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Abstract
Coarse Grained Reconfigurable Arrays (CGRAs) or Architectures are a concept for hardware accelerators based on the
idea of distributing workload over Processing Elements. These processors exploit instruction level parallelism, while being
energy efficient due to their simplistic internal structure. However, the incorporation into a complete computing system raises
severe challenges at the hardware and software level. This article evaluates a CGRA integrated into a control engineering
environment targeting a Xilinx Zynq System on Chip (SoC) in detail. Besides the actual application execution performance,
the practicability of the configuration toolchain is validated. Challenges of the real-world integration are discussed and
practical insights are highlighted.

Keywords Reconfigurable accelerator · Coarse grained reconfigurable architecture · Control engineering · System
integration · Scalability

1 Introduction

In [16] we have presented a CGRA-based hardware
accelerator that was integrated into a Realtime (RT)
target for control engineering purposes. There are many
requirements to a computing system in the field of control
engineering. Hard real time, low jitter, computational power
and the ability to incorporate sensors and actuators are
the major demands. When control cycles below 10 μs
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are required, Field Programmable Gate Arrays (sFPGAs)
are often suggested, but engineers would like to test and
evaluate different choices of parametrization or varying
control algorithms with virtually no delay and preferably
with a real test rig. Since most control algorithm provide
at least decent parallelism, the use of a CGRA can be a
good choice. As the target technology is a Xilinx Zynq
FPGA, we use the CGRA as an overlay architecture in
order to reduce synthesis time while being able to benefit
from the computational potential of a CGRA. The targeted
applications in [16] are modeled with CAMeL-View, which
is a design environment for mechatronic systems [8].

Hence, the CGRA is confronted with an integration
into a real-world industrial environment. The resulting
challenges for the accelerator that are not covered with usual
(often synthetic) benchmark suites for accelerators. This
contribution introduces the CGRA integration and gives
a detailed analysis on how the system performs as well
as the insights that can be drawn. It enhances previous
research [16] especially by investigating the scalability
of the tool and application runtime with the CGRA size
and by proposing possible micro-architecture improvements
allowing to implement larger CGRAs on the same FPGA.

Serving as an introduction, Section 2 discusses related
work and Section 3 gives a brief explanation of the
complete system including the CGRA. The communication
between the CGRA and its surroundings is detailed in
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Section 4. The integration of the configuration toolflow
into the CAMeL-View IDE is presented in Section 5.
Afterwards, Section 6 evaluates the CGRA with a focus on
the scalability of the CGRA performance with the number
of PEs. Then, the tool and application execution time for the
given benchmarks are discussed. Finally, Section 7 analyses
challenges arising from configuration and data memory
handling and extensively discusses the lessons learned and
their impact on further research activities.

2 Related Work

There are a few commercial solutions integrating a
hardware-accelerator in a general purpose design or an envi-
ronment for engineering control applications. For exam-
ple, the Mathworks MATLAB and National Instruments
Labview environments can be extended by FPGA-based
front-ends like the dSpace DS5203 [3]. However, those
accelerators either come along with a fixed set of prede-
fined functionality (e.g. for signal conditioning), or they
are limited to a small synthesizable block-set. In the latter
case, changing the accelerated kernel requires a significant
amount of time and the licenses for the FPGA vendor tools.

Besides commercial products, numerous CGRA archi-
tectures have been proposed in literature. Most of them are
evaluated in a stand-alone fashion or based on simulation.

In [7], an array of functional units (DySER) is integrated
in the execution stage of an OpenSPARC processor. A
compiler detects compute-intense code regions and maps
those onto the array. Except for simple control flow
structures, most of the control flow is handled by the
OpenSPARC processor. Memory access has to be handled
by the processor as well, and in every loop iteration each
local variable has to be written to and read from the
computation slices. The CGRA is completely integrated, but
not suitable for real-time applications.

Fricke et al. present an automated toolflow that utilizes
a CGRA as an overlay architecture on FPGA [5]. The
authors also investigate the toolflow usability in terms of
tool runtime [6]. However, it appears that the architecture
does not support control flow and is lacking a verified
realization on a chip.

A CGRA that is primarily constructed for mobile phones
with the capability to process floating-point operands is
contributed in [10]. The design is implemented with 130 nm
CMOS technology and tested with JPEG and physics engine
kernels. While achieving a significantly higher performance
than an ARM9 for the given benchmark, the architecture
is neither coupled with an actual host processor nor an
automated tool for software integration is provided.

Karunaratne et al. focus on the dynamic reconfigurability
of the interconnect between the PEs of the CGRA [9]. Using

a statically scheduled configurable crossbar switch, this
architecture allows to transfer data between far apart PEs
without routing through intermediate PEs. The performance
evaluations is however limited to a rather small 4 × 4
CGRA configuration, thus the scalability of the concept
to larger configurations can not be judged. However, even
for this small configuration, tool runtimes larger than
1000 s are reported for some applications, which would
not be acceptable for the application scenario targeted by
UltraSynth (see Section 3).

Cong et al. present a fully pipelined CGRA [2]. It
shows that incorporating pipelined operations can lead to
significant increase in performance. However, the system
lacks of applicability as a general purpose accelerator, since
only innermost loops can be executed and control flow
heavy applications cannot be mapped.

