the capacity mentioned above to solve both linear and non-linear problems.
The main challenges associated with SVM models are the computational costs of train-
ing, selection of a kernel function and parameters, sensitivity to noise and missing
values, overfitting, and lack of explainability [10,42,44,46].
Decision Trees, Random Forests and Gradient Boosted Trees
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Other popular methods are decision trees, random forests (making predictions by
averaging a set of decorrelated trees built in parallel [55]), and gradient-boosted trees
(which build an ensemble of trees iteratively by fitting a new tree on the residuals
of the previous tree [56]). Decision trees are fast and interpretable: by retrieving
the decision path for a given sample, one can see which feature values are used
as criteria for the prediction. They can combine numerical and categorical features
and capture non-linear relationships between features and the dependent variables.
Trees are invariant under monotone transformations of individual features, robust
concerning overfitting, and tolerant to outliers and missing values. Since feature
selection implicitly occurs during training, decision trees are insensitive to irrelevant
or interdependent features [53,55]. A relatively low accuracy limits them. The low
accuracy, however, is alleviated by ensembling methods, for instance, random forests
or gradient-boosted trees, which help increase prediction accuracy while maintaining
all the benefits of decision trees, except for the loss of interpretability [46].

2.2.2. Deep Learning

Deep Learning methods are compelling when uncovering complex patterns, especially
in extensive and high-dimensional data. Energy price prediction falls into that category
since it is characterized by solid temporal patterns and high fluctuations—even within
short periods. Previous research shows that several types of neural networks have proven
well suited to handle these sequential relationships well [45,57–61].

RNN
While simple neural networks, such as fully connected feed-forward neural networks
(FNN), are limited regarding sequential data, more sophisticated approaches have
evolved [62]. So-called recurrent neural networks (RNN) are developed precisely
for capturing sequential patterns and, thus, time series data. Instead of process-
ing each timestamp independently and the entire sequence simultaneously, these
models pursue a more dynamic approach: They process information incrementally
and sequentially while creating an internal memory state on the fly—based on the
previously provided content [63]. A particular performant kind of RNN is Long
Short-Term Memory (LSTM), which can learn to recognize and store input and decide
which information to preserve and which to forget. The key idea is to prevent older
signals from gradually vanishing as the sequence elements get passed through the
network [64]. This behavior is achieved by a memory block consisting of one or more
memory cells and additional gates. The gates are an input gate, a forget gate, and an
output gate. They control the information flows process [65].
CNN
Another architecture to solve machine learning applications are convolutional neural
networks (CNN) [66]. Originally designed to handle image data efficiently, this type of
network shows its strengths when automatically extracting the most relevant features
of grid-like data, such as images, text, or even time series. Whereas FNNs aim to learn
global pattern given the entire input at once, CNNs focuses on spatially close or local
patterns by applying kernels (a.k.a. filters or convolutions) over a subsection of input
data. For image data, one or more kernels get sliced across an image, stopping at
each subsection (a patch or chunk of the image, e.g., a few pixels) and applying the
same transformation (called “convolution”) on it. The output of each transformation
is a feature map that encodes specific aspects representative of each subsection [62].
Analogous to capturing relevant features across two dimensions in an image (along
the height and width axes), this operation is also applied to time series data in that the
sequence is treated like a one-dimensional image. The convolution operates over a 1D
sequence in this regard, returning a 1D feature map for each subsection (e.g., a few
timestamps) [67]. Because a CNN in its traditional structure does not consider the
temporal dependence between past and future data, its isolated, plain application on
time series data is not considered part of this comparison.
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Hybrid CNN-LSTM
However, to potentially improve the learning process of LSTMs even further, some
authors suggested combining the benefits of LSTMs and CNNs—notably, feature
extraction and forecasting [57]. Accordingly, the idea contains two steps: The first step
comprises a CNN part to extract the time-domain characteristics prevalent in different
periods (e.g., days or weeks) to reduce frequency variation. The CNN is followed
by an LSTM part, which—provided with the salient time series features—ought
to efficiently capture the temporal dependencies within the previously constructed
feature maps. Given an input of multivariate time series, the CNN applies a 1D
convolution on each time series by sliding a 1D kernel (Instead of applying 1D filters
on multiple time series simultaneously, an informative reader might also come up with
the idea to stack the multivariate time series horizontally and use a single 2D-CNN
with a two-dimensional kernel, that processes the input horizontally and vertically.
The results turned out to be the same) vertically to the right (as time passes) to create
corresponding time-domain feature maps. The output (feature maps with a specified
width and a height of 1) gets transmitted to the LSTM layer(s). Two final dense layers
deliver the prediction for a desired forecasting horizon.

