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Abstract
Given the tremendous growth of factor allocation strategies in active and passive fund management, we investigate whether 
factor or sector asset allocation strategies provide investors with a superior performance. Our focus is on comparing factor 
versus sector allocations as some recent empirical evidence indicates the dominance of sector over country portfolios. We 
analyze the performance and performance differences of sector and factor portfolios for various weighting and portfolio 
optimization approaches, including “equal-weighting” (1/N), “risk parity,” minimum-variance, mean-variance, Bayes–Stein 
and Black–Litterman. We employ a sample-based approach in which the sample moments are the input parameters for the 
allocation model. For the period from May 2007 to November 2020, our results clearly reveal that, over longer investment 
horizons, factor portfolios provide relative superior performances. For shorter periods, however, we observe time-varying 
and alternating performance dominances as the relative advantage of one over the other strategy depends on the economic 
cycle. One important insight is that during “normal” times factor portfolios clearly dominate sector portfolios, whereas dur-
ing crisis periods sector portfolios are superior offering better diversification opportunities.

Keywords  Asset allocation · Portfolio optimization · Factor investing · Factor versus sector allocation

JEL Classification  G17 · G11 · C53

Introduction

For many decades, favored asset allocation strategies focused 
on country or sector portfolios. However, more recently 
factor investing emerged as a popular new approach. The 
idea of factor investing is to diversify a portfolio among 
the underlying characteristic risk factors, introduced in the 
literature for explaining stock returns. The main objective 
of this research is to investigate whether factor-based port-
folios perform superiorly relative to sector-based portfolios. 
Moreover, we are interested in the question whether fac-
tor timing adds value and examine whether dynamic factor 

investment strategies outperform a static multifactor bench-
mark. We extent the earlier research of Briere and Szafarz 
(2021) by focusing on investable factor and sector indices 
and by analyzing a variety of different out-of-sample invest-
ment strategies.

Extending the single-factor Capital Asset Pricing Model 
(Sharpe 1964) to multifactor models has a long tradition. 
Following a decade of research in arbitrage pricing theories 
(APT), Chen et al. (1986) introduced a multifactor model 
employing pre-specified macroeconomic variables. Fama 
and French (1993) extended and shifted the multifactor 
analysis toward characteristic factors, dividing the system-
atic risk spectrum initially into three core components. This 
offered researchers and investors the opportunity to better 
differentiate between the various sources of risk and risk 
premium in capital markets. Carhart (1997) extended this 
to a four-factor model by including a momentum factor, and 
Fama and French (2015, 2018) added two additional fac-
tors to their own model resulting in a five-factor model or 
six-factor model when adding the momentum factor. Other 
often-employed factors are “dividends” (Fama and French 

 *	 Wolfgang Bessler 
	 Wolfgang.Bessler@uni-hamburg.de

1	 Deutsche Börse Senior Professor of Empirical Capital 
Market Research, University of Hamburg, Moorweidenstrase 
18, 20148 Hamburg, Germany

2	 Gothaer Asset Management GmbH, Cologne, Germany
3	 Technical University Darmstadt and Deka Investment GmbH, 

Frankfurt, Germany

http://crossmark.crossref.org/dialog/?doi=10.1057/s41260-021-00225-1&domain=pdf


489Factor investing and asset allocation strategies: a comparison of factor versus sector…

1988, 1993), “liquidity” (Pástor and Stambaugh 2003), 
“betting-against-beta” (Frazzini and Pedersen 2014) and 
“quality-minus-junk” (Asness, et al. 2017).

The inroad of factors as asset classes into asset manage-
ment, however, occurred through a government-mandated 
report for the Norwegian government pension fund con-
ducted by Ang et al. (2010). The analysis suggested that 
systematic risk factors could explain a substantial part of 
the returns of actively managed funds. Consequently, asset 
management should employ factors not only to measure fund 
performance but also to construct portfolios. This research 
suggested that the asset allocation strategies should shift 
from the classical diversification across sectors or countries 
toward a factor-based approach. Subsequently, factor alloca-
tion strategies experienced a rising popularity among port-
folio managers (Amenc et al. 2016).

In this study, we analyze different asset allocation mod-
els and compare their portfolio performance. As assets, we 
employ factor and sector indices, which are investable at 
low cost via exchange-traded funds (ETFs). We compare 
sector and factor allocations rather than comparing coun-
try and factor allocations as Bessler et al. (2021) provided 
recent evidence that sectors dominate country allocations. 
We measure the portfolio performance of both strategies first 
by analyzing the risk and return profiles and Sharpe ratios, 
and second, by comparing the alphas based on multifactor 
regressions. We also analyze whether factor-based optimized 
portfolios generate higher returns and higher multifactor 
alphas compared to a buy-and-hold factor investment. Third, 
we split the full period into sub-periods and compare the 
time variation of the sector and factor performance for each 
period. For longer investment horizons, we find that factor 
are superior to sector allocations. For shorter periods, the 
results are less consistent.

The rest of this research we structure as follows. In 
Sect. 2, we review the literature and outline our general 
ideas. The optimization methodology is detailed in Sect. 3, 
and the data are given in Sect. 4. In Sect. 5, we present the 
empirical results of the optimization processes as well as 
some further analyses. Chapter 6 concludes.

Literature review

Asness et al. (2013) were among the first to document the 
diversification potential of factor-based portfolios.1 They 
studied the relationship between value and momentum 

characteristics and find strong, predominantly negative cor-
relations between the underlying factors. Therefore, portfo-
lios exposed to value or momentum characteristics should 
offer diversification benefits, substantially reducing risk. 
Both studies further report considerable value and momen-
tum premium across different asset classes and markets, sug-
gesting that a factor-based asset allocation approach provides 
higher diversification, return and performance potential 
relative to the “classic” strategies such as country or sector 
allocations.

Bender et al. (2010) extend the ideas of Asness et al. 
(2013) by increasing the number of factors in the portfolio 
allocation process. Their findings support the ideas that com-
bining different factors in an investment strategy results in a 
superior performance relative to traditional asset allocation 
approaches. While an equally weighted portfolio of different 
factors and a traditional equity–bond portfolio yield similar 
average returns, factor portfolios contain much lower risk 
(less than one third of the risk of the traditional equity–bond 
portfolio), hence offering a higher performance (Sharpe 
ratio). In a similar study, Blitz (2011) uses the long compo-
nents of four different factors (size, value, momentum and 
low volatility) as portfolio constituents. When extending the 
equally weighted optimized portfolios by including return 
predictions, the results confirm that factor-based allocation 
strategies provide significantly higher returns compared to 
a classical allocation strategy.

Hjalmarsson (2011) also extents the approach of Asness 
et al. (2013) by adding additional factors to the allocation 
process. Equal-weighted portfolios of seven or more fac-
tors generate higher Sharpe Ratios than any of the observed 
single-factor portfolios or the Asness et al. (2013) two-
factor portfolios. This indicates that the classical diversifi-
cation effect (decreasing risk when increasing the number 
of assets) might also apply to factor portfolios. In another 
study, Melas et al. (2011) simulated different fund strategies 
and organizational structures. Measuring the performance 
improvements of factor-based portfolios, the authors con-
clude that the focus of institutional investment funds should 
shift away from active asset allocations toward allocation 
between different sources of systematic risk such as factors. 
Consequently, the allocation of large portfolios should pre-
dominantly focus on beta, with a smaller attention to alpha 
management, which is in accordance with the ideas of Ang 
et al. (2010).

