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Abstract

Acrylic glasses, as well as mineral glasses, exhibit a high variability in tensile strength. To cope with this uncertainty factor for
the dimensioning of structural parts, modeling of the stress-strain behavior and a proper characterization of the varying fracture
stress or strain are required. For the latter, this work presents an experimental and mathematical methodology. Fracture strains
from 50 quasi-static tensile tests, locally analyzed using digital image correlation, form the sample. For the assignment of
an occurrence probability to each experiment, an evaluation of existing probability estimators is conducted, concerning their
ability to fit selected probability distribution functions. Important goodness-of-fit tests are introduced and assessed critically.
Based on the popular Anderson-Darling test, a generalized form is proposed that allows a free, hitherto not possible, choice of
the probability estimator. To approach the fracture strains population, the combination of probability estimator and distribution
function that best reproduces the experimental data is determined, and its characteristic progression is discussed with the aid

of fractographic analyses.

Keywords Acrylic glass - Anderson-Darling test - Fracture strain - Goodness-of-fit - Probability estimator - Weibull

distribution

1 Introduction

Poly(methyl methacrylate) (PMMA), also known as acrylic
glass, is a material with great potential for resource con-
servation. Since it is much lighter than mineral glass, the
integration into automotive structures provides weight sav-
ing that reduces the car’s energy consumption. For mineral
glass, it is already known that the strength in practical appli-
cations is significantly lower than theoretically determined
(Orowan 1949; Wiederhorn 1967; Ritter and Sherburne 1971;
Chandan et al. 1978; Overend and Zammit 2012). Alter et al.
(2017) attribute this effect to the mineral glasses’ highly brit-
tle nature paired with stochastic distributed surface flaws,
coming from manufacturing, handling, and transportation.
Thus, especially the glass edge shows a reduced strength
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compared to the glass surface (Lindqvist et al. 2011; Kleud-
erlein et al. 2016; Ensslen and Miiller-Braun 2017). Since
these flaws occur randomly, the failure criterion is a stochas-
tic quantity rather than a deterministic value.

Likewise, acrylic glass, which is a brittle thermoplastic
consisting of randomly entangled polymer chains, shows a
high variation in its fracture strain (Riih1 2017). Since PMMA
is either injection molded or processed from extruded plates,
especially for the latter the machined edges show a higher
roughness than the surface areas (Riihl 2017). In conse-
quence, for machined PMMA components the edge strength
must be assumed to be lower than the one of the surface.
In this work, the tensile specimens had to be milled from
extruded plates. Therefore, the gained fracture strains might
be on a lower level than they are for injection molded com-
ponents. Nevertheless, the hereafter proposed methodology
is independent of the manufacturing process of specimens,
as long as it is kept consistently.

Proceeding the work of Riihl et al. (2017), a methodology
is introduced for determining the probability distribution of
fracture strains in acrylic glasses. A description is given for
sample generation, including the manufacturing process of
specimens and the measurement of fracture strain. In order
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Fig.1 aDimensions of the tensile specimen [mm] and b triaxiality m [-]
at 2.5 mm elongation

to provide the necessary statistical basics, the regarded prob-
ability distribution functions are briefly introduced, and the
probability estimators, which are common in order statis-
tics, are compiled. Based on the problem of how to properly
combine distribution function and probability estimator to
best reproduce the material’s fracture behavior, a detailed
introduction of established goodness-of-fit tests is provided,
in which the fundamentals are prepared to understand the
working principle of a new test. One of the great results
from this study is the proposal of a generalization of the
Anderson—Darling goodness-of-fit test. This new test allows
the necessary variability in choosing probability distribution
function and probability estimator in order to find their opti-
mum combination. The fit methodology is directly adopted
for the sample of PMMA fracture strains, revealing two dif-
ferent fracture criteria within the raised sample. With the help
of fractographiy, a link between two-modal fracture strain
distribution and defects induced by specimen production is
discovered.

2 Experimental results

The data base for the statistical analyses on the fracture
behavior of acrylic glasses is a sample of fracture strains,
which is gained from 50 uniaxial tensile tests that where
performed at room temperature. The tensile specimens are
milled out from PMMA plates. These plates come from the
same production batch having a mean thickness of 3.065 mm
with a standard deviation of £0.043 mm. With the tolerances
coming from the milling process, the cross-sectional area of
the measuring zone becomes averaged at 36.94 mm? with a
standard deviation of 0.57 mm?. The specimen’s dimen-
sions that are shown in Fig. 1a are adopted from Riihl et al.
(2017), which is a geometry (BZ) optimized for high strain
rates with uniaxial stress state in the measuring zone. The
relation of hydrostatic pressure p over von Mises stress oym
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displacement s [mm]

Fig.2 Force-displacement-diagramm of 50 quasi-static tensile tests on
PMMA at room temperature

can be used as a measure of triaxiality m, where

ovM

_ 301+ 024 03) )

\/% [(01 — 02)2 + (02 — 03)% + (03 — 01)?]

