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Abstract
In a recent paper, Bauschke et al. study ρ-comonotonicity as a generalized notion of
monotonicity of set-valued operators A inHilbert space and characterize this condition
on A in terms of the averagedness of its resolvent JA. In this note we show that this
result makes it possible to adapt many proofs of properties of the proximal point
algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more
general class of operators. This also applies to quantitative results on the rates of
convergence or metastability (in the sense of T. Tao). E.g. using this approach we
get a simple proof for the convergence of the PPA in the boundedly compact case
for ρ-comonotone operators and obtain an effective rate of metastability. If A has a
modulus of regularity w.r.t. zer A we also get a rate of convergence to some zero of
A even without any compactness assumption. We also study a Halpern-type variant
HPPA of the PPA for ρ-comonotone operators, prove its strong convergence (without
any compactness or regularity assumption) and give a rate of metastability.

Keywords Generalized monotone operators · Proximal point algorithm ·
Halpern-type proximal point algorithm · Rates of convergence · Metastability · Proof
mining

1 Introduction

A central theme in convex optimization is the computation of zeros z ∈ zer A :=
A−1(0) of (maximally) monotone set-valued operators A ⊆ H × H in Hilbert space
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H . This stems from the fact that for A being the subdifferential ∂ f of a proper,
convex and lower semi-continuous function f : H → (−∞,∞], zer A coincides
with the set of minimizers of f .

An important algorithm for the approximation of zeros of A is the Proximal Point
Algorithm PPA [17,20]

xn+1 := Jγn Axn, (γn) ⊂ (0,∞),

where Jγn := (I + γn A)−1 : R(I + γn A) → D(A) is the single valued resolvent of
γn A and A is assumed to satisfy some range condition such as D(A) ⊆ R(I + λA)

for all λ > 0 so that the iteration is defined for x0 ∈ D(A) ⊆ R(I +γ0A). Here D(A)

and R(A) denote the domain and range of A respectively as defined for set-valued
mappings (see e.g. [4,22]).

The range condition trivially holds for maximally monotone operators A such as
∂ f since then R(I + λA) = H .

The crucial relation between A and JλA is that the set of zeros of A coincides with the
fixed point set of JλA (which, therefore, in particular does not depend on the choice of
λ > 0). If A is monotone, then JλA is firmly nonexpansive so that many results from
metric fixed point theory apply (see e.g. [4] for all this).
In order to be able to treat functions f which are not necessarily convex, one needs to
weaken the requirement of A to be monotone from

(+) ∀(x, u), (y, v) ∈ A (〈x − y, u − v〉 ≥ 0)

to e.g. stipulating

(++) ∀(x, u), (y, v) ∈ A (〈x − y, u − v〉 ≥ ρ‖u − v‖2),

where now ρ may also be negative (see e.g. [7,8]).
In the recent paper [5], this condition—calledρ-comonotonicity—is thoroughly inves-
tigated and related to properties of JA.One key result is that JA is an averagedmapping
whenever (++) holds with ρ > − 1

2 . The averaged mappings form a larger class of
mappings than the firmly nonexpansive ones but still have nice properties, e.g. they
are strongly nonexpansive.
In the recent papers [12,13], we studied from a quantitative point of view the PPA
as well as a strongly convergent so-called Halpern-type variant HPPA (in Banach
spaces) making use essentially only of the fact that all firmly nonexpansive mappings
have a common so-called modulus for being strongly nonexpansive (see [10]). This
also holds true for the class of averaged mappings if we have some control on the
averaging constant (see [21]). Putting all this together, it is rather straightforward to
see that the main results on the PPA and HPPA established in [12,13] generalize (in the
case of Hilbert spaces) to ρ-comonotone operators which is the content of this short
note. While the PPA has been considered for ρ-comonotone operators before (even
for sequences of operators, error terms and relaxations, see [7]) our note shows that
by the connection between the comonotonicity of A and the averagedness of JA as
established in [5], many proofs for properties of the PPA and the HPPA for monotone
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operators can be easily adapted to cover the ρ-comonotone case. We also provide new
quantitative results on the convergence. For the HPPA, to the best of our knowledge,
our note provides the first results in the absence of monotonicity.