In [1], a framework for CGRA microarchitecture
and scheduling research is presented. It introduces an
architecture description language and interpreter to separate
the microarchitecture design and configuration from its
physical implementation. Furthermore, the CGRA-ME
framework reads the application kernels to be mapped
to the CGRA as abstract dataflow graphs. Regarding
these two features, CGRA-ME follows a similar concept
as UltraSynth (see Section 5). However, in contrast to
UltraSynth, CGRA-ME does not consider the context of
the CGRA, e.g. the communication with sensors, actuators,
external memory and Microcontroller Unit attached to the
CGRA on SoC. Moreover, the performance evaluation
provided in [1] is limited to small arithmetic kernels with
tens of operations. For UltraSynth, the acceleration of
complete control engineering applications is investigated.

Only a few examples of existing CGRA research can be
summarized here. However, recent surveys provide a broad
overview on various CGRA concepts and discuss their
performance and usability. For example, Liu et al. explicitly
identify the necessity to improve the programmability and
productivity of CGRAs [11]. Podobas et al. draw the
same conclusion and encourage the research community
to focus on more complex (real world) applications rather
than studying simple and small CGRA kernels [12]. This
work addresses both of these findings by describing the
integration of the required CGRA tooling into a control
engineering environment and by investigation scalability
effects on tool runtime and CGRA performance.

3 Requirements and System Outline

In CAMeL-View mechatronic systems are modeled as a
hierarchy of interconnected subsystems with inputs, out-
puts, parameters, and internal states. Instead of explic-
itly resolving differential equations describing complex
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physical behavior, the engineers formulate how the outputs
and the first derivative of internal states are computed from
the inputs, parameters, and the internal states. When gener-
ating code for executing these models either as simulation
or on an embedded processor as part of the test rig, numer-
ical integrators are required to derive the values of internal
states after a certain time step from their current value and
derivative, e.g. x(t + �t) = x(t) + ẋ(t) · �t . Those inte-
grators are not explicitly represented in the CAMeL-View
models.

When executing control models on a test rig, CAMeL-
View runs on a control terminal (e.g. an industrial PC),
which is connected to a RT target over a wired network
link as shown in Figure 1. An embedded system is used
as RT target to fulfill the system requirements on jitter and
fast peripheral I/O in the microsecond range. It consists
of a host processor for the network communication stack
and other basic computations, as well as an accelerator
for compute-intense application kernels and communication
with peripheral devices (i.e. sensors and actuators). In this
scenario CAMeL-View is also the user interface of the test
rig capturing change requests for run-time parameters and
visualizing data received from the RT target as charts or
animations.

CAMeL-View control algorithms are processed in a loop
with a fixed frequency. In each period, sensor inputs and/or
data from the host processor is loaded, processed according
to the control algorithm and the resulting values are sent to
the actuators or back to the host processor. The accelerator
can either execute the whole CAMeL-View model, such that
the host processor is just used as a communication gateway.
Alternatively, a control algorithm can also be distributed
over the CGRA and the host processor, where the control
cycle of the host processor can be an integer-multiple of
the accelerator control cycle. This requires an efficient
and well synchronized exchange of run-time data. More
specifically, the accelerator has to distinguish between high
priority inputs produced by the host in every control cycle
and low priority parameter updates sporadically generated
by the control terminal. In the reverse direction, accelerator
results directly processed by the host have a high priority
but typically a low volume, while computed results to be
displayed at the control terminal have a lower priority
but require a higher bandwidth, when lots of intermediate
signals are to be observed.

During the development of a test rig, structural mod-
ifications of the control models require the regeneration
and redeployment of the configuration for the host proces-
sor and the accelerator. Besides the run-time data, the host
processor thus has to be able to send application-specific
configurations to the accelerator. The round trip time of
such modification and reconfiguration cycles has to be in
the orders of (tens of) seconds to ensure an acceptable and
efficient workflow for the control engineers, which typically
need to perform several test runs in a row. Thus, instead
of using an High-Level Synthesis toolflow to translate
and synthesize CAMeL-View models into bitstreams for
FPGA-based hardware accelerators within several hours, a
CGRA-based accelerator is exploited. Besides its fast map-
ping from abstract application descriptions to corresponding
CGRA configurations, this approach is independent from
any FPGA or ASIC synthesis tools and their required
licenses, which was another main requirement within the
UltraSynth project.

Finally, a CGRA Application Programming Interface
(API) is required for the host processor to encapsulate
all data and configuration transfers as well as the execu-
tion synchronization. Besides improving the portability to
other target devices, this API hides CGRA-specific opti-
mizations such as the rearrangement or duplication of data
transfers (see Section 4.2) from the CAMeL-View backend
developer.

4 Hardware Integration

The micro-architecture of the proposed CGRA decouples
the core computation (i.e. interconnected PEs and control
flow modules) from the hardware interface to the host
processor. As this paper focuses on the CGRA integration
into the RT target, the core architecture is described only
briefly. More details can be found in [14].

4.1 Micro-Architecture of the CGRA Core

The core of the CGRA is composed of PEs that process
data and a Condition Box (C-Box) and Context Control
Unit (CCU) that handle control flow. A PE consists of an
Arithmetic Logic Unit (ALU), a Register File (RF), and
a Context Memory (CMem), as shown in Figure 2. The

Figure 1 Application scenario.
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Figure 2 PE with access to
external memory.

context indexed by the current context counter (i.e. ccnt)
is loaded from the CMem in each clock cycle. Besides
multiplexer settings, e.g. ALU operand selections, a context
mainly defines the addresses for the read and write ports of
the RF as well as the operation that is carried out by the
ALU. Thus, one operation can be triggered per clock cycle
per PE.

