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Abstract
Massive data transfers in modern data-intensive systems resulting from low data-
locality and data-to-code system design hurt their performance and scalability. Near-
Data processing (NDP) and a shift to code-to-data designs may represent a viable 
solution as packaging combinations of storage and compute elements on the same 
device has become feasible. The shift towards NDP system architectures calls for 
revision of established principles. Abstractions such as data formats and layouts 
typically spread multiple layers in traditional DBMS, the way they are processed is 
encapsulated within these layers of abstraction. The NDP-style processing requires 
an explicit definition of cross-layer data formats and accessors to ensure in-situ exe-
cutions optimally utilizing the properties of the underlying NDP storage and com-
pute elements. In this paper, we make the case for such data format definitions and 
investigate the performance benefits under RocksDB and the COSMOS hardware 
platform.

Keywords  Near-data processing · Data format · Data layout · FPGA

1  Introduction

Besides substantial data ingestion, yielding an exponential increase in data volumes, 
modern data-intensive systems perform complex analytical tasks. To process them, 
systems trigger massive data transfers that impair performance and scalability, and 
hurt resource- and energy-efficiency. These are partly caused by the scarce system 
bandwidth in combination with poor data locality, as well as by traditional system 

 *	 Lukas Weber 
	 weber@esa.tu-darmstadt.de

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0621-1151
http://orcid.org/0000-0002-8306-9999
http://orcid.org/0000-0001-6896-9879
http://orcid.org/0000-0001-6042-9878
http://orcid.org/0000-0002-1164-3082
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-021-07328-z&domain=pdf


28	 Distributed and Parallel Databases (2022) 40:27–45

1 3

architectures and algorithms requiring data to be transferred from storage to com-
puting elements for processing (data-to-code).

A shift towards Near-Data Processing (NDP) and code-to-data allows executing 
operations in-situ, i.e. as close as possible to the physical data location, leveraging 
the much better on-device I/O performance. This observation is supported by several 
trends. Firstly, hardware manufacturers can fabricate combinations of storage and 
compute elements economically, and package them within the same device. Sec-
ondly, with semiconductor storage technologies (NVM/Flash) the device-internal 
bandwidth, parallelism, and access latencies are significantly better than the exter-
nal ones (device-to-host). Combined, the two trends lift major limitations of prior 
approaches such as ActiveDisks or Database Machines.

Knowledge about the data organisation and the ability to interpret the data for-
mat in-situ are essential for performing NDP operations. Interestingly, NDP-able 
operations are defined on different levels of a DBMS or the I/O stack. 

1.	 DB-object- or Page-based like fetch, update, scan or garbage collection;
2.	 Field/Column- and Record-based such as scan, record-materialization, selection 

or aggregation

Each operation type processes data according to the respective format or layout. Fig-
ure 1 shows common structures like the Field- and Record-Format, Data Organisa-
tion, and Page Layout, which are available in almost every classical database. In 
classical (layered) DBMS architectures, data formats and operations can be viewed 
as abstractions defined on the interface boundaries of the DBMS layers, which 
encapsulate their functionality (Fig. 1). Consequently, in SQL queries, format defi-
nitions of the upper layers are utilized to retrieve and process data from the layer 
below. Yet, in NDP-system architectures this is not possible anymore, as the query 
or operation is executed in-situ. Since data formats scattered across different layers 
of abstraction and encapsulated within them, and given the typical complexity of the 
I/O stack, NDP processing is not possible out of the box. As a result, every neces-
sary format definition either needs to be available in advance on-device or it has to 
be enclosed to the NDP call.

To make the case for explicit cross-layer formats, this paper utilizes a sim-
ple KV store-based NDP-ImageProcessor application. It naively stores colours of 
images pixel-by-pixel, and defines a small set of operations, which can be exe-
cuted as traditional queries or NDP calls.

The main contributions of this paper are: 1. We claim that explicit cross-layer 
data formats and transparent definitions of the data organisation are necessary in 
NDP scenarios. 2. We propose a definition for formats and layouts in the context 
of Near-Data Processing. 3. We present an approach to format pushdown in NDP-
DBMS. 4. We prototyped the approach with a simple image processing applica-
tion, on NoFTL-KV and the COSMOS OpenSSD as real hardware target, and 
gain performance improvements of up to 33%.
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2 � Conceptional background

2.1 � Near‑data processing

NDP targets executing data processing operations as close as possible to the 
actual physical storage location, instead of transferring the entire raw data to the 
host. Relevant NDP aspects are: 

1.	 Which operations are NDP-able: only size-reducing or leaf operations in a query 
execution plan or also more general data-intensive operations like joins or UDFs.

