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Abstract
Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene under-
standing and process modeling. However, relying on fully supervised deep learning for this task is challenging becausemanual
annotation occupies valuable time of the clinical experts.
Methods We introduce a teacher–student learning approach that learns jointly from annotated simulation data and unlabeled
real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation.
Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for
the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance
on all datasets to highlight the strengths and failure modes of our approach.
Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and
improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one
step closer to effective segmentation of surgical instrument in the annotation scarce setting.

Keywords Surgical instrument segmentation · Simulation-based learning · Self-supervision · Consistency learning ·
Self-ensembling · Unsupervised domain adaptation

Introduction

A faithful segmentation of surgical instruments in endo-
scopic videos is a crucial component of surgical scene
understanding and realization of automation in computer-
or robot-assisted intervention systems.1 A majority of recent
approaches address the problem of surgical instrument seg-
mentation by training deep neural networks (DNNs) in a
fully-supervised scheme. However, the applicability of such
supervised approaches is restricted by the availability of a
sufficiently large amount of real videos with clean annota-
tions. The annotation process (especially pixel-wise) can be
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prohibitively expensive (see Fig. 1) because it takes valuable
time of medical experts.

An alternative direction to mitigate the dependency on
annotated video sequences is to utilize synthetic data for the
training of DNNs. Recent advances in graphics and simu-
lation infrastructures have paved the way to automatically
create a large number of photo-realistic simulated images
with accurate pixel-level labels [14,23]. However, the DNNs
trained purely on simulated images do not generalize well
on real endoscopic videos due to the domain shift/bias issue
[30,32]. We hypothesize that a DNN’s bias towards recog-
nizing textures rather than shapes [4] results in a significant
drop of performance when the DNNs are trained on simula-
tion (rendered) data and applied to real environments. This
is mainly because the heterogeneity of information within
a real surgical scene is heavily influenced by factors such
as lighting conditions, motion blur, blood, smoke, specular
reflection, noise etc. However, simulation data only mimic
shapes of instrument and patient-specific organs [10].

1 EndoVis Sub-challenges—2015, 2017, 2018, 2019 [https://endovis.
grand-challenge.org].
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Fig. 1 Fully supervised deep learning is unrealistic for instrument segmentation due to a significantly high annotation effort

The research problem of learning a task-specific repre-
sentation from the annotated data in a source domain (e.g.
simulation) that generalizes on a different but related tar-
get domain (e.g. real) is commonly referred to as visual
domain adaptation [33]. Unsupervised domain adaptation
(UDA) is a specific scenario of domain adaptation where the
annotations for the target domain are not available during
learning [34]. Here, the primary goal is to learn domain-
invariant feature representations for addressing the domain
shift/bias [14,35]. For instance, Pfeiffer et al. [23] utilized an
image-to-image translation approach, where the simulated
images are translated into realistic looking ones by map-
ping image styles (texture, lighting) of the real data using a
Cycle-GAN. In contrast, we argued for a shape-focused joint
learning from simulated and real data in an end-to-end fash-
ion and introduced a consistency-learning-based approach
Endo-Sim2Real [27] to align the DNNs on both domains.
We showed that similar performance can be obtained by
employing a non-adversarial approach while improving the
computational efficiency (with respect to training time).
However, similar to perturbation-based consistency learning
approaches for image classification, [11,17]Endo-Sim2Real,
being a consistency learning approach at its core, suffers
from so-called confirmation bias [29]. This is caused by
noise accumulation or erroneous learning during the train-
ing stages, which may result in a degenerate solution [6].

In this work, we introduce the teacher–student learning
paradigm to the task of surgical instrument segmentation
in endoscopic videos. Our proposed approach tackles the
erroneous learning by improving the pseudo-label genera-
tion procedure for the unlabeled data and facilitate stable
training of DNNs while maintaining computational effi-
ciency. Through quantitative and qualitative analysis, we
show that our proposed approach outperforms the previous
Endo-Sim2Real approach across three data sets. Moreover,
the proposed approach leads to a stable trainingwithout loos-
ing computational efficiency.

The contributions of our work are as follows:

1. We formalise the consistency-basedunsuperviseddomain
adaptation framework to identify the confirmation bias
problem of Endo-Sim2Real and propose a teacher–
student learning paradigm to address this problem.