In fact, Ang (2010) describes the interaction between 
factors and returns as fundamental and equivalent to the 
relationship between “nutrients and food.” Following this 
concept, Ang and Kjaer (2012) argue that professional port-
folio management should organize their allocation strate-
gies based on the beta (“the nutrients”) instead of seeking 
the highest alpha. Consequently, the best strategy contains 
a diversification approach across factors, because “factors 

1  Kim et  al. (2017) provide an extensive literature review on the 
topic of factor allocation. They conclude that despite the ambiguity 
between factors and assets, incorporating the factor models in the 
investment process might improve the investment strategy.
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go beyond assets.”2 Ilmanen and Kizer (2012) extend this 
view of Ang and Kjaer (2012) by comparing the effective-
ness of “asset class” and “dynamic factor” diversifications. 
They report that factor-based portfolios contain much lower 
overall correlations than sector-based portfolios. Their 
performance comparison of equally weighted factor and 
“traditional asset” portfolios supports this view with factor 
portfolios yielding noticeably larger Sharpe ratios. However, 
the analysis of Ilmanen and Kizer (2012) is limited only to 
equally weighted portfolios and only for the period up to 
2010. We extent the literature by comparing sector and fac-
tor portfolios for various dynamic asset allocation strategies 
and different portfolio optimization techniques up to the end 
of 2020.

As the factor portfolios’ popularity increased, Kahn and 
Lemmon (2016) predict substantial changes in active portfo-
lio management. They believe that the smart beta and factor 
investment might replace a large part of the typical alpha-
focused active management. Briere and Szafarz (2021) com-
pare factor- and sector-based allocations and conclude that 
sector investing helps to reduce risks during crisis periods, 
while factor investing can boost returns during expansion 
periods. Dichtl et al. (2020) provide further evidence sup-
porting the diversification effects of factors by developing a 
“factor completion” framework by incorporating the benefits 
of factors in a standardized allocation process.

The analysis of Briere and Szafarz (2021) builds on 
Fama–French factors, which are not directly investable. 
However, implementing portfolio strategies based on these 
factors involves large portfolio turnover and transaction 
costs, because not only Fama–French factor portfolios 
require updating on a monthly basis but also factor portfo-
lio weights need adjusting over time. Therefore, we analyze 
factor versus sector strategies from a practical perspective 
and build our analysis on factor and sector indices, which are 
investable at low cost via ETFs. We also explicitly account 
for transactions costs. Moreover, relative to Briere and Sza-
farz (2021), we test a variety of out-of-sample allocation 
strategies to analyze the benefits of factor versus sector 
investing for different investor types and investment styles.

The growing academic interest in factor returns and asset 
allocation strategies, however, also resulted in an opposite 
and critical perspective. Arnott et al. (2016) distinguish 
between structural and situational sources of returns where 
the structural “value adds”—in contrast to the situational—
are stable in time and therefore a reliable source of future 
returns.3 The authors argue that in the recent years the prices 

of factor portfolios have grown too high due to the exces-
sive demand by performance seeking portfolio managers. 
Consequently, the probability of generating persistently 
high returns in the future has declined, which also cause 
the situational character of the factor returns. Dimson et al. 
(2017) point out that the core meaning of factors lies in the 
co-movement of the group of stocks sharing specific attrib-
utes. They interpret the counter-movement in some of the 
observed groups as an essential driver for portfolio risk 
reduction. The authors, however, do not find evidence for a 
sustainable return premium in the observed factors.

A critical question is whether factor timing or factor 
tilting add value compared to a static factor allocation. In 
general, “factor tilting” describes the relative over- or under-
weighting of a factor compared to other factors. The benefit 
of factor timing critically depends on the predictability of 
factor returns. Dichtl et al. (2019) investigate the benefits of 
parametric portfolio strategies for factor timing and tilting, 
indicating that this might significantly improve the factor 
portfolio performance. However, benefits in the practical 
portfolio management deteriorate after including transac-
tion costs.

Methodology

In this section, we present a variety of asset allocation mod-
els and out-of-sample estimation procedures that we imple-
ment in our study. We follow the results of DeMiguel et al. 
(2009) that no portfolio construction technique is persistently 
superior to 1/N and use this approach as our benchmark. 
We then employ a variety of weighting and optimization 
techniques, analyze their relative performance and evalu-
ate whether they outperform the 1/N strategy. Our assets 
are sector and factor indices, and therefore, our research 
objective is to compare the benefits of various factor- and 
sector-based allocation strategies. These strategies include 
the naive “equally weighted” (1/N) portfolio as benchmark, 
the risk-based asset allocation rules “risk parity” (RP) as 
well as four portfolio optimization approaches: minimum 
variance (MinVar), mean–variance (MV), Bayes–Stein (BS) 
and Black–Litterman (BL).

We structure our optimization process as follows: The 
weights for each portfolio are determined at the last trad-
ing day of each month, based on all previous information. 
We calculate the portfolio returns for the following month 
by multiplying the calculated weights with the component 
returns of the corresponding month. We include 20 basis 
points of transaction costs, which is reasonable, given 
that we implement the sector and factor allocations with 
exchange-traded funds (ETFs). We repeat this process 
monthly by moving the sample period one month forward 
and by computing the optimized weights for the next month. 

2  Ang et al. (2009) and Ang (2014) support the idea of factors rep-
resenting different risk classes and, therefore, of independent return 
sources.
3  Critical views on the factor allocations approach have also been 
stated by Asness (2016), Asness et al. (2017) as well as Lee (2017)
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Taking the forecast and optimization calibration periods into 
account, we compare all asset allocation strategies for these 
two asset classes, sectors and factors, for the out-of-sample 
period from May 2007 to November 2020.

A critical aspect in optimal portfolio allocation decisions 
besides the optimization model is the input data, for which 
we use historical average returns. As a robustness check, 
we employ different window lengths ranging from 12 to 60 
months. We also employ the cumulated average (CA) strat-
egy, which includes all observations from the beginning of 
the sample period up to the current observation. Further, to 
test the robustness of our results, we use different invest-
ment constraints such as long-only portfolios and portfo-
lios with short positions. We also investigate the effects of 
constraints on performance by relaxing the constraints in 
the range between −35% (50%) (short positions) and +35% 
(50%) (maximum weight of a constituent in our portfolio). 
Next, we discuss the different asset allocation approaches for 
our investment strategies.

Asset allocation models

Both academia and the asset management industry analyzed 
and implemented a large variety of different asset alloca-
tion approaches. These models range from naive to sophisti-
cated models. Our description begins with the rather simple 
rule-based weighting methods such as “equal-weighting” or 
“risk parity” and continues in the next section with the opti-
mization-based methods: minimum variance, the classical 
mean–variance, the Bayes–Stein, as well as the Black–Lit-
terman optimization approaches.

Naive diversification 1/N

Being one of the most prominent allocation methods among 
private investors according to Benartzi and Thaler (2001), 
we implement the 1/N wealth distribution approach, which 
allocates equal weights to every asset. Therefore, given the 
number of constituents available for portfolio construction (6 
factor and 10 sector portfolios), 1/N always allocates 16.67% 
and 10% of the portfolio to every factor or sector index, 
respectively. As for all other allocation strategies, we rebal-
ance the portfolios monthly.

Risk parity

The risk parity (RP) approach is another prominent weight-
ing method, widely adopted by both academia and profes-
sional portfolio management. With the growing interest in 
the so-called smart beta strategies, a large number of mutual 
funds, index providers, pension funds, endowments and 

other long-term investors have adopted this strategy.4 The 
basic idea of the risk parity weighting is that each portfolio 
component contributes equally to portfolio risk, neglecting 
correlations between asset returns. Therefore, assets are 
weighted counter-proportional to their sample variance �̂2

i
.

Anderson et al. (2012) report that risk parity strategies 
perform well and usually even outperform 1/N, value-
weighted or 60/40 portfolios. The risk parity approach 
exploits the low-volatility anomaly, according to which 
low-volatility assets usually earn a higher premium per unit 
of volatility than high-volatility assets (Baker et al. 2011; 
Frazzini and Pedersen 2014). It therefore underweights 
high-volatility assets and overweight low-volatility assets. 
We next turn from the simple to the optimization-based asset 
allocation approaches.