2.	 Result set: In absence of proper result set management it is beneficial that the 
results of a NDP operations are significantly smaller than the actual raw dataset 
that they are operating on.

3.	 Faster processing: The NDP operations execute faster by leveraging hardware 
properties such as parallelism, which are not able to be utilized by the host.

4.	 Intervention-free NDP-executions: NDP may relieve the pressure on the system 
bus, reducing unnecessary stalls, and making room for further instructions by 
reducing the data operations given that in-situ executions can be performed with-
out interaction or synchronization with the host.

Fig. 1   While queries in traditional DBMS can directly apply format and layout information of the data-
base within every layer of abstraction, NDP queries necessitate to pass them to the NDP device to exe-
cute the respective operations in-situ without host interaction
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2.2 � NDP operation types in databases

Operations that can been executed on the device are diverse. Interestingly, these fre-
quently build on top of each other, forming a NDP-operation hierarchy (Fig. 2).

The lowest level constitutes the on-device Data Organisation methods. These 
process in-situ the physical storage segments allotted to a certain database object, 
performing full scans or on-device lookups. Such operations yield NDP accessors 
(hardware or software) that result from the way data is accessed in the respective 
data organization (i.e. heap) or the storage structure (i.e. LSM-tree).

Operations tied to the Data Organisation-based usually trigger physical on-
device I/O operations, which are Page/Block-based. These perform physical I/O 
on-device without interpreting the contained data. Furthermore, they operate on 
units of physical granularity such as Pages/Blocks for Flash or cachelines for NVM. 
Depending on the storage stack, these can be triggered either by the Flash-Transla-
tion Layer on the device, any intermediate layers in the operating system, such as file 
systems or the kernel, or, in case of Native Storage Management, by the database 
itself [29]. In the context of databases, these Page/Block-based operations are usu-
ally connected to the Page Layout Accessors or Page Format Parsers to extract the 
physically embedded database records.

Record-based operations comprise among others full table scans, index lookups, 
or tree balancing. They make use of Page- and DB-Object-based operations and also 
interpret parts of the data according to Structural Elements as defined in Sect. 2.3. 
For instance, an index lookup might read several pages containing internal nodes 
to identify the correct leaf page. Depending on the database, this page is parsed 
likewise to retrieve either the position in the table or the actually requested data. 
All these operations process data according to the given page layouts and respec-
tive record formats. On top, higher-level database operators like selections, joins, or 
GROUP BYs can be implemented efficiently on the device.

If an operation needs to interpret individual fields within one or multiple records, 
another Field-based operation has to be executed. Closely linked to the DB-Object 
and Record Format, these kind of operations have to utilize the data definition (from 
the database catalogue) to extract the data types of necessary fields. While this is 
sufficient for a projection, other types of Field-based operations, such as aggregate-
functions, must interpret these values to perform the NDP-operation.

In NDP scenarios it is unacceptable to have expensive round trips to the host to 
get any format or layout definitions at runtime (as most interpreting DBMS query 
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Fig. 2   Different NDP operation types build upon each other during the execution
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execution models do), while executing queries or stored procedures. Rather such 
definitions need to be extracted and, together with page and record layouts, be 
passed to the NDP-device to ensure synchronization free NDP-execution. Hence, the 
need for explicit cross-layer format definitions arises (Sect. 2.3).

2.3 � Structural elements: formats and layouts

The terms format and layout are often used interchangeably to describe the structure 
of the data held in a specific area of memory or storage. However, in the context 
of this paper and NDP, we distinguish between the two. First, formats describe the 
properties of a single structural element. Second, a layout defines the arrangement 
of multiple subordinate elements.

The format of an element defines the set of features (attributes, datatypes or sub-
elements) as properties of that element. The format defines how an element is to be 
interpreted. Such properties can be user-, application-, or system-defined. Typical 
examples in databases are column/field-types, table definitions, and tuple formats. In 
NDP-environments dedicated software or hardware format parsers are required for 
such formats, as they need to be processed in-situ to execute NDP-operations (such 
as SUM or AVG, or to sort and compare, to name a few).