The ALU has a modular structure. Operands are selected
by multiplexers in front of the ALU. They select either data
from the RF or from inputs (i.e. in0...k) driven by the
out-port of neighboring PEs. These are directly connected
with zero latency. The multiplexer in front of the RFs selects
either results from the ALU, data from an external memory
or setup parameters (i.e. live in). The setup mechanism
is detailed in Section 4.2.

The CGRA is able to process kernels with heavy control
flow and nested loops by using speculative computing
and predicated stores in the PEs. The C-Box combines
status signals from comparison operations and drives
the store predication signals, as shown in Figure 3.
Furthermore, branch selection signals drive the CCU, which
performs branching. Consequently, all CMems of the PEs
are controlled by the CCU with a common ccnt signal.

4.2 Peripheral Communication

To utilize the CGRA core as a hardware accelerator, it has
to be properly integrated into a processing system. In this
section, the integration of the CGRA core into a Xilinx Zynq
SoC is described. An alternative system integration of the
same CGRA core can be found in [15].

As described in Section 3 the accelerator has to pull
sensor data, push actuator data, receive configurations and

Figure 3 CGRA core overview.

run-time data from the host processor, and push back
different kinds of computed results to the host processor.
To support these data transfers within the Zynq SoC,
additional hardware modules have to be arranged around
the CGRA core as shown in Figure 4. Just like the
PEs inside the CGRA, those modules include CMems to
be configurable for a specific application. An Advanced
eXtensible Interface Bus (AXI) interconnect is used to
transfer configuration and run-time data from the host
processor to the CGRA. Therefore, all CMems are memory
mapped into the AXI address space by an appropriate AXI
slave module.

To ensure the accurate timing of the periodic control
loops (typically ranging between 1 and 10 kHz), a
configurable hardware cycle counter provides a heartbeat
for the overall system in terms of periodic sync in pulses.
Upon this trigger, the sensor controller captures new values
from its attached peripherals and writes those samples into
the BRAM-based sensor buffer. The sensor controller then
signals the CGRA to start executing a control cycle. During
this execution, the CGRA can read values from the sensor
buffer. The required read address is provided by the CMem
within the sensor buffer. The sensor data is transferred into
the RF of one (or more) PEs via the live in path (see
Figure 2). The sensor sampling cannot be interleaved with
a control cycle, as the scheduler has no information about
the time required to capture specific samples. This sensor
sample delay may even vary between successive control
cycles.

Besides the sensor samples, run-time parameters sent
from the host processor via AXI are used as inputs for the
CGRA processing. Those parameters can be categorized
into constants (loaded once for each application), initial
values of internal states (loaded after each application
reset), run-time parameters (updated sporadically upon user
interaction at the control terminal), and inputs from the
host processor (updated before every control cycle). In any
case, those parameters must not be updated while a control
cycle is executed, as the computed results would depend on
the scheduled operator ordering and the exact time of the
parameter update. The latter cannot be predicted accurately
enough due to latency variations on the host processor
and the AXI interconnect. Thus, a BRAM-based parameter
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Figure 4 Communication
between the CGRA and its
peripherals (sensors, actuators,
and host processor) on the Zynq
SoC.

buffer is memory mapped into the AXI address space to
delay all parameter updates until the end of the current
control cycle. Besides this delay mechanism, the parameter
buffer also contains a configurable table to map parameter
indices (derived from the AXI write address) to the targeted
PE index and the targeted address within the corresponding
RF. As soon as the current control cycle is done, the
buffered parameters are written to the RFs via the live in
path (see Figure 2). If a certain parameter has to be written
to multiple RFs within the CGRA to reduce data copy
operations at run-time, multiple AXI writes to the parameter
buffer are generated by the host processor, as detailed in
Section 5.3.

The parameter buffer can be configured such that the
execution of the next control cycle is delayed until the
expected number of inputs from the host processor has been
received and transferred into the RFs. This mechanism is
exploited to synchronize the execution of CGRA and the
host processor when a control algorithm is distributed over
both of them. However, the dynamic delay until all required
inputs are received adds up to the possible uncertainty from
the sensor sampling stage, which might cause the overall
application period to be exceeded. To detect such timing
violations at run-time, an error is signaled to the host
processor if the CGRA receives another sync in pulse
while still executing the current control cycle. The accuracy
of the control algorithm is not affected by a delayed start
of the control cycle computations, as the actual sensor
sampling is triggered independently by the sync in pulse
with fixed periodicity.

The out signal of the PEs (see Figure 2) are not only
used to drive the in signals of their neighboring PEs, but
also to push calculated results to the actuator controller and
the host processor, as shown in Figure 5. Within the actuator
buffer, the buffer context loaded for the current ccnt selects
the correct PE output to be buffered (see Figure 5). For
the last actuator sample generated within a control cycle, a

sync out pulse is derived from the actuator buffer context
to let the actuator controller transfer the buffered values to
the attached peripheral devices.

To transfer CGRA outputs to the host processor, two
different kinds of outputs are distinguished, as described in
Section 3. Result outputs have to be available at the host
processor before the next control cycle is started. Those
results are typically intermediate values of a control loop
distributed over CGRA and the host processor. As shown
in Figure 6, one PE output per clock cycle can be pushed
into the result buffer. To reduce the scheduling constraints,
the results can be buffered out of order. The output context
then forwards the results in order to the On-Chip Memory
(OCM) within the Zynq processing system via a high
priority AXI master, from where they can be accessed by the
host processor. The output context cannot be indexed by the
continuously incremented ccnt, as the AXI master must
be able to stall the transfer as long as the AXI slave is not
ready to receive more data. Thus, a burst controller drives
the output context such that an AXI burst is generated, as
soon as the slave is ready and all burst data is available in
the result buffer.