2 Preparatory results

Throughout this paper H is a real Hilbert space and A ⊆ H ×H a set-valued operator
with the usual definitions of D(A) and zer A. D(A) denotes the topological closure
of D(A). We always assume that D(A) �= ∅.

Definition 2.1 [5] Let ρ ∈ R. A is called ρ-comonotone if

∀(x, u), (y, v) ∈ A (〈x − y, u − v〉 ≥ ρ‖u − v‖2).

In the casewhereρ < 0whichwe are interested in, ρ-comonotonicity has been studied
before in [7] under the name of |ρ|-cohypomonotonicity in the context of proximal
methods as discussed in the introduction (see also Remark 3.4 below).
Let JA := (I + A)−1 be the resolvent of A.

Proposition 2.2 Let ρ ∈ R, λ > 0 and A be ρ-comonotone. Then D(JλA) = R(I +
λA),

x ∈ JλAx ↔ x ∈ zer A and, if ρ > −1, JA is at most single-valued and zer A =
Fix(JA).

Proof [4, Proposition 23.2] and [5, Proposition 2.13]. ��

Lemma 2.3 If A is ρ-comonotone for ρ ∈ R, then for λ > 0 we have that λA is
ρ/λ-comonotone.

Proof If u ∈ λAx, v ∈ λAy, then u
λ

∈ Ax, v
λ

∈ Ay and so

〈x − y, u − v〉 = λ
〈
x − y,

u

λ
− v

λ

〉
≥ λ · ρ

∥∥∥u
λ

− v

λ

∥∥∥
2 = ρ

λ
‖u − v‖2.

��

The following proposition, which is well-known for monotone operators, extends to
ρ-comonotone operators:

Proposition 2.4 Let A ⊆ H × H be ρ-comonotone with ρ ∈ R. Let λ,μ > 0.

1. If ρ ≥ −λ
2 , then JλA is nonexpansive.

2. JλA satisfies the resolvent equation in the following form: if ρ > −λ,−μ, then

JλAx = JμA

(μ

λ
x +

(
1 − μ

λ

)
JλAx

)
, x ∈ D(JλA).

123



614 U. Kohlenbach

3. If ρ ≥ −λ
2 ,−μ

2 then

‖x − JμAx‖ ≤
(
2 + μ

λ

)
‖x − JλAx‖

for all x ∈ R(I + λA) ∩ R(I + μA).

Proof (1) By the assumptions and Lemma 2.3, λA is − 1
2 -comonotone and so—by [5,

Proposition 3.11(iii)] - JλA is nonexpansive.
(2) follows as in [3][p.105] using Proposition 2.2 which is applicable since—by
Lemma 2.3 - JλA, JμA are > −1-comonotone.
(3) Using (1) and (2) we get

∥∥x − JμAx
∥∥ ≤ ‖x − JλAx‖ + ∥∥JλAx − JμAx

∥∥
= ‖x − JλAx‖ + ∥∥JμA

(
μ
λ
x + (1 − μ

λ
)JλAx

) − JμAx
∥∥

≤ ‖x − JλAx‖ + ∥∥μ
λ
x + (1 − μ

λ
)JλAx − x

∥∥
= ‖x − JλAx‖ + ∣∣1 − μ

λ

∣∣ ‖x − JλAx‖ ≤ (
2 + μ

λ

) ‖x − JλAx‖ .

��
Definition 2.5 [6]. Let C ⊆ H be a nonempty subset of H and T : C → H be a
mapping.

1. T is called α-averaged with α ∈ (0, 1) if T = (1− α)I + αS, where S : C → H
is nonexpansive.

2. T is called strongly nonexpansive (SNE) if T is nonexpansive and for all sequences
(xn), (yn) in H the following implication is true:

if ((xn − yn) bounded ∧ ‖xn − yn‖ − ‖T xn − T yn‖ → 0) , then

(xn − yn) − (T xn − T yn) → 0.

Lemma 2.6 [10, Lemma 2.2] T : C → H is strongly nonexpansive iff T has as an
SNE-modulus ω : (0,∞)2 → (0,∞), i.e.