2.2.3. Baseline

The Naive model makes forecasts using past data as predictions, copying the latest
available value in the sequence. To account for seasonal patterns, e.g., the last value in the
sequence can be represented by the value from the previous hour, the previous day, or in
this case, the previous week. This model serves as the baseline model and gets compared
to those mentioned above.

3. Materials and Methods

This chapter describes the structure of the data for the forecasts and explains the eval-
uation scenarios. A description of the model fitting approach and the statistical evaluation
of the model results is provided.

3.1. Data Set

In the following subsections, the data set, as well as its processing and splitting,
is explained. For simplicity and better readability, we call the non-stationary data set
‘raw’ data as the actual target variable remains untouched in the steps described below,
except for scaling.

Raw data
The data set in this study consists of various publicly available weather data of
the German Weather Service DWD [68] as well as market data from ENTSO-E [8].
The weather data set comprises measurements of several geographically distributed
German weather stations, such as solar radiation, air pressure, wind speed, air temper-
ature, and dew point temperature. The market data includes the traded spot market
prices on the EEX in Leipzig and prices for energy sources such as Anthracite (hard
coal) and natural gas. Overall, the complete data set contains more than 100 input
variables. Although decades of historical data are available, this study focuses on
data from recent years only, as a substantial shift in the data can be observed over the
years (see Figure 1). Precisely, the data set starts on 9 September 2021 and covers the
period until 1 November 2022—collected in hourly frequency.
Feature Engineering and Preprocessing
The collected raw data undergoes a comprehensive pre-processing pipeline, including
the following steps:
At first, date-related features, such as an hour, day of the week, and day of the
year, are transferred to a geometric representation with sine and cosine to prevent
jumping transitions between two days, months, or years. Also, because the natural
gas price is the only variable published daily instead of hourly, this variable must
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be forward-filled without any interpolation until the next available value to get an
hourly resolution. Missing values in the weather data set are imputed by a k-Nearest-
Neighbor (kNN) algorithm.
A principal component analysis (PCA) on the weather data is performed To speed up
the training process and improve the quality of the analysis, as they have shown to
be highly correlated. The number of components depends on the explained variance;
over 90% of the underlying information persists. Consequently, the weather data is
reduced from 90 variables to 10.
Since some algorithms cannot deal with time series with the trend or seasonal effects,
a standard transformation of the target value in time series problems is to make
them stationary. The data eventually approaches a stationary state by removing
the daily and weekly periodicity and the removal of the inclining trend, verified by
the Augmented Dickey-Fuller (ADFuller) and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test. Another step in the pre-processing pipeline is scaling input variables,
notably by subtracting the mean and dividing by the standard deviation afterward;
having all input variables in the same scale results in an improved model learning
process. The same approach is applied to the target value as the final step.
Data split
Finally, the processed data set is split into training, validation, and test set. The training
set consists of 8760 samples of window size 168 (equal to 168 h), resulting in one year.
A subsequent time series with identical length is held out for validation and testing.
Further details will be part of Section 3.4.