The other type of PE outputs to be transferred to the
host processor is referred to as log data. These are typically
values to be monitored by the user at the control terminal
or to be captured over a long run to retrace the overall

Figure 5 Actuator buffer.
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Figure 6 Result buffer.

calculation. Compared to the result data discussed before,
the log data transfer is not time critical, as the host processor
does not have to respond immediately. On the other hand,
the amount of log data is typically much larger than the
amount of result data. Using the same approach for log data
as for results would result in a bottleneck, as only one log
datum could be buffered in every cycle. As most log data
is generated near the end of a control cycle, this output
generation could not be interleaved completely with other
computations, and thus would increase the overall schedule
length. To overcome this bottleneck, the input stage of the
log buffer consists of a double buffer for each PE, as shown
in Figure 7.

The buffers for write (PE to buffer) and read (buffer
to AXI) access are switched after each control cycle. This
allows to buffer more log data at once and furthermore, an
entire control cycle can be used to transfer the log buffer
content to the host processor. This is actually done by
writing the log data and the index of the current control
cycle into a circular buffer in the SoC-external Double Data
Rate (DDR) memory via a low priority AXI master to not
interfere with the transmission of the result data. The host
processor is thus relieved from immediately processing the
received log data.

5 Toolflow Integration

The CGRA-specific toolflow partially integrated into
CAMeL-View is shown in Figure 8. The main toolflow
is implemented in Java, as portability and reusability are
considered more important than the tool run-time at the

moment. It is divided into two interconnected toolchains
for generating the CGRA composition bitstream (i.e. Steps
1 to 3, described in Section 5.1) and the application-
specific CGRA configuration (i.e. Steps 4 to 10, described
in Section 5.2). The latter can be executed on the control
terminal from within CAMeL-View. The final download
of the configuration is part of the API used by the host
processor and described in Section 5.3.

5.1 CGRA Model and Bitstream Generation

Based on the micro-architecture described in Section 4.1,
a framework was implemented to model arbitrary CGRAs.
These can have an irregular interconnection and heteroge-
neous provision of operations in PEs. Also, an arbitrary
number of PEs is supported. A model is used to represent a
CGRA, which can be passed to a Verilog generator to gener-
ate HDL code. The same model is also used for scheduling.
This allows to systematically research CGRA-structures and
analyse the impact on scheduling quality without requiring
actual hardware. The discussed CGRA can be also used in
another system [15]. In order to support both integrations,
the model of CGRA only represents its core (as described
in Section 4.1). In order to actually use a CGRA (model),
one has to use the instance for a specific system-integration.
These are nothing but inheritances of the core model, con-
taining additional information on communication interfaces
and control modules.

CGRA instances can be modeled either manually by
providing a corresponding JavaScript Object Notation
(JSON) description, or automatically optimized for a set
of applications, which is however beyond the scope of this

Figure 7 Log buffer.
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Figure 8 Toolflow for
generating a Verilog bitstream
from a CGRA composition (1 to
3) and CGRA contexts for a
specific CAMeL-View
application (4 to 10). Third-party
tools (red) are interconnected by
the CGRA-specific tools (blue)
implemented in Java.

paper. After parsing the composition into the CGRA model
by the attribute loader (Step 1), corresponding Verilog code
is generated (Step 2). The resulting hardware description
and constraints also include all required modules for
interfacing the CGRA to the host processor and to
peripheral sensors and actuators as described in Section 4.2.
Finally, the bitstream is generated and downloaded to the
Zynq device using the Xilinx Vivado tool-chain (Step 3).

5.2 Application Scheduling and CGRA Configuration

The second toolchain starts with the application modeled
in CAMeL-View (Step 4). Within this environment, the
submodules of the control algorithm to be accelerated by
the CGRA can be selected. These computational kernels are
then exported as a Control and Data Flow Graph (CDFG),
which is represented in JSON along with other settings like
the numerical integrator details. All remaining parts of the
application are exported as C-functions to be executed on
the host processor. Furthermore, the user selects a specific
RT target (i.e. Zynq device), which is already programmed
with the synthesis result from the bitstream toolchain.
The corresponding CGRA composition associated with the
selected RT target is then loaded, again as Java object model
(Step 5).

Afterwards, the application CDFG is parsed and opti-
mized into a Java object model (Step 6). Those optimiza-
tions comprise typical compiler passes (e.g. common subex-
pression elimination, constant propagation, dead code elim-
ination, and bitwidth optimization) and other steps required
to adjust the CAMeL-View execution model to the CGRA
execution model. For instance, selection operations (e.g. a
= b ? c : d) have to be transformed into predicated
store operations (e.g. if (b) a = c; if (!b) a =
d). Furthermore, update operations for the CDFG state vari-
ables have to be inserted depending on the user-selected
integrator type. Currently, first and second order integrators
(i.e. Euler and Heun [4]) are supported. All integrator steps
rely on the calculation of the time derivative for the inter-
nal states, which is already part of the CDFG generated by
CAMeL-View.