In contrast to Formats, Layouts describe the spatial/physical arrangement of 
elements within the memory space and the scope of a container element. Clearly, 
the contained elements can be of different formats. Typical examples are page- or 
record-layouts, or storage structures. The typical row-store record layout would 
comprise a record-header with a set of fields and flags, followed by a record-body, 
roughly containing the tuple-attributes as elements of the record format. Alterna-
tively, the typical record layout in a KV-Store would comprise an identifier/key and 
a value.

In NDP settings various layout accessors (hardware or software) are needed on-
device to retrieve the required elements efficiently from memory or storage. In con-
trast to format parsers, layout accessors have to be available entirely on the NDP 
device to retrieve the expected data storage locations. Depending on the NDP opera-
tion, a format parser might be applied on the result of a layout accessor.

Consider Fig. 3—a Format Parser will be required to process records or fields of 
an image table, while a Layout Accessor will be used to retrieve Record2.

2.4 � Structural elements in databases

Formats and Layouts usually differ among DBMS types and are often optimized 
for their specific characteristics. In the following, we describe common concepts of 
widespread Physical Storage Organisations and list examples for Format Parsers 
and Layout Accessors. As a running example, Fig. 3 shows how these are mapped 
onto a Key/Value store (i.e. in MyRocks with RocksDB under the hood, which we 
use in the NDP-ImageProcessor scenario).
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2.4.1 � Field format

Based on the DDL DB-object definitions in relational databases, the list of col-
umn data types, their Field Formats and their physical representations are known 
in advance or are engine-specific and therefore predefined. For instance, MyRocks 
defines an entire hierarchy of various number, decimal, string and date representa-
tions. Their Format describes the size in Bits or Bytes and a logic to translate the 
physical representation into an interpretable format for a given instruction set of the 
processing unit. For instance, the Format of the SQL clause INTEGER is trivially 
mapped to a 32-bit little-endian signed integer. Yet, if this field is part of the record 
identifier its physical representation is changed to big-endian to ensure a memory-
comparable sort-order (see Fig. 3).

2.4.2 � Record layout and format

In the typical DBMS, a physical record has a unique identifier. For instance, in the 
case of MyRocks, which utilizes RocksDB as a storage manager under the hood, 
this identifier includes a column_family_id and all primary key fields. In addition, 
RocksDB appends further information such as the sequence number and the key/
value type. To reduce the physical space consumption, fields included in the identi-
fier are not stored redundantly in the value. The following example depicts a simple 
table definition for the simple ImageProcessor, which stores every pixel of an image 

Fig. 3   (Left) Logical data organisation and nested definitions with formats and layouts. (Right) Record 
Format and Layout of the simple NDP-ImageProcessor divide fields in identifier and value for a simple 
table definition executed in MyRocks
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as a single record. Figure 3 (and Fig. 4) shows the Record Layout and Format and 
the necessary information for a Record-based NDP operation.

2.4.3 � Page layouts

Page layouts are a distinguishing characteristic of different DBMSs and have a major 
performance impact. They account for different access properties in terms of access 
and data locality, cache-awareness, prefetching as well as operation and maintenance 
costs. Three widely used examples are the N-ary Storage Model (NSM) [23], the 
Decomposition Storage Model (DSM) [5], and, the hybrid between those, the Parti-
tion Attributes Across (PAX) [2], while HPL [8] bridges the gap between the two. 
The difference is the arrangement of records within the space of a classical page. 
For the format we are working with, this is depicted in Fig. 4. However, there are 
various further layouts, such as Data Blocks [19] of HyPer, which optimize for dif-
ferent performance properties like scans and point queries on compressed data.

Another commonly used layout is the RCFile [11] which is typically applied in 
combination with MapReduce-Frameworks like Hadoop. While RCFile is the de-
facto standard for such distributed storage systems, it is also specifically tailored for 
those use-cases. In contrast, SST-Files are more tailored towards general-purpose 
systems, which offers higher adoption potential for smaller systems. Independent of 
the used storage format, a major hurdle for implementing NDP-functionality is the 
implementation of record-accessors, which are able to retrieve a single record or 
key-value pair from the corresponding storage format. Since RCFiles do not rely 
on pointers within their data-structures, it would generally be easier to implement 
record-accessors for full scans. In turn though, the resulting system would be less 
applicable to general-purpose use-cases as lookups cannot be served efficiently. 
With the use of SST-Files, we aim to show that it is possible to implement NDP-
functionality independent of the storage format, as long as the fields and records can 
be accessed.