3.2. Scenario Selection

In order to assess the robustness of different algorithms and their general ability to
forecast different price scenarios in the following analysis section, three representative
periods with different characteristics are selected. The three scenarios are determined by the
day-ahead electricity prices’ mean and the standard deviation. The researchers of this study
visually assess the prices. The goal is to have scenarios with high, moderate, and low mean
electricity prices and a high, moderate, and low standard deviation. The approximated
mean prices are 395, 250, and 110€/MWh, and the corresponding standard deviations are
80, 150, and 30€/MWh. Figure 3 gives an overview of the three selected scenarios:

Figure 3. Representation of the scenarios based on the history of electricity prices on the German
spot-market [8]. Scenario 1 in the period 9 September–16 September 2022. Scenario 2 in the period
28 September–5 October 2022 and Scenario 3 in the period 24 October–31 November 2022.

• Scenario 1 comprises the period from Friday, 9 September–Friday, 16 September 2022.
This shows a day-dependent, cyclical behavior with normal price volatility.

• Scenario 2 ranges from Wednesday, 28 September–Wednesday, 5 October 2022. It is
characterized by high volatility and an acyclical price fall towards 0€/MWh.
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• Scenario 3 covers the period from Monday, 24 October–Monday, 31 October 2022 and
shows low volatility and periodic prices with an offset of around −250€/MWh.

3.3. Model Fitting

Based on the three introduced scenarios, each model type is trained in a time-based
k-fold cross-validation fashion over multiple hyperparameter configurations. For that,
a sliding window approach is chosen as illustrated in Figure 4 below. It keeps the size of
the training set constant while rolling the first point of the set forward. This approach is
reasonable as it ensures a meaningful time series-specific validation and speeds the training
process compared to an expanding window splitter. However, the expanding window
splitter approach is computationally more expensive as it accumulates newly available
data after each split. Another helpful feature is defining specific ’cut-off’ points (training
set endpoints). This option allows the definition of the training windows following the
scenarios. The final cross-validation setup encompasses three different splits moving over
time using the sliding window splitter, where each of the splits contains a training set
(cut-off date minus defined training set length of 8760 h in the past) and a validation set
(cut-off date plus a defined forecasting horizon of 168 h into the future). In each iteration,
a newly created model with identical initialization is trained.

Figure 4. Sliding Window with dedicated cutoff points [69].

All experiments are conducted by executing a pipeline built using the Python package
sktime [70]. Data processing, such as scaling, transforming the original non-stationary
data into static data, or reducing dimensionality, can be added as individual steps in the
pipeline. This way, an identical setup can be ensured regardless of the training model.
A fixed random seed is set to ensure that any of the observed differences between different
experiments happen because of the model.

Hyperparameter tuning is implemented to determine a combination of parameters for
each model in a grid search manner. This approach uses all combinations in a previously
defined discrete search space. The researcher has to propose a list of values for each
hyperparameter. As the number of hyperparameters differs among the model types,
the total number of trained models may also differ. Furthermore, the deep learning models
neither have default hyperparameters nor a default architecture. Instead, they must be
built manually according to the researcher’s ideas. Moreover, the default hyperparameters
of the non-deep learning models may skyrocket the computational effort as they are not
adapted to the prediction task. Based on the performance of the validation set within each
split (k = 3), the results of each combination are compared and ranked.

The entire routine, from data preprocessing to model evaluation, was performed on
a single compute instance, ensuring reproducible results. This machine has a built-in
Intel i9-11950H CPU, 32 GB RAM, an NVIDIA RTX A300 GPU, and Microsoft Windows
version 10.0.19045.2364 installed on a Micron MTFDKBA1T0TFH NVME drive. No other
applications ran in the background during training as they would slow down model fitting.
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The deep learning models are created with Keras version 2.10.0, as calculations can be
performed on GPU to speed things up. The remaining models are created with either Scikit-
Learn version 1.1.2 or SKTime version 0.13.4 running on the CPU. Besides that, the following
software is installed: Python 3.9.12, CUDA 11.7, NVIDIA Driver 517.66, Pandas 1.5.0,
and Numpy 1.22.4. The computational effort does not require a high-performance compute
instance, and the experiment can be conducted within a few days. It is worth mentioning
that not all models fully utilize the CPU, and hence, some cores are idle. Therefore,
the model trainings can be run in parallel by starting another python instance.