The optimized CDFG and the CGRA model are then fed
into the scheduler (Step 7), which is based on list scheduling
with additional constraints to cope with routing resources

and inter-PE data transfers [13]. This approach produces
very good results in short time [14]. Since the CAMeL-View
models are based on reading and writing physical inputs
and outputs, additional input and output operations need to
be scheduled. The input operation allows a PE to read a
value from the sensor buffer, as shown in Figure 5. Output
operations write the actuator, result, or log buffer, or even to
multiple of them at once. As the result and actuator buffer
may only be written by one PE at a time, the scheduler
has to avoid write conflicts on these buffers. Furthermore,
data structures required to map the buffered values to their
respective CDFG nodes are generated.

Based on the scheduled input, output and arithmetic
operations as well as the targeted CGRA model, the context
information required to let the CGRA execute the current
application is generated (Step 8).1 The CMem content for
PEs, C-Box, CCU, and the peripheral buffers described in
Section 4.2 is generated as a Java object model at this
stage. In Step 9, this context information is exported into C
structures as part of the CGRA API for the host processor
(see Section 5.3). Besides the context data, the C-API
generator exports more scheduling details about the RF
allocation to hide the mapping of inputs, parameters, and
constants to certain PEs from the host application.

Finally, the C-API is combined with the software part
of the CAMeL-View application and fed into the ARM
compiler (Step 10). The resulting binary is downloaded to
the host processor and executed on one ARM Cortex-A9
core. The other core is interfacing the control terminal and
does not need to be reprogrammed when modifying the
target application.

5.3 CGRA API

The software API for the host processor provides methods
to configure the CGRA, to register interrupt handlers, to
start and stop the periodic execution of the accelerated
application kernel, to transfer run-time data to the CGRA,
and to read result and log data from the OCM and DDR
memory. All transfers from the host processor to the CGRA
exploit the Cortex-A9 Direct Memory Access controller.

1On the basis of step 7 and 8 it can be seen that the use of a generic
CGRA model allows the use of any feasible CGRA composition
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Listing 1 Minimal usage
example for the CGRA API.

They are combined to AXI burst transfers as far as possible.
Both mechanisms are transparent to the API user. The API
is executed bare-metal on the ARM.

A minimal usage example is shown in Listing 1. After
defining the boundaries of the circular log buffer in the
DDR memory region (Lines 4 to 6) and the number of
clock cycles per control cycle (Line 7), all configurations
(i.e. context data and initial RF values) are transferred to
the CGRA in Line 8. In Line 9, the interrupt handler for
the sync in pulse is registered and the control cycle is
started in Line 10. After each sync in pulse, all run-time
parameters modified by the control terminal (i.e. on the
second ARM core, not shown in Listing 1) are transferred
to the CGRA in Listing 13. A dirty flag mechanism is used
to avoid superfluous parameter transfers. Furthermore, one
parameter update might result in multiple AXI transfers,
if this parameter is scheduled to multiple PEs inside the
CGRA. The mapping of parameters to (multiple) AXI
addresses is based on the tables exported by the C-API
generator. Finally, after reading the log data received from
the CGRA during the last application cycle (Line 15), the
API-internal pointer to the current window in the circular
log buffer has to be forwarded (Line 16).

6 Evaluation

This section gives a detailed evaluation of the CGRA
tool and performance. First, the run-time of the tool and
the application execution time are analyzed for a single
CGRA composition for six given benchmarks. Afterwards,
the impact of the number of PEs (ranging from 4 to
49) on the tool run-time, synthesis results and execution
time of the the most stressing benchmark (i.e., Half Axle
dynamic) are analyzed. This evaluates the scalability of
the presented concept. The analyzed CGRAs (and its
peripherals described in Section 4.2) were synthesized for a
Xilinx XC7Z045-2 SoC using Vivado 2019.2.

For this evaluation, the accelerator is generated (as
described in Section 5.1) to process single precision
floating-point numbers, as it is required for the targeted
application domain. When drafting and evaluating their
algorithms, control engineers are not able to focus
on numerical stability issues arising from fixed-point
arithmetic or hardware-optimized trigonometric operations.
This should explicitly demonstrate real-world applicability
and its challenges.

Table 1 summarizes all common parameters for all
CGRAs. They are chosen such that all benchmark
applications used for the performance evaluation in
Section 6.4 can be mapped on the same CGRA. As shown
in Figure 9, each PE is connected with its eight neighbors in
a matrix structure with horizontal and vertical wrap-around.
This matrix star toroidal interconnect was chosen as the best
performing solution while keeping the number of PE inputs
treatable. It might be obvious that an irregular interconnect
and heterogeneous operator provision in the PEs potentially
improves the CGRA performance, but this is beyond the
scope of this paper.

Table 1 Common CGRAs settings. Operators are annotated with their
single precision floating-point latency (cycles).

Operators ADD(8), SUB(8),

MUL(8), DIV(16), OR(1),

NEG(1), ABS(1), SGN(1),

SQRT(54), IFLT(4),

IFGT(4), SIN(36),

COS(36), ASIN(37)

PE Interconnect Matrix Star Toroidal

RF 256 entries (32 bit each)

C-Box Size 64 entries

CMem Size 8192 entries

I/O Buffer Size 32 entries
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Figure 9 Interconnect topology: 3 × 4 matrix star toroidal.

6.1 Benchmarks

Six representative benchmarks were picked from the
given set of benchmarks typically used in CAMeL-
View. Single Pendulum calculates the behaviour of a
swinging Pendulum—and Double Pendulum vice versa for
a pendulum with two joints. DC Motor Control computes
a control algorithm for a DC motor. These three represent
small applications with less than 500 nodes. Half Axle
minimal is a medium sized application with 1624 nodes.
It simulates the behaviour of a suspension on one side of
an axis of a vehicle. It is a physically simplified version
of the big application Half Axle dynamic. The CDFG of
that challenging application is about 500 times larger (in
terms of nodes) than the simple academic examples (like
the Single Pendulum). The FIR 1000 is a finite impulse
response filter of the order 1000 and a medium sized
benchmark.