Fig. 4   Graphical representation of the SST file format used by RocksDB and MyRocks
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2.4.4 � Data storage organisation

Databases utilize various data structures to store records of different database 
objects. Hence, the most trivial storage organisation is a heap file – flat set of records 
placed on pages without any specific order. Alternatively, typical persistent Key/
Value stores use multi-level LSM-trees.

For NDP calls, operating on the granularity of DB-Objects or even finer gran-
ularities (see Sect.  2.2), the organization of the underlying data structure is of 
importance, as the NDP-device needs to be able to: (a) navigate and iterate over 
the physical storage; and (b) should be able to perform address resolution in-situ. 
Consequently, depending on the operation, the Layout Accessors have to retrieve the 
requested data from storage.

3 � Pushing down operations with format

After motivating the necessity of format pushdown from the conceptional per-
spective, we introduce a simple NDP-ImageProcessor. It uses a KV-Store, namely 
NoFTL-KV [29], to manage its images. It is based on the the widely-known 
RocksDB but integrates Native Storage management capabilities to leverage modern 
device characteristics. Moreover, it allows to call NDP functionality of the device. 
For the sake of simplicity, the ImageProcessor application disassembles each pixel 
of an image into its basic colours Red, Green and Blue, resulting in a record for-
mat similar to Fig. 3. The operations triggered by the application comprise a simple 
Get to retrieve colour information about a single pixel, and a histogram calculation, 
which counts the frequency of each colour within a certain area of an image.

Figure 5 gives a detailed view on the overall architecture. On the left-hand side, 
operations are executed over the conventional stack, while the left-hand side depicts 
the NDP execution model. To simplify the diagram, several layers, such as Kernel 
and FTL are omitted for the conventional stack. However, clearly visible is that, in 
case of NDP, format parsing and layout accessor executions happen on-device close 
to the physical storage instead of on the host, where NoFTL-KV is running. This 
requires both a modern Native Storage Manager as well as a pushdown mechanism 
ensuring that information required to configure and run the code for the respec-
tive Structural Elements is available on-device. For instance, current state informa-
tion about the LSM-Tree (column families, levels, number and size of SSTs) and 
the record and field format as well as the SST layout must be provided to the NDP 
processing elements. In NoFTL-KV, such information is assembled along the way 
down to the device during run-time.

Since the entire processing flow is executed on the device, it can be optimized 
for the specific storage properties, e.g. number of concurrently addressable flash 
chips, or leveraging the pipelining effects of COSMOS’s Flash Controller. The 
return path is lean since results are directly communicated to the ImageProcessor 
application without any intermediate layers.



35

1 3

Distributed and Parallel Databases (2022) 40:27–45	

3.1 � Testbed

For the evaluation, the system stack shown in Fig. 5 is set up on a host system, 
equipped with an Intel E6850 (3 GHz) CPU, 4 GB memory, and a 500GB SSD. 
The operating system is Debian 9.5 with kernel version 4.9.0. The host is con-
nected to the COSMOS OpenSSD via an eight-lane PCIe 2.0 bus. The COSMOS 
platform [22] comprises a Zynq 7000 SoC, 1 GB RAM and a 512 GB NAND 
Flash module. The Flash and PCIe controllers are located on the FPGA part of 
the Zynq 7000 and are controlled by one of its ARM Cores (667 MHz). In case 
of the conventional stack, the COSMOS Flash storage is mounted as classical 
block device with an Ext4 file system. When running NDP experiments, the sec-
ond ARM Core, which is running at a clock frequency that is more than four 
times slower than the host CPU, is responsible to run the NDP Format Parsers 
and Layout Accessors.

3.2 � Evaluation

For the evaluation of both described operations, GetPixelColour and GetHistogram, 
are executed on the conventional stack as a baseline, and as NDP calls to compare 
the performance benefits. The pre-loaded dataset comprises 100,000,000 KV-Pairs 

Fig. 5   The simple NDP-ImageProcessor application runs on top of NoFTL-KV, and operates either with 
conventional query requests via Block I/O to the COSMOS OpenSSD, or utilises the Native Storage 
Manager to issue NDP calls on the device. Depending on the stack, the Format Parser and Layout Acces-
sors are executed within the KV-Store on the Host, or on processing elements of the NDP device
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of pixels. Experiments are executed three times and the average result is reported. 
To ensure comparability, the page cache of the operating system is cleared every 2 s.