∀b, ε > 0 ∀x, y ∈ C (‖x − y‖ ≤ b ∧ ‖x − y‖ − ‖T x − T y‖ < ω(b, ε)

→ ‖(x − y) − (T x − T y)‖ < ε) .

The proof of [21, Proposition 2.7] establishes:

Proposition 2.7 [21]. Let C ⊆ H be some subset of H and T : C → H be an
α-averaged mapping for some α ∈ (0, 1). Then T is strongly nonexpansive with
SNE-modulus

ωα(b, ε) := 1 − α

4bα
· ε2.

Proposition 2.8 Let (γn) ⊂ (0,∞), γ > 0 be such that γn ≥ γ > 0 for all n ∈ N.

Let ρ ∈ (− γ
2 , 0] and A ⊆ H × H be ρ-comonotone.
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Then for each n ∈ N, Jγn A : R(I + γn A) → D(A) is strongly nonexpansive with
common SNE-modulus ωα , where α := 1

2((ρ/γ )+1) ∈ (0, 1).

In particular, if D(A) ⊆ C ⊆ ⋂∞
n=0 R(I + γn A), then (Jγn A) (restricted to C) is a

strongly nonexpansive sequence of mappings C → C in the sense of the papers [1,2].

Proof By the assumptions and Lemma 2.3, γn A is (ρ/γn)-comonotone and so, since

ρ

γn
≥ ρ

γ
> −1

2
,

it a fortiori is η-comonotone with η := ρ
γ

> − 1
2 . Hence by [5, Proposition 3.11(v)]

applied to γn A, the resolvent Jγn A : R(I + γn A) → D(A) is α-averaged. The claim
now follows from Proposition 2.7. ��

3 The proximal point algorithm PPA for comonotone operators

Let A ⊆ H × H be ρ-comonotone, (γn) ⊂ (0,∞) and assume that D(A) ⊆⋂∞
n=0 R(I + γn A). We assume that zer A �= ∅. The Proximal Point Algorithm PPA

for A and (γn) is defined by (n ∈ N = {0, 1, 2, . . .})

xn+1 := Jγn Axn, x0 ∈ R(I + γ0A).

Throughout this section we also assume that γn ≥ γ > 0 for all n ∈ N and that
ρ ∈ (− γ

2 , 0].
Proposition 3.1 1.

lim
n→∞ ‖xn − Jγ0Axn‖ = lim

n→∞ ‖xn − xn+1‖ = 0.

Moreover, with α := 1
2((ρ/γ )+1) ∈ (0, 1), ωα as in Proposition 2.7 and b ≥

‖x0 − p‖ for some p ∈ zer A,


(ε, L, b) := �b/ωα(b, ε)� + L + 1

is a modulus of lim inf (in the sense of [14]) i.e.

∀L ∈ N, ε > 0 ∃n (L ≤ n ≤ 
(ε, L, b) and ‖xn − xn+1‖ < ε) .

2. Define

un := xn − xn+1

γn
.

Then un ∈ Axn+1, lim
n→∞ un = 0 and

∃n ≤ ρ(ε, b, γ ) := 
(ε · γ, 0, b) (‖un‖ < ε) .
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Proof 1) Let p ∈ zer A. Then by Propositions 2.2 and 2.4 (using that γn A is > − 1
2 >

−1 comonotone)

‖xn+1 − p‖ ≤ ‖xn − p‖ ≤ b, n ∈ N,

and so (xn) is Fejér monotone w.r.t. zer A = Fix(Jγn A) and (‖xn − p‖) is convergent.
Thus

∣∣‖Jγn Axn − Jγn A p‖ − ‖xn − p‖∣∣ = |‖xn+1 − p‖ − ‖xn − p‖| → 0.

Hence by Proposition 2.8

‖xn+1 − xn‖ = ‖Jγn Axn − xn‖ → 0.

By Proposition 2.4(3) (which is applicable in the nontrivial case where n ≥ 1 due to
xn ∈ D(A) and the range condition)

‖xn − Jγ0Axn‖ ≤
(
2 + γ0

γ

)
‖xn − Jγn Axn‖

and so also lim
n→∞ ‖xn − Jγ0Axn‖ = 0.