6.2 Tool Execution Time

As described in Section 3, one goal of this project is to
minimize the time required to map control algorithms to
the accelerator. To evaluate the fully automated tool run-
time, the six chosen CAMeL-View applications have been
mapped to the 5 × 5 CGRA. This composition was chosen
as it performs best in terms of application run-time for the
largest benchmark (see Figure 15) and as it is one of the
largest composition actually fitting on the target device (see
Figure 12).

As shown in Figure 10, the CDFGs to be handled by the
scheduler range from several dozen nodes to more than 10
000 nodes. The Java tools described in Section 5.2 were
executed on an Intel i7-8700k running at 3.7 GHz. The
presented run-times are the average over 10 executions. For
the smaller CDFGs, the file I/O dominates, but the overall
run-time is neglectable. The run-times of the scheduler and

context generator increase significantly with the CDFG size.
However, providing a complete configuration within 81 s
for the largest example is still two orders of magnitude faster
than generating a corresponding FPGA bitstream. It should
be mentioned that the run-time of the tool holds notable
potential to be reduced. The model, Verilog generator and
the scheduler are designed to be easily adjustable by using
object oriented hierarchies and modular code structures.
In general, the coding style prefers understandability and
maintainability over high performance. E.g. the scheduler
has a modular structure to allow different and new heuristics
for the attraction-criterion (see Ruschke et. al. [13]).

6.3 Application Execution Time

The time required to execute a single control cycle is
limiting the integration step size and is thus considered
the main performance metric. The average execution time
of one cycle on the ARM Cortex-A9 processor (running
at 800 MHz) after cache initialization is taken as the
performance baseline. The six benchmarks are run out
of CAMeL-View, which uses the GCC compiler with
an O2 optimization. Those applications are not using
sensors or actuators, as this comparison should focus on
the computational performance of the architecture itself.
The actual inputs and outputs of the execution cycles
are provided and received by the host processor instead.
The speedups shown in Figure 11 relate to the execution
time of the benchmark applications on the 5 × 5 CGRA
composition running at around 75 MHz (see Section 6.4.1).

It is important to note that the RF entries were set to
256 for all benchmarks to present one CGRA that allows
mapping of all benchmarks (as specified in Table 1), while
Half Axle dynamic is the only actually requiring that size.
So application-specific CGRA compositions would yield
much better speedups mainly for the smaller kernels (see
Section 7.3.3), but this would contradict the main goal of
supporting fast switches between the applications.

6.4 Scalability

The performance of the CGRA does not stand out in
contrast to the ARM core. This can be explained by
some observations besides the clock frequency of below
100% and non-optimal latencies of some operators (e.g.
54 clock cycles for an SQRT). The easiest ones are the
fact that the ARM cores clock speed is about eight times
higher and the combination of its dual issue architecture.
Additionally, small to medium kernels provide relatively
low parallelism. For instance, the scheduling length for
Single Pendulum, Double Pendulum and DC Motor Control
does not improve for CGRAs with more than 9 PEs. An
analysis tool integrated into CAMeL-View could be used
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Figure 10 5 × 5 CGRAs tool
run-time: The specified node
value indicate the size of the
CDFG.

to decide whether kernels should be run on the Central
Processing Unit or on the CGRA. In contrast, Half Axle
dynamic and FIR 1000 on the other hand provide a lot of
instructions that can be computed in parallel for most of the
time of the schedule. However, due to the large amounts of
data, many of them are information for the control terminal,
need to be written back from where they have been modified
to their initial PE and RF address of a control cycle. This
overhead makes up to 20% of the schedule.

The following analysis concentrates on Half Axle
dynamic, since it benefits from an increasing number of
PE even beyond the capabilities of the target FPGA. This
leads to insights which can not be observed with perfectly
suited (smaller) applications. All CGRAs used for the
discussion of the different compositions are still based on
the parameters shown in Table 1.

6.4.1 Scalability—Synthesis

Figure 12 illustrates the Lookup Table (LUT) and BRAM
consumption and Figure 13 shows the minimum clock
period possible for each individual CGRA. As expected the

resource utilization increases linearly with the number of
PEs. Up to 26 PEs can be implemented on the Xilinx Zynq
FPGA before running out of LUTs. The figure also shows
the resource utilization even beyond 26 PEs to estimate
some trends, e.g. BRAM resources are still not limiting at
36 PEs.

The clock period for CGRAs with more than 26 PEs
cannot be derived since they cannot be implemented due
to the mentioned over-utilization. The default strategy for
synthesis and implementation were used. The clock period
is below 13.4 ns (i.e. 75 MHz) for all CGRAs except of
the 5 × 5 instance, that is slightly above. As expected, the
maximum clock frequency decreases with rising number of
PEs, yet it does not drop significantly, which is a pleasing
observation.

6.4.2 Scalability—Mapping of Half Axle Dynamic

The most interesting metric is the execution time of an
application when analysing scalability. Figure 14 shows the
execution time in clock cycles and Figure 15 shows the
absolute execution time in μs.

Figure 11 5 × 5 CGRA
application execution time:
Speedup compared to ARM
Cortex-A9.
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Figure 12 CGRA LUT and BRAM consumption for instances between 4 and 36 PEs.