3.2.1 � Record‑based operation: GetPixelColour

Within the given architecture, this operation demonstrates a simple GET on the 
LSM-Tree. To look up the record, the LSM-Tree structure as data organisation of 
NoFTL-KV has to be processed. Therefore, firstly, the physical pages of the required 
Data Blocks have to be identified via a layout accessor. Secondly, requests for these 
pages can be issued to the on-device Flash Controller. With their successful comple-
tion, they can be parsed and records extracted according to the associated parses 
and accessors. The record itself is not interpreted, and no further calculations or 
extractions are necessary to retrieve the requested result. The NDP-operation, Lay-
out Accessors and Format Parsers are executed on the slow ARM core without any 
FPGA support. Ahead of the experiment, 1000 pixel coordinates are pre-generated 
randomly to ensure an equal access pattern in all executions. We run the experiment 
once without any defined caches in NoFTL-KV or COSMOS (Fig.  6a), and once 
with caches for the index enabled (Fig. 6b).

While the conventional stack via the block device interface yields significant 
response time fluctuations, NDP executions exhibit robust performance and stable 
response times. In absence of any on-device caching, the NDP stack has a slightly 
inferior performance. Detailed analysis of I/O traces on COSMOS show that not 
every read request is served by the device due to non-deactivatable caches within 

Fig. 6   NDP calls exhibit robust performance, in general. In absence of any on-device/NDP caches, the 
traditional stack executes slightly faster, due to non-deactivatable caches in the operating system. How-
ever, if small on-device index caches are enabled, NDP’s performance improves around 33% against the 
baseline
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the kernel or file system and distort the results somewhat. However, with a small 
on-device index cache, the NDP performance is around 33% better than the con-
ventional stack. Only when an index block has to be fetched, the performance drop 
behind the average execution time of the baseline.

3.2.2 � Field‑based operation: GetHistogram

This operation utilizes an Iterator Accessor to scan through pixels of a given area. 
Internally, this iterator leverages the format parsers and accessor similarly to the 
simple lookup of the previous experiment (Fig. 7). Yet, via a Next operation, Data 
Blocks are automatically fetched and parsed. By further applying a Field Format 
Parser the colours can be read and the respective bins of the histogram incremented. 
The NDP-operation, Layout accessors and Format parsers are executed on the slow 
ARM core without FPGA support. The experiment is run with different selectivities 
on the entire data set.

Both curves show a linear execution time, increasing with data size, due to same 
low-level NAND Flash I/O behaviour. However, by leveraging pipelining effects of 
the Flash Controller when fetching new pages, and exploiting the entire parallelism 
of the Flash chips, the performance can continuously be improved by approximately 
27%.

Fig. 7   The performance of both stacks increases linearly for the given data set size across a range of 
selectivities. However, due to optimizations exploiting COSMOS’s hardware properties improve the per-
formance of NDP by about 27%
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4 � Exploiting explicit data formats

The previous evaluation already provides motivation for the use of explicit cross-
layer data formats. By using the explicit data formats, it becomes possible to 
exploit the on-device ARM-cores for computational loads. In systems without 
explicit data formats, all this computational load would have to be executed by 
the host CPU. An additional advantage that comes with the use of explicit data 
formats is the possibility of hardware acceleration. Specifically, the COSMOS 
hardware platform features a SoC comprised of an ARM-based processing Sys-
tem (PS) and a FPGA-based portion (PL). In the original design, the PL-part of 
the SoC is used to implement only the Flash controllers as well as the NVMe 
controller. Due to the under-utilization of the PL-portion, this opens up additional 
potential for hardware acceleration. Examples for this are given in [27, 28]. In 
both works, the COSMOS hardware design is extended using processing elements 
that carry out computational tasks. This section will discuss the performance of 
[27] as well as its applicability to typical use-cases.

4.1 � Execution stack

First, we will give an overview over our system stack and discuss, how different 
parts of the stack interact with each other. Additionally, differences between this 
work and [27, 28] will be highlighted.