becomes 1/3 for stress in only one principal direction, i.e.
uniaxial tensile stress (e.g. Riihl 2017). Figure 1b illustrates
the results of a linear-elastic simulation of the tensile test with
respect to triaxiality. In the experimental tests quasi-static
loading is realized by 6 mm/min machine traverse veloc-
ity, resulting in a nearly constant strain rate of ¢ = (0.0014
+0.0001) s~! in the measuring zone. The received force-
displacement curves are given in Fig. 2. On the one hand,
they illustrate the high reproducibility of the test, on the
other hand, they demonstrate the necessity for a statistical
approach in characterization of the fracture strain due to the
high variation in the acrylic glasses tensile strength. Young’s
modulus and Poisson’s ratio are taken from the work of Riihl
(2017). The areas of turquoise color state an almost uniaxial
stress state in the specimen’s measuring zone and on edge
level. Thus, the fracture strains are taken locally with slight
edge distance right at the position of crack initiation, uti-
lizing a digital-image-correlation (DIC) analysis, which is
shown in Fig. 3. The cracks starting point lies in the tip of
the v-shaped fracture pattern that is displayed on the right
hand side in Fig. 3. DIC enables the measurement of true
strain or Hencky strain on the specimen’s surface. Since the
point of failure usually occurs between the last picture of the
intact and the first picture of the fractured specimen, the last
local strain is linearly extrapolated using the higher measur-
ing frequency of the load cell to receive the fracture strain.
As fracture criterion, strain is preferred over stress, since it is
always a distinct value, even for non-linear material behav-
ior, and as a kinematic quantity it is independent of material
models. The measurement precision of the DIC system can-
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Fig.3 Analysis of local strains
via digital image correlation
(DIC). Flags indicating the
position at which the fracture
strain is taken one picture before
failure (left) and the outer edges
of the fracture pattern one
picture later (right)

not be provided in a conventional way as distinct value. The
accuracy is strongly dependent on the requirements of the
test laboratory, such as ambient temperature, illumination,
vibrations, etc. In order to quantify the error, 100 images of
an unloaded specimen are taken, and the noise of measured
strain about the image series is analyzed. The applied facet
size is approx. 3% of the sample width. The uncertainty in
strain measurement is found to be +0.0006 in the current
experiments. The fracture strains ¢; (i = 1,2, ..., 50) that
form the database in the following investigations are depicted
as ahistogramin Fig. 4. The histogram, whose interval ranges
from 0.02 to 0.05 and which is divided into ten even bins,
gives a rough idea of what the probability density function
(PDF) of the sample might look like. Yet, it is uncertain
whether the PDF features an unimodal or a multimodal pro-
gression. However, the familiar bell-shaped curve seems to
be unlikely. For this reason, further statistical analysis are
conducted in the following, instead of a general assumption
of normal distribution. As shown later on, that is the correct
decision. Thus, even in this early state, the histogram gives
the indication for an irregularity within the sample.

3 Probability distribution functions
The probability distribution of the fracture strains ¢&; is

tested for agreement with selected probability distribution
functions, of which an overview is listed in Table 1. Tensile
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Fig. 4 Histogram of the 50 fracture strains that were determined via
digital image correlation

tests are performed on specimens that are assumed to feature
no residual stresses. That postulate bases on our studies in
Brokmann et al. (2019), in which by use of a polariscope the
manufactured specimens are attested to be stress free. Since
no negative fracture strains occur, all distribution functions
are considered for the variable ¢ € [0, 0co0). The function
parameters are consistently defined as

— mean value u € R,

standard deviation 0 € R,
— shape parameter 8 € R,

— scale parameter n € R*, and
— location parameter y € R.
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Table 1 List of regarded

T . . Name Cumulative distribution function
distribution functions, featuring
the normal, log-normal (LogN), 1 1 & —u
2-parameter Weibull (2PW), Normal P(e) = 3 + 5 erf |: 7 ] )
3-parameter Weibull (3PW), ov2
left-truncated Weibull (LTW), LogN Pe) =+ Lert [ln(a) - u} .
bilinear Weibull (BLW), 2 2 o2
bimodal Weibull (BMW), e\ P
logistic, log-logistic (LogL.), 2PW P(e)=1—exp|— <*> (C))
Gumbel and Cauchy distribution 1
0 forO0<e <y
3PW P(e) = i 0\ 5
@ 1 —exp 7(8 y)i| fory <e ©)
n
0 for0<e<y
LTW P(e) = r (gﬂ —yh )} (6)
1 —exp|— fory <e
L n?
l NS
1 —exp —(—) for0 < e < ¢&*
m
BLW P(e) = - = )
e\ P2
l—exp|— (—) fore > &*
L nz -
B <8>ﬁ1_ |: (S)ﬁz]
l—exp|—|— —exp|— | —
n 2
BMW P(e) = T BT ®)
e[ 6)
n n
—1
LogW P(e) =1—exp {— exp [(6 n(n))“ 9)
1/
£y
Gumbel P(s) =exp{—exp|— (10)
n
. e—y -
Logistic P(e)=1{1+exp|— [€8))
n
e 11!
LogL Pe) = 1+[ } (12)
exp(y)
1 1 e—y
Cauchy P(e) = = + — arctan (13)
2 7 n

The probability distribution functions are chosen for repre-
sentation of the most common function families in science
and of the most common modified distribution functions in
the statistics of glass. Besides the commonly familiar normal
or Gaussian distribution of Eq. (2), its relative, the log-normal
distribution, is considered. Its cumulative distribution func-
tion (CDF) is given in Eq. (8), in which x and o are mean
and standard deviation of the natural logarithmized random
variable ¢. In both normal and log-normal CDF, “erf(x)” is
the error function.