2. We evaluate our work on three different datasets with
varying degrees of the domain gap to show consistent
improvement in the performance generalization capabil-
ity of the DNN across the datasets and in presence of
unseen instruments ormultiple instrument combinations.

3. We provide a thorough quantitative and qualitative analy-
sis to show the strengths and limitations of our approach.
In particular, identification of the failure modes with
respect to specific cases and scenarios in order to provide
valuable insights into addressing the remaining perfor-
mance gap.

Related work

Research on instrument segmentation for endoscopic proce-
dures is dominated by supervision-based approaches ranging
from full supervision [5], semi/self-supervision [25], and
weak supervision [12] up to multi-task [16] and multi-modal
learning [15]. Some recent works also explored unsupervised
approaches [7,18], however, for the sake of brevity, we will
only focus on approaches that employ learning from simula-
tion data for unsupervised domain adaptation.

Within the context of domain adaptation in surgical
domains, Mahmood et al. [20] proposed an adversarial-
based transformer network to translate a real image to a
synthetic image such that a depth estimation model trained
on synthetic images can be applied to the real image. On
the other hand, Rau et al. [24] proposed a conditional
Generative Adversarial Network (GAN)-based approach to
estimate depth directly from real images. Other works have
argued for translating synthetic images to photo-realistic
images by using domain mapping via style transfer [19,21],
for instance by using Cycle-GAN based unpaired image-
to-image translation [9,22] and utilize annotations from
synthetic environment for deep learning tasks.
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Fig. 2 Proposed teacher–student learning approach comprising supervised learning from source (simulation) data as well as consistency learning
from unlabeled target (real) data

Pfeiffer et al. [23] proposed an unpaired image-to-image
translation approach I2I that focuses on reducing the distribu-
tion difference between the source and the target domain by
employing a Cycle-GAN-based style transfer. Afterwards, a
DNN is trained on the translated images and its correspond-
ing labels. On the other hand, Endo-Sim2Real [27] utilizes
similarity-based joint learning from both simulation and real
data under the assumption that the shape of an instrument
remains consistent across domains as well as under seman-
tic preserving perturbations (like adding pixel-level noise or
transformations).

This work is in line with Endo-Sim2Real and focuses
on end-to-end learning for unsupervised domain adaptation.
However, we formalise the consistency-based UDA to iden-
tify the confirmation bias problem and unstable training
of Endo-Sim2Real approach and address it by employing
a teacher–student paradigm. This facilitates stable training
of the DNN and enhances its performance generalization
capability.

Method

Our proposed teacher–student domain-adaptation approach
(see Fig. 2) aims to bridge the domain gap between source
(simulated) and target (real) data by aligning a DNN model
to both domains. Given:

• a source domain Ds = (Xs,Ys) associated with a fea-
ture space |Xs | and a label space |Ys | and containing
ns labeled samples {(xsi , ysi )}nsi=1 where, xi ∈ Xs and
yi ∈ Ys denote the i-th pair of image and label data,
respectively

• a target domain Dt = (Xt ) associated with a feature
space |Xt | and a label space |Yt | and containing nt unla-

beled samples {xti }nti=1 where, xi ∈ Xt denote the i-th
image of the unlabeled data

the goal of unsupervised domain adaptation is to learn aDNN
model that generalizes on the target domain Dt . It is impor-
tant to note that although the simulation and real endoscopic
scene may appear similar, the label space between source-
and target-domains generally differ (i.e. Ys �= Yt ), repre-
senting for example different organs or different instrument
types. Since we are focusing on binary instrument segmen-
tation, the label categories are twofold (i.e. Ys = Yt =
{“instrument”, “background”}). For the sake of simplicity,
we refer to the source domain Ds as labeled simulated domain
DSim

L and to the target domain Dt as unlabeled real domain

DReal
U L .
Our proposed (and previous) approach learns by jointly

minimizing the supervised loss Lsl for the labeled simulated
data-pair as well as the consistency loss Lcl for the unlabeled
real data. A core component of the joint learning approach
is unsupervised consistency learning, where a supervisory
signal is generated by enforcing the DNN fθ (parameterized
with network weights θ ) to produce a consistent output for
an unlabeled input x and its perturbed form P(x).

min
θ

Lsl + Lcl
{
fθ

(
x
)

︸ ︷︷ ︸
ỹ

, fθ
(P(x)

)}
(1)