The lim inf-bound is proved as in [13, Proposition 2.1] using Proposition 2.8. We
include the proof here for completeness: Let L ∈ N and δ > 0. Then there exists an
n ∈ N with L ≤ n ≤ L + �b/δ� + 1 such that

‖xn − p‖ − ‖Jγn Axn − Jγn A p‖ = ‖xn − p‖ − ‖xn+1 − p‖ < δ

since, otherwise,

b ≥ ‖xL − p‖ ≥ ‖xL − p‖ − ‖xL+�b/δ�+1 − p‖ ≥ (�b/δ� + 1) · δ > b.

Now fix δ := ωα(b, ε). Then Proposition 2.8 implies the existence of an n with
L ≤ n ≤ 
(ε, L, b) such that

‖xn − xn+1‖ = ‖(xn − p) − (Jγn Axn − Jγn A p)‖ < ε.

2) is immediate from 1). ��
The PPA for maximally monotone operators, while being weakly convergent, fails

to be strongly convergent as shown in [9]. In the boundedly compact (i.e. finite dimen-
sional) case there is in general no computable rate of convergence unless some strong
metric regularity assumption is made (see [19] and [11]). However, in the boundedly
compact case, one can get effective rates � of metastability in the sense of T. Tao
[24,25] for the Cauchy property of (xn), i.e.

∀ε > 0 ∀g : N → N ∃n ≤ �(ε, g)∀i, j ∈ [n, n + g(n)] (‖xi − x j‖ < ε
)
.
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Note that, noneffectively, this property implies the Cauchy property of (xn) and hence
the existence of a limit x but does not allow one to convert � into an effective rate
of convergence. One can additionally ensure that for i ∈ [n, n + g(n)], xi is an
approximate zero of A which guarantees that x is a zero of A.

We now extend our rate of metastability for the PPA from [13] to the ρ-comononotone
case:

Theorem 3.2 Let A be as above and assume additionally that D(A) ⊆ ⋂∞
n=0 R(I +

γn A) is boundedly compact and x0 ∈ D(A). Then (xn) strongly converges to a zero
of A. Moreover, the rate of metastability � from [13, Theorem 2.12] also holds in our
current situation with 
 being replaced by our definition in Proposition 3.1(1), i.e.

(∗) ∀k ∈ N∀g ∈ N
N ∃n ≤ �(k, g, β)∀i, j ∈ [n, n + g(n)](

‖xi − x j‖ ≤ 1

k + 1
and xi ∈ F̃k

)
,

where

F̃k :=
⋂
i≤k

{
x ∈ D(A) : ‖x − Jγi Ax‖ ≤ 1

k + 1

}

and β is a modulus of total boundedness (in the sense of [13, Theorem 2.12]) for
D(A) ∩ B(0, M), where B(0, M) := {x ∈ H : ‖x‖ ≤ M}, with M ≥ b + ‖p‖ and
b ≥ ‖x0 − p‖ for some p ∈ zer A.

If C ⊆ H is closed and convex with D(A) ⊆ C ⊆ ⋂∞
n=0 R(I + γn A), then without

compactness assumption, (xn) converges weakly to a zero of A.

Proof The proof of [13, Theorem 2.12] for the rate ofmetastability of (xn) can be taken
without any changes observing that [14, Lemma 8.1] holds with the same proof in our
context and that � can be shown to be an approximate F-bound as in [13, Proposition
2.11] using Propositions 2.4(3) and 3.1(1) instead of [13, Prop.2.3(ii),Prop.2.1].
Since (xn) is metastable (the first part of (∗)), it is a Cauchy sequence and hence
convergent with x := limn xn ∈ D(A). By the extra clause ‘xi ∈ F̃k’ in (∗), which
strengthens the usual formulation of a rate of metastability, we can conclude that
x ∈ zer A. Indeed, choosing in (∗) for given N ∈ N the function g(n) := N we get
an nN ≥ N with ‖xnN − Jγ0AxnN ‖ ≤ 1

k+1 . Using the nonexpansivity of Jγ0A this
implies that x ∈ Fix(Jγ0A) = zer A.