At the highest layer, a benchmark-application is run on the host. In this work, 
the application relies on a MyRocks-database to store the data processed by the 
Image-Processor. MyRocks in turn relies on an underlying RocksDB-KV store for 
actual persistant storage. Due to MyRocks being specifically designed to work with 
RocksDB, this integration is almost seamless. Instead of using a plain RocksDB, 
our stack relies on an enhanced RocksDB, called NoFTL-KV [29]. In difference to 
regular RocksDB, NoFTL-KV assumes a specific storage device underneath, which 
it can access natively from userspace, without any intermediary layers (i.e., OS-driv-
ers or block device drivers). NoFTL-KV allows the DBMS to directly work on the 
actual flash chips instead of relying on intermediary compatability layers. Instead 
of using virtual addresses that have to be resolved, NoFTL-KV can directly access 
the corresponding physical flash pages on the COSMOS OpenSSD via the NVMe-
protocol. To allow this direct access, it is also required that the COSMOS OpenSSD 
is running a specialized firmware that allows this kind of access to it. This firmware 
is responsible for actually performing incoming NVMe-requests. In our case, both 
NoFTL-KV and the COSMOS-firmware have been extended to also allow the exe-
cution of user-defined commands via NVMe.

While the setup of [27, 28] is very similar, there are two key-differences. In 
those works, the topmost layer is not MyRocks, but instead just NoFTL-KV. In 
both cases the stored data is structured in a specific manner, but in this work, the 
structure is defined by a MySQL-Schema, while [27] relies on the benchmark-
application to define a clear data structure.
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The second difference is the configuration of the COSMOS OpenSSD. The 
COSMOS device can be configured with different hardware-designs, enabling dif-
ferent hardware-functionality. In this work, the hardware-functionality is limited 
to running the interface via NVMe and the access to the on-device flash chips. In 
[27, 28], the functionality is extended by using hardware accelerators for certain 
database-related functions. Both hardware-configurations rely on the same base-
line hardware-design and COSMOS-firmware. For actually using the hardware-
accelerators, the firmware has to be extended to actually provide the functionality 
to higher layers. This is achieved, by implementing new user-defined NVMe-
commands, which tell the firmware to call corresponding on-device functional-
ity. This functionality can either be realized by using the on-device ARM-cores, 
or the accelerators implemented using the on-device FPGA-fabric. In this work, 
only the on-device ARM-cores are used, while [27, 28] also realize additional 
functionality via the FPGA-fabric.

In the case of FPGA-based functionality, it is then necessary to implement the 
corresponding control logic within the COSMOS-firmware. Depending on the com-
plexity of the hardware accelerators, the control logic is typically performed by 
reading and writing a limited number of control registers, which are simply mem-
ory-mapped into address space of the ARM-cores. The resulting execution stacks 
are also shown in Fig. 8.

The following subsections will go into more detail on how the FPGA-fabric can 
be used to further increase the performance based on the findings of [27, 28]

4.2 � Accelerator architecture

The architecture presented in [27] is relatively straight-forward. The processing ele-
ment (PE) can access the on-device DRAM of the COSMOS. Additionally, the PE 
can be configured and controlled via control-registers that can be accessed by the 
PS. Within the PE, a pipeline is built, where entire data-blocks are first loaded from 

Fig. 8   Execution stack of our implementation in comparison to [27, 28] and a traditional execution stack, 
as described in Sect. 4.1
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the DRAM and then grouped into a stream of tuples, each representing a single key-
value pair. These key-value pairs are then passed into a filtering unit which can apply 
simple logical predicates to each key-value pair, and depending on the evaluation of 
the predicate, can discard some key-value pairs. Afterwards, a data transformation is 
performed, which allows the removal of unnecessary fields and the re-structuring of 
each individual key-value pair. The resulting key-value pairs are then automatically 
stored back to the on-device DRAM.

Depending on the underlying structure of the key-value pairs, the corresponding 
PEs may differ in the amount of FPGA resources they require. [27] report the hard-
ware utilizations of two different kinds of PEs and the amount of required Slices 
ranges from 1.84 to 15.14% of the overall available Slices (54650). Especially for 
smaller key-value pairs, this enables a lot more parallelism. With using just the two 
available ARM-cores, the degree of parallelism is limited to two, while [27] uses up 
to seven concurrent PEs.

4.3 � Accelerating database‑operations

Exploiting the available compute-parallelism, as well as the heterogeneity of their 
system, [27] implements simple GET and SCAN operations. It evaluates the execu-
tion times of both using the traditional approach on the host-CPU (Blk), software-
based NDP (SW-NDP) and hardware-accelerated NDP (HW-NDP). For their evalu-
ation, a benchmark composed of key-value pairs built from publications, references, 
conference venues, and authors is employed. The overall number of key-value pairs 
in this dataset is roughly 48 million, with the total size being 2.4 GB.