Here in Eq. 1, the DNN prediction ỹ for unperturbed data
x acts as a pseudo-label for perturbed data P(x) to guide
the learning process. Therefore, theEndo-Sim2Real scenario
can be interpreted as a student-as-teacher approach where
the DNN acts as both a teacher that produces pseudo-labels
and a student that learns from these labels. Since the DNN
predictions may be incorrect or noisy during training [17],
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this student-as-teacher approach leads to so-called the con-
firmation bias [29], which reinforces the student to overfit
to the incorrect pseudo-labels generated by the teacher and
prevents learning new information. This issue is especially
prominent during early stages of the training, when the DNN
still lacks the correct interpretation of the labels. If the unsu-
pervised consistency loss (Lcl ) outweighs the supervised loss
(Lsl ), the learning process is not effective and leads to a
sub-optimal performance. Therefore, the consistency loss is
typically employed with a temporal weighting function w(t)
such that the DNN learns prominently from the supervised
loss during the initial stages of the learning and gradually
shifts towards unsupervised consistency learning in the later
stages.

Although the temporal ramp-up weighting function in
Endo-Sim2Real helps to reduce the effect of the confirmation
bias during joint learning, the DNN still learns directly from
the incorrect pseudo-labels generated by the teacher.

min
θ

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

(xi ,yi )∈DSim
L

Lsl ( fθ (xi ) , yi )

︸ ︷︷ ︸
supervised simulation

+w(t) ∗
∑

xi∈DReal
UL

Lcl
(
f
θ

′ (xi ) , fθ (P(xi ))
)

︸ ︷︷ ︸
unsupervised real

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

θ
′
t = (α · θ

′
t−1 + (1 − α) · θt ) (2)

In this work, we address this major drawback of the
Endo-Sim2Real approach by improving the pseudo-label
generation procedure of the unlabeled consistency learning.
To this end, the teacher network is de-coupled from the stu-
dent network and redefined ( fθ −→ f

θ
′ ) to generate reliable

targets to enable the student to gradually learn meaningful
information about the instrument shape. In order to avoid
separate training of the teacher model, the same architecture
is used for the teacher and its parameters are updated as a
temporal average [29] of the student network’s weights.

At each training step t , the student fθ is updated using
gradient-descent while the teacher f

θ
′ is updated using

student network weights, where the smoothing factor α con-
trols the update rate of the teacher. A pseudo code of our
proposed teacher–student learning approach is provided in
Algorithm 1.

Algorithm 1 Teacher–student Algorithm for Domain Adap-
tation
Model: fθ � Student with trainable parameters θ

Model: f
θ

′ � Teacher with trainable parameters θ
′

Data: DSim
L (x, y) � Labeled simulated samples

Data: DReal
U L (x) � Unlabeled real samples

Require: α � Update rate of teacher
Require: w(t) � Temporal weight of consistency loss
Ensure: θ

′ ← θ � Initialize weights
1: loop Joint Learning(DSim

L , DReal
U L ) � (Ds → DSim

L , Dt → DReal
U L )

2: Supervised Loss
3: {(xi , yi )}Bi=1 ∼ DSim

L (x, y) � Sample mini-batch
4: {(xai , yai )}Bi=1 = {A (xi , yi )}Bi=1 � Augment batch
5: Lsl = { fθ (xai ), yai }Bi=1 � Supervised loss
6: Consistency Loss
7: {xi }Bi=1 ∼ DReal

U L (x) � Sample mini-batch
8: {x p

i }Bi=1 = {P (xi )}Bi=1 � Perturb batch
9: {ỹi }Bi=1 = { f

θ
′
(
x p
i

)}Bi=1 � Pseudo Segmentation
10: Lcl = { fθ (xi ) , ỹi }Bi=1 � Unsupervised loss
11: Joint Loss
12: L = Lsl + w(t) · Lcl � Joint loss
13: gθ = ∇θ L � Compute gradients
14: θ ← Update(θ, gθ ) � Update student (gradient descent)
15: θ

′ ← (α · θ
′ + (1 − α) · θ) � Update teacher

16: end loop
return θ

′ � Learned model

Experimental setup

Data

Simulation [23] data contain 20K rendered images acquired
via 3-D laparoscopic simulations from the CT scans of 10
patients. The images describe a rendered view of a laparo-
scopic scene with each tissue having a distinct texture and a
presence of two conventional surgical instruments (grasper
and hook) under a random placement of the camera (coupled
with a light source).