For the weak convergence in the noncompact case we reason as follows: let w be a
weak sequential cluster point of (xn). Then there is a subsequence (xnk )which weakly
converges to w. By Proposition 3.1(1) (xnk ) is an approximate fixed point sequence
of Jγ0A. Hence by Browder’s demiclosedness principle ([4, Corollary 4.28]) applied
to Jγ0A and C it follows that w ∈ Fix(Jγ0A). Hence we can—using again the fact
that (xn) is Fejér monotone w.r.t. Fix(Jγ0A)—conclude that (xn) weakly converges
to w ∈ Fix(Jγ0A) = zer A by [4, Theorem 5.5]. ��
Remark 3.3 The range condition in Theorem 3.2 is trivially satisfied if A is maximally
ρ-comonotone (in the sense of [5, Definition 2.4.(iv)]) since then by Lemma 2.3 λA
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618 U. Kohlenbach

is maximally (ρ/λ)-comonotone with ρ/λ > −1 for λ ≥ γ so that by [5, Corollary
2.12] R(I + λA) = H .

Remark 3.4 Note that the conditions on ρ, γn made in [7] on their general PPA in the
case of a single operator A and without relaxation (i.e. λn := 1) imply our condition
that ρ > − inf{γn :n∈N}

2 : observing that ρ in [7] corresponds to our −ρ, the conditions
(iii),(iv) in [7, Theorem 3.1] state the existence of an ε ∈ (0, 1) s.t.

1

1 + ρ/γn
≤ 2 − ε, γn > −ρ, n ∈ N.

An easy calculation shows that this implies that

inf{γn : n ∈ N} ≥ −ρ
2 − ε

1 − ε
> −2ρ.

Also the converse holds: let δ > 0 be such that γ > −2ρ + δ. Then the condition

1

1 + ρ
γn

< 2 − ε

is satisfied with ε := 2 − 2γ
γ+δ

.

Error terms un subject to the condition that
∑ ‖un‖ < ∞ (implied by condition (vi)

in [7, Theorem 3.1]) can be incorporated even in the quantitative part of our theorem
(similar to [15, Theorem 4.5]). Our approach makes the relevance of the averagedness
of Jγn A explicit which only implicitly occurs in the proof of [7, Theorem 3.1].

Definition 3.5 [16] Let A be as at the beginning of this section with p ∈ zer A and
define F(x) := dist(0X , A(x)) (with F(x) := ∞ for x /∈ D(A)). A function φ :
(0,∞) → (0,∞) is called a ‘modulus of regularity for A w.r.t. zer A and B(p, r)
with r > 0’ if for all ε > 0 and x ∈ B(p, r) := {y ∈ H : ‖y − p‖ ≤ r} one has

F(x) < φ(ε) → dist(x, zer F) < ε.

As [13, Lemma 2.6] (but reasoning in the proof of zer F ⊆ zer A with - say-γ0A and
Jγ0A instead of A, JA) one shows that

Lemma 3.6 With F as defined in the previous definition, zer F = zer A and so (xn)
as defined by the PPA for A is Fejér monotone w.r.t. zer F = zer A, i.e.

∀p ∈ zer F ∀n ∈ N (‖xn+1 − p‖ ≤ ‖xn − p‖).

As in the case of [13, Theorem 2.8] one now gets

Theorem 3.7 Let A and (γn) be as above and assume that D(A) ⊆
∞⋂
n=0

R(I + γn A).

Let p ∈ zer A and b ≥ ‖x0 − p‖. If A has a modulus φ of regularity w.r.t zer A
and B(p, b), then (xn) converges to a zero z := lim xn of A with rate of convergence
ρ(φ(ε/2), b, γ ) + 1, where ρ is as in Proposition 3.1(2).
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Proof The proof is largely identical to that of [13, Theorem 2.8]. We only have
to observe that in that latter proof it suffices to have the existence of an n ≤
ρ(ε, b, γ ) (|F(xn+1)| ≤ ‖un‖ ≤ ε) (rather than that this holds for all n ≥ ρ(ε, b, γ ))
and that this follows from Proposition 3.1(2). ��

4 The Halpern-type proximal point algorithmHPPA for comonotone
operators

Whereas the PPA even for monotone operators A in general is not strongly convergent
([9]) a Halpern-type variant strongly converges also for ρ-comonotone operators as
we show in this section.
Again we assume that (γn) ⊂ (0,∞) with γn ≥ γ > 0 for all n ∈ N and that A is
ρ-comonotone with ρ ∈ (− γ

2 , 0] with zer A �= ∅. Let C ⊆ H be a nonempty closed
and convex subset such that D(A) ⊆ C ⊆ ⋂∞

n=0 R(I + γn A).

Definition 4.1 [2,18,23]. Let S ⊆ H be some nonempty subset of H and T : S → H
a mapping and (Sn) be a sequence of mappings Sn : S → H . Let F((Sn)) :=⋂

n∈N Fix(Sn) be the set of all common fixed points of Sn for all n. (Sn) is said
to satisfy the NST condition (I) with T if F((Sn)) �= ∅, Fix(T ) ⊆ F((Sn)) and
xn − T xn → 0 whenever (xn) is a bounded sequence in S with xn − Snxn → 0.

Proposition 4.2 Let T := Jγ0A : C → C and Sn := Jγn A : C → C . Then (Sn)
(strictly speaking the sequence of the restrictions of Sn toC) satisfies theNST condition
(I) with T .

Proof Clearly, Fix(T ) = Fix(Sn) = zer A �= ∅. Let (xn) be a bounded sequence in
C with limn ‖xn − Snxn‖ = 0. Then by Proposition 2.4(2) also limn ‖xn − T xn‖ = 0.

��
Theorem 4.3 Let (αn) ⊂ (0, 1] be such that limn αn = 0 and

∑∞
n=0 αn = ∞. For

u, x0 ∈ C define the Halpern-type proximal point algorithm (HPPA) by

xn+1 := αnu + (1 − αn)Jγn Axn ∈ C .

Then (xn) strongly converges to the zero of A which is closest to u. Moreover, the rate
of metastability from [12, Theorem 4.1] also holds for our current situation if ωη is
replaced by ωα from Proposition 2.7 above with α := 1

2((ρ/γ )+1) and ωJ (b, ε) := ε.

Proof The strong convergence follows from [2, Theorem 3.1] whose assumptions are
satisfied by Propositions 2.4(1), 2.8 and 4.2 using also that H has the fixed point
property for nonexpansive mappings. The strong convergence also follows using [12,
Theorem 4.1] which, moreover, gives the rate of metastability stated in the theorem.
For thisweonly have to observe that the proof of [12, Theorem4.1] only uses properties
of Jγn A which by the results stated above also hold true for ρ-comonotone operators
A where now we use ωα and Proposition 2.8 instead of ωη and [12, Lemma 2.4].
Finally, we note that we can take ωJ (b, ε) := ε as modulus of uniform continuity for
the normalized duality map on B(0, b) since we are in a Hilbert space. ��
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620 U. Kohlenbach

Remark 4.4 Remark 3.3 applies here as well: if A is maximally ρ-comonotone, then
the range condition is satisfied for any closed and convex subset C ⊆ H satisfying
D(A) ⊆ C .
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21. Sipoş, A.: Quantitative inconsistent feasibility for averaged mappings, arXiv:2001.01513 (2020)
22. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
23. Takahashi, W.: Viscosity approximation methods for countable families of nonexpansive mappings in

Banach spaces. Nonlinear Anal. 70, 719–734 (2009)
24. Tao, T.: Soft analysis, hard analysis, and the finite convergence principle. Essay posted May 23, 2007.

Appeared in: ‘T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog. AMS
(2008)

25. Tao,T.:Normconvergenceofmultiple ergodic averages for commuting transformations.Ergod.Theory.
Dyn. Syst. 28, 657–688 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2001.01513

	On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space
	Abstract
	1 Introduction
	2 Preparatory results
	3 The proximal point algorithm PPA for comonotone operators
	4 The Halpern-type proximal point algorithm HPPA for comonotone operators
	Acknowledgements
	References