Minimum variance

A simple and robust optimization-based strategy is the min-
imum variance approach (MinVar), which is increasingly 
popular among institutional investors such as quantitative 
mutual funds or exchange-traded funds.5 The objective of 
the MinVar strategy is to minimize portfolio volatility. The 
minimization problem is:

where ω is the vector of portfolio weights and Σ is the covar-
iance matrix. The main advantage of the minimum variance 
approach is that it does not require any return estimates, 
which are highly vulnerable to estimation errors and there-
fore the main source of sub-optimal allocation decisions. As 
risk parity, this concept utilizes the observation that low-
risk assets often generate a higher return premium per unit 
of volatility (low-volatility anomaly). The core difference 
between the MinVar and the RP strategy is, however, that the 
MinVar strategy is a portfolio optimization-based approach 
that also takes the correlation of asset returns into account.

(1)�i =
1∕�̂2

i
∑N
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�

1∕�̂2

i

�

(2)min
�

��Σ�

4  See Anderson et al. (2012) or Maillard et al. (2010), for a discus-
sion of this class of models.
5  Coqueret (2015) summarizes the most important reasons for the 
higher attention. First, in contrast to the “classical” optimization 
methods, no return forecasting is necessary, which could have consid-
erable effects on the allocation outcome (Kondor et al. 2007). Second, 
in crisis-periods investors tend to buy lower-risk products. Finally, 
since Black (1972) as well as Haugen and Heins (1972) introduced 
the so-called low-volatility paradox, a large body of literature con-
cludes that lower-risk assets do not necessarily perform worse than 
their higher-risk counterparts do.
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Mean–variance

Mean–variance (MV)—in contrast to minimum vari-
ance—also includes return predictions for optimizing the 
risk–return trade-off (Markowitz 1952). The mean–variance 
optimization problem is:

where U is the investor’s utility, μ is the vector of expected 
return estimates and δ is the risk aversion coefficient.6 To 
implement the mean–variance strategy, we use the sample 
mean �̂  and the sample covariance matrix Σ̂ as described 
above. The optimization is subject to two restrictions. First, 
we include a budget restriction, ensuring that portfolio 
weights sum to one and second, we prohibit short positions 
in our base case. The risk aversion coefficient is set to five 
(for a discussion of parameter settings see Bessler et al. 
2017).

Bayes–Stein

Developed by Jorion (1985), the Bayes–Stein (BS) model 
extends the MV strategy attempting to reduce estimation 
errors in the return and volatility forecasts by relying on a 
Bayesian estimation approach (Stein 1956; James and Stein 
1956). The optimization procedure itself is identical as in 
the MV approach presented in equation (3).

The sample means as expected returns �̂  are shrunk 
toward the expected returns of the minimum variance port-
folio �̂min given the shrinkage factor �̂ ∶

The covariance matrix, is also adjusted following the 
Jorion (1986) methodology and calculated as follows:

(3)max
�

U = ��� −
�

2
��Σ�

(4)𝜇̂min = ŵ
�

min
𝜇̂ =

1⃗
�

Σ̂−1

1⃗
�
Σ̂−1

⇀

1

,

(5)

�𝜇BS =
(

1 − �𝛾
)

�𝜇 + �𝛾 �𝜇min
�⃗1 with �𝛾

=
N + 2

(N + 2) + T

(

�𝜇 − �𝜇min �⃗1
)�

Σ−1

(

�𝜇 − �𝜇min �⃗1
)

where �⃗1 is a vector of ones, Σ̂ denotes the unbiased sample 
covariance matrix, N the number of assets and T is the num-
ber of observations (Jorion 1986). Subsequently, we apply 
the same optimization procedure, constraints and estimation 
windows as for the MV approach.

Black–Litterman

Another approach to mitigate the noise problems in port-
folio optimization was proposed by Black and Litterman 
(1992). Similarly to the MV and BS, the Black–Litterman 
(BL) model is popular among quantitative asset managers 
(Satchell and Scowcroft 2000; Jones et al. 2007). BL com-
bines “implied” returns calculated from a benchmark portfo-
lio via reverse optimization with explicit return forecasts or 
“views” taking the correlation structure between the assets 
into account (Black and Litterman 1992; Lee 2000). The 
major advantage of the BL model is that it integrates the 
reliability of the forecasts into the allocation process. The 
vector of the return forecasts according to Black and Litter-
man (1992) is estimated as follows:

where П is the vector of “implied” returns, Σ is the covari-
ance matrix and Q is the vector of the investor’s return 
estimates. The reliability of the return predictions is con-
tained in the diagonal matrix Ω and can be measured as the 
variance of the realized prediction errors in the estimation 
window. P denotes an identity matrix and τ a scalar that cali-
brates the tracking error to the benchmark portfolio.7 The BL 
model also adjusts the covariance matrix. Following Satchell 
and Scowcroft (2000), the covariance matrix is computed as:

After computing expected returns (equation 7) and the 
covariance matrix (equation 8), the portfolio weights are 
calculated in the same fashion as for the MV and the BS 
methods—via traditional risk–return optimization, maxi-
mizing the investor’s utility as presented in equation (3). 

(6)Σ̂BS =
T − 1

T − N − 2
Σ̂.

(7)�̂BL =
[

(�Σ)−1 + P�Ω−1P
]−1[

(�Σ)−1Π + P�Ω−1Q
]

(8)ΣBL = Σ +
[

(�Σ)−1 + P�Ω−1P
]−1

6  Mean–variance relies on the critical assumption that asset returns 
are normally distributed. Although this requirement is often iden-
tified as one of the main weaknesses in academia, Landsman and 
Nešlehová (2008) demonstrate that it is sufficient that returns are 
elliptically symmetrically distributed so that all investor preferences 
are equivalent to mean–variance preferences. Therefore, it is sensi-
ble to apply the mean–variance framework for portfolio optimization 
even if asset returns are non-normal, as long as they are symmetric.

7  For a detailed exposition see Bessler et al. (2017) and Bessler and 
Wolff (2015).
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The rest of the relevant parameters such as risk aversion 
coefficient, optimization procedure and constraints remain 
the same across all risk–return strategies. Following Bessler 
and Wolff (2015), we implement a sample-based version of 
the BL model.8

Performance measures

To evaluate the performance of factor- versus sector-based 
portfolios, we employ several performance measures. We 
compute the portfolio’s average out-of-sample return and 
volatility as well as the out-of-sample Sharpe ratio. Follow-
ing Opdyke (2006), we test whether the difference in Sharpe 
ratios of two portfolios is significant. This test is applica-
ble under very general conditions—stationary and ergodic 
returns. Most importantly for our analysis, the test permits 
autocorrelation and non-normal distribution of returns and 
allows for a likely high correlation between the portfolio 
returns. To provide further evidence and to make our study 
better comparable to the recent literature, we implement 
different factor models for computing multifactor alphas as 
risk-adjusted performance measures. The first factor model 
contains the six Fama–French (2018) long–short factors 
from Kenneth French’s website: “Market,” Value (“HML”), 
Size (“SMB”), Quality (“RMW”), Investment (“CMA”) and 
Momentum (“MOM”) augmented by the betting-against-
beta factor (“BAB”) proposed by Frazzini and Pedersen 
(2014). This analysis allows us to determine whether the 
performance of our factor or sector portfolios is fully attrib-
utable to the known risk factors or whether they provide 
significant multifactor alphas.

The second factor model we employ to compute multi-
factor alphas includes the same six MSCI factors, which we 
employ as asset classes in the factor portfolios. This analysis 
allows us to investigate whether dynamically adjusting factor 
allocations adds value over a buy-and-hold factor portfolio. 
Finally, we compare the periodical performance of the two 
strategies depending on the state of the economy.

Data

Our two investment strategies include 10 sector and 6 fac-
tor indices, which are investable with ETFs. Both sector- 
and factor-based portfolios contain only US stocks. The 16 
total return indices are downloaded from Bloomberg on a 
monthly basis for the longest jointly available period from 
January 1999 to November 2020. The dataset includes 262 
monthly return observations for each index. For implement-
ing the portfolio optimization strategies, we need up to five 
years (60 months) for estimating the optimization inputs 
(average returns and the covariance matrix). Three more 
years of data are required in the Black–Litterman optimi-
zation for determining the reliability of return estimates. 
Therefore, our out-of-sample evaluation period ranges from 
2007 to 2020 and includes 166 months.