3.4. Evaluation Criteria for the Algorithms

For the comparison among our conducted experiments, a variety of different error
metrics are provided by the literature, such as Mean Absolute Error (MAE) see Equation (1),
Mean Square Error (MSE), or Root Mean Square Error (RMSE) see Equation (2), a derivation
of the MSE.

MAE =
1
n

n

∑
i=1

(Pi − Oi) (1)

RMSE =

√
1
n

n

∑
i=1

(Pi − Oi)2 (2)

Pi is the predicted value for the ith observation in the dataset
Oi is the observed value for the ith observation in the dataset
n is the sample size.

In this study, we use RMSE, a commonly used metric for evaluating the regression per-
formance of forecasting models, to compare the quality of the predictions [71]. The RMSE
is a non-negative metric based on prediction errors, which penalizes undesirable significant
errors but remains easily interpretable by being in the same unit as the target variable
(EUR/MWh). Accordingly, each model is evaluated in all predefined configurations at
different points in time. This is done in increments of 24 h before the end of the forecast
horizon of 168 h.

4. Results

This section is divided into four subsections analyzing the general performance of the
compared models from different perspectives. In the first subsection, the model robustness
is investigated. The error metric allows us to conclude how stable the model types are.
This is of interest if the model has to be as reliable as possible at the cost of minor perfor-
mance losses. The second subsection is about the two data sets used in the experiments.
Although this study focuses on model goodness, the chosen data set plays an important
role, too. Interested readers get a recommendation regarding what machine learning model
to select and if transformations should be applied to the data. The third subsection depicts
the error history of the best candidates of each model type. As the RMSE fluctuates from
one-time step to another, it is of value to see how accurate the predictions are up to which
point in time. In the last subsection, the best candidate of each model type, determined by
averaging over all candidates, is evaluated. The predictions and the accurate day-ahead
prices are plotted for all three scenarios. In contrast to the previous subsections, this last
one focuses on qualitative analysis and gives insights into how forecasts are perceived.

4.1. Model Robustness

Table 1 depicts the aggregated results over all three test scenarios and hyperparameter
configurations. As this study aims to assess each model type’s general performance, we
choose the mean RMSE as a relevant metric for the model comparison. Its overall error
rank determines the best model. All hyperparameter setups are sorted in ascending order
and get a rank assigned. This procedure is repeated for the error metrics MAE and RMSE.
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As the results ranking of the RMSE and MSE are identical, the latter will be disregarded in
further analysis.

Thus, the overall error rank is the sum of the individual error ranks of MAE and RMSE.
After calculating the ranks for the two metrics and ranking all the models according to
this sum in ascending order, LSTMs are the best-performing models across the defined
scenarios. It achieves an average RMSE of 79.33, with the best configuration RMSE of
59.92. The second best model type is a hybrid of CNN and LSTM. The best CNN-LSTM
configuration achieves slightly better overall results across the scenarios than the LSTM.
However, the improvement appears insignificant. The best LSTM model will be used for
further analysis as its complexity is lower and has no performance loss over the CNN-LSTM
model. The decision tree model has an RMSE of over 110 and is approximately 40% worse
on average. The Naive forecaster, the baseline model of this study, is a good model on
average. SVM, kNN, and decision trees are worse on average. However, all well-tuned
machine learning models achieve better results than the Naive model.

Table 1. Error metrics on average and of the best hyperparameter configurations.