Cholec [27] data contain around7K endoscopic video frames
acquired from 15 videos of the Cholec80 dataset [31]. The
images describe the laparoscopic cholecystectomy scene
with seven conventional surgical instruments (grasper, hook,
scissors, clipper, bipolar, irrigator and specimen bag). The
data provide segmentations for each instrument type, how-
ever, the specimen bag is considered as a counterexample
that is treated as background during evaluation, following
the definition of an instrument in RobustMIS challenge [26].
EndoVis [1] data consist of 300 images from six different
in-vivo 2D recordings of complete laparoscopic colorectal
surgeries. The data provide binary segmentations of instru-
ments for validation where images describe an endoscopic
scene containing seven conventional instruments (includ-
ing hook, traumatic grasper, ligasure, stapler, scissors and
scalpel) [5].
RobustMIS [26] data consist of around 10K images acquired
from 30 surgical procedures of three different types of
colorectal surgery (10 rectal resection procedures, 10 proc-
tocolectomy procedures and 10 procedures of sigmoid resec-
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Table 1 List of source
(simulation) and target (real)
datasets used during evaluation,
where [videos (#) | empty
frames (%)] reflects the number
of videos and percentage of
frames with no instrument,
respectively

Dataset Training Testing Instruments

Simulation 20,000 (10 | 33%) n.a. Two

Cholec15 5034 (10 | 12%) 2136 (5 | 13%) Six + specimenbag

EndoVis 160 (4 | 0%) 140 (6 | 0%) Seven

RobustMIS 5983 (16 | 17%) 4057 (14 | 20%) Six + trocar

Stage 1 663 (2 | 15%) –

Stage 2 514 (2 | 13%) –

Stage 3 2880 (10 | 23%) –

tion procedures). An instrument is defined as an elongated
rigid object that is manipulated directly from outside the
patient. Therefore, grasper, scalpel, clip applicator, hooks,
stapling device, suction and even trocar is considered as
an instrument while non-rigid tubes, bandages, compresses,
needles, coagulation sponges, metal clips etc. are considered
as counterexamples as they are indirectly manipulated from
outside [26]. The data provide instance level segmentations
for validation, which are performed in three different stages
with an increasing domain gap between the training- and the
test-data. Stage 1 contains video frames from 16 cases of the
training data, stage 2 has video frames of two proctocolec-
tomy and rectal surgeries each, and stage 3 has video frames
from 10 sigmoid resection surgeries

It is important to note that the domain gap increases not
only in the three stages of testing in Robust-MIS dataset,
but also from Simulation towards Real datasets (EndoVis <

Cholec<Robust-MIS) as the definitionof instrument (and/or
counterexample) changes along with other factors (Table 1).

Implementation

We have redesigned the implementation of the Endo-
Sim2Real framework in view of a teacher–student approach.
To ensure a direct and fair comparison, we employ the same
TerNaus11 [28] as a backbone segmentationmodel. Also, we
utilize the best performing perturbation scheme (i.e. applying
one of the pixel-intensity perturbation2 followed by one of
the pixel-corruption perturbation3) and the loss function (i.e.
cross-entropy and jaccard) ofEndo-Sim2Real for evaluation.
All simulated input images and labels are first pre-processed
with a stochastically-varying circular outermask to give them
the appearance of real endoscopic images.

We use a batch size of 8 for 50 epochs and apply weight
decay (1e−6) as standard regularization. During consistency

2 pixel-intensity: random brightness and contrast shift, posterisation,
solarisation, random gamma shift, random HSV color space shift,
histogram equalization and contrast limited adaptive histogram equal-
ization.
3 pixel-corruption: gaussian noise, motion blurring, image compres-
sion, dropout, random fog simulation and image embossing.

training, we use a time-dependent weighting function, where
the weight of the unlabeled loss term is linearly increased
over the training. The teacher model is updated with α (0.95)
at each training step.

During evaluation of a dataset, we use an image-based
dice score and average over all images to obtain a global dice
metric for the dataset. For computation of the dice score, we
exclude the cases where both the prediction and ground truth
images are empty. However, we include cases with false pos-
itives for the empty images and set it to zero. So the dice score
for empty ground-truth images (without any instrument) is
either zero and considered in case of any false positives or
undefined and not considered in case of correct prediction.
Also, we report all the results as an average performance of
three runs throughout our experiments.