In reproduction of the stochastic fracture behavior of
glasses and ceramics typically Weibull distributions are
applied. The 2-parameter Weibull (2PW) distribution is a
special form of the three-parameter Weibull (3PW) distri-
bution, where the location parameter y is zero, cf. Eq. (3)
and Eq. (4). The parameter y describes a lower limit, below
which no observations are expected, i.e. only in excess of the
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null strain &g = y fracture appears. Similarly, the so called
left-truncated Weibull (LTW) distribution in Eq. (10), see
Ballarini et al. (2016), provides a lower limit y as well, but
by truncation of the 2PW distribution’s probability density
function. That changes the interpretation of the lower limit:
fracture at strains below y is possible, but not represented in
the sample.

Furthermore, the CDFs of the log-Weibull, the Gumbel,
the logistic and log-logistic, and Cauchy distribution are
given in Eq. (6, 7, 9, 12, 13), cf. Forbes et al. (2011), Rinne
(2008), Ahmad et al. (1988). The variable ¢ is defined as
being log-normal, log-logistic, or log-Weibull if In(¢) is nor-
mal, logistic, or Weibull distributed.

In case the probability density function of experimental
data features two modes, as potentially indicated in Fig. 4
for the current sample of fracture strains, the bilinear Weibull
(BLW) distribution in Eq. (5), cf. Ballarini etal. (2016), offers
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Table 2 Overv.i?w of t'he Year Reference Probability estimator
present probability estimators
i —0.5
1914 Hazen pi=- (15)
n
1923 California DPW pi= " (16)
n
;
1939 Weibull P = 17
eibu Di P (17)
1943 Beard =031 (18)
3 eart P =
Pr= 038
i —0.3
1953 Bernard & Bos-Levenbach pi = ! (19)
n+04
i —0.375
1958 Bl | = —— 20
om P 025 20)
1962 Tuk il @n
uke P =
Y pi 3n+1
1963 Gringort 044 22)
2 ringorten | = —————
gore = o
1—pi i=1
—0.31
1975 Filliben P Rl LI R (23)
n+0.365
0.5/ i=n
i—c
197 i = —— fi <c<l1
978 Cunnane Di T 2er1 or)<c<
i—04
| = 24
Pr= 02 @
i —0.35
1979 Landwehr et al. pi=" (25)
n
i—04
1991 McClung & Mears pi = (26)
n
2001 Yu and H (20326 @7
u and Huan i =
& P = 0348

the reasonable approach of splitting the sample in two sets
and assuming an 2PW distribution for each. The intersection
&* of the two 2PW distributions derives from equating both
functions and solving for

nﬁl ﬁlltfz
&f = % . (14)
m

At transition, the differentials of both 2PW distributions dif-
fer, unless 1 = n, and B = B, which is trivial. For a
more smooth transition, the bimodal Weibull (BMW) distri-
bution of Eq. (11), cf. Pisano (2018), merges the two separate
functions together. Its parameters differ from the ones of a
corresponding BLW distribution and cannot simply be trans-
ferred.

4 Function fitting

The biggest difficulty in the modeling of the probability dis-
tribution of a sample is the probability assignment to an
occurrence since the population is unknown. Over time, many
probability estimators were introduced for various applica-

tions. An overview of these estimators is given in Table 2.
In case of the estimator in Eq. (17) published by the Califor-
nia Department of Public Works (1923) the leading author
is unknown, so typically it is referred to as the California
method. As discussed later, this estimator is the one com-
monly used for goodness-of-fit evaluations. Cunnane (1978)
showed a generalized estimator, to which many of the oth-
ers can be attributed to by an appropriate choice of ¢ in
Eq. (25). He suggested ¢ = 0.4. Furthermore, it is to be
noted that Eq. (18) gives the mean rank and Eq. (20) the
median rank plotting positions (Weibull 1939; Bernard and
Bos-Levenbach 1953; Datsiou and Overend 2018).

The procedure is as follows: the N measured fracture
strains are sorted in ascending order 6] < &7 < ... < gy, SO
that position m = 1 holds the minimum fracture strain and
position m = N the maximum one. Then only dependent
on this position m, the corresponding occurrence probability
pi is assigned using one of the probability estimators. The
generated coordinates (&; | p;) are the plotting positions. To
fit the CDFs from Sect. 3 to this empirical CDF, the func-
tion parameters that minimize the weighted residual sum of
squares (WRSS)
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n 1 B

WRSS = Z[pi _ P(Si)]z W [P(e)] (28) fracture strain EDF s

i=1 T 08 normal CDF . P

A - - — ori ’ g -7
are determined, in analogy to the later discussed weightened g 06 1 erit dev % ’ I .
goodness-of-fit tests (Anderson and Darling 1954; Sinclair —?g ' R4 K ’
et al. 1990). In Eq. (28) p; is the ith plotting position, P (g;) % 04 | - ’ R
is the function value for the corresponding ith fracture strain 2 : I 7
and v (u) is a weight function, for which examples are given g -7 L7
in Sects. 5.2 and 5.3 . This procedure is adopted for all & 021 .
introduced distribution functions. Indeed, by appropriated L7 ’
transformation of the coordinate system the 2PW, the BLW, 0 T T T T T
0.025 0.03 0.035 0.04 0.045

the log-Weibull, the Gumbel, the logistic, the log-logistic
and the Cauchy distribution can be brought into a linear
form. In such coordinate systems, a CDF is then simply fitted
on the plotting positions by linear regression. The provided
confidence and prediction limits of the linear regression are
advantageous. But by a transformation of the coordinate sys-
tems an unwanted weighting of residua is brought into the
fit. Makkonen (2006) warns against this fit of observations
to a model, instead of fitting a model to the observations. So
to avoid that and keep the weights comparable, the CDFs are
all fitted by minimization of the WRSS.

