
Mathematical Programming Computation (2022) 14:43–84
https://doi.org/10.1007/s12532-021-00203-z

FULL LENGTH PAPER

Optimal patchings for consecutive ones matrices

Marc E. Pfetsch1 · Giovanni Rinaldi2 · Paolo Ventura2

Received: 23 November 2018 / Accepted: 12 April 2021 / Published online: 7 June 2021
© The Author(s) 2021

Abstract
We study a variant of the weighted consecutive ones property problem. Here, a 0/1-
matrix is given with a cost associated to each of its entries and one has to find a
minimum cost set of zero entries to be turned to ones in order to make the matrix have
the consecutive ones property for rows. We investigate polyhedral and combinatorial
properties of the problem and we exploit them in a branch-and-cut algorithm. In par-
ticular, we devise preprocessing rules and investigate variants of “local cuts”. We test
the resulting algorithm on a number of instances, andwe report on these computational
experiments.

Keywords Consecutive ones property · Tucker matrices · Polyhedral combinatorics ·
Branch-and-cut

Mathematics Subject Classification Primary 90C10; Secondary 90C57 · 52B12

1 Introduction

A 0/1-matrix A has the strict consecutive ones property for rows (strict C1P) if the
ones in each row appear sequentially. A matrix A has the consecutive ones property
for rows (C1P) if the columns of A can be permuted such that the resulting matrix
has the strict consecutive ones property for rows (see Fulkerson and Gross [16]). If
A has the (strict) C1P, we say (somewhat abusing language) that A is (strictly) C1P.

B Marc E. Pfetsch
pfetsch@opt.tu-darmstadt.de

Giovanni Rinaldi
giovanni.rinaldi@iasi.cnr.it

Paolo Ventura
paolo.ventura@iasi.cnr.it

1 Department of Mathematics, Technische Universität Darmstadt, Dolivosstraße 15,
64293 Darmstadt, Germany

2 Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” – CNR, Via dei Taurini 19,
00185 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-021-00203-z&domain=pdf

44 M. E. Pfetsch et al.

Therefore, being C1P is a property of 0/1-matrices that is preserved under row and
column permutations.

The problem of checking whether a given 0/1-matrix is C1P can be solved in linear
time using the algorithm of Booth and Lueker [5]. The situation is quite different for
optimizing over the set of all C1P matrices of a given size. Indeed, theWeighted C1P
Problem (WC1P), i.e., finding an m × n C1P matrix of minimum cost with respect to
a linear objective function, is NP-hard (Booth [4] and Papadimitriou [30]).

The weighted C1P problem was investigated by Oswald and Reinelt [27–29] who
provided a polyhedral study and a branch-and-cut algorithm that produces a certified
optimal solution. They also introduce applications in the fields of developmental psy-
chology [31], computational biology [7], archaeology [22], and film-making. Their
computational results show that the problem is very difficult to solve to certified opti-
mality even for relatively small matrices. For example, in [29], Oswald and Reinelt
report on computational results with randomly generated square instances. Even some
instances of size 13 × 13 were not solvable within one hour by their implementation
and hardware.

Fortunately, there are applications of theWeighted C1P Problem having a particular
structure that can be exploited to make it possible to attack larger instances. This
is the case, for example, when, in addition to the cost matrix C , a second matrix
M ∈ {0, 1}m×n is given, typically non C1P, and one is asked for the least cost C1P
positive patching of M , i.e., a C1P matrix obtained from M by switching some of its 0
entries to 1. ThisWeighted Positive C1P Patching Problem is the subject of this paper.

The complementary weighted negative C1P patching problem, in which the least
cost C1Pmatrix obtained fromM by switching some of its 1 entries to 0 is determined,
is less frequent in applications; we therefore concentrate on the positive C1P patching
problem. Thus, from now on we will use the name “C1P patching” for “positive C1P
patching” and we will denote this problem byWC1PP. It generalizes WC1P, since the
two problems coincide when M is the zero matrix. Even if we restrict the objective
function coefficients to be all nonnegative, the WC1PP Problem is NP-hard, since it
generalizes the so-called average order spread problem, proved to be NP-hard by Fink
and Voss [14]. Such a proof also works when the entries of the objective function
are all 1s. In this case, we denote the WC1PP Problem as the Minimum Length C1P
Patching (MLC1PP) Problem.

1.1 Applications

There are a number of applications of the WC1PP Problem that have been discussed
in the literature. Actually, some of the examples mentioned in [27] are of this type, like
the ones in archaeology and film-making. We give here a short description of some
other typical applications and variants (see, e.g., [10] for additional details).

Open Stacks Problem The Open Stacks problem is to generate a set of cutting patterns
that cut raw material into smaller items of required sizes and quantities in order to
minimize the waste. Once the optimal patterns have been used to perform the cutting
operations, another optimization problem arises in practical applications. Indeed, the
items cut from the panels are stacked around the cutting machine. Such stacks remain

123

Optimal patchings for consecutive ones matrices 45

“open” during the complete production time of the related items and the same stack
can be used only for items whose production does not overlap over time. Then one has
to find a cutting pattern permutation that minimizes either the total stack opening time
or the maximum number of stacks that are simultaneously open during the cutting
process. In the literature, the total stack occupation time and the maximum number
of simultaneously open stacks problems are known as Time of Open Stacks (TOS)
Problem and Maximum number of Open Stacks (MOS) Problem, respectively (see
Linhares and Yanasse [25]). In both cases, a feasible solution is a positive patching X
of the binary production matrix M in which columns (rows) are associated with the
panels (items) and M(i, j) = 1 if and only if at least one item of type i is produced in
the panel j . TheMOS Problem then seeks for such an X that minimizes the maximum
number of 1s in each column,while the TOSProblem reduces to anMLC1PPProblem.
The MOS problem has been investigated in the literature, see, for instance, Baptiste
[2], de la Banda and Stuckey [11], and [10].

Very Large Scale Integration circuit design (VLSI) In VLSI design, the gates corre-
spond to circuit nodes and different connections between them are required. Each
connection involves a subset of nodes and is called net. Note that to connect the gates
of a net, it may be necessary to cross other gates not included in the net, depending
on the gate layout sequence. Also, a single connection track can be used to place non-
overlapping net wires. The total wire length determines the connection cost, while the
number of tracks determines the total circuit area, which may be limited by design
constraints or efficiency issues. Both indicators give an estimate of the circuit lay-
out efficiency and depend on how gates are sequenced. We define the Gate Matrix
Connection Cost minimization Problem (GMCCP) as the problem of finding a gate
permutation such that the connection cost is minimized and the number of required
tracks is limited. Let M be the incidence matrix of the circuit, i.e., M(i, j) = 1 if net
i requires the connection of gate j , and M(i, j) = 0, otherwise. Then, a feasible solu-
tion to the GMCCP is a positive patching X of M and the number of required tracks
for each net is the number of 1s in the corresponding column of X . Therefore, it is not
difficult to see that GMCCP reduces to an MLC1PP Problem with the further request
to have a bounded value for the maximum number of 1s in each column, see [10].

1.2 Outline of the paper

In Sect. 2 we will introduce some notation and resume some polyhedral results related
to theWeightedC1PProblem. In Sect. 3wewill consider the convex hull of the positive
C1P patchings of a given matrix. In particular we will: i) describe how to extend the
facet defining inequalities introduced for the C1P case to this polytope, ii) give some
conditions for a 0-lifting procedure to obtain facet defining inequalities, iii) discuss
some polyhedral properties of the dominant polyhedron. We will describe in Sect. 4
the cutting planes we used within the branch-and-cut procedure that we implemented
to solve the WC1PP Problem. In particular, we will give special emphasis on the
oracle-based generated cutting planes (“local cuts”). The implementation details of the
branch-and-cut algorithmwill be given in Sect. 5,while the computational experiments

123

46 M. E. Pfetsch et al.

will be described and commented in Sect. 6. Finally, we will draw up our conclusions
in Sect. 7.