Results and discussion

This section provides a quantitative comparison with respect
to the state-of-the-art approaches to demonstrate the effec-
tiveness of our approach. Moreover, we perform quantitative
and qualitative analyses on three different datasets with vary-
ing degrees of the domain gap to highlight the challenges in
simulation-to-real unsupervised domain adaptation. Particu-
larly, we identify the failure modes with respect to specific
cases and scenarios in order to provide valuable insights into
addressing the remaining performance gap.

Comparison with baseline and state-of-the-art

In these experiments, we first highlight the performance of
the two baselines: the lower baseline (supervised learning
purely on simulated data) and the upper baseline (supervised
learning purely on annotated real data) in Table 2. The sub-
stantial performance gap between the baselines indicates the
domain gap between simulated and real data. Secondly, we
compare our proposed teacher–student approach with other
unsupervised domain adaptation approaches, i.e. the domain
style transfer approach (I2I) and the plain consistency-based
joint learning approach (Endo-Sim2Real) on the Cholec
dataset. The empirical results show that Endo-Sim2Real
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Table 2 Quantitative
comparison using DSC [mean
(std)] [empty frames (%)]
reflects the percentage of empty
frames

Approach EndoVis Cholec R-MIS (S 1) R-MIS (S 2) R-MIS (S 3)

Simulation only .42 (.29) .30 (.30) .30 (.28) .36 (.30) .20 (.24)

I2I [23] n.a. .68 (.30) n.a. n.a. n.a.

Endo-Sim2Real [27] .76 (.17) .68 (.31) .57 (.33) .60 (.32) .51 (.35)

Teacher–student .80 (.16) .72 (.30) .61 (.32) .65 (.31) .58 (.34)

Real only .93 (.06) .86 (.24) .82 (.27) .83 (.25) .78 (.30)

Empty frames 0% 13% 15% 13% 23%

The two baselines: simulation only and real only means training only on the simulated data and training on
the annotated real data, respectively (i.e. no adaptation). The Wilcoxon signed-rank test for Endo-Sim2Real
and our work results in p-value � 0.01. Bold values represents performance score

works similar to I2I, while our proposed approach out-
performs both of these approaches. Later, we evaluate our
approach on two additional datasets and show that it con-
sistently outperforms Endo-Sim2Real. These experiments
demonstrate that the generalization performance of the DNN
can be enhanced by employing unsupervised consistency
learning on unlabeled data. Finally, the performance gapwith

the upper baseline calls for identification of the issues needed
to bridge the remaining domain gap.

Analysis on EndoVis

Among the three datasets, our proposed approach performs
best for EndoVis as shown in Table 2. A visual analysis of
the low performing cases in Fig. 3 highlights factors such

Fig. 3 Qualitative analysis on EndoVis dataset. The green color in the images represents the network predictions while the yellow color represents
under-segmentation
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as false detection on specular reflection, under-segmentation
for small instruments, tool-tissue interaction and partially
occluded instruments. These factors can in part be addressed
by utilizing the temporal information of video frames [13].

Analysis on Cholec

We performed an extensive performance analysis of our pro-
posed approach on the Cholec dataset as instrument-specific
labels are available for it (in comparison to EndoVis). To
understand the distinctive performance aspects for theCholec
dataset, we compare the segmentation performance across
different instrument co-occurrence in Fig. 4. A similar range
of dice scores highlights that the performanceof our approach
is less impacted by the presence of multiple tool combina-
tions in an endoscopic image.

However, it also clearly shows that the segmentation per-
formance of our approach drops when the specimen bag and
its related co-occurrences are present (as seen in the respec-
tive box plots in Fig. 4). A visual analysis highlights false
detection on the reflective surface of the specimen bag.

Apart from the previously analyzed performance degrad-
ing factors in the EndoVis dataset, other major factors
affecting the performance are as follows:

∗ Out of distribution cases such as a non-conventional tool-
shape-like instrument: specimen bag (see box-plots for
labelsets with specimen bag in Fig. 4).

∗ False detection for scenarios such as an endoscopic view
within the trocar, instrument(s) near the image border or
under-segmentation for small instruments.

∗ Artefact cases such as specular reflection. The impact of
other artefacts such as blood, smoke or motion blur is
lower.

Although our proposed approach struggles to tackle these
artefacts and out of distribution cases, addressing these
performance degrading factors is itself an open research
problem [2].