The required clock cycles clearly show a decrease,
meaning there is still unexploited parallelism even for
CGRAs with up to 49 PEs and beyond. In general, it can
be seen that CGRAs that have a squared structure perform
better than longish structures. This is probably due to
routing congestion, since squared instances allow better data
locality which leads to shorter schedules. When a CGRA is
meant to be regular and homogeneous, squared structures
are the better choice.

The best performing instance in terms of absolute
execution time is the 5 × 5 PE composition, since it is one
of the largest compositions still fitting onto the FPGA. Also
the larger (but longish) 2 × 13 PE composition can also
be implemented, it yields a significantly worse scheduling
length.

6.4.3 Scalability—Tool Run-Time

In order to verify that the simple upscaling of PE numbers
is a valid option to increase performance, the run-time of
the toolchain has to be analyzed as well. By increasing the
number of PEs, the search space for the scheduler becomes
larger. This increases the run-time of scheduling and context
generation.

Figure 16 shows the total run-time of the toolchain over
the number of PEs. Fortunately, the run-time increases fairly
linear. The reason is most likely the attraction criterion
used during scheduling. Not all PEs are considered to place
a node, but only PEs in the neighborhood of the PE to
which the predecessing node was mapped [13]. Peaks can
be observed for instances that have a longish structure.

Figure 13 CGRA minimum
clock period for instances
between 4 and 36 PEs.
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Figure 14 Execution time in
clock cycles of Half Axle
Dynamic for up to 49 PEs.

Since List-Scheduling is used, the run-time of mapping also
correlates with the increased scheduling length for these
longish compositions.

In conclusion, one can summarize that upscaling the
number of PEs improves performance.

7 Insights

Section 6 indicates that upscaling is a valid choice to
improve performance. However, this leads to drawbacks and
several challenges. which also hinder a more significant
increase in performance. These need to be tackled to provide
a fully capable reconfigurable accelerator. Following,
these challenges and the main lessons learned about the
practicable application of CGRAs are discussed.

7.1 Requirements of Real-World Applications

Many CGRA designs focus on integer arithmetic due to
their efficient FPGA implementation and short latencies
yielding a good exploitation of the fast reconfiguration.
Besides the presented work, [10] is one of the rare
publications explicitly stating that floating-point operations
are supported. More specifically, [12] reports that floating-
point support is clearly under-represented. Less than 25% of
the published CGRAs support floating-point computations.
However, floating-point arithmetic and complex operations
have to be supported, especially if a CGRA wants to
qualify as a multi-purpose accelerator. An integer or fixed-
point based CGRA could not have been used for the
presented integration, since it would not provide enough
precision to ensure that the discussed control engineering

Figure 15 Run-time of Half
Axle Dynamic in clock cycles
for up to 49 PEs.
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Figure 16 Run-time of the
toolchain for the Half Axle
Dynamic.

applications run stable without exploding rounding errors.
Additionally, each of the discussed applications requires
complex operations like division, square root or at least
one trigonometric operation. Complex algorithms promise
parallelism to be exploited by the accelerator, but lead to
challenges.

On software or profiler level, an automated integration is
inevitable for the native use of the accelerator. A shortcut
would be the use of pragmas or a manual incorporation of
the accelerator. Yet, many CGRAs are not even integrated
into a system [1, 9, 10]. In contrast, the presented accelerator
is an integration that works automatically out of the
CAMeL-View IDE.

7.2 Impact of Real-World Applications

7.2.1 Long-Running Operations

Floating-point arithmetic as well as complex (e.g. trigono-
metrical) operations require up to dozens of clock cycles,
as shown in Table 1. This challenges the initial CGRA con-
cepts of simple PEs processing data in parallel. Currently,
only one operator can be active at any time in each PE.
This works for computation using integer operations, since
they usually have a latency of one or two cycles. As a
consequence, long-running operations result in a poor PE
utilization, since a PE is blocked until the computation has
finished. Emulating complex operations as combinations of
integer operations on CDFG level (like math libraries do on
software processors) increases the schedule length signifi-
cantly. Therefore, they have to be supported directly. Not
supporting these operations at all limits the applicability of
the CGRA to academic applications as we have argued.

7.2.2 (Re)configuration

Reconfiguration in every clock cycle allows a simple
design of the CCU. This is reasonable as long as a
new operation can be carried out in almost every clock
cycle. This does not apply in the case of floating-point
arithmetic. Medium sized kernels like Half Axle minimal
easily require thousands of CMem entries per PE, as
CAMeL-View eliminates control flow by unrolling all loops
besides the main numerical integration step. A fictive (yet
representative) control flow algorithm calculated in 100 μs
on the CGRA requires 10 000 clock cycles assuming
a clock frequency of 100 MHz. A 5 × 5 CGRA with
32 bit wide CMems requires 1 MB of configuration
data just for the PEs. Besides occupying a significant
part of the BRAM resources, transferring a large amount
of configuration data becomes time critical for systems
frequently switching between different accelerator kernels
at run-time. Amortizing the configuration time (which
might also include just-in-time scheduling) is only possible
for long-running and/or frequently executed accelerator
kernels. In contrast to the kernels generated by CAMeL-
View, applications with (nested) loops significantly improve
the ratio between kernel run-time and configuration
data.