2 Basic definitions and results

We collect here several definitions and results that we will use in the following.
We denote by Pm,n

C1 the set of all C1P matrices with m rows and n columns and the
corresponding C1P polytope by Pm,n

C1 := conv(Pm,n
C1). We will always assume that n,

m ∈ N := {1, 2, . . . }.
Let M be a given 0/1 matrix of size m × n. Recall that a positive C1P patching

of M is a C1P matrix A of size m × n such that A ≥ M . Let P+(M) be the set of
all positive C1P patchings of M and P+(M) := conv(P+(M)) be the corresponding
positive C1P patching polytope. The set P+(M) is nonempty, since it contains the all
ones matrix 1m×n (or just 1, if the size is clear from the context). In the same way, we
define 0m×n and 0.

Moreover, we use the following notation. For k ∈ N, we write [k] := {1, . . . , k},
and we denote by O(k) the set of all ordered subsets of [k]. For a matrix A ∈ Rm×n

wewrite A(i, j) for the entry of A at position (i, j) ∈ [m]×[n]. Let N0(A) denote the
set of indices (i, j) such that A(i, j) = 0, and let n0(A) be its cardinality. We use the
inner product 〈A, B〉 = ∑m

i=1
∑n

j=1 A(i, j) B(i, j) for two m × n matrices A and B.
Booth and Lueker [5] gave a linear time algorithm to test whether a given matrix is

C1P, which is very important in this context. It uses the so-called PQ-tree algorithm.
However, if the matrix is not C1P, the algorithm does not generate a certificate. Such
a certificate can be given by certain matrices that appear as minors. Indeed, Tucker
[33] gave a characterization of C1P using the five types of Tucker matrices shown in
Fig. 1: the infinite series of matrices T 1

k , T
2
k , and T 3

k for every k ∈ N and the fixed
size matrices T 4 and T 5. We need the following notation in order to state his result.

For two ordered sets I ∈ O(n) and J ∈ O(n), by AI J wedenote thematrix obtained
by selecting the rows and the columns of A with indices in I and in J , respectively,
taken in the corresponding order. We say that AI J is a minor of A. Finally, Tucker’s
characterization can be stated as follows.

Theorem 1 (Tucker [33]) A matrix M ∈ {0, 1}m×n is C1P if and only if none of its
minors is a Tucker matrix.

Based on this characterization, Oswald and Reinelt [28,29] gave an integer pro-
gramming formulation for optimizing a linear objective function over the set Pm,n

C1
described by inequalities that are all facet defining for the polytope Pm,n

C1 . Such a
formulation is provided by four types of inequalities based on the matrices shown in
Figs. 2 and 3. The result reads as follows.

Theorem 2 (Oswald and Reinelt [28])

(1) The inequalities 〈F1
k , XI J 〉 ≤ 2k+3 for all k ∈ N and all ordered index sets I , J ∈

O(k + 2) are facet-defining for Pm,n
C1 with m ≥ k + 2, n ≥ k + 2.

(2) The inequalities 〈F2
k , XI J 〉 ≤ 2k + 3 for all k ∈ N and all ordered index sets I ∈

O(k + 2) and J ∈ O(k + 3) are facet-defining for Pm,n
C1 withm ≥ k+2, n ≥ k+3.

123

Optimal patchings for consecutive ones matrices 47

Fig. 1 Tucker matrices, where k ∈ N

Fig. 2 Oswald-Reinelt matrices F1
k of size (k + 2) × (k + 2) and F2

k of size (k + 2) × (k + 3). Here, “+”

stands for “+1”, “−” for “−1”, and an empty entry stands for “0”. Note that F1
k is transposed with respect

to the one defined in [28]

123

48 M. E. Pfetsch et al.

Fig. 3 Oswald-Reinelt matrices
F3 of size 4 × 6 and F4 of size
4 × 5. As usual “+” stands for
“+1”, “−” for “−1”

(3) The inequalities 〈F3, XI J 〉 ≤ 8 for all ordered index sets I ∈ O(4) and J ∈ O(6)
are facet-defining for Pm,n

C1 with m ≥ 4, n ≥ 6.
(4) The inequalities 〈F4, XI J 〉 ≤ 8 for all ordered index sets I ∈ O(4) and J ∈ O(5)

are facet-defining for Pm,n
C1 with m ≥ 4, n ≥ 5.

(5) The inequalities in Parts (1)–(4), together with the trivial inequalities X ≥ and
X ≤ 1, define an integer programming formulation of the set Pm,n

C1 .

Remark 1 In the paper of Oswald and Reinelt, there is a typo in the definition of matrix
F4.We verified the proof of the above theorem for the correctedmatrix by enumerating
all C1Pmatrices of size 4×5, checking that the inequality 〈F4, XI J 〉 ≤ 8 is valid, and
that there are 20 affinely independent vectors satisfying the inequality with equality
for each I ∈ O(4) and J ∈ O(5) (Oswald and Reinelt proved that Pm,n

C1 is full-
dimensional). The result then follows from the trivial lifting theorem of Oswald and
Reinelt [28, Theorem 2].

Remark 2 The set P+(M) and the polytope P+(M) are not monotone, i.e., if X ∈
P+(M) and X ≤ Y then not necessarily Y ∈ P+(M). Indeed, the matrix

M =
(
0 1 0
0 1 1
1 0 1

)

is C1P, and hence M ∈ P+(M). However,

(a)
(
1 1 0
0 1 1
1 0 1

)
/∈ P+(M), since it coincides with the Tucker matrix T 1

1 , while

(b)
(
1 1 1
0 1 1
1 0 1

)
∈ P+(M), since switching columns 2 and 3 yields a strict C1Pmatrix.

More recently, other inequalities, which are also facet-defining for Pm,n
C1 , have been

presented by de Giovanni et al. [9].

3 Polyhedral properties of the C1P patching polytope

In this section, let M ∈ {0, 1}m×n be the given matrix.

3.1 Basic results

The polytope P+(M) has the following basic properties.

Proposition 1 Let M ∈ {0, 1}m×n and X ∈ P+(M). Then

X(i, j) = 1 for all (i, j) with M(i, j) = 1. (1)

123

Optimal patchings for consecutive ones matrices 49

Moreover, dim(P+(M)) = n0(M).

Proof Equation (1) follow by definition for all vertices of P+(M) and by convexity
for any X ∈ P+(M). Therefore, dim(P+(M)) ≤ n0(M). We denote them×n matrix
with entry (i, j) equal to one and all the other entries equal to zero by Ei j . Then the
n0(M) + 1 matrices 1 and 1 − Ei j for all (i, j) with M(i, j) = 0 are contained in
P+(M) and are affinely independent. ��

Because of Proposition 1, from now on we assume that all inequalities 〈A, X〉 ≤ α

that are valid for P+(M) are in the standard form, i.e., A(i, j) = 0, for allM(i, j) = 1.

Proposition 2 Let M ∈ {0, 1}m×n. The trivial inequalities 0 ≤ X(i, j) ≤ 1 are facet
defining for P+(M) for all (i, j) with M(i, j) = 0.

Proof For X(i, j) ≥ 0, consider the matrices 1 − Ei j and 1 − Ek� − Ei j for all
(k, �) 	= (i, j)with M(k, �) = 0, where Ei j is defined as in the proof of Proposition 1.
These matrices are contained in P+(M), since any matrix containing at most two 0s
is C1P (the corresponding columns can be permuted to opposite ends of the matrix).
These n0(M) affinely independent matrices satisfy X(i, j) = 0, which completes the
proof.

For X(i, j) ≤ 1, consider the matrices 1 and 1 − Ek� for all (k, �) 	= (i, j) with
M(k, �) = 0. They satisfy X(i, j) = 1, are contained in P+(M) and are affinely
independent. ��

Another fundamental fact is that P+(M) is a face of Pm,n
C1 . Indeed, any entry (i, j)

of a matrix X ∈ P+(M) for which M(i, j) = 1 is fixed to 1. Thus, the inequalities
in Theorem 2 yield nontrivial valid inequalities for P+(M). In particular, their IP-
formulation yields a valid formulation for the positive C1P patching problem as well.
It turns out, however, that they do not always define facets. The following results deal
with the corresponding conditions.