Average Best

Model RMSE MAE RMSE MAE

LSTM 79.33 64.52 59.92 48.45

CNN-LSTM 80.52 65.16 59.15 46.18

ARIMA 90.67 75.80 81.93 68.21

Random Forests 94.54 81.24 73.20 59.73

Gradient Boosted Trees 95.65 80.70 72.83 61.10

Naive 102.07 79.90 102.07 79.90

SVM 104.45 90.42 64.06 52.41

KNN 106.97 88.82 83.50 68.98

Decision Trees 113.01 98.60 86.80 70.47

Figure 5 shows the error distributions across all hyperparameter setups and test
scenarios. The decision tree stands out negatively as its mean, median, and total error
deviation is higher than other models. SVMs are slightly better but also come with large
deviations. The random forest has a relatively low deviation and is, therefore, a more robust
model that is less sensitive to the choice of hyperparameters or the respective test scenario.

Figure 5. Performance deviation as a mean of model robustness.
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4.2. Data Set

Figure 6 Model quality concerning the utilized data set. The ARIMA model delivered
better results on the stationary data set. All but two machine learning models can handle
the raw data better than the transformed data. Using this insight, one can decrease the
RMSE by around 10. The Naive forecaster is transformation invariant as past data are
directly used for predictions.

Figure 6. Average RMSE over the utilized data set.

4.3. Error over Time

The following figures illustrate each model’s error behavior within the three defined
test scenarios over time. The best hyperparameter configurations are chosen, but each test
scenario results in a new model trained on a different data set.

As expected, a slight but general upward trend for all the models over time can be
observed, as shown in Figure 7. The naive model performs worst, and its error is twice as
large as the error of the LSTM model on test scenario 1. The LSTM stands out and has the
lowest error from day two on. The remaining models perform similarly over time with
minor deviations.

Figure 7. Model comparison over time for test scenario 1.

In Figure 8, one can observe that the overall error is generally higher than for test
scenario 1. Furthermore, the deviation is more significant as well. The Naive model’s
accuracy dropped considerably towards the horizon of 96 h. The CNN-LSTM architecture
performed best.
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Figure 8. Model comparison over time for test scenario 2.

The last diagram of this subsection, Figure 9, of the temporal error analysis follows a
similar pattern to test scenario 1. Contradictory to our assumption that the error grows over
the forecast horizon, the error is stable and even gets smaller for some models eventually.
This is due to a shift in the day-ahead price.

Figure 9. Model comparison over time for test scenario 3.

4.4. Predictions

The last subsection of the result section evaluates the best LSTM candidate from a
qualitative point of view. The LSTM was chosen because it is the model with the lowest
RMSE on average. In order to get concrete forecasts for all three test scenarios, a single
model has to be taken. It is worth mentioning that the training process was executed thrice
with identical hyperparameters and model initialization. The only difference between the
test scenarios is the data set used for training and testing. The best hyperparameter set is
considered the best choice for all scenarios as they perform best on average.

Figures 10–12 show the forecasts of the best LSTM model. The cyclical pattern is
predicted fairly well and is aligned with the actual day-ahead prices. Neither overshooting
nor undershooting happened over the forecast period. However, a price spike on September
14th is not detected, and a drop at the end of the forecast horizon is not predicted.

Figure 10. LSTM prediction for test scenario 1.



Algorithms 2023, 16, 177 14 of 20

Test scenario 2 is more challenging to predict as the cyclical pattern is interrupted
by a price drop. Nonetheless, the LSTM predicted the price fall early, characterized by a
declining trend. The recovery of the price, starting about two days after the price drop,
is correctly identified as well. Overshooting is not an issue, but undershooting can be
observed in tAhe forecasts for the first three days.

Figure 11. LSTM prediction for test scenario 2.

The last scenario adds complexity as the cyclical pattern is not steadily continuing,
there is a price offset, and the overall volatility is higher. This pattern is also seen in the
predictions. They are substantially more volatile and less smooth than the other two test
scenarios. Despite the high fluctuation, both overshooting and undershooting are observed.

Figure 12. LSTM prediction for test scenario 3.