The sector indices, as presented in Table 1 Panel A, are 
based on the constituents of the S&P 500 index. The indices 
(Factset) include the following sectors: “Industrials,” “Con-
sumer Discretionary,” “Utilities,” “Energy,” “Consumer 
Staples,” “Information Technology,” “Communication Ser-
vices,” “Health Care,” “Financials,” “Materials.”

From the large number of factors discussed in the lit-
erature, only a few factors are investable at low cost, for 
instance, through ETFs. Our factor portfolios, as presented 
in Table 1 Panel B, consist of the following 6 investable 
MSCI US long-only factor indices with a sufficient data his-
tory. The momentum factor (Carhart 1997), the size factor 
(Fama and French 1993), the value factor (Fama and French 
1993), the quality factor (Fama and French 1993), the carry 
factor (based on “dividend yield” as proposed by Fama and 
French 1988, 1993) and the low volatility/low beta factor 
(Frazzini and Pedersen 2014).

Tables 2 and 3 display the statistical properties of the 
sector and factor indices, respectively. In general, the mean 
returns for the factor and the sector indices are similar. For 
the factor indices, the returns range from 0.45% (“Value”) 
to 0.77% per month (“Momentum”). For the sector indi-
ces, the minimum and the maximum values are, 0.19% for 
the “Consumer Services” sector and 0.72% for the “Con-
sumer Discretionary” per month. The standard deviations of 
returns reveal that, on average, the factor indices have lower 
risk with 4.42% per month compared to sector indices with 
5.50% per month. Comparing the minimum and maximum 
values between both index groups, we observe the lowest 
risk for the “Consumer Staples” sector (3.46%) compared 
to the low volatility factor (3.79%). We measure the highest 
risk for the factor “Size” with 5.1%, whereas the highest risk 
for the sector group is 7.25% (“IT”).

One of the most important statistical aspects directly affect-
ing the risk and therefore the performance of an optimized 
portfolio is the correlation structure among the assets. In 

8  For an application, see Bessler et  al. (2017, 2021), Bessler and 
Wolff (2015). In the sample-based version of the BL model “views” 
are the sample means of the respective asset returns. The reliability 
of “views” is measured as the variance of the historical forecast errors 
εi during the sample period “Implied” returns are computed based on 
the 1/N portfolio. The parameter τ is set to 0.05. Earlier studies use 
similar values ranging from 0.025 to 0.3 (Black and Litterman 1992; 
He and Litterman 2002; Idzorek 2005).
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Table 1   Description of sector 
and factor indices

Panel A: Description of sector indices

Sector Index

1. Industrials S&P 500/Industrials—USD Total Return Index
2. Consumer Discretionary S&P 500/Consumer Discretionary—USD Total Return Index
3. Utilities S&P 500/Utilities—USD Total Return Index
4. Energy S&P 500/Energy—USD Total Return Index
5. Consumer Staples S&P 500/Consumer Staples—USD Total Return Index
6. Information Technology S&P 500/Information Technology—USD Total Return Index
7. Communication Serv. S&P 500/Communication Services—USD Total Return Index
8. Health Care S&P 500/Health Care—USD Total Return Index
9. Financials S&P 500/Financials—USD Total Return Index
10. Materials S&P 500/Materials—USD Total Return Index

Panel B: Description of factor indices

Factor Index

1. Momentum MSCI USA Momentum USD Total Return Index
2. MinVol MSCI USA Minimum Volatility Total Return Index
3. Value MSCI USA Value Total Return USD Index
4. Quality MSCI USA Quality Total Return USD Index
5. Size MSCI USA Equal Weighted (Size) Total Return USD Index
6. Carry MSCI USA High Dividend Yield Total Return Risk Premia Index

Table 2   Summary statistics and correlation matrix of the sector indices

This table provides summary statistics and the correlation matrix for sector returns for the full dataset ranging from January 1999 to November 
2020

Industrials Cons. Disc. Utilities Energy Cons. Staples IT Com. Srvs Health Care Financials Materials

Panel A: Summary statistics
Mean 0.62% 0.72% 0.59% 0.39% 0.61% 0.62% 0.19% 0.62% 0.32% 0.67%
Median 1.08% 0.86% 1.16% 0.76% 0.89% 1.48% 0.78% 1.03% 0.91% 0.86%
Max 16.43% 18.69% 12.83% 26.07% 11.09% 20.13% 28.48% 11.91% 20.18% 21.57%
Min − 21.30% − 21.31% − 15.06% − 42.76% − 11.56% − 32.85% − 16.87% − 13.35% − 30.53% − 24.94%
Std. Dev. 5.42% 5.36% 4.59% 6.84% 3.46% 7.25% 5.71% 4.14% 6.45% 6.10%
Skewness − 0.73 − 0.34 − 0.72 − 0.84 − 0.65 − 0.79 − 0.04 − 0.50 − 0.92 − 0.32
Kurtosis 5.31 4.42 3.94 9.53 4.18 5.20 5.08 3.49 6.86 4.65
Jarque-Bera 81.51 27.05 32.43 496.78 33.42 80.15 47.45 13.68 199.69 34.11
(p-Value) 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.64% 0.10% 0.10%
Obs 262 262 262 262 262 262 262 262 262 262

Panel B: Correlation matrix
Industrials 1.00
Cons. Disc. 0.85 1.00
Utilities 0.39 0.30 1.00
Energy 0.65 0.55 0.40 1.00
Cons. Staples 0.57 0.54 0.48 0.41 1.00
IT 0.66 0.74 0.20 0.41 0.28 1.00
Com. Srvs 0.54 0.59 0.32 0.42 0.43 0.54 1.00
Health Care 0.57 0.56 0.38 0.41 0.66 0.36 0.42 1.00
Financials 0.82 0.77 0.36 0.56 0.57 0.52 0.46 0.59 1.00
Materials 0.84 0.78 0.34 0.68 0.52 0.58 0.46 0.49 0.72 1.00
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general, the group of assets with the lower correlation offers 
better diversification opportunities, which, however, does not 
necessarily mean higher performance. For the sector indices, 
the highest correlated pairs are the following: “Industrials”—
“Consumer Discretionary” (0.85), “Industrials”—“Materials” 
(0.84), as well as “Industrials”—“Financials” (0.82). The pairs 
with the lowest correlation in the sector group are “Utilities”—
“IT” (0.20), “Consumer Staples”—“IT” (0.27) as well as 
“Utilities”—“Consumer Discretionary” (0.30).

Both, maximal and minimal correlation coefficients in 
the factor indices are higher than for the sector group. The 
highest correlations we observe for factors are for the fol-
lowing pairs: “Quality”—“Value” (0.95), as well as between 
“Carry”—“MinVol” and “Carry”—“Value” (both 0.93). 
The lowest correlations in the factor group are the follow-
ing: “Carry”—“Momentum” (0.67) followed by “Value”—
“Momentum” (0.77).

With respect to the optimization process, our insights 
from the descriptive statistical analysis are twofold. First, 
the correlations between factor indices are noticeably higher 
than between sectors, offering lower diversification opportu-
nities. Second, average monthly returns were slightly higher 
for factor indices than for sectors, indicating higher portfo-
lio returns. Therefore, it is essential to employ the different 
portfolio optimization algorithms to provide empirical evi-
dence whether sectors or factors provide the better trade-off 
between risk and return and therefore are the superior build-
ing blocks for an optimal investment strategy.

Empirical results

We structure this section as follows. Section 5.1 reports 
the portfolio performance for the full period, Section 5.2 
contains additional risk analyses and Section 5.3 shows the 
sub-period results.

Portfolio performance full period

In this section, we report the full period results by providing 
the following performance results: (a) full period analysis 
of Sharpe ratios, (b) sensitivity analysis of changing con-
straints, (c) risk and return analysis, (d) multifactor perfor-
mance analysis and (e) multifactor alpha differences between 
both strategies.