5 Goodness-of-fit

The goodness of a fitted distribution function is evaluated
in hypothesis testing. A null hypothesis is assumed, which
states that the sample and the fitted probability distribution
have the same population. The error, which one would make
by falsely rejecting Hy, is quantified. Typically, the outcome
of these tests, the so called test statistic, is compared to tabu-
lated critical values, which are dependent on sample size and
significance level. The significance level « is the probability
for the rejection of a true Hy. Subsequently, the development
of famous goodness-of-fit tests is presented, in order to pro-
vide the fundamentals for the proposal of a new test statistic.

5.1 Developing enhanced complexity

The simplest testing method in EDF statistics is the so-
called Kolmogorov—Smirnov (KS) test (Stephens 1974). It
examines the most critical deviation between fitted CDF and
sample. The experimental data is considered as empirical
CDF P, (¢), i.e. empirical distribution function (EDF), which
is defined through

number of observations < &
Py(e) = " ; (29)

cf. Anderson and Darling (1954). Thus, for the measured
fracture strains ¢; the occurrence probabilities P, (¢;) are just
the ones of the California method from Eq. (17). This means
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fracture strain € [-]

Fig. 5 The Kolmogorov—Smirnov test’s deviation limits for a statisti-
cal significance of @ = 0.05. The PMMA fracture strain’s empirical
distribution function is tested against a normal distribution

that in all EDF statistics the singe occurrence probability
pi = P,(g;) is estimated by i /n. Figure 5 displays the EDF
of the current sample of PMMA fracture strains. For each
probability step of the EDF, the starting and the ending point
are compared to the CDF P(g) at corresponding abscissa-
position (DT and D). The maximum occurred deviation is
defined as test statistic D with

Dt = max |~ — P(s;) (30)
1<i<n|n

and

D™ = max |—— — P(&;) (31
1<i<n n

as

D = max[D*,D7]. (32)

The KS test provides a distinct test statistic D that is com-
pared to a critical value one might take from D’ Agostino and
Stephens (1989). However, for the subject of this work this
test statistic is not suitable, since only the one point of the
EDF with maximum deviation to the CDF is considered. The
EDF’s progression within the limits is disregarded. Further-
more, at the distributions tails the KS test is less sensitive
as Fig. 5 indicates. But, especially the lower tail is of major
importance at structural designs, for which only very low
failure probabilities are accepted. In the worst-case scenario,
the tolerances of the KS test would lead to the overestimation
of the critical limit for maximum strain. The use of this test
must be refused in such context.

As enhancement to the limitations of the KS test, the
Cramér-von-Mises (CVM) test (Cramér 1946) considers the
EDF in every step. Thus, it generates the test statistic W2. The
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smaller W2 gets, the better is the empirical data reproduced
by the CDF. The calculation follows

W? = nw? =n / [P,(g) — P(e)]*dP(e)

1 2 [i—05 2
=@+Z[ p —P(e,-)], (33)

i=1

in which P, (¢) represents the EDF and P (&) the CDF of the
assumed probability distribution. Using the midpoint rule,
the integral in Eq. (33) is to be converted into a sum, which
significantly simplifies the calculation for the test statistic
W?2. In doing so, the occurrence probability p; for each
observation is again estimated according to Eq. (17), and not
Eq. (16) as one could assume. The best possible test statistic
obviously equals the error term 1/(12n). The test statistics
asymtotic and modified borders for not rejecting Hy are again
given by D’ Agostino and Stephens (1989), regarding various
types of distribution functions.

The mandatory use of the California method’s probabil-
ity estimator in the CVM test, given by the EDF, becomes
problematic when the plotting positions, initially used to fit
the CDF, are based on a different estimator because conse-
quently they are not considered in the test statistic. Thus, for
the comparison of probability estimators in order to detect
their effect on the fitted CDF, the conventional CVM test
is not a proper evaluation method. A consistent use of the
plotting positions for fit and goodness-of-fit analysis is not
possible.