The support of a matrix A is the submatrix obtained from A by removing all its
zero rows and its zero columns. Let M = 1− M ∈ {0, 1}m×n denote the complement
of M . We say that A ∈ {0, 1}m×n supports B ∈ {0, 1}m×n if A(i, j) ≥ B(i, j), for all
i, j ∈ [m] × [n].
Theorem 3 (1) The inequality 〈F1

k , XI J 〉 ≤ 2k + 3 with k ∈ N is facet defining
for P+(MI J) if k ≥ 2 and either MI J ∈ {0, 1}k+2×k+2 is supported by T 1

k or
MI J = T 2

k−1.
(2) The inequality 〈F2

k , XI J 〉 ≤ 2k + 3 with k ∈ N is facet defining for P+(MI J) if
MI J ∈ {0, 1}k+3×k+2 is supported by a matrix obtained from T 3

k by removing the
1s in the last row.

Proof The proof of Claim (1) is given by slightly modifying the arguments in [29]. To
shorten notation, let A = F1

k and α = 2k + 3. Thus, 〈A, XI J 〉 ≤ α ((A, α), for short)
is the inequality under investigation. Let 〈B, XI J 〉 ≤ β be a valid inequality that is
satisfied with equality by all the feasible solutions that satisfy (A, α) with equality. In
order to prove the claim, it will be enough to show that there exists δ > 0 such that
B(i, j) = δA(i, j) for any (i, j) ∈ N0(MI J); recall that all variables XI J (i, j) with

123

50 M. E. Pfetsch et al.

Fig. 4 The matrix Z used in the
proof of Theorems 3 and 5.
Observe that Z is strictly C1P
and a root of 〈F1

k , X〉 ≤ 2k + 3

(i, j) ∈ (I × J) \ N0(MI J) are set to 1 and that P+(MI J) has dimension n0(MI J)

(as for Claim (2) in Proposition 1). Moreover, we will show that there exists at least
one positive patching of MI J that satisfies both equalities, which implies β = δα.
Consequently, the faces defined by 〈A, XI J 〉 ≤ α and 〈B, XI J 〉 ≤ β coincide.

First partition N0(MI J) into S+ := {(i, j) ∈ N0(MI J) : A(i, j) = 1}, S− :=
{(i, j) ∈ N0(MI J) : A(i, j) = −1} and S0 := {(i, j) ∈ N0(MI J) : A(i, j) = 0}.

Consider the matrix

Z := MI J + Ek+2,k+1 +
∑

(i, j)∈S0∪S+
Ei j ,

as depicted in Fig. 4. Moreover, for each (i, j) ∈ S0, let Zi j be defined as follows:
Zi j := Z − Ei j , if i ≤ k + 1, and Zi j := Z − Ei j + Ek+1,1 − Ek+2,k+1, if i = k + 2.
Observe that 〈A, Z〉 = 〈A, Zi j 〉 = α. In the following we prove that Z and Zi j

are positive patchings of MI J . First, notice that both Z and Zi j support MI J , by
construction. Then, Z is strict C1P, and it is not difficult to check that also Zi j is C1P.
Indeed, consider the case with i ≤ k + 1. If j = 1, Zi j is strictly C1P, and if j > 1
one has to exchange columns j and k + 1 (columns j and 2, if i = k + 1) to get a
strict C1P matrix. On the other hand, if i = k + 2, moving columns j and k + 1 in
the first two positions returns a strict C1P matrix. Therefore, Z and Z I J are roots of
(A, α) (and thus also of (B, β)). Hence, by subtracting the equations 〈B, X〉 = β for
X = Z and X = Zi j , we obtain

〈B, Zi j 〉 − 〈B, Z〉 = B(i, j) = β − β = 0.

Hence, B(i, j) = 0 for all (i, j) ∈ S0.
Consider the matrix Wi j = T 2

k−1 + Ei j , for each (i, j) ∈ S−. It is not difficult to
see that Wi j satisfies (A, α) with equality. We now show that Wi j ∈ P+(M). Indeed
Wi j ≥ M . Observe thatS− = {(k+2, k+1), (k+1, 1)}∪{(i, k+2) : i = 1, . . . , k}.
If (i, j) = (k + 2, k + 1) we have that Wi j is strictly C1P. If i ≤ k and j = k + 2,
then it is enough to move column k + 2 between columns i and i + 1 to get a strict
C1P matrix. Finally, if (i, j) = (k + 1, 1), we obtain a strict C1P matrix by moving
column k + 2 in first position. Since all these Wi j are roots of (A, α) (and therefore
of (B, β)) that differ only for one element, we have that all coefficients B(i, j) for
(i, j) ∈ S− have the same value, say γ .

If MI J = T 2
k−1 or MI J = T 1

k then we are done, since, in this case, S+ = ∅.

123

Optimal patchings for consecutive ones matrices 51

Therefore assume that MI J ≤ T 1
k and S+ 	= ∅. Notice that T 1

k − Ei j is a C1P
positive patching of MI J for all (i, j) ∈ S+. Moreover, every such vector is a root
of (A, α) and hence of (B, β). It follows that all coefficients B(i, j) for (i, j) ∈ S+
have the same value, say δ. Let (ı̄, j̄) ∈ S+ (in particular, B(ı̄, j̄) = δ). Then

Y := T 1
k − Eı̄ j̄ and Y ′ := T 1

k +
∑

j : T 1
k (ı̄, j)=0

Eı̄ j

are C1P positive patchings of MI J and (B, β) is tight to both of them. If ı̄ ≤ k, it
follows that

〈B,Y ′〉 − 〈B,Y 〉 = B(ı̄, k + 2) + B(ı̄, j̄) = γ + δ = 0.

Similarly, γ + δ = 0 holds for ı̄ = k + 1 and ı̄ = k + 2, too.
In conclusion, we know that B(i, j) = δ, if (i, j) ∈ S+, B(i, j) = −δ, if (i, j) ∈

S−, and B(i, j) = 0, if (i, j) ∈ S0. Thus, (B, β) is a multiple of (A, α), which
concludes the proof.

Claim (2) can be proved by the same arguments used by Oswald and Reinelt [29]
to prove case (3) of Theorem 2. ��
Remark 3 The statement of Part (1) in Theorem 3 becomes false, if MI J ≥ T 1

k ,
MI J 	= T 1

k (instead of T 1
k ≥ MI J) and MI J ≤ T 2

k−1, MI J 	= T 2
k−1 (instead of

MI J = T 2
k−1): For k = 3, the inequality 〈F1

3 , X〉 ≤ 9 does not define a facet for
P+(T 2

2 − E4,4).
Similarly, Part (2) in Theorem 3 becomes false, if MI J = T 3

k : For k = 2, the
inequality 〈F2

2 , X〉 ≤ 7 does not define a facet for P+(T 3
2).

Following the line of Theorem 3, we also checked whether inequalities 〈F3, X〉 ≤
8 and 〈F4, X〉 ≤ 8 are facet defining for P+(T 4) and P+(T 5), respectively. The
following two observations address these two questions.

Remark 4 Applying 〈F3, X〉 ≤ 8 to T 4 yields the inequality 〈A, X〉 ≥ 1 with

A =
(

0 0 1 0 1 0
1 0 0 0 1 0
1 0 1 0 0 0
1 0 1 0 1 0

)

,

which defines a facet for P+(T 4).

Remark 5 Applying 〈F4, X〉 ≤ 8 to T 5 yields the inequality 〈A, X〉 ≥ 1 with

A =
(

0 0 0 1 1
0 0 0 0 1
1 0 0 0 1
0 1 1 0 0

)

,

which does not define a facet for P+(T 5).

Remarks 3, 4, and 5 can be checked by using polymake [17–19]. The convex hull
algorithm used by polymake is cdd [15], which in turn relies on the exact arithmetic
of GMP [20]. The same holds for the rank computations that we have to perform in
polymake.