(a)	 Full period analysis of Sharpe ratios (Table 4).

In Table 4, we report and compare the pairwise Sharpe 
ratios of the sector- and factor-optimized portfolios. We 
analyze six different asset allocation frameworks, which 
consist of equal weighting (1/N), two risk-based alloca-
tions (RP, MinVar) and the three risk–return optimizations 
(BL, MV, BS) approaches. For the risk–return optimization 
approaches, we employ four different estimation window 
lengths as model inputs. The portfolio constraint for our base 
case is a 35% allocation to one single asset (index) and no 
short positions. The second framework allows for a 35% 

Table 3   Summary statistics and 
correlation matrix of the factor 
indices

This table provides summary statistics and the correlation matrix for factor returns for the full dataset rang-
ing from January 1999 to November 2020

Momentum MinVol Value Quality Size Carry

Panel A: Summary statistics
Mean 0.77% 0.61% 0.45% 0.64% 0.68% 0.57%
Median 1.19% 0.90% 0.63% 0.89% 0.86% 0.84%
Max 13.64% 10.08% 10.94% 11.42% 16.35% 12.5%
Min − 14.12% − 12.39% − 16.76% − 13.37% − 20.22% − 13.6%
Std. Dev. 4.60% 3.79% 4.55% 4.31% 5.10% 4.20%
Skewness − 0.38 − 0.55 − 0.72 − 0.52 − 0.60 − 0.58
Kurtosis 3.38 3.70 4.22 3.37 4.59 4.36
Jarque-Bera 7.95 18.45 38.68 13.11 43.19 35.00
(p-Value) 2.43% 0.28% 0.10% 0.72% 0.10% 0.10%
Obs 262 262 262 262 262 262

Panel B: Correlation matrix
Momentum 1.00
MinVol 0.81 1.00
Value 0.77 0.92 1.00
Quality 0.86 0.89 0.89 1.00
Size 0.81 0.88 0.95 0.89 1.00
Carry 0.67 0.93 0.93 0.81 0.84 1.00
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long or 35% short position in any single index, whereas in 
the third framework we extend both limits to 50% for long 
and 50% for short position in a single index, allowing maxi-
mum flexibility for risk exposure management. This opti-
mization framework (weighting or optimization algorithm, 
return forecast and constraints) we apply to both factor- and 
sector-based portfolios.

The initial results presented in Table 4 reveal that for 
all reported pair results, which are the differences between 
sector and factor portfolios, the factor allocations gener-
ate higher Sharpe ratios. Due to the relatively short his-
tory of the indices, however, the Sharpe ratio differences 
are statistically significant only for some portfolio pairs 
(according to the Opdyke (2006) test). Still, the Sharpe 
ratio differences are economically relevant and the infor-
mation that factor portfolios dominate sector portfolios 
in all analyzed cases is a very strong outcome in favor of 
factor allocations.

(b)	 Sensitivity analysis of changing constraints

We next focus on the effects of different weight con-
straints (columns (1) to (6) in Table 4, respectively). We 
observe for the long–short allocations (maximum short and 

long positions between −35% and +35%, and between −50% 
and +50%) that the performance differences between the two 
allocation strategies become larger relative to the long-only 
case. The factor performance is relatively stable for differ-
ent optimization constraints, whereas the performance of 
the sector allocations tends to deteriorate with more relaxed 
optimization restrictions.

We observe the highest performance difference for the 
mean–variance algorithm with the most relaxed portfo-
lio restrictions (−50% to +50%). In contrast, the lowest 
performance difference occurs for the minimum variance 
approach, although factor portfolios outperform sector allo-
cations. This is a rather surprising result, given that the aver-
age correlations between sectors were lower than between 
factor indices. The performance difference for the minimum 
variance approach gets even smaller when we further relax 
the optimization restrictions. The analysis of the risk and 
return structure of the portfolios in the next section provides 
further insights for explaining these results.

(c)	 Risk and return analysis

Separating Sharpe ratios into their two basic compo-
nents return and risk offers some additional insights into 

Table 4   Sharpe ratios

This table provides the annualized Sharpe ratios of the factor and sector portfolios (FI, SI). The evalua-
tion period covers the entire sample period from May 2007 to November 2020. As return forecasts for the 
optimization models, we apply different moving averages, the length of which is displayed in the second 
column of the table. *, ** and *** indicate the significance of the Sharpe ratio difference tests between 
both portfolio types at the 10%, 5% and 1% level, respectively. The stars are displayed on the side of the 
portfolio with the higher Sharpe ratio and report the significance of the hypothesis that the higher Sharpe 
ratio is significantly higher over its counterpart

Optimization method Estimation 
window

Weight constraints

[0%; +35%] [−35%; +35%] [−50%; +50%]

(1) (2) (3) (4) (5) (6)

FI SI FI SI FI SI

1/N 1.17 0.90
Risk parity 1.15 1.00
MinimumVar. 1.15 1.02 1.15 1.06 1.07 1.05
Black–Litterman CA 1.15 0.96 1.14 0.96 1.14 0.98

12 1.19 0.87 1.17 0.73 1.20* 0.67
36 1.18 0.92 1.18 0.87 1.20 0.90
60 1.16 1.01 1.17 0.98 1.18 1.00

Mean–variance CA 1.19* 0.70 1.24* 0.64 1.17** 0.37
12 1.22 0.81 1.21 0.82 1.22* 0.58
36 1.21 0.92 1.19* 0.66 1.17** 0.46
60 1.26 0.99 1.30 1.00 1.38* 0.77

Bayes–Stein CA 1.17 0.93 1.14 0.90 1.12 0.78
12 1.23 0.87 1.24 0.88 1.24** 0.54
36 1.20 0.96 1.16 0.95 1.17 0.82
60 1.19 1.03 1.21 1.13 1.23 1.01
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the source of the performance differences between sector 
and factor allocations. We present the annualized mean 
returns as well as the risk (standard deviation, volatility) of 
the optimized portfolios in Table 5 . The benefits of the fac-
tor allocation originate not only from larger returns (Table 5, 
Panel A) but also from lower portfolio volatility (Table 5, 
Panel B). In all cases, regardless of the allocation environ-
ment (optimization algorithm, window length for optimi-
zation inputs and weight constraints), the factor portfolios 
reveal lower or equal risk as the sector portfolios. These 
outcomes are in accordance with the observation in Bender, 

et al. (2010) that factor-based diversification lowers port-
folio risk. There is only one exception, in which the sector 
allocation provides a marginal lower volatility: the minimum 
variance portfolio with narrow weight restrictions. For the 
properties of the optimization methods, we identify some 
interesting details for the factor allocations. Similar to the 
Sharpe ratios, the risk profile of the factor portfolios closely 
relates to the constraints. The highest differences in risk of 
all optimization–forecast combinations occurs in the case 
with the most relaxed weight constraints (−50% and 50%; 
column 5 and 6 in Table 5).