5.2 Anderson-Darling test

An enhancement to the CVM test was introduced in Ander-
son and Darling (1954). The purpose was to bring higher
weight to the tails of the distribution in the goodness-of-fit
rating. Therefore, a weight function

1
Y(u) = m (34)

the shape of whichis shownin Fig. 7 was added to the residual
squares, as

A =n / [Pa(e) — P& ¥ [P(e)] dP(e)

[ [Pae) — P())

PEOU-PE] dP(e). (35)

Since the function values of a CDF represent an occurrence
probability, they always have to result in values between 0

and 1. Hence, this is the very interval for the argument in
Eq. (34), with an approach of the function value towards
infinity at the limits. As before, the integral expression of the
test statistic is transformed into a sum. First, it is simplified
by substituting the continuous CDF P(¢) = u and dP(¢) =
du. Then, the single integral is divided into an integral for
each probability step P(e;) = u;. Following the California
methods estimation, the EDF is P,(¢;) = p; = i/n for an
ascend ordering of & < & < ... < g,. With pp = 0
and p, = 1, the fraction of the first and of the last integral
reduces. Simple integration and collecting of terms results in

up MZ uz( _M)Z
A2 =n /7du+ N
u(l —u) u(l —u)
0 uy
[ (p2—w? F -
p2—u —u
——d -
+ u(l —u) ekt u(l —u)
u Un

=-—n+ Z % [In(ui) +In(1 — wpp1-)] . (36)
i=1

Critical values of the test statistic A% for an acceptance or
rather not rejection of the null hypothesis in dependence on
sample size and probability distribution can also be taken
from D’ Agostino and Stephens (1989). Similar to the CVM
test, the Anderson—Darling (AD) test uses a mandatory prob-
ability estimator. That becomes obvious by examining the
resulting sum in Eq. (36), which only contains the CDF val-
ues. Thus, by choosing a probability estimator differing to
the one of the California method to fit a particular distribu-
tion, the conventional EDF based AD test is like the CVM
test not suitable for the goodness-of-fit rating.

5.3 Generalized Anderson-Darling test

Since the conventional AD test requires the California meth-
od’s probability estimator, we propose the generalized An-
derson-Darling (GAD) test. The derivation is similar up to the
point, where the California method’s probability estimation

replaces the general approach. That is omitted to keep p;
unspecified. Collecting the integrated terms leads to

AL =n { — 1 —1In[u,(1 — up)]

n—1
2 (4 (12 (LT
+§[piln( P ) (pi —1) 1n< — )]}

(37

Replacing p; in Eq. (37) by the California methods esti-
mator would lead back to the conventional AD test statistic
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Fig. 6 Probability distribution of the nth estimated plotting position
using Weibull’s probability estimator. For a sample size of 50, the cor-
responding probability value is marked

50

weight y [-]

fracture propability u [-]

Fig.7 Function v putting weight on the plotting positions dependent
on the magnitude of their fracture probability. The solid line shows the
weighting of the AD and the GAD test, and the dashed line displays the
weighting of the lower-tail GAD test

in Eq. (36). Now, one advantage of the GAD test is the free
choice of the probability estimator and thus the enabling of a
consistent use for function fit and afterwards goodness-of-fit
examination. It is worth noticing that in the conventional AD
test the probability py equals zero and p,, equals one. Other-
wise Eq. (35) is indefinite. Hence, the GAD test enables one
to change the examined plotting positions apart from the nth
one. In other words, the last plotting position is still adopted
from the EDF. Basically, this is still an inaccuracy because of
the inconsistent use of the nth plotting position in CDF fit and
goodness-of-fit test, when the initial probability estimator is
not i /n. That inaccuracy increases for small sample sizes,
since their last plotting position gets a higher deviation from
one, as exemplarily shown in Fig. 6 for Weibull’s probability
estimator (WPE) from Eq. (18), which is the one with the
lowest estimate for p;.

To deviate even with the last plotting position p,, from the
EDF, the approach of Sinclair et al. (1990) can be utilized.
They split the weight function ¥ of the conventional AD test
to gain one test statistic putting higher weight on the lower
plotting positions and one putting higher weight on the upper
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ones. Adopting their lower-tail weighting

1
V) = — (38)

u
in Eq. (35) and bringing the integral into sum form, but keep-
ing the plotting positions p; as argument, provides a new test
statistic

2 1 2
AG,LT =n 5~ 2pn(1 — up) — p;, In(uy)

n—1
+ Z [P,z In (%) +2pi(u; — Mi+1)]} . (39

i=1

the lower-tail GAD test. As Eq. (39) shows, the nth plot-
ting position is now arbitrary. However, with respect to the
step function, one should be aware that even for ¢ — oo
the occurrence probability for another observation does not
become one, except when a probability estimator is chosen
that defines the nth plotting position as one. Thus, the devi-
ation between nth step and CDF tends to infinity. Due to
simultaneously decreasing weight, the impact on the mag-
nitude of the test statistic is negligible especially for larger
sample sizes. The weights of both GAD test and lower-tail
GAD test are compared in Fig. 7.

5.4 Monte-Carlo simulation for the p-value

In GAD and lower-tail GAD test, the consideration of arbi-
trary step functions independent of the EDF is enabled.
Analogously to the conventional AD test, weight is put either
on both or only on one tail of the distribution, which are
the areas of major importance for many applications. To
complete a goodness-of-fit analysis, the results of GAD and
lower-tail GAD must be classified. Typically, the test result
is compared to critical values of respective significance level.
Besides providing overflowing tables, here the methodology
is shown to calculate corresponding p-values via Monte-
Carlo simulation.

The p-value of a goodness-of-fit test statistic describes
how probable a test outcome that is higher than the observed
result would be if Hyp was true (D’Agostino and Stephens
1989). The higher the p-value occurs, the greater is the sta-
tistical significance of the test result. Only that means that the
probability density of all possible test outcomes have to be
known. Fortunately, the permanent increase in computer pro-
cessing power allows the carryout of extensive Monte-Carlo
simulations, in order to estimate this probability density with
great accuracy.