123

52 M. E. Pfetsch et al.

3.2 Projection and lifting

In the following we will deal with the relation between the positive patching poly-
tope P+(M) and the polytope P+(MI J) for a minor MI J .

Lemma 1 For M ∈ {0, 1}m×n and I ∈ O(m), J ∈ O(n), we have:

{XI J : X ∈ P+(M)} ⊆ P+(MI J).

Equality holds if |J | = n.

Proof If X ∈ P+(M), then by definition X is C1P and so is the submatrix XI J .
Furthermore, since M ≤ X , then MI J ≤ XI J . Hence, XI J ∈ P+(MI J). This shows
the first claim.

If |J | = n, for Y ∈ P+(MI J) define the following matrix:

X(i, j) =
{
Y (i, j) if i ∈ I

1 otherwise
for all (i, j) ∈ [m] × [n].

It follows from the construction that X ∈ P+(M) and XI J = Y , which shows the
second claim. ��

As we will show in the following subparagraph, an inequality keeps the property
of being facet-defining if we restrict the inequality to its support (i.e., if we remove
rows and columns with all zero coefficients). In order to prove this property, we first
need the following result. Here, an inequality 〈A, X〉 ≤ α, with A, X ∈ RI×J , is said
to be obtained by (trivially) lifting the inequality 〈A′, X ′〉 ≤ α, with A′, X ′ ∈ RI ′×J ′

and I ′ ⊆ I , J ′ ⊆ J , if A(i, j) = A′(i, j), for all (i, j) ∈ I ′ × J ′, and A(i, j) = 0,
for all (i, j) ∈ (I \ I ′) × (J \ J ′).

Lemma 2 Let A ∈ Rm×n and 〈AI J , XI J 〉 ≤ β be a valid inequality for P+(MI J),
where I ∈ O(m) and J ∈ O(n). Assume that A(i, j) = 0 for (i, j) /∈ I × J . Then
the trivially lifted inequality 〈A, X〉 ≤ β is valid for P+(M).

Proof Let X� ∈ P+(M). By Lemma 1, X�
I J ∈ P+(MI J). Because the inequality

〈AI J , XI J 〉 ≤ β is valid for P+(MI J), it follows that

〈A, X�〉 = 〈AI J , X
�
I J 〉 ≤ β,

i.e., the lifted inequality is valid for P+(M). ��
We obtain the following.

Lemma 3 Let 〈A, X〉 ≤ β be a facet defining inequality for P+(M) and let I and
J be such that A(i, j) = 0 for each (i, j) /∈ I × J . Then 〈AI J , XI J 〉 ≤ β is facet
defining for P+(MI J).

123

Optimal patchings for consecutive ones matrices 53

Proof Assume that there exists B ∈ Rm×n with B(i, j) = 0 for all (i, j) /∈ I × J ,
such that 〈BI J , XI J 〉 ≤ γ defines a facet for P+(MI J) and

{XI J ∈ P+(MI J) : 〈BI J , XI J 〉 = γ } � {XI J ∈ P+(MI J) : 〈AI J , XI J 〉 = β},

i.e., 〈AI J , XI J 〉 ≤ β does not define a facet. Since, both A and B are zero outside
I × J , by Lemma 2, 〈B, X〉 ≤ γ is valid for P+(M) and

{X ∈ P+(M) : 〈B, X〉 = γ } � {X ∈ P+(M) : 〈A, X〉 = β},

i.e., 〈A, X〉 ≤ β does not define a facet for P+(M), a contradiction. ��
The reverse question asks whether we can get valid or even facet-defining inequal-

ities from inequalities valid for minors.
Oswald and Reinelt [28,29] proved that every trivial row and column lifting yields

facets for the C1P polytope Pm,n
C1 . For positive C1P patching polytopes, this is not

true.

Remark 6 Consider the matrix

M :=
(
1 0 0 0 1
0 1 0 1 1
0 1 1 0 1

)
.

By enumerating all positive C1P patchings with respect to M , one can verify that
〈A, X〉 ≤ 7 with

A :=
(1 0 −1 −1 1

−1 1 −1 1 1
−1 1 1 −1 1

)

defines a facet of P+(M). However, 〈
(

A
0T

)
, X〉 ≤ 7 does not define a facet for

M ′ :=
(

1 0 0 0 1
0 1 0 1 1
0 1 1 0 1
1 0 1 1 1

)

.

Thus, trivial row lifting does not always result in a facet-defining inequality.

Remark 7 Similarly, consider the matrix

M :=
(

1 0 0 0
0 1 0 1
0 1 1 0
1 0 1 1

)

.

As above, one can verify that 〈A, X〉 ≤ 7 with

A :=
(

1 2 −1 −1
−1 1 −1 1
−1 1 1 −1
1 −2 1 1

)

defines a facet of P+(M).

123

54 M. E. Pfetsch et al.

Moreover, the trivially column lifted inequality 〈[A, 0], X〉 ≤ 7 does not define a
facet for the polytope P+([M, 1m×1]). (Note that in this case we have dim P+(M) =
dim P+([M, 1m×1]) = 8).

Despite these examples, we can give some sufficient conditions for matrix M to
obtain facet defining inequalities of P+(M) by trivially lifting the inequalities defined
in Theorem 3. The arguments are similar to the ones given in the proof of Theorem 3.
We first consider the case of a general facet defining inequality.

Theorem 4 Consider the matrix

M =
(

MI J

M

)
.

Assume 〈AI J , XI J 〉 ≤ β to be facet defining for P+(MI J) and M strictly C1P for
any permutation of its columns. Then 〈A, X〉 ≤ β, obtained as the trivial lifting of
〈AI J , XI J 〉 ≤ β to the M-space, is facet defining for P+(M).

Proof Let MI J ∈ {0, 1}m1×n and M ∈ {0, 1}m2×n . Moreover, let z1 = n0(MI J) and
z2 = n0(M). In the following we will construct z1 + z2 affinely independent roots
of 〈A, X〉 ≤ β. Since by Proposition 1 the dimension of P+(M) is z1 + z2, this will
prove the claim of the theorem.

Since 〈A, X〉 ≤ β is facet defining for P+(MI J), there exist z1 affinely independent
roots that can easily be extended to the (m1 +m2)× n space of M by adding the rows
of matrix M , so to obtain matrices X1, . . . , Xz1 . In particular, and w.l.o.g., let the
columns of M be ordered in such a way that Xz1 is strictly C1P. Observe now that, in
order to be strictly C1P for any permutation of the columns, each row of M must either
contain atmost one 1, or have all 1 entries. Now, iteratively for p = z1+1, . . . , z1+z2,
let X p be obtained from X p−1 by switching to 1 an entry (i p, jp) ∈ N0(X p−1) such
that: i) m1+1 ≤ i p ≤ m1+m2 and ii) X p is strictly C1P (as X p−1 is also strictly C1P,
this can be easily done). Therefore, by construction, the matrices of {X1, . . . , Xz1+z2}
are affinely independent roots of 〈A, X〉 ≤ β, which proves the claim. ��

In some cases, also inequalities in Theorem 2 can be trivially lifted and still induce
facets:

Theorem 5 Let

M =
(

MI J M3
M1 M2

)
,

assume (M1|M2) to be strictly C1P, and M3 = 0.

(1) If MI J ∈ {0, 1}(k+2)×(k+2), with k ≥ 2, is supported by T 1
k or MI J = T 2

k−1,
then the trivial lifting of 〈F1

k , XI J 〉 ≤ 2k + 3 to the M-space is facet defining for
P+(M).

(2) If MI J ∈ {0, 1}(k+2)×(k+3), with k ≥ 2, is supported by a matrix obtained from T 3
k

by removing the 1s in the last row, then the trivial lifting of 〈F2
k , XI J 〉 ≤ 2k + 3

to the M-space is facet defining for P+(M).