5. Discussion

Table 1 shows that LSTM models, on average, predict the energy market prices with
the highest accuracy in all three defined scenarios. This result is consistent with findings of
several publications using training and validation data prior to 2020 [15–19]. LSTM models
are suggested to be especially suitable for handling non-linear, complex dependencies over
time. The energy market is a prime example due to its volatility and highly distinctive
seasonal characteristics [10,11]. Unforeseeable exogenous events (e.g., pandemics, wars)
complicate predictions even further and thus make it difficult to accurately predict price
jumps multiple days ahead, as these market-changing events are not present as input
features. While allegedly simpler algorithms seem not to be powerful enough to capture
the highly dynamic, non-linear stochastic nature of energy prices, neural networks with
their flexible mechanisms, for example, to learn what parts of history to ’remember’ and
what to ’forget’ in a given sequence, tend to be more appropriate as they are specifically
designed to solve such kind of problems [65]. A second criterion is model robustness
because a more robust model can be expected to be less sensitive to changes in the data
distribution over time. A robust model is given if the model goodness deviates only slightly
when hyperparameters change. This does not include generalizability, where training and
validation errors are tightly coupled. Model robustness explains how much the predictions
change depending on which hyperparameter and validation data are selected. The results
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also show that LSTM models work well on raw time-series data, simplifying the modeling
pipeline and reducing the degrees of freedom that need to be considered during model
training. However, some authors recommend variance stabilizing transformations [72,73]
or outlier detection to remove price spikes [14]. In order to see how our models deal with
these spikes and how they perform, we deliberately chose not to use any of these correcting
methods. In the given context of power plant control operations, sharp price spikes are
part of the signal. They are particularly interesting for energy technologies that can reach
high dynamics (e.g., power to heat, controllable loads). The results also show that among
the other model types, ARIMA requires the data set to be stationary [41]. There needs to be
a consensus about using static data for the remaining machine learning models, just weak
indications of the raw data.

In the German and European energy markets, it has become common for market
participants to base their decisions on forecasts in recent years. Due to the ratio of mar-
ket participants and volumes traded, it is doubtful that a forecast will give any single
market participant a decisive advantage. This applies to suppliers as well as buyers and
network operators. This leads to a better balance between supply and demand and reduced
dispatch costs.

The practical results of this study are currently being tested by dispatchers in the Power
Plant Dispatching Department and have a weighted influence on decision-making in power
plant operation. The forecasts are used in addition to forecasts from third parties, thus
increasing the data basis for decisions. Future developments should focus on explainability
to answer questions like “why fly ups/downs occur?” “how much is each predictor going
to price?” or “are my predictors plausible?”.

One limitation of the presented experimental results is the model evaluation metric.
Other possible metrics indicate robustness (e.g., MAPE, DAE, and normalized variants of
commonly used metrics [14]). However, RMSE is the most suitable metric, as it penalizes
outliers quadratically. Furthermore, RMSE is valuable for its ease of interpretation due
to unit conservation, here EUR/MWh. Another limitation when comparing the models
based on the provided results is that all prediction steps have equal weight—a prediction
error in the next time step is as critical to the models as the prediction error one week
ahead. This error can be observed in scenarios 1 and 3, where no strictly monotonous
behavior exists. Depending on the specific use case, using shorter prediction horizons and
combining models with different prediction horizons might be beneficial. Predictions might
become vague if the chosen forecast horizon is too long. Power plants capable of quick
adjustments may benefit from shorter forecast periods as the difficulty of the modeling
task decreases. Hence, the predictions become more accurate. Lastly, a possible quality
criterion is the smoothness of the predictions. Even though the training setup is identical,
there is no guarantee of smooth predictions, being spikey or erratic. This phenomenon
might be due to the training data, as it can only be observed in test scenario 3. Nonetheless,
regularization methods exist to ensure generalizability which can smoothen the predictions
such as dropout or noise injection. Based on our investigations, this concept can be applied
to any neural network to improve them further. With the application of regularization
methods, overfitting is likely to be prevented as the random process of dropout and noise
injection makes any training iteration unique. The constrained model becomes more robust
as the training is more challenging.