Table 5   Annualized portfolio 
returns and volatilities

This table reports the annualized returns and annualized volatilities for each constructed portfolio. The 
results cover the full period between May 2007 and November 2020. The bold marked pairs indicate the 
cases in which the factor optimization achieved better results

Optimization method Estimation 
window

Weight constraints

[0%;+20%] [−20%;+20%] [−50%;+50%]

(1)
FI

(2)
SI

(3)
FI

(4)
SI

(5)
FI

(6)
SI

Panel A: Annualized portfolio returns
1/N 0.15 0.13
Risk parity 0.15 0.13
MinimumVar. 0.14 0.12 0.14 0.13 0.13 0.13
Black–Litterman CA 0.15 0.12 0.14 0.12 0.14 0.13

12 0.15 0.12 0.15 0.10 0.15 0.10
36 0.15 0.12 0.15 0.11 0.15 0.12
60 0.15 0.13 0.15 0.13 0.15 0.13

Mean–variance CA 0.15 0.09 0.16 0.10 0.15 0.07
12 0.16 0.12 0.16 0.14 0.16 0.12
36 0.15 0.12 0.14 0.10 0.14 0.09
60 0.16 0.13 0.16 0.14 0.16 0.14

Bayes–Stein CA 0.15 0.11 0.14 0.11 0.14 0.11
12 0.16 0.12 0.16 0.13 0.16 0.10
36 0.15 0.12 0.14 0.13 0.14 0.13
60 0.15 0.12 0.14 0.14 0.14 0.14

Panel B: Annualized portfolio volatilities
1/N 0.13 0.14
Risk parity 0.13 0.13
MinimumVar. 0.12 0.11 0.12 0.12 0.12 0.12
Black–Litterman CA 0.12 0.12 0.12 0.12 0.12 0.12

12 0.13 0.13 0.12 0.13 0.12 0.13
36 0.12 0.12 0.12 0.13 0.12 0.12
60 0.12 0.12 0.12 0.12 0.12 0.12

Mean–variance CA 0.12 0.12 0.12 0.14 0.13 0.16
12 0.12 0.14 0.12 0.16 0.13 0.20
36 0.12 0.13 0.12 0.15 0.12 0.19
60 0.12 0.12 0.12 0.14 0.11 0.17

Bayes–Stein CA 0.12 0.11 0.12 0.12 0.12 0.13
12 0.12 0.13 0.12 0.15 0.13 0.18
36 0.12 0.12 0.12 0.13 0.11 0.15
60 0.12 0.12 0.11 0.12 0.11 0.13
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Widening the level of restrictions (columns 3 to 6) sub-
stantially increases the volatility of the sector portfolios, 
whereas the volatility of the factor portfolios remains at low 
levels. Accordingly, the largest risk differences occur among 
the least constrained portfolios with short and long positions 
between −50% and 50% (column 5 and 6 in Table 5 Panel 
B), respectively.

Comparing the mean returns presented in Table 5 Panel 
A suggests quite similar results relative to the Sharpe ratio 
and the risk results. In all reported cases, the factor-based 
portfolios yield larger or equal mean returns compared to 
the sector-based portfolios. The relationship between the 
returns and the allocation constraints is similar to the one 
we observed when assessing the Sharpe ratio differences 
for both strategies. Extending the level of the allocation 

Table 6   Multifactor alphas and differences in alphas—Fama–French factors

Panel A of this table provides the annualized alphas of the factor and sector portfolios (FI, SI). The evaluation period covers the entire sample 
period from May 2007 to November 2020. *, ** and *** indicate the significance of the hypothesis test that the values displayed are different 
from zero at the 10%, 5% and 1% significance leve
Panel B displays the differences in alpha and the equivalent significance levels of the hypothesis test: H

0
∶ CoefficientFI − CoefficientSI = 0

Optimization 
method

Estimation 
window

Weight constraints

[0%; +35%] [−35%; +35%] [50%; +50%]

(1)
FI

(2)
SI

(3)
FI

(4)
SI

(5)
FI

(6)
SI

Panel A: Multifactor alphas—Fama–French factors
1/N 0.0128*** 0.0122***
Risk parity 0.0074*** 0.0075***
MinimumVar. 0.0052*** 0.0047*** 0.0039*** 0.0040*** 0.0038*** 0.0040***
Black–Litter-

man
CA 0.0104*** 0.0090*** 0.0105*** 0.0092*** 0.0104*** 0.0092***
12 0.0104*** 0.0073** 0.0103*** 0.0065** 0.0106*** 0.0064***
36 0.0115*** 0.0096*** 0.0116*** 0.0097*** 0.0119*** 0.0097***
60 0.0120*** 0.0104*** 0.0120*** 0.0103*** 0.0122*** 0.0104***

Mean–vari-
ance

CA 0.0072*** 0.0049** 0.0065*** 0.0020 0.0071*** 0.0011
12 0.0097*** 0.0070** 0.0094*** 0.0015 0.0104*** 0.0005
36 0.0099*** 0.0091*** 0.0096*** 0.0050 0.0092*** 0.0047
60 0.0100*** 0.0086*** 0.0098*** 0.0066* 0.0096*** 0.0079*

Bayes–Stein CA 0.0052*** 0.0042*** 0.0050*** 0.0024* 0.0051*** 0.0023
12 0.0088*** 0.0064** 0.0090*** 0.0006 0.0093*** − 0.0013
36 0.0087*** 0.0065*** 0.0077*** 0.0047 0.0075*** 0.0035
60 0.0099*** 0.0071*** 0.0091*** 0.0074 0.0096*** 0.0076**

Panel B: Differences in alphas—Fama–French factors
1/N
Risk parity
MinimumVar.

0.0006
0.0007
0.0004 − 0.0001 − 0.0002

Black–Litter-
man

CA 0.0015 0.0012 0.0012
12 0.0031 0.0039 0.0043
36 0.0019 0.0019 0.0021
60 0.0015 0.0017 0.0018

Mean–vari-
ance

CA 0.0023 0.0046 0.0061*
12 0.0027 0.0080 0.0100
36 0.0008 0.0046 0.0045
60 0.0014 0.0032 0.0017

Bayes–Stein CA 0.0010 0.0026 0.0028
12 0.0024 0.0083 * 0.0106*
36 0.0021 0.0030 0.0040
60 0.0028 0.0017 0.0020
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freedom increases the return differences between factor 
and sector portfolios.

(d)	 Multifactor performance analysis: Fama–French factors 
(Table 6)

Next, we next analyze the performance of the optimized 
portfolios within a multifactor model framework. We regress 
the returns of our portfolios on the six Fama–French US 
equity long–short factors: “Market,” Value (“HML”), Size 
(“SMB”), Quality (“RMW”), Investment (“CMA”) and 
Momentum (“MOM”) augmented by the betting-against-
beta factor (“BAB,” Frazzini and Pedersen 2014). Table 6 
Panel A depicts the multifactor alphas of the factor and sec-
tor portfolios along with the significance levels for the null 
hypothesis that alphas are different from zero. Table 6 Panel 
B contains the differences between alphas of factor and sec-
tor portfolios.

In Table 6, we observe positive multifactor alphas for all 
optimized portfolios. For the long-only case, all portfolios 
have positive alphas with the vast majority being signifi-
cantly larger than zero. More specifically, all factor portfo-
lios have statistically significant positive multifactor alphas, 
while for sector portfolios many alphas are not significantly 
larger than zero. Moreover, for all risk–return optimization 
models we find that alphas are larger for factor portfolios 
compared to sector allocations. In contrast, for risk-based 
allocations (risk parity and minimum variance) factor port-
folios reveal lower multifactor alphas than sector portfolios.

This finding is in line with our earlier evidence that sec-
tors are less correlated than factors. It also supports the 
conclusion of Briere and Szafarz (2021) that sector invest-
ing helps to reduce risks during crisis periods, while factor 
investing can boost returns during expansion periods. The 
highest alpha (1.22% per month) we obtain with the factor-
based Black–Litterman optimization method with 60-month 
estimation window and with short sales allowed (weights 
between −50% and 50%). In line with Bessler et al. (2017), 
we find the largest multifactor alphas for BL portfolios com-
pared to all other allocation strategies. Overall, the multi-
factor analysis confirms our finding that factor portfolios 
dominate sector portfolios at least for risk–return optimiza-
tion models.

(e)	 Multifactor performance analysis: difference between 
both strategies

In Table 6 Panel B, we provide additional insights into 
the performance difference between sector and factor portfo-
lios. In contrast to the results in Table 6 Panel A, where we 
reported the significance levels for the null hypothesis that 
alphas are different from zero, we now test for the differences 

in the portfolio’s factor exposures using dummy regressions. 
Panel B provides the difference between the alpha quotients 
of both allocation strategies. The positive alpha differences 
suggest that factor portfolios have larger multifactor alphas 
than sector portfolios. Comparing the three columns in Panel 
B, we observe that the alpha differences between the sector 
and factor strategies tend to become larger with wider invest-
ment restrictions, illustrating that the advantages of factor 
portfolios increase when relaxing investment constraints. 
However, due to our relatively short evaluation period, the 
differences in multifactor alphas between factor and sector 
portfolios are mostly statistically insignificant, yet economi-
cally relevant.