None the less, this overhead is neglectable for the
presented application scenario, because the configuration
overhead appears only once for a hardware in the loop
system that might run many minutes or even hours.
Moreover, the CGRA accelerator can satisfy certain timing
constraints of control algorithms (especially regarding low
jitter) that the ARM processor might not satisfy at all, thus
expanding the addressable application space.
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Figure 17 Naive configuration
compression—analysis for 4–49
PE for Half Axle Dynamic.

7.2.3 Data Management

Usually, the required size of the RF correlates with the size
of an application. 256 RF slots per PE are required for the
Half Axle dynamic based on a variable lifetime analysis.
Since the RF is read combinatorially and lies on the critical
timing path of the CGRA, enlarging the RF decreases the
maximum clock frequency.

7.3 Consequences

7.3.1 Long-Running Operations

Techniques like pipelining and interleaving operations
promise an increase of the PE utilization. Furthermore,
this would reduce the number of unused CMem entries
(i.e. empty NOP cycles) thus also improving the CMem
utilization. However, a new PE concept and a notably
more complex scheduling is required for these techniques.
Although this contradicts the requirement of fast application
mapping, an improved scheduling is mandatory to be
competitive on the performance level.

7.3.2 (Re)configuration

If PEs do not require reconfiguration in every cycle, i.e.
loading empty configuration cannot be avoided, a novel
strategy for skipping the PE context switches is demanded.
One approach could be an individual counter for each
PE stalling its local ccnt increment, but not the ALU
operation. Obviously jump addresses would need to be
computed locally for each PE. This technique would require
a synchronization of PEs which is hard to realize for
applications with a data dependent control flow. The amount

of configuration data can thus be kept manageable for
applications exploiting (nested) loops.

In order to get an estimation of how many configuration
can be spared, the amount of non-empty configuration
are illustrated in Figure 17. It can be seen that over half
of the configuration data could be spared on average for
Half Axle Dynamic. The (red) Maximum bars indicate
the configuration utilization of the busiest PE. Regarding
the 5 × 5 PE composition evaluated in Section 6.3, the
occupied CMem space would be reduced from 5592 to
3585. Without compression, the CGRA would require 16k
CMem entries to load all presented benchmarks at once.
Being compressed, 8k entries would be sufficient to hold all
presented benchmarks simultaneously.

The impact of the reduction of the memory size from
16k to 8k on the CGRA performance is shown in Figure 18.
The clock period of some composition can be improved by
over 1 ns. Additionally, CGRAs with 16k CMem entries and
more than 22 PEs do not fit into the FPGA anymore, since
LUT resources are over-utilized.

This compression analysis considers only configuration
that have absolutely no content, but there is much more
potential. For instance, the write address for the RF needs to
be loaded separately, if the operation requires more than one
cycle. Instead, the RF write address could be loaded with
the opcode and stored within operators and passed to the RF
once the operation has finished.

7.3.3 Data Management

Aside from a suitable PE interconnect, local data man-
agement needs to be considered. On the hardware level,
BRAMs can be attached to each PE to support a spill and
fill strategy. Using a stack could also be an alternative.
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Figure 18 Decrease of the clock
period if the CMem size is
reduced from 16k to 8k—RF
size is kept at 256.

The memory transfers might enlarge the schedule, but could
be outweighed by a higher clock frequency. For example,
reducing the RF size from 256 to 64 slots would reduce
the clock period by about 15% to 30% for the presented
CGRAs, as shown in Figure 19. This would allow to run the
CGRA at 100 MHz and above. As an alternative, schedul-
ing could be improved to use lifetime analysis on the flight
rather than afterwards during context generation. However,
this drastically worsens the tool run-time.

Many cycles at the end of a schedule are currently used to
copy global state variables back to their initial location (i.e.
PE and RF slot) for the next control cycle. Large numbers
of PEs further amplify this effect. The same effect can be
observed with local variables in loop structures. Besides
the already mentioned resource utilization, these are two
additional reasons why increasing the number of PEs causes
drawbacks to be overcome with further micro-architecture
and tooling improvements.

8 Conclusion

This contribution presents an evaluation and insights of a
CGRA-based hardware accelerator for control engineering
applications. Real-world applications have hard demands
and challenge the concept of CGRAs. They majority of
the data and configuration management needs to be han-
dled differently than most CGRA concepts suggest. The
demand for large amounts of configuration data calls for
new configuration mechanisms in order to spare cycles,
which do not require (re)configuration. Bigger configura-
tion memories result in a clock frequency decrease of about
10% and hardly limit scalability due to resource restrictions.
The control terminal is used by an engineer to super-
vise the execution on the test rig. Large amounts of data
need to be intermediately stored, until they can be send
to the host, thus putting pressure on the data memories
in the CGRA. This leads to almost infeasible big RFs, even

Figure 19 Decrease in clock
time period if RF entries are
reduced from 256 to
64—CMem size is kept at 8k.
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though output buffers are used to reduce that pressure.
The result is a significant drop of the clock frequency (up to
30% loss for an increase from 64 to 256 RF entries).
CGRA concepts should consider how that large amount of
configurations and data can be handled efficiently instead of
just increasing the memories.

Our future work will concentrate on a novel architecture
that is able to cope with the presented challenges. The focus
will lie on the optimization of the CGRA core (pipelined
operations, fusing operators like ADD and SUB, allow
interleaved operations and additional memories to reduce
load on RFs) and scheduling (a novel and more fine grained
modeling of the CGRAs to aim for better utilization).
Additionally, methodologies to explore the design space of
heterogeneous PE operator sets and irregular interconnects
will be implemented.
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