In the following, the calculation of the p-value is explained
on the example of the current sample of 50 PMMA fracture
strains in a goodness-of-fit test for 3PW distribution. Using
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the introduced tools in Sect. 4, the function parameters S, n,
and y are fitted. The determined 3PW distribution function
is postulated to be the true population of the experimental
data and the 50 fracture strains to be a random sample of this
population. If the 50 tensile tests were repeated, a different
composition would occur, but still following the population.
Its composition is made by chance alone. The twist is now
that this chance is going to be simulated. Based on the popu-
lation, samples with random fracture strains are created that
are representative for sets of real experiments.

The generation of random variables from a distribution
function is enabled by the so-called method of inverse
transform sampling. For this, random uniformly distributed
numbers in the interval (0, 1) are inserted for u in the inverse
e =P Yu) ofa given CDF P (¢). The basis is the proba-
bility integral transform, which states that a random variable
& with CDF P(¢) entails the uniform distributed variable
u = P(e), and vice versa. In other words, the CDF performs
the transformation from a variable of particular distribution
into a variable of the standard uniform distribution (Robert
and Casella 1999). For the example, regarding a population
of 3PW distribution, random fracture strains are received by
transforming Eq. (4) as described into

erand = P~ w) = y + n[—In(1 —u)]"/? (40)

with u as a uniformly distributed variable. The equations for
further popular distribution functions are given by Forbes
et al. (2011). For the BMW distribution the generation
becomes more extensive, due to the fact that its CDF is not
to be inversed. Therefore, by given u a numerical solution of
Eq. (11) for ¢ has to be conducted.

The determination of the p-value for the initial sample
is now demonstrated in Fig. 8 as a flowchart. The algorithm
starts with input of the 50 experimental fracture strains &; and
the fitted CDF P (g). From both of which, on the right path
the test statistic Agng is calculated. On the left path, a loop is
entered. Based on the assumed population P (¢), i.e. the CDF,
a new sample of 50 random fracture strains epyng,; is gener-
ated. The parameters of the initial CDF are fitted to the new
sample and a goodness-of-fit test is performed, resulting in
the test statistic A%/[C, Iz This procedure is repeated 10 million
times. In this way, 10 million possible test outcomes are sim-
ulated. It was found appropriate to create at least 10 million
test statistics for a p-value that is reproducible to the third
decimal place. In a final step in Fig. 8, the p-value arises from
the percentage of test statistics Aﬁ/IC.j G=12,..., 107)
from the Monte-Carlo simulation being greater than the orig-

inal test statistic Aorlg with

p-value = P(AMC > Aong) (41)

strains & with proba-

START
50 experimental fracture
bility dlbtrlbuthl’l P(e)

!

end for ic 107 1 calculate test
or j=1 to ste 2
J p statistic A,

generate 50 uniform
random numbers
u; and calculate
Erand,i = Pil(ui)
¥
fit CDF parameters on
random sample Eqand i

v
calculate test
. . 2
statistic AMC, j

determine p-value as
2
P(Afic; > Adig)

orig

—{ }_

Fig.8 Monte-Carlo algorithm for determining the p value

where P is the probability measure. In Sect. 6, this algorithm
is adopted in p-value determination for the Anderson—
Darling test statistic A%, and for both new test statistics Aé
and AZG’LT, in order to keep continuity.

6 Transfer to the sample

6.1 The best fit

With the aid of the p-value, the initially introduced distribu-
tion functions are assessed for their ability to reproduce the
experimental data using the AD, the GAD, and the lower-tail
GAD test. Each probability distribution function is fitted to
the fracture strain sample. As stated in Sect. 4, the fit criterion
is the WRSS, for which the same weight is chosen as for the
lower-tail GAD because it visually provided the best captur-
ing of the data points. The plotting positions are respectively
generated for each of the probability estimators in Table 2,
in order to detect the pairing between distribution function
and estimator that results in minimum WRSS. In doing so,
surprisingly one estimator shows a continuously good per-
formance. It is p; = i/(n + 1) by Weibull that produces
the minimal or at least the second lowest W RSS in almost
all cases. This conforms with the conclusions of Makkonen
(2006), Makkonen (2008), revealing WPE as the only valid
approach for probability assignment.
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Table 3 Ranking of the considered distribution functions by minimum WRSS. Fit criterion is the minimization of W RSS with ¢ («) = 1/u. In
comparison, the respective results of Anderson—Darling, generalized Anderson-Darling, and lower-tail generalized Anderson—Darling test