Due to the use of the concepts presented in this paper, it is possible to reduce 
the GET execution time from 8ms (Blk) down to 5.68 ms (SW-NDP), and that of 
the SCAN operation from 6.96s (Blk) down to 4.81 s (SW-NDP). With the high 
potential for concurrency of the SCAN operation, it is possible to further reduce 
the SCAN execution time down to 3.35 s (HW-NDP) using hardware acceleration. 
Additionally, [27] implements the Betweenness Centrality (BC) algorithm and also 
measure the impact of software-based and hardware-accelerated NDP. In the case 
of BC, the original execution time of 1027.84 s (Blk) is reduced down to 426.62 s 
(SW-NDP) and 374.81s (HW-NDP) using software-based and hardware-accelerated 
NDP, respectively. The BC is implemented as software for the ARM core that can be 
configured to exploit the presented PEs (HW-NDP). Alternatively, the correspond-
ing parts of computation are done using just the ARM core (SW-NDP).

4.4 � Integration into existing systems

Independently of the potential for performance increases, another issue for new 
database paradigms and concepts is the complexity of adoption as well as usability. 
Since databases are very important in academic and industrial applications alike, 
they are already widely used. Many of these applications rely on a specific DBMS 
like MySQL or Postgre SQL and switching the DBMS is often not an easy task, due 
to applications running on top of the DBMS. Therefore, it is important to achieve a 
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degree of compatibility to these systems that enables a simple and easy switch from 
the existing stack to a hardware-accelerated stack.

To give a perspective on this, we want to take a closer look at MyRocks, which is 
a RocksDB-based storage engine that supports MySQL. Under the hood, a MyRocks 
database uses RocksDB for storing the data, while still allowing typical MySQL-
Queries. Therefore, many of the performance increases achieved with a RocksDB 
database also apply to MyRocks. The two major restrictions to this statement are the 
following: 1. It might be necessary to adapt MyRocks to support command push-
down to allow the full use of Native Storage and NDP. 2. Since our hardware-accel-
erated NDP is only able to process selected data-types, it would also be necessary 
to transform the MyRocks database in a way that removes variable-size data from 
as many relations as possible, since relations with variable-size data cannot be pro-
cessed by our current NDP-PEs.

Assuming that the MyRocks-relations meet these restrictions, the accelerated NDP 
could be integrated at different points in the stack. In our use-cases, it was integrated 
at the level of RocksDB, which provides the most basic operations such as SCAN and 
GET. Since MySQL-Queries performed on MyRocks will invoke the corresponding 
functionality in the underlying RocksDB, no further implementation changes would 
be required. Other functions of RocksDB could also be adapted to exploit the per-
formance increases of NDP. Obvious candidates would be RANGE_SCANs and 
MULTI_GETs. To adapt these, their filtering functionality has to be replaced by 
calls to the PEs. These operations can be wrapped into function-calls without signifi-
cant overhead, making this overall approach very simple. A major downside of this 
approach is the introduction of additional layers in the overall stack. Since a signifi-
cant portion of our performance increases are achieved by removing unnecessary com-
patibility layers, it would potentially make more sense to instead allow MyRocks to 
directly access the on-device functionality. While this would incur much higher imple-
mentation effort, it might also yield even greater performance increases.

4.5 � Discussion

From the results presented in [27, 28], it is clear that the potential of hardware accel-
eration is great. To unveil this potential, it is absolutely necessary to use explicit 
cross-layer data formats. Especially for the operations allowing more concurrency, 
such as SCAN and BC, the potential of hardware-acceleration is large and may pro-
vide great performance improvements. In addition, computational load is shifted 
from the host-CPU to the storage-device, which in theory allows the CPU to carry 
out more complex operations, while simple operations are handled using on-device 
NDP across multiple smart storage devices.

Even though these initial results are promising, the use of hardware-accelerated 
NDP introduces a new problem: To exploit hardware-acceleration, [27, 28] rely 
on manually-designed PEs and corresponding control logic. To address this prob-
lem, several approaches could be used. The most obvious is the use of High-Level 
Synthesis (HLS), which allows the generation of hardware accelerators from high-
level code (e.g., C/C++). While HLS is generally easier to use for software- or 
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database-engineers, it generally produces sub-optimal results in comparison to man-
ually-written or generated Hardware Description Language (HDL) based accelera-
tors. Considering the accelerators used in [27], it is clear that many of the sub-mod-
ules depend on the underlying structure of the processed key-value pairs.