123

Optimal patchings for consecutive ones matrices 55

Proof The proof of this theorem mimics the one given for Theorem 3.
Claim (1). Let M2 ∈ {0, 1}m1×n1 ; consequently, M1 ∈ {0, 1}m1×(k+2), M3 =

{0}(k+2)×n1 , andM ∈ {0, 1}(k+2+m1)×(k+2+n1).Moreover, let (A, α), withα = 2k+3,
be the trivial lifting of 〈F1

k , XI J 〉 ≤ 2k+3 to the (k+2+m1)×(k+2+n1) space, and
let (B, β) be an inequality that is satisfied with equality by all the feasible solutions
that satisfy (A, α) with equality.

By the same arguments used in the proof of Theorem 3 we can show that B(i, j) =
A(i, j) for all i, j ∈ [k+2]. Now, let Z ∈ {0, 1}(k+2)×(k+2) be defined as in the proof
of Theorem 3 and illustrated in Fig. 4, and let

Z0 = (
Z 0
M1 M2

)
.

Observe that Z0 is strictly C1P and it is a root of (A, α) (and consequently of (B, β)).
Let z be the number of 0s in the matrix (M1, M2) (i.e., z = n0([M1, M2])) and,
iteratively for each s = 1, . . . , z, let Zs be obtained from Zs−1 by setting an entry
(is, js) ∈ N0(Zs−1), with k + 3 ≤ is ≤ k + 2 + m1 to 1, such that Zs is still strictly
C1P (always possible, since Zs−1 is strict C1P). Since (A, α) (and then also (B, β))
is tight for Zs , this proves that B(is, js) = 0, for each (is, js) ∈ N0([M1, M2]).

It remains to consider the coefficients of B corresponding to the matrix M3. In this
case, let Z0 be the matrix obtained from Z0 by setting all the entries of [M1, M2] to
1. Again Z0 is strictly C1P and a root of both (A, α) and (B, β). Now, iteratively for
each row i from k + 2 to 1 and from each column j from k + 3 to k + 2 + n1, let
Zs be obtained from Zs−1 by setting Zs(i, j) = 1. Again, it is not difficult to see
that Zs is C1P (if i ≤ k, it suffices to move column k + 2 in the last position to get a
strictly C1P matrix) and that it is a root of (A, α) (and thus of (B, β)). This implies
that B(i, j) = 0 for all the entries corresponding to the matrix M3. Therefore, we
have that (B, β) coincides with (A, α) and this concludes the proof.

Similar arguments to those used for Claim (1) also prove Claim (2). ��
It is an open question whether one can obtain necessary and sufficient conditions

for trivial lifting in general.

3.3 The dominant polyhedron

Of special interest is the case when the objective function of the WC1PP problem to
be minimized has only nonnegative coefficients. This, for example, is the case in real
world applications where turning a zero into a one is a costly, rather than a profitable,
operation.

Clearly, minimizing a nonnegative linear function over P+(M) is equivalent to
minimizing the same function over D+(M), the dominant of P+(M) defined by the
Minkowski sum of P+(M) and Rm×n+ :

D+(M) = P+(M) + Rm×n+ .

Unfortunately, we do not have at hand an integer linear description of D+(M).
Despite this fact, we can derive facet defining inequalities for D+(M) by minimiz-

123

56 M. E. Pfetsch et al.

ing over such polyhedron, as it will be discussed in Sect. 4. Therefore, here and in
Sect. 4.3.5, we will discuss some properties of D+(M) that we will use to obtain some
algorithmic advantages exploited in the solution algorithm.We start with the following
result on the facet defining inequalities of D+(M). As it is usual in the literature about
dominant polyhedra, here the valid inequalities will be presented in 〈A, X〉 ≥ α form,
so to assume, w.l.o.g., A ≥ 0 and α ≥ 0.

Theorem 6 Let M ∈ {0, 1}m×n and let 〈A, X〉 ≥ α define a facet of D+(M) that is
not equal to a facet defined by X(i, j) ≥ 0 for some i ∈ [m] and j ∈ [n].
(1) If row ı̄ of M contains at most one 1 entry, then A(ı̄, j) = 0 for each j ∈ [n].
(2) If column j̄ of M contains all 0 entries, then A(i, j̄) = 0 for each i ∈ [m].
Proof We will first prove Case (1). Since for X ∈ D+(M) we have that X + Y ∈
D+(M) for all Y ∈ Rm×n+ , validity of 〈A, X〉 ≥ α implies that A(i, j) ≥ 0 for all
i ∈ [m] and j ∈ [n]; consequently, in order the inequality to be supporting, α ≥ 0.
Let Q := { j : M(ı̄, j) = 0}. Then assume, by contradiction, that there exists j̄ ∈ Q
such that A(ı̄, j̄) > 0.

Now observe that there exists at least one positive patching of M , say X̄ , with
〈A, X〉 = α (i.e., X̄ is a root of (A, α)) such that X̄(ı̄, j̄) = 1. Indeed, if not, all roots
of 〈A, X〉 ≥ α will also be roots of X(ı̄, j̄) ≥ 0, contradicting the hypothesis that
(A, α) defines a facet that does not arise from a trivial inequality of some variable.

Moreover, let X̃ be obtained from X̄ by setting to 0 all the elements (ı̄, j) with
j ∈ Q. Then, row ı̄ of X̃ coincides with row ı̄ of M and thus, as it contains at most
one 1 entry, cannot contribute to any Tucker minor. Consequently, since X̄ ∈ P+(M),
also X̃ ∈ P+(M). Therefore, 〈A, X̃〉 < 〈A, X̄〉 = α, contradicting the assumption
that 〈A, X〉 ≥ α is valid for D+(M).

Similar arguments also prove Case (2) (here we use the observation that no Tucker
minor contains a column with all 0 entries). ��

The algorithmic consequences of this theorem will be detailed in Remark 9 below.

4 Separation

In the branch-and-cut algorithm described in Sect. 5 belowwemake use of three kinds
of cutting planes:

• Adictionary of inequalities derived from the Tuckermatrices that appear asminors
of the given matrix M ;

• exactly and heuristically separated inequalities as stated in Theorem 2, generated
from the current fractional solution, and

• cutting planes based on an optimization oracle (local cuts).

We describe the corresponding separation algorithms in the following.

4.1 A dictionary of inequalities

In order to create a dictionary of Tucker minors of the input matrix M , we use the
following three procedures:

123

Optimal patchings for consecutive ones matrices 57

(1) Relying on the proof of Tucker [33] for the characterization of C1P-matrices in
Theorem 1, we use the method of Lekkerkerker and Boland [24] for recognizing
interval graphs. Let G = (U ∪ V , E) be the bipartite graph associated to to M ,
where U and V are nodes corresponding to the rows and columns of M , respec-
tively, and E = {{u, v} : u ∈ U , v ∈ V , M(u, v) 	= 0}. Each Tucker minor
corresponds to an asteroidal triple in V , i.e., a triple (a, b, c) ∈ V × V × V such
that there exists a path between each of the two nodes that avoids the neighborhood
of the third. Hence, to generate Tucker minors, one needs to enumerate all triples
and, for each triple, all possible legal paths between each pair of its nodes. To keep
the running time acceptable, we compute only one path for each pair of nodes.
Then we check whether the resulting matrices form Tucker minors.

(2) Starting fromM , we iteratively (temporarily) remove rows and columns from front
to back while the resulting matrix does not have the C1P. The matrix T at the end
of this method is a Tucker minor, by Theorem 1. Then we randomly remove from
M a row or a column containing a row or column of T and we repeat the process
until a C1P matrix results.

(3) For each of the Tucker minors found by applying (1) or (2), we look for other
Tucker minors of the same type that can be generated by replacing one row or
column in the current submatrix by equal parts of different rows or columns of M .

For each Tucker minor T provided by the procedures (1), (2), and (3), we generate
the following inequalities that are stored in a pool, which is separated during the
branch-and-cut procedure:

(a) inequalities from Theorem 2. In particular, if T is T 1
k or T 2

k−1 with k > 1, we
generate k + 2 symmetric copies of the corresponding inequality 〈F1

k , XI J 〉 ≤
2k + 3, all violated by T . In this case, observe that, because of Theorem 3, the
produced inequalities are facet defining for P+(T).