Pos. Distribution Probability estimator WRSS A? p-value Aé p-value Aé,LT p-value
1 Bilinear Weibull (i—0.3)/(n+04) 0.0464 0.1743 0.938 0.1749 0.979 0.0778 0.975
2 Bimodal Weibull (i —0.5)/n 0.0572 0.1853 0.675 0.1950 0.824 0.0887 0.731
3 3-Parameter Weibull i/(n+1) 0.1148 0.4028 0.289 0.3550 0.527 0.1571 0.334
4 Gumbel i/(n+1) 0.1335 0.5112 0.259 0.4685 0.378 0.1839 0.380
5 Left-Truncated Weibull i/(n+1) 0.1354 0.3296 0.463 0.3190 0.608 0.1937 0.192
6 Log-Normal i/(n+1) 0.1490 0.4437 0.376 0.4201 0.470 0.2144 0.272
7 Log-Logistic i/(n+1) 0.1916 0.5660 0.211 0.5424 0.274 0.2746 0.128
8 Normal i/n 0.2259 0.5457 0.253 0.5457 0.253 0.3343 0.080
9 Logistic i/n 0.2684 0.6382 0.160 0.6382 0.160 0.3978 0.043
10 2-Parameter Weibull i/n 0.2778 0.6842 0.170 0.6842 0.170 0.4162 0.044
11 Log-Weibull i/n 0.4095 1.3663 0.025 1.3663 0.024 0.6040 0.012
12 Cauchy i/(n+1) 0.5156 1.3313 0.029 1.3358 0.035 0.7505 0.011
Ranking the distribution functions by WRSS, Table 3 lists fracture strain £ [-]
the respective AD, GAD and lower-tail GAD test statistics 0.022 0.027  0.033  0.041 0.05 99.94
and more important for comparability, their p-values. Notice- '
able is the inconsistent ascending order of the test statistics, 93.40 oy
though it is not astonishing, since the goodness-of-fit tests are 63.21 &
based on a continuous EDF and the WRSS only on the sam- z
pling points. More important is the different ranking between 30.78 2
the three goodness-of-fit tests regarding the p-values. Just for 12.66 g
AD and GAD, which both possess the same weighting, the 485 2
difference shows that the consistent choice of plotting posi- 4 O experiments g
tions is not trivial. -4 —— BLW CDF 181 =
The BLW distribution, which ranks first in Table 3, is 5 0.67
illustrated in Fig. 9, choosing the Weibull plot for visual- -3.8 -3.6 3.4 -3.2 -3
ization. Attribute of the Weibull plot, which is gained by In(e)
transforming the abscissa by x = In(¢) and the ordinate by (a)
y =In[—In (1 — P(¢))], is the display of a 2PW CDF as a
straight line. In case of Fig. 9, the plotting positions clearly 110
. . e . . 100 — BLW PDF
show two line-ups, i.e. two 2PW distributions, which explains 90
the top ranking of the BLW distribution. The occurrence of : 80
two separate 2PW distributions in the sample leads to the 2 70
assumption of two different fracture criteria being present. 3 60
Hitherto, all sample points are assumed to follow the same Z 50
population. But based on the prominent performance of the g 40
multimodal distribution functions, this assumption is to be g ;g
questioned. The superposition of two effects for the failure 10
of the PMMA samples appears more likely. In response to the 0

visual indication of two 2PW distributions Pj(¢) and P> (¢),
the distribution fit is repeated with consideration of a mixture
distribution

P(e) = w1 Pi(e) + w2 Pa(e)
wiP(e) + (1 —wy)Pa(e),

(42)

where w; and wy are the weights for the respective mixture
component so that w; + wy = 1. In result, the fit produces

@ Springer
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Fig. 9 a Weibull plot of the bilinear Weibull distribution’s cumulative
distribution function. Analogous to Table 3 Pos. 1 the plotting posi-
tions are estimated by Eq. (20) and weighted by Eq. (38). b Associated
probability density function within the same interval limits
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Fig. 10 a Weibull plot of the mixture distribution’s cumulative distri-
bution function. The plotting positions are estimated by Eq. (18) and
weighted by Eq. (38). (b) Associated probability density function within
the same interval limits

the best WRSS so far with WRSS = 0.0463. This fit is
shown in Fig. 10. The left mixture component weights with
wi = 0.209 and the right accordingly with wo, = 0.791.
Compared to Fig. 9b, the trend of the PDF in Fig. 10b fea-
tures a smooth transition between the two modes and thus
corresponds more to a physical behavior.

6.2 Fractographic Analyses

That raises the question whether there is a mechanical expla-
nation for the two populations in the sample. To find an
answer, the fracture patterns of the tensile specimens are
inspected more closely. Fortunately, the examined PMMA
exhibits brittle behavior, featuring the so called fracture mir-
rors at the very point of crack initiation (Brokmann et al.
2019). Therefore, in all tensile specimens the crack origin is
traced by closely examining the topography of the fracture
surface. In doing so, an irregularity is found. Figure 11 shows

Fig. 11 Machined surface of a PMMA tensile specimen 25 x magnified,
resulting from a sufficient milling process. Height is the 3 mm thickness
of the extruded plates

Fig.12 Machined surface of a PMMA tensile specimen 25 x magnified,
showing certain defects from manufacturing

the image of a specimen’s milled surface. Despite an unavoid-
able roughness, its topography is still quite homogeneous.
But, for some specimens in the primarily homogeneous sur-
face local spalling occurs. Especially towards the edges,
where the milling head first cuts the surface, spalling is dis-
covered. An example is given in Fig. 12.