Comparing our investigated approaches for each scenario supports the global finding:
A deep learning model predicts all scenarios most accurately. Since the scenarios are
unique, each possesses a challenge that needs to be solved. A sharp decline within a
seasonal pattern characterizes scenarios 1 and 3. Scenario 2 adds difficulty because it
consists of a seasonal decrease and a heavy negative trend. The idea of the hybrid approach
is to reduce the noise of the given input and to extract the most relevant features only. Here,
filtering facilitates the process of keeping the focus on the relevant parts. The filtering
finally enables closer predictions but also implies trade-offs. For example, it is possible that
the smoothing effect becomes too strong and destroys crucial parts of the sequence. In that
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case, the LSTM will not be able to predict the original time series problem very accurately
anymore [67].

Taking a step back and considering the problem more extensively, additional future
research work can be identified. The overall goal is to build a robust energy-price prediction
system that requires minimal human effort in operation. However, more comprehensive
measures are needed to build an ML solution suitable for a power plant control software sys-
tem incorporating cross-dependencies between data, models, code, and configurations [74].
Lastly, model explainability techniques [75], and uncertainty quantification [76] need to be
incorporated to support the predicted results’ reasoning well as gain trust and transparency
for the high-impact decisions such a system facilitates. Using a dropout layer in a neural
network during inference and repeat making forecasts multiple times is an approach to
investigate uncertainty. By randomly shutting off neurons of a dense layer, the model gets
into a situation where information gets discarded. This procedure forces the model to
use all input features and not rely on some features only [77]. Conformal predictions can
provide additional insights that increase confidence in the prediction model. This approach
returns prediction intervals instead of points. The point estimation made by the prediction
model is guaranteed to be within the interval given a high probability [78]. Both methods
aim to reason predictions, so power plant dispatchers gain confidence and trust in the
application. They will be part of future work helping to understand how a fluctuating
day-ahead electricity price causes forecast uncertainty.

6. Conclusions

In general, we were able to show in the study that there are algorithms that are partic-
ularly good at predicting electricity prices on the German spot market in times of economic
and political tension. The algorithms can quickly anticipate changes in the price structure
due to international events and predict with comparable quality. It should be emphasized
that the daily and weekly patterns are modeled considering trends, jumps, and other
disturbances. In principle, all models examined deliver beneficial results, although the
deep learning models are the most suitable for predicting the patterns of the price signal.
The following conclusions can be drawn from the research:

• Deep learning models are well suited for the prediction of time series in the interval of
168h in times of economic and political tension.

• The use of raw data has a positive influence on the error for best models/all deep
learning models (RMSE decreases by approx. 10).

• Models based on CNN are best able to reproduce extreme values (fly up/down).
• Hyperparameter optimization can reduce the RSME by 20.
• The forecast error did not significantly rise with the forecast horizon.
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Abbreviations
The following abbreviations are used in this manuscript:

ADFuller Augmented Dickey-Fuller
AR Autoregressive Model
ARX Autoregressive-exogenous Model
AI Artificial Intelligence
ARMA Autoregressive with Moving Average Model
ARIMA Autoregressive Integrated Moving Average Model
CNN Convolutional Neural Network
COVID-19 Coronavirus disease 2019
CV Cross Validation
Decision Tree Tree
DL Deep Learning
DWD Deutscher Wetter Dienst (German weather service)
EEX European Energy Exchange
ENTSO-E European association for the cooperation of transmission

system operators for electricity
FNN Feed-forward Neural Network
Forest Random Forest
GB-Tree Gradient Boosting Tree
KPSS Kwiatkowski–Phillips–Schmidt–Shin
kNN k-Nearest-Neighbors
LSTM Long Short Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLOps Machine Learning Operations
MSE Mean Square Error
PCA Principle Component Analysis
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SVM Support Vector Machine
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