Exploiting this structure, it could be possible to implement the automatic genera-
tion of HDL-based accelerators. This would also enable the automatic generation of 
the software interface for the control of the accelerators. Such a specialized NDP-PE 
generator could potentially create better hardware accelerators than general-purpose 
HLS, while also providing all of the control software, without requiring any addi-
tional knowledge about hardware design.

Apart from this caveat, the work presented in [27, 28] is a very good example for 
a field-based NDP-operation, where processing and computation can be performed 
close to storage, and the processed data can be handled at the finest degree of granu-
larity. According to the model depicted in Fig. 2, the relevant cross-layer data for-
mats are implicitly encoded into the accelerator to allow it the interpretation of the 
data down to single fields.

5 � Conclusion

We motivate the necessity for data format pushdown in NDP scenarios. To this end, 
we put the terms format and layout in an NDP context and discuss a type hierarchy 
for NDP operations. Processing data format and layout definitions on device and 
creating/generating dedicated parsers and accessors allows optimizing for the given 
hardware properties and improving the execution time. The evaluation demonstrates 
the impact of NDP by improving a Record-based operation by around 33% and a 
Field-based operation by approximately 27%. Additionally, it is worth mentioning 
that the NDP operations are executed on an ARM Core, which is clocked at one-
quarter of the host-CPUs frequency. Additionally, we discuss the works by Vinçon 
et al. [27, 28] on exploiting explicit data formats using hardware-acceleration using 
the FPGA-portion of the COSMOS OpenSSD platform. Their results further moti-
vate and explain the necessity of explicit cross-layer data formats regarding a more 
hardware-focused context.

6 � Future work

From these findings and the prior works [27, 28], it becomes increasingly clear that 
explicit data formats may offer great advantages for Near-Data Processing. While 
these works already achieve significant improvements, they are also reliant on detailed 
knowledge about the hardware architecture of the COSMOS platform. An interest-
ing avenue of research could be the automation of the hardware-development process. 
This would also increase the accessibility of the presented methods to a wider audi-
ence. Exploiting the regularity of the two accelerators presented in [27] could yield 
similar performance improvements while streamlining the development process.
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Another interesting path of research could lie in the use of a different hardware 
platform. Despite its out-of-the-box functionality and the fact that it offers all of 
the required controllers and firmware, the COSMOS OpenSSD used in this work 
is becoming an outdated platform. Especially considering the sheer age of the 
Xilinx Zynq-7000 chip (released 2011), it could be interesting to test the limits of 
the presented concepts on a newer platform like the Samsung SmartSSD used in 
[20], which features a more recent FPGA-SoC. The increased number of hardware-
resources could be used to implement more advanced hardware-acceleration, which 
in turn could allow higher performance-increases or the execution of more complex 
NDP-operations.

7 � Related work

Using Formats and Layouts to describe storage elements are concepts from the early 
beginning in the research and development of databases. Page layouts such as NSM 
[23] and DSM [5] date back to at least the 80s. Yet, also recently, new variations 
were proposed like PAX [2], BLU [24] of DB2, or DataBlocks of HyPer [19]. Some 
layouts even make use of the hardware properties of Flash-like Delta Records in 
[10].

Likewise, the concept of Near-Data Processing is deeply rooted in database 
machines [4] developed in the 1970s-80s or Active Disk/IDISK [1, 16, 25] from the 
late 1990s.

With the advent of Flash technologies and reconfigurable processing elements 
Smart SSDs [7, 15, 26] were proposed. An FPGA-based intelligent storage engine 
for databases is introduced with IBEX [30]. Biscuit [9] is a proposal for a general 
NDP framework. JAFAR [3, 31] is one of the first systems to target NDP for DBMS 
(column-store) use, whereas [14, 18] target joins besides scans. The use of NDP in 
the realm of KV-Stores has been investigated in [6, 17]. Kanzi [12], Caribou [13] 
and BlueDBM [21] are RDMA-based distributed KV-Stores investigating node-
local operations.

Much of the prior work on NDP focus mainly on either bandwidth optimizations 
or on the execution of specific algorithms. Yet, this paper gives a broad overview of 
necessary formats and layouts, in particular for databases to issue several types of 
operations as NDP calls.
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