(b) if T ∈ {T 1
1 , T 1

2 , T 2
1 , T 2

2 , T 3
1 , T 3

2 , T 5}, we produce all the nontrivial facet defining
inequalities of P+(T);

(c) if T ∈ {T 1
3 , T 1

4 , T 3
3 , T 3

4 , T 2
3 , T 4}, we produce all the nontrivial facet defining

inequalities of D+(T).

The facet defining inequalities produced for the cases (a) and (b) are generated
off-line using the software suite polymake mentioned above.

4.2 Inequalities fromOswald and Reinelt

In order to separate the current fractional LP-solution X�, we generate inequalities as
stated in Theorem 2. In particular, we apply two separation procedures. First, we use
a rounding algorithm as described by Oswald and Reinelt [28,29]. The general idea is
to first round X� to an integer matrix X and then, if X is not C1P, apply the Steps (2)
and (3) described in the previous section to X . Here, for each Tucker minor T , we
only generate inequalities from Theorem 2, since the facet defining inequalities from
P+(T) or D+(T) could, in general, not be valid for P+(M).

Then, for the inequalities (1) and (2) of Theorem 2, we also apply the exact
separation procedures described in [29]. Such algorithms reduce the corresponding

123

58 M. E. Pfetsch et al.

separation problem to the solution of a sequence of shortest path problems in a set of
suitable graphs. Their overall complexity is rather time consuming (O(n3 (n+m)) and
O(n4 (n + m)), respectively); therefore, we apply them only if no cuts are generated
by the rounding procedure described above.

All the generated inequalities are stored in a pool that is used for separation at every
later cutting plane phase. See [28,29] for more details on this method.

4.3 Oracle-based separation

One can generate valid (facet defining) inequalities violated by an arbitrary given
point by means of an optimization oracle, in the case when the size of the matrix M
is small. Our approach refers to so-called “local cuts”, see Applegate, Bixby, Chvátal,
and Cook [1] and to the so-called “target cuts”, see Buchheim et al. [6].

4.3.1 The local cuts method

We first describe the general idea, which is nothing but a rephrasing of the simpler
of the two directions of the polynomial-time equivalence of the separation and the
optimization problem given, e.g., by Grötschel, Lovász, and Schrijver [21].

Assume that we are given a nonempty polyhedron P ⊆ Rd , a point x� ∈ Rd , and
we want to solve the separation problem for P with respect to x�. In addition, we have
an (efficient) optimization oracle for the following problem:

min {〈c, x〉 : x ∈ P}, (2)

for any c ∈ Rd .
The goal is to find an inequality 〈a, x〉 ≥ a0 that is valid for P and violated by x�,

or show that x� ∈ P (for reasons that will be clear in the forthcoming discussion, here
we deal with valid inequalities in the ≥ form). This can be obtained by solving the
following separation problem:

(LCSP) min 〈x�, a〉 − a0
〈v, a〉 − a0 ≥ 0 for all v ∈ conv(V), (3)

〈r , a〉 ≥ 0 for all r ∈ cone(R), (4)

− 1 ≤ ai ≤ 1 for all i = 1, . . . , d, (5)

a, a0 free,

where V and R are the sets of vertices and of extreme rays, respectively, of P . Clearly,
an optimal solution (a�, a�

0) to (LCSP) defines an inequality 〈a�, x〉 ≥ a�
0 that is valid

for P because it satisfies (3) and (4) and that is violated by x� if the optimal value of
(LCSP) is negative. The constraints (5) are used to guarantee that (LCSP) is always
bounded.

Usually (LCSP) is solved with a delayed row generation, i.e., with a cutting plane
procedure that iteratively constructs the sets of constraints (3)–(4). At each iteration of

123

Optimal patchings for consecutive ones matrices 59

the algorithm, the current solution (ā, ā0) is checked for feasibility w.r.t. P . This can
be done by solving (2) with c = ā, by means of the optimization oracle. If the optimal
value is at least ā0, then (ā, ā0) is optimal for (LCSP) and we stop. Otherwise, the
oracle either returns a finite optimal solution x̄ with 〈ā, x̄〉 < ā0 or a direction r̄ with
〈r̄ , ā〉 < 0. In this case, the inequality 〈x̄, a〉 − a0 ≥ 0 or the inequality 〈r̄ , a〉 ≥ 0,
respectively, is added to the current constraint set (3)–(4), and the procedure iterates.

Recall that the separation problem (LCSP) discussed in this section has the purpose
to provide the inequalities of a cutting plane procedure that solves an optimization
problemover P . However,we just showed how to solve the separation problem (LCSP)
over the same polyhedron P by solving a series of optimization problems over P ,
although with different objective functions. This approach may look bizarre at a first
sight: why not to use the oracle upfront to optimize over P?

The key idea is to set up a procedure where Problem (2) is solved over a polyhedron
P whose size is much smaller than the one of the original polyhedron P . Once a
separating inequality is generated in the space of P , some lifting technique is used to
end up with an inequality in the original space. We sketch such a procedure for the
case ofWC1PP:

LC1) We identify a submatrix M of M , and we call X� the corresponding submatrix
of matrix X� and P = P+(M) (for details, see Sect. 4.3.5);

LC2) We apply the above described “local cut” procedure to find a valid separating
inequality 〈 Ā, X〉 ≥ ᾱ, using an optimization oracle over the polytope P;

LC3) we finally lift such an inequality (Ā, ᾱ) to an inequality (A, α) that is valid for
P+(M) and is violated by X�. To do so, we apply the trivial lifting procedure,
whose polyhedral properties have been investigated in Sect. 3.2.

Observe that, if matrix M is chosen sufficiently small, even an optimization oracle
based on total enumeration of all feasible patchings can be used in the step LC2 of
the above procedure. However, even if X� /∈ P+(M), there is no guarantee that also
X� falls outside P+(M). Therefore, if M is too small, the odds that the procedure
terminates with no separating inequality found are pretty high. Thus, a tradeoff has to
be made in practice.

The separation process described so far is usually calleddual separation.An alterna-
tive approach is the so-called primal separationwhere one seeks for a valid inequality
violated by the current fractional solution that, in addition, is satisfied at equality
by a given integral vertex p of the polyhedron P . The rationale behind this kind of
separation is that, if p turns out to be an optimal solution, no inequalities will be
generated that are not tight at the optimum and thus not necessary to prove optimality.
When, as in our case, P has only 0/1 vertices, primal separation and optimization are
polynomially equivalent [12].

In our context, primal separation with respect to an integer vertex p of P is simply
achieved by adding the constraint

〈p, a〉 − a0 = 0

to the linear program (LCSP).

123

60 M. E. Pfetsch et al.

4.3.2 Generating local cuts of high dimensions

The inequalities generated by the method described in Sect. 4.3.1 in general define
faces of the polytope P of dimensions that are not necessarily maximal. Moreover,
the lifting procedures, to generate the inequality in the original space, typically do not
increase the dimension, unless significant computational efforts are spent. Therefore,
it is advisable to modify the “local cut” scheme in order to produce inequalities that
define high dimensional faces of P .

Applegate et al. [1] (see also Chvátal et al. [8]) presented a procedure, called
“tilting”, that takes a separating inequality (possibly not facet defining) and terminates
with a separating inequality that defines a facet of P . This procedure starts with a
maximal set S of affinely independent points of P which are roots of the current
inequality and iteratively extends S with a new point that is found by a (possibly long)
series of calls to the optimization oracle. The procedure stops when |S| = dim(P).

Here we use the following, slightly different, approach to obtain the same result.
As usual, we are given a polyhedron P and a point x̄� /∈ P to be separated. Let
〈a, x̄〉 ≥ a0 be a valid inequality for P with 〈a, x̄�〉 < a0. We are also given a point
x̄0 ∈ P . Possibly such a point is chosen to be in the interior of the polyhedron. Let z̄
be the intersection of the segment [x̄�, x̄0] with a facet of P . With probability 1 such
a facet F is unique and z̄ belongs to its interior. If this is not the case, let F be the
intersection of all the facets of P containing z̄. The procedure terminates with an
inequality that defines F .