(f)	 Multifactor performance analysis: MSCI factors 
(Table 7)

Next, we assess the potential outperformance of a 
dynamic factor timing strategy compared to a buy-and-hold 
factor portfolio. For this, we compute another set of multi-
factor alphas by regressing the returns of the optimized fac-
tor portfolios on its own components (the single MSCI fac-
tors). If the optimized portfolio was a buy-and-hold portfolio 
of any initial weighting, the estimated alpha would be zero 
and the underlying assets would fully explain the portfolio 
where the regression coefficients would equal the respective 
factor weights. In this case, the more passive the manage-
ment of the underlying constituents, the closer to zero is 
the estimated alpha. In contrast, since the portfolios consist 
entirely of the same factors applied in the multifactor regres-
sion, the source of the alpha in the factor portfolios stems 
uniquely from the dynamic factor allocation.

While the effect of the “right bet at the right time’ might 
still be essential in the case of the industry allocation, here, 
the reported alphas contain another effect: the performance 
contribution of the diversification of the single sector com-
ponent as well as the diversification from combining differ-
ent sectors in a global portfolio. In summary, the comparison 
of the factor and sector alphas covers the difference between 
the two risk narratives described in Section 1.

In Table 7, we present the results (alpha) from the mul-
tifactor performance analysis. For most of the optimized 
portfolios, we observe positive multifactor alphas. For the 
long-only portfolios, all portfolios show positive alphas with 
the vast majority being significantly larger than zero. This 
supports our conjecture that combining the factors in an 
optimized portfolio results in higher returns than the return 
of a static buy-and-hold factor portfolio. Simply combin-
ing factors in an equally weighted portfolio (1/N) with 
monthly rebalancing back to the 1/N weights already pro-
vides a low but statistically significant outperformance com-
pared to a buy-and-hold portfolio. Again, the factor-based 
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Black–Litterman optimization method with short sales 
allowed (12-month estimation window and weights between 
−50% and 50%) provides the highest alpha (1.43% per 
month).

In contrast to the Fama–French factor analysis in sec-
tion e), we find sector portfolios yielding higher multifactor 
alphas. This might appear surprising, as it seems to con-
tradict our earlier results. However, it is very reasonable to 
expect that the same underlying factors explain very well 
factor portfolios that consist of these factors. Particularly, 

factors can better explain returns of factor-optimized port-
folios, based on the same underlying factors, rather than 
portfolios consisting of sectors.

(g) Portfolio turnover (Table 8) 
Next, we analyze portfolio turnover of factor and sec-

tor allocations. Higher portfolio turnover is associated 
with larger transaction costs. Our analyses so far included 
20 basis points of transaction costs, which is reasonable, 
given that we implement the sector and factor alloca-
tions with exchange-traded funds (ETFs). In this section, 

Table 8   Portfolio turnover and 
maximum drawdown

This table reports the yearly portfolio turnover and the maximum drawdown for each constructed portfolio. 
The results cover the full portfolio period between May 2007 and November 2020. The bold marked pairs 
indicate the cases in which the factor optimization achieved better results.

Optimization method Estimation window Weight constraints

[0%; +35%] [−35%; +35%] [−50%; 
+50%]

(1) (2) (3) (4) (5) (6)

FI SI FI SI FI SI

Panel A: Portfolio turnover
1/N 0.11 0.27 0.11 0.27 0.11 0.27
RP 0.27 0.51 0.27 0.51 0.27 0.51
Min Var 0.88 1.76 1.84 4.10 2.94 5.18

BL CA 1.11 1.22 1.38 1.69 1.71 1.71
12 3.01 3.97 4.29 5.61 5.60 6.16
36 1.68 2.15 2.56 3.12 3.62 3.37
60 1.44 1.88 2.13 2.70 3.34 2.77

MV CA 1.28 1.31 0.85 2.24 1.51 4.02
12 3.94 4.93 6.12 11.68 9.76 16.97
36 2.16 3.36 3.29 7.74 5.04 11.82
60 1.32 2.73 3.02 5.52 3.69 8.81

BS CA 1.00 1.76 1.66 4.06 2.29 5.30
12 3.45 4.18 5.54 10.63 8.99 16.00
36 1.71 2.67 3.37 5.93 4.81 8.40
60 1.05 2.02 2.40 4.61 3.28 6,50

Panel B: Maximum drawdown
1/N 0.20 0.21
RP 0.20 0.21
Min Var 0.19 0.16 0.19 0.10 0.20 0.10

BL CA 0.20 0.20 0.20 0.20 0.20 0.20
12 0.20 0.20 0.20 0.20 0.20 0.20
36 0.20 0.20 0.20 0.20 0.20 0.20
60 0.20 0.20 0.20 0.20 0.20 0.20

MV CA 0.19 0.17 0.20 0.15 0.22 0.26
12 0.17 0.19 0.19 0.22 0.17 0.30
36 0.17 0.17 0.15 0.15 0.14 0.26
60 0.18 0.19 0.15 0.12 0.11 0.26

BS CA 0.19 0.16 0.20 0.14 0.20 0.14
12 0.17 0.18 0.18 0.20 0.17 0.25
36 0.18 0.16 0.16 0.14 0.14 0.14
60 0.19 0.16 0.15 0.11 0.13 0.12
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we analyze whether our assumption on transaction costs 
affects our results. Table 8 Panel A presents the portfolio 
turnover for all factor and sector portfolio. We find that 
for almost all allocation strategies, portfolio turnover is 
lower for factor compared to sector portfolio. Therefore, 
the relative advantage of factor compared to sector alloca-
tions increases with larger transaction costs.

Risk analysis

An important aspect of the performance analysis is an 
in-depth risk analysis. For this, we analyze whether the 
performance difference between factor and sector portfo-
lios is attributable to different levels of tail risk, such as 
maximum drawdown, or to the skewness and kurtosis of 
the return distribution.

(a)	 Maximum drawdown

The first part of the risk analysis covers the comparison 
of the maximum drawdowns (MDD) that occurred dur-
ing the full investment period in factor and sector port-
folios. The maximum drawdown represents the absolute 
losses between the highest peak and the subsequent low-
est trough of the portfolio. Table 8 Panel B presents the 
maximum drawdowns for all strategies over the full evalu-
ation period. Analyzing the results, we do not find a strong 
relationship between the MDD and the portfolio alloca-
tion strategy. The factor-based allocations have even lower 
drawdowns in most of the analyzed cases. For 1/N and the 
risk-based allocation frameworks (RP and MinVar), MDD 
is lower for sector portfolios than for factor portfolios. In 
contrast, for the risk–return optimization strategies (BL, 
MV, BS) MDD is lower for factor portfolios than for sector 
portfolios in the majority of the cases.

(b)	 Skewness analysis

Next, we analyze the skewness of portfolio returns. In 
general, investors seek positive skewness since it trans-
lates in a higher likelihood of positive returns or positive 
outliers. The negative skewness, in contrast, represents in 
general the higher likelihood of occurrences on the nega-
tive side of the return distribution (losses). For brevity, 
the results for the skewness analysis is available in the 
online appendix. Our results suggest that all of our opti-
mized portfolios reveal negative skewness, meaning that 
tail risks on the negative side (left) is higher than normally 
distributed returns. In general, there is no clear relation-
ship between skewness and the allocation framework. On 
the one hand, for 1/N and the risk-based allocation frame-
works (RP and MinVar), portfolio skewness is higher for 
sector portfolios than for factor portfolios. On the other 

hand, for the risk–return optimization strategies (BL, MV, 
BS), the skewness is higher for factor portfolios than for 
sector portfolios in the vast majority of the cases. Overall, 
a higher skew risk cannot explain the higher returns of 
the factor portfolio as the skewness is even lower for most 
factor portfolios.