By tracing the fracture mirror, for 23 specimens the crack
origin is located just within the notch root of such spalling.
Figure 13 provides a clear image of this case. The view is set
orthogonally onto the fracture surface and the fracture mirror,
whose center is right in the root of a prominent notch. The
size of the notch is even big enough that the spray mist could
enter from preparing the specimen with the speckle pattern
for DIC. This is noticeable by the black and white dots. The
complex multiaxial stress-state in such a notch root is hardly
to be determined. The failure stress might be calculated by
the size of the fracture mirror, as in Brokmann et al. (2019).
At this point, the specimens are divided into two groups. The
ones without visible defects in the machining surface and
those with crack origin lying within a spalling.
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Fig. 13 Section of a specimens fracture surface (A) 200x magnified
with highlight of the geometric edges. The fracture mirror (B) reveals
the cracks initiation point to be within a notch root (C)

The original sample is again plotted in Fig. 14 with delim-
itation of the specimens of the second group. Itis evident how
all the lower fracture strains are affected. For the 27 exper-
iments without visible defects, a linear regression line, i.e.
2PW distribution, is added. Even visually it demonstrates
very good agreement. To quantify the goodness of a 2PW fit,
the introduced procedure is reapplied on this reduced sample.
Due to its changed size, the probability for each occurrence
is re-estimated using WPE. The gained plotting positions are
weighted by Eq. (38) for an accordance with the previous
analyses. As a result, the 2PW CDF is fitted with a WRSS
to 0.0942, gaining a p-value of 0.577 in the lower-tail GAD
test, which is chosen to regard consistent weights. This high
p-value is a strong indication for the 2PW distribution to
reproduce the population.

6.3 Discussion

Using the proposed goodness-of-fit test procedure, a mul-
timodal progression of the sample’s probability density is
detected, which is always a hint that multiple influencing
factors affect the gained results. Indeed, fractographic anal-
yses identified a distinguishing feature within the sample:
surface defects. Certainly, in all experiments micro notches
from machining initiate the fracture by stress concentration.
As Fig. 11 demonstrates, a machined surface always has par-
ticular roughness. However, defects like the one shown in
Fig. 12 must be treated differently as usual machining tol-
erances. The present study showed that these defects from
spalling significantly reduce the strength of the material and
provoke a second distribution within the sample. Thus, when
keeping the sample unfiltered, a mixture distribution might
be the best approach to reproduce the physical behavior, since
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Fig. 14 Delimitation of the specimens within the sample, whose crack
origin lies in the notch root of a spalling. Analogous to Fig. 9, the
plotting positions are estimated by Eq. (18). A linear regression line is
added to the experiments of specimens without visible defects

both fracture criteria are considered separately in each of the
mixture components. A second approach is to exclude the
specimens weakened by spalling from the sample. Then, the
probability distribution of the retained experiments can be
reproduced by a common 2PW distribution.

The decision of treating the weakened specimens as
outliers, or not, must be taken with regard to the actual manu-
facturing process in practical application. Imagining a quality
control in a well-monitored production process, spalling
should not be an issue. Hence, an exclusion of respective
specimens would be valid. It is important that the sample is
representative. In the end, this study determined the fracture
strain distribution for one specific acrylic glass, coming from
one production batch and being processed by milling exactly
as described. A blind carryover to other PMMA materials is
not advisable. More important is the introduced methodology
of determining the probability distribution of experimental
data. Its practical adoption is of minor effort. We suggest
the usage of WPE p; = i/(n + 1) for probability estimation.
Dependent on the desired weighting of the plotting positions,
the GAD, or the lower-tail GAD are appropriate to evaluate
the quality of tested distribution functions in reproducing the
empirical distribution. If the Monte-Carlo simulation for the
p-value is to be avoided, the classic AD test is still an excel-
lent option as an alternative, providing tabulated significance
levels. Though, then the probability estimator p; = i/n of
the California method should be chosen for continuity.

7 Summary and outlook

For statistical analyses, in 50 unaxial tensile tests the local
fracture strain for a PMMA material is determined. Based
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on this sample and its very composition, WPE provides the
highest agreement with the regarded probability distribution
functions. Hence, we recommend the WPE as the first choice
for probability analyses on fracture strains or stresses. For
comparison of the probability distribution of different sam-
ples, a variation of the probability estimator is to be avoided.
With the development of new goodness-of-fit tests allow-
ing a free choice of the considered probability estimator,
distribution functions can now be rated by their statistical
significance in reproducing the sample by consistent use of
the underlying plotting positions. The influence of the sam-
ple size on the performance of the probability estimator has
not yet been considered.

The probability distribution of the unfiltered experi-
mental data exhibits a multimodal progression. The best
reproduction is gained with the mixture distribution of
two independent 2PW distributions, which is an indica-
tion for two different fracture criteria within the sample.
Fractographic analyses of the fracture surface reveal the
discrepancy between the specimens. The sample is to be
divided into the group of specimens, which have no visi-
ble defects, and the group of specimens being damaged by
spalling. This classification directly corresponds with the two
mixture components of the distribution. Thus, the charac-
teristics of the probability distribution are explained. The
decision of excluding the damaged specimens from the sam-
ple is refused, since in this study no particular application is
intended. The development of the introduced methodology
is more important than the particular probability distribution.

Within this study, quasi-static uniaxial loading at room
temperature is taken into account, so the influence of mul-
tiaxial stress, varying strain rates and different temperatures
on the materials fracture behavior is yet to be examined in
further investigation. The objective has to be the detection
of a proper CDF for fracture strain with scale, shape and/or
location parameter dependent on triaxiality, strain rate and
temperature. Furthermore, the specimen’s dimensions are
constant in the present study. For a more profound knowledge
of the volume dependency, additional tests with samples of
different geometries are a topic of further investigation.
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