The algorithm iteratively generates a sequence of points in the segment [x̄�, z̄], that
starts with x̄� and ends with z̄, and with a separating inequality for each of these points.
At each iteration i , we have a point x̄i that needs to be separated andwefind a separating
inequality by means of the optimization oracle. If such an inequality does not exist,
x̄i = z̄ and we are done. Otherwise, let 〈ai , x̄〉 ≥ ai0 be the inequality generated; then
we set x̄i+1 to the point of the segment [x̄�, x̄0] that satisfies 〈ai , x̄〉 ≥ ai0 at equality.

4.3.3 The target cuts method

A similar method was proposed by Buchheim et al. [6] for the case when P is a
polytope and a point x0 in its interior is known, in particular, P is full-dimensional.
The corresponding model is based on the solution of the following linear program

(TP) min 〈x� − x0, a〉
〈v − x0, a〉 ≥ −1 for all v ∈ conv(V),

a free,

where, as before, V is the set of vertices of P . Let P0 := {x − x0 ∈ Rd : x ∈ P} be
the polytope P shifted by x0. By assumption, 0 belongs to the interior of P0. Observe
that (TP) is derived from (LCSP) by setting P = P0. Therefore, (4) can be removed
because P0 is a polytope and a0 can be set to −1 without loss of generality, since 0
is an interior point of P0. Moreover also (5) can be removed because, by setting a0 to
−1, Problem (TP) cannot be unbounded.

123

Optimal patchings for consecutive ones matrices 61

An optimal solution to (TP) provides an inequality valid for P0 that is violated by
x� − x0 if its value is strictly less than −1.

The advantage of this approach is that such an inequality 〈a�, x − x0〉 ≥ −1 is also
facet defining for P0, if (TP) is solved by the simplex algorithm or by any other method
that provides vertex solutions. This can be seen by observing that an optimal basis has
n rows, corresponding to points of P0 that are necessarily linearly independent and
are roots of (a�,−1), see [6].

Besides the fact that the knowledge of an interior point of P is mandatory, a possible
drawback of this method is that the constraint matrix of (TP) is usually dense and has
non-integral coefficients (due to the shifting by the vector x0) also in the case when
the vertices of P are sparse and binary.

As in the case of local cuts, Problem (TP) is solved with a delayed row generation
performed by calling an optimization oracle for Problem (2).

4.3.4 Interior point

The procedures described in Sects. 4.3.2 and 4.3.3 need to be given a point x0 in the
(strict) interior of P as input. Due to the well known Carathéodory’s Theorem, such
a point can be obtained as the (strict positive) convex combination of d + 1 affinely
independent points x1, . . . , xd+1 ∈ P . This task can be achieved rather easily in our
case. Indeed, let Mm×n be the submatrix of M that we identified in order to produce
a violated inequality and recall that the dimension d is the number of 0 entries of
M . Consider the matrix 1m×n and the d matrices 1m×n − Ei j , for all (i, j) such that
M(i, j) = 0 (again Ei j is the m × n matrix with entry (i, j) equal to one and all
the other entries equal to zero). It is not difficult to see that these d + 1 matrices are
affinely independent and that they are all C1P. If we take their convex combination
with weights 1

d+1 we get a point X0 ∈ [0, 1]m×n in the strict interior of P+(M). In

particular, X0(i, j) = 1, if M(i, j) = 1 and X0(i, j) = d
d+1 , otherwise.

4.3.5 Optimization oracles

Asmentioned before, a key element in local or target cut generation is the optimization
oracle for P . Since the optimization over P+(M) is an N P-hard problem, it seems
hard to avoid some kind of pseudo-enumeration. In particular, for small sizes of the
matrix M a brute-force approach is reasonably fast.

It is possible to generate all feasible solutions of P+(M) by generating all per-
mutations of the columns of M . This operation, which is obviously done in n! steps,
can be implemented with the Johnson-Trotter algorithm (see, e.g., [23]), which has the
advantage of generating the next permutation by exchanging two consecutive columns,
thus simplifying the objective function computation. For each such permutation, it is
then easy to generate all positive patchings that make the permuted matrix, say M ,
strongly C1P, and to find the patching, say X�, that minimizes the objective function
〈C, X〉. For each row i of M , let i� and ir be the column indices of its leftmost and of
its rightmost 1-entry, respectively. Then necessarily, X�(i, j) = 1 for all i� ≤ j ≤ ir .
Moreover, we can extend the sequence of 1’s of X� to the left of i� and to the right

123

62 M. E. Pfetsch et al.

of ir if the contribution to the objective function corresponding to each of such two
extensions is negative. If row i in M contains at least one 1, this operation can clearly
be performed in O(n) time. If all entries of row i of M are 0’s, the optimal sequence of
consecutive 1’s can be found, still in O(n), by Kadane’s algorithm (see, e.g., Column 7
in [3]). In conclusion, the oracle runs in O(n m n!) time.

An interesting simplificationoccurswhenWC1PPhas a nonnegative objective func-
tion, which is the case in most of the applications, in particular in all those mentioned
in the Sect. 1.

WhenC ≥ 0, the optimal solutions over P+(M) and over D+(M) coincide. There-
fore, any optimal solution X� of the current linear relaxation is either optimal for
WC1PP or it lies outside D+(M). Thus, we can separate X� from D+(M) instead of
P+(M). Since all valid inequalities of D+(M) have nonnegative coefficients, the set
R in Problem (LCSP) is the set of the d rays ofRd+ andwe can simplify the formulation
accordingly.

Moreover, in this case, as an optimization oracle we can use a straightforward
adaptation of the dynamic programming algorithm that de la Banda and Stuckey [11]
presented for the Open Stack problem. For completeness we describe the version of
this algorithm for the Weighted Positive C1P Patching problem with the cost matrix
C ∈ Rm×n+ .

Assume that we build up the strictly C1P optimal patching X� column by column,
such that at a given point in the algorithm we have constructed a submatrix X�[m],S
whose set of columns is S, and we still have to complete it with columns from S :=
[n] \ S.

Let s ∈ S be some column that will be placed after S and before S \ {s}. Then, to
make X�[m],S∪{s} strongly C1P, we have to put 1’s at the following rows in column s:

R(s) :=
⎧
⎨

⎩
i :

M(i, s) = 1, or
M(i, s) = 0 and there exist � ∈ S and j ∈ S such

that M(i, �) = 1 and M(i, j) = 1

⎫
⎬

⎭
.

If we call OP(S) the optimal value of the matrix with set of columns S, we get the
following dynamic programming recursion:

OP(S) = min
s∈S

(
OP(S \ {s}) +

∑

i∈R(s)

C(i, s)
)
.

When adding a new column s to S, the setR(s) can be updated in O(m) time. Thus, the
computation of OP(S) takes O(m n) time, if OP(S′) has been computed for all S′ ⊂ S.
Since we have to consider all subsets S, we get a total time of O(m n 2n).

Remark 8 The implementation of this dynamic programming algorithm runs amaz-
ingly fast. Instances with up to 25 columns can be solved in under a minute, almost
independently of the number of rows. For slightly more columns, however, the method
breaks down due to memory requirements.

123

Optimal patchings for consecutive ones matrices 63

Observe that the dynamic programming based oracle cannot be used to generate
target cuts for D+(M), since the inequalities produced may need negative coefficients
in general.

Remark 9 One key decision is how the submatrices on which we generate local cuts
is chosen. In our implementation, we always choose submatrices with an adjustable
number of columns (in the computations we evaluate using 8, 9, 10, 11 or 12 columns).
Since both optimization oracles mentioned above are relatively insensitive to the num-
ber of rows, we always include all rows of the original matrix. Moreover, when we
optimize over the dominant polyhedron D+(M), we can use Theorem 6 in order to
remove all rowswith less than two 1s, or columnswith all 0 entries, without weakening
the facial properties of the generated separating inequality.