(c)	 Kurtosis analysis

Kurtosis characterizes the second key property of the 
return distributions. In general, kurtosis represents the 
“tailedness” of the respected distributions. Our results for 
the kurtosis analysis are available on the online appendix. In 
general, we find that all observed portfolios show leptokurtic 
distributions, meaning that the extreme return observations 
occur more frequently than expected for normally distributed 
returns. Similar to the skewness analysis, the results do not 
reveal a clear pattern how the skewness relates to factors or 
sectors. However, on average, and in most analyzed cases, 
the sector portfolios have a slightly lower excess kurtosis 
than factor portfolios. However, as the excess kurtosis cap-
tures both, extreme positive and negative returns, the higher 
kurtosis of most factor portfolios might be due to periods of 
high factor returns.

Our conclusion from the MDD and the overall risk analy-
sis is that the higher returns and Sharpe ratios of the factor 
portfolios are not explainable with the higher tail risks of 
these portfolios. Moreover, we do not find a clear difference 
between factor and sector portfolios with regard to tail risk 
measures.

Sub‑period analysis

Following the analysis of the full period, we now investigate 
the performance for different optimization strategies and for 
different sub-periods. For this, we split the time series of 
the optimized portfolios in several sub-periods based on the 
state of the economy, where we distinguish between two 
different states: economic expansion and economic reces-
sion. As an indicator for the different states of the economy, 
we use the NBER recession dummy published by the US 
National Bureau of Economic Research.

Based on NBER recession dummies, we divide the full 
sample into three sub-periods. The first sub-period spans the 
period from May 2007 to July 2009 and includes the global 
financial crisis. The second sub-period contains the subse-
quent recovery of the global economy and financial markets. 
The last sub-period begins in 03/2020 due to the Corona cri-
sis. The results of the sub-period analysis, expressed as the 
difference between the Sharpe ratios of the factor- and the 
sector-based portfolios, we present in Table 9. We structure 
the results again in the same way as we did for the Sharpe 
ratios in Table 4. In each Panel of Table 9, we present the 
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results for one restriction, moving from strictest to moderate 
to lowest restrictions.

(a)	 Strictest restrictions

In Table 9 Panel A, we present the results for the port-
folios with portfolio weight restrictions between 0% and 
+35%. The results suggest that this separates the dominance 
of one over the other strategy into two groups: During both 
crisis periods, the global financial crisis and the Covid-19 
crisis, sector portfolios outperformed factors portfolios, 
indicating that sector portfolios offer higher diversification 
potential particularly during crisis periods relative to fac-
tor portfolios. This finding is in line with Briere and Sza-
farz (2021) who report that sector investing helps to reduce 
risks during crisis periods, while factor investing can boost 
returns during expansion periods. Consequently, during 
the long expansion period from August 2009 to February 
2020, factor allocation clearly outperformed sector alloca-
tions. While the sector allocations dominate in two out of 
three sub-periods, it is important to recognize that the two 
sub-periods in which sectors outperform are relatively short, 
spanning only 11 and 9 months. In contrast, the second sub-
period in which factor portfolios dominate stretches over 
more than 10 years. Therefore, for the full period we find 
factor portfolios clearly outperforming sector portfolios.

(b)	 Moderate restrictions

The results for the moderately constrained portfolios 
(restrictions between −35% and +35%) we report in Table 9 
Panel B. Compared with the long-only case (Panel A of 
Table 9), we find similar results for the second and third 
sub-periods with factor portfolios dominating during the 
long second sub-period and sector portfolios outperform-
ing during the short Covid-19 crisis period. However, for 
the first sub-period (Global Financial Crisis), relaxing the 
weight restrictions inverses the results. While for long-only 
portfolios, sector portfolios dominated during the Global 
Financial Crisis, for portfolios with short positions, the fac-
tor portfolios also dominate during this period.

(c)	 Lowest restrictions

The results for portfolios with the lowest restrictions we 
report in Table 9 Panel C. In general, the structure of the per-
formance differences remains the same as for the moderate 
restrictions (Panel B) with only minor differences. As in the 
case with moderate restrictions, factor portfolios dominate 
in the first and second sub-period. Only in the third sub-
period (Covid-19 crisis), sector allocations achieved larger 
Sharpe ratios.

One conclusion from the sub-period analyses is the obser-
vation that the performance differences between the sector- 
and factor-based allocations are not stable over time. The 
relative performance of sector and factor portfolios seems 
to relate to the state of the economy. While overall and for 
the full period factor portfolios dominate sector portfolios, 
the latter seem to be beneficial during crisis periods. How-
ever, the available history of factor indices is still too short 
to allow robust conclusions. Adjusting the relative size of 
short and long positions, optimization algorithms and dif-
ferent estimation window length in the optimization process, 
affects the comparative results, but do not fundamentally 
change the pattern of the relative performance.

Conclusions

In this study, we compare the performance of two different 
low-cost asset allocation strategies, one building on invest-
able factors and the other one on investable sectors, both 
via ETFs. We extent the earlier research of Briere and Sza-
farz (2021) in different directions. While Briere and Szafarz 
(2021) build on Fama–French factors that are not directly 
investable, we focus on investable factor and sector indices 
and in addition analyze a variety of different out-of-sample 
investment strategies.

For the entire investment period between May 2007 
and November 2020, we find that factor portfolios provide 
a superior performance relative to sector portfolios. Even 
though the differences are not always statistically signifi-
cant, which might be due to the relatively short evaluation 
period, the results are economically relevant with substantial 
Sharpe ratio differences. The results are consistent among all 
analyzed asset allocation strategies and estimation window 
length for the input parameters. The reason for the results 
become more evident when we analyze the performance dif-
ferences in more detail. The factor portfolios generate higher 
average returns with lower risk (volatility). Our analysis of 
tail risk measures such as skewness or kurtosis of returns 
or the maximum drawdown reveals that factor portfolios do 
not exhibit larger levels of tail risk. Therefore, higher risk 
cannot explain the superior performance of factor portfolios. 
Moreover, we find that for almost all allocation strategies, 
portfolio turnover is lower for factor compared to sector 
portfolios. Hence, for larger transaction costs the relative 
benefits of factor compared to sector allocations become 
even more pronounced.

Based on multifactor regressions, we observe that both 
factor and sector allocations yield positive multifactor 
alphas when including the six Fama–French long–short 
factors (“Market,” Value (“HML”), Size (“SMB”), Quality 
(“RMW”), Investment (“CMA”) and Momentum (“MOM”)) 
augmented by the betting-against-beta (BAB) factor 
(Frazzini and Pedersen 2014). Consistent with the Sharpe 
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ratio results, we find for all risk–return optimization models 
that factor portfolios provide higher multifactor alphas com-
pared to sector portfolios. Only for risk-based allocations, 
sector portfolios partially provide larger multifactor alphas 
than factor portfolios. This result is in line with our finding 
that sectors reveal a lower correlation structure and hence a 
higher diversification potential than long-only factors.

To analyze the potential benefits of factor timing, we 
regress factor portfolios on the same six MSCI long-only 
factors, which we employ as assets in the factor portfolios. 
We find that risk–return optimization as well as risk-based 
allocations add value compared to a buy-and-hold factor 
strategy. Finally, our sub-period analysis indicates that dur-
ing “normal” times factor portfolios clearly dominate sector 
portfolios, whereas during crisis periods sector portfolios 
are superior offering better diversification opportunities. 
This finding is in line with Briere and Szafarz (2021) who 
reported that sector investing reduces risks during crisis 
periods, while factor investing can boost returns during 
expansion periods.

However, for the full sample, we find a clear outper-
formance of factor portfolios. Overall, factor indices offer 
an attractive investment universe and are already investable 
for instance via ETFs. For further research, it might be inter-
esting to investigate whether combining sectors and factors 
in a single portfolio adds additional value. Briere and Sza-
farz (2020) propose blended portfolios, which combine the 
diversification benefits of sector investing particularly during 
crisis periods with the risk premiums of factor investing. 
Analyzing the benefits of blended portfolios, we leave for 
further research.
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