Analysis on RobusMIS

We analyzed the performance of our approach on images
with a different number of instruments in the RobustMIS
dataset. We found that the performance is not significantly
affected by the presence of multiple tools (see Table 3). A
low performance for a single visible instrument is attributed
to small, stand-alone instruments across image boundary.
Apart from the factors in the Cholec dataset, other real-
world performance degrading factors in RobustMIS include:
presence of other out-of-distribution cases such as non-
rigid tubes, bandages, needles etc.; presence of corner cases

Fig. 4 Visualization of the relation between tool co-occurrence and segmentation quality for the Cholec dataset. Please note that the dice score is
zero for no tool cases and specimen bag as it is treated as background
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Table 3 Quantitative results for
multi-instrument presence in
RobustMIS dataset using DSC
[mean (std)]

No. 1 2 3 4 5 6 7

# 1802 1173 229 31 3 – 1

DSC .61 (.34) .72 (.22) .73 (.18) .76 (.11) .76 (.13) – .77 (.00)

Fig. 5 Qualitative analysis on the Cholec dataset. The green color in the images represents the network predictions while the yellow color represents
under-segmentation

such as trocar-views and specular reflections producing a
instrument-shape-like appearance. These failure cases high-
light a drawback of our approach, which works under the
assumption that the shape of the instrument remains consis-
tent between the domains. Therefore, our approach may not
be able to produce faithful predictions in case instruments
with different shapes are encountered in the real domain
(compared to instruments in simulation) or counterexamples
with instrument like appearance.

Impact of empty ground-truth frames

The performance of our teacher–student approach is neg-
atively affected by the video frames that do not contain
instruments. This is because the dice score is assigned to
zero when the network predicts false positives (as seen in
Figs. 5 and 6) in instrument-free video frames. A direct rela-
tion of this effect can be seen in Table 2 where the dice score
across the datasets decreases as the number of empty frames
increases (in%) fromEndoVis toRobustMIS. It suggests that
utilizing false detection techniques in the current framework
can help in enhancing the generalization capabilities.
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Fig. 6 Qualitative analysis on the RobustMIS dataset. The green color in the images represents the network predictions while the yellow color
represents under-segmentation

Conclusion

We introduce teacher–student learning to address the confir-
mation bias issue of the EndoSim2Real consistency learning.
This enables us to tackle the challenging problem of the
domain shift between synthetic and real images for surgi-
cal tool segmentation in endoscopic videos. Our proposed
approach enforces the teacher model to generate reliable tar-
gets to facilitate stable student learning. Since the teacher is
a moving average model of the student, the extension does
not add computational complexity to the current approach.

We show that the proposed teacher–student learning
approach generalizes across three different datasets for the
instrument segmentation task and consistently outperforms
the previous state-of-the-art. For a majority of images (see
high peak in Figs. 3, 5 and 6), the segmentation predictions
are usually correctwith small variations across the instrument
boundary. Moreover, a thorough analysis of the results high-
light interpretable failure modes of simulation-to-real deep
learning as the domain gap widens progressively.

Considering the strengths and limitations of our teacher–
student enabled simulation-to-real unsupervised domain
adaptation approach, the framework admitsmultiple straight-
forward extensions to bridge the remaining domain gap:

∗ Implementing techniques to suppress false detection for
empty frames, instruments near the image border and
specular reflections, for instance by utilizing temporal
information [13] of video frames.

∗ Improving physical properties of simulation to capture
instrument-tissue interaction, considering the variations
in predictions across instrument boundaries.

∗ Extension towards semi-supervised domain adaptation or
real-to-real unsupervised domain adaptation by utilizing
labels from target (real) data for the endoscopic instru-
ment segmentation task.

∗ Employing this approach in conjunction with other self-
supervised or adversarial domain mapping approaches
such as I2I [27].
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Being flexible, end-to-end and unsupervised with respect
to the target domain, our approach can be adapted to other
imagingmodalities or learning taskswhich utilize joint learn-
ing from labeled and unlabeled data. For instance, it can
be extended towards other domain-adaptation tasks, such as
depth estimation [20,24] or instrument pose estimation [3,8]
by exploiting depth maps from the simulated virtual environ-
ments.

The heavy reliance of current approaches onmanual anno-
tation and the harsh reality of surgeons sparing time for
the annotation process propels simulation-to-real domain
adaptation as the obvious problem to address in surgical
data science. The proposed approach ushers annotation-
efficient surgical data science for the operating room of the
future.
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