Algorithm 1: Initialization of Submatrices for Local Cuts
Input: K = target number of columns of submatrices, c = size indicator for Tucker matrices, R =

number of random submatrices
1 S ← ∅ (list of submatrices);
2 k ← min {K , n} (number of columns);
3 add R random m × k matrices to S;
4 for i = k − c, . . . , k do
5 for all Tucker matrices T of type T 1

i−2 with i columns do
6 possibly fill up the columns J of T to size k using random columns;
7 add the submatrix of M with columns indexed by J to S;

Algorithm 2: Separation of Local Cuts
Input: S list of candidate submatrices

1 foreach submatrix S ∈ S do
2 separate local cuts for submatrix S;
3 if separate submatrices based on LP values then
4 sort columns according to sum of LP-values;
5 separate local cuts for submatrix formed by columns with largest values;
6 sort columns according to sums of differences to best primal solution;
7 separate local cuts for submatrix formed by columns with largest values;
8 remove submatrices without generated cut from S;
9 resort S according to geometric mean violation of generated cuts;

10 possibly fill up S with random matrices to have size R;

We have experimented with several methods to choose the submatrices and a com-
bination of Tucker minors and a random choice turned out to be the best one. More
explicitly, we perform a filtering technique to detect important submatrices. At the
beginning, we generate a list of candidate submatrices, which we initialize with ran-
dommatrices andwith submatrices containing a Tuckerminor (possibly filling upwith
random columns). The details are presented in Algorithm 1; we use R = 40, c = 3,
as well as by default K = 10 for the dominant and K = 7 for the polytope case.

123

64 M. E. Pfetsch et al.

During the algorithm, we generate cuts for each submatrix currently available and
store the violation (efficacy) of the cut produced with respect to the current optimal
LP-relaxation point. The matrices are then considered according to non-increasing
geometric mean violation in the next round, see Algorithm 2 for details. This means
that a submatrix that produced the most efficient cut the last time is used first in the
next separation round. If submatrices do not produce a violated cut, they are removed
from the list, possibly filling up with new random matrices. Additionally, two subma-
trices, which are selected using the current LP-solution, are used for separation, see
Algorithm 2.

5 Algorithmic aspects

We have implemented a branch-and-cut algorithm to solve the positive patching prob-
lem. In this section, we describe the main algorithmic tools that have been used.

5.1 Preprocessing

Preprocessing steps are indispensable for solving practical problem instances of almost
any optimization problem. We first consider some rules to reduce the size of the input
matrix M ∈ {0, 1}m×n . Recall that the objective function is defined by the nonnegative
C ∈ Rm×n+ .

We consider the following general fact.

Lemma 4 Let X� be a feasible solution for the positive patching problem with respect
to the matrix M and let I ∈ O(m), J ∈ O(n). Then the matrix X�

I J is feasible for the
positive patching problem w.r.t. the matrix MI J and 〈CI J , X�

I J 〉 ≤ 〈C, X�〉.

Proof Since X� is C1P, by Lemma 1, X�
I J is a positive C1P patching for MI J . Since

C ≥ 0, the claim about the objective function follows. ��

We now have the following preprocessing steps.

Proposition 3 (1) One can remove any row i of M that contains at most one 1 without
changing the optimal value.

(2) Rows with all ones can be removed in M without changing the optimal value.
(3) One can remove zero columns in M without changing the optimal objective value.
(4) If row i dominates row k, i.e., M(i, j) ≥ M(k, j) for all j ∈ [n], then there exists

some optimal solution that satisfies the following inequalities:

X(k, j) ≤ X(i, j) for all j ∈ [n].

If row i is equal to row k then there exists an optimal solution that satisfies:

X(k, j) = X(i, j) for all j ∈ [n].

123

Optimal patchings for consecutive ones matrices 65

(5) If column j and � (j 	= �) of M are equal then one can remove either column and
replace the cost coefficients for the other by the sum of the original coefficients of
both columns without changing the optimal value.

(6) If the bipartite graph that has M as adjacency matrix is disconnected, one can
treat the connected components separately.

Proof (1) Consider an optimal solution X� for the total matrix. By Lemma 4, we have
〈CI J , X�

I J 〉 ≤ 〈C, X�〉 for i ∈ [m], I ∈ O(m) with i /∈ I , and J ∈ O(n) with
|J | = n. Conversely, we can trivially lift every solution for MI J to a solution
of M , if the number of ones in row i is at most 1: because there exists no Tucker
matrix with at most one 1 in a row, the lifted matrix yields a feasible solution with
the same objective value.

(2) A similar argument as for Part (1) applies.
(3) Using that there exists no Tucker matrix containing a zero column, we can again

use similar arguments.
(4) Assume that an optimal solution X� satisfies X�(k, j) = 1 for some j ∈ [n]. Then

either we can set X�(k, j) = 0 and still obtain an (optimal) solution or there are 1s
in the original matrix M to the left and right of column j in any C1P ordering
of X�. Hence, there exist distinct columns s, t ∈ [n] \ { j}, such that M(k, s) =
M(k, t) = 1. Since row k is dominated by row i , we have M(i, s) = M(i, t) = 1,
as well. It follows that X�(i, j) = 1 is necessary to obtain a C1P matrix.
The second statement follows by reversing the roles of k and i .

(5) We prove that there exists an optimal solution in which columns j and � agree:
Consider an optimal solution X� and assume w.l.o.g. that

∑

i∈[m]
C(i, j) ≤

∑

i∈[m]
C(i, �).

Then we obtain a feasible solution Y � by setting

Y �(r , s) =
{
X�(r , s) if s 	= �

X�(r , j) if s = �
∀ r ∈ [m], s ∈ [n].

Solution Y � is feasible, because if Y � contains a Tucker minor, then X� contains
a Tucker minor as well (there is no Tucker minor that contains equal columns).
This shows that 〈C,Y �〉 ≤ 〈C, X�〉, i.e., if X� is optimal, Y � is optimal as well.

(6) If the bipartite graph is disconnected, M can be reordered into a block diagonal
form:

⎛

⎝

M1 0 ... 0
0 M2 ... 0
...

...
. . .

...
0 0 ... Mk

⎞

⎠ ,

where theMi ’s are rectangular submatrices ofM . Clearly, to turnM C1P, it suffices
to make the submatrices C1P. Since C ≥ 0, the result follows.

��

123

66 M. E. Pfetsch et al.

Remark 10 All of the preprocessing steps of Proposition 3 are used in our code, except
for Part (6), since no disconnected graphs occurred in any of the instances. The inequal-
ities of Part (4) are created in advance and added on demand during the branch-and-cut
loop.

Remark 11 An extension of the cases discussed in Proposition 3 is not easily possible:

(1) There are Tucker matrices that contain rows with a single 0 (T 1
1 and T 2

k), columns
with all ones (T 2

1 and T 3
1), columns with exactly one 1 (T 5), and columns with

exactly one 0 (T 1
1 , T

3
1 , and T 5). Thus, one cannot (easily) preprocess these cases.

(2) If in the bipartite graph defined by M there exists an articulation node, i.e., a node
such that the graph is disconnected when deleting this node, one cannot (easily)
decompose the problems. This case occurs, when there is a row or column that is
shared by two “blocks”, see Fig. 5. A decomposition is not possible here, because
using Tucker matrix T 4 yields examples that “cross the blocks”, see again Fig. 5.
Hence, one cannot solve the two parts independently, because in the example each
block is C1P, while the total matrix is not.

5.2 Primal heuristic

To obtain good feasible solutions, we use methods of Oswald and Reinelt, see [28,29].
The idea is as follows. We generate some order of the rows of the matrix M by using
the current fractional LP-solution.We then add one row after the other and test whether
the resulting matrix is C1P. Once the matrix is not C1P anymore, we backtrack one
step and consider all permutations that certify the C1P—these permutations can be
generated from the PQ-tree. We compute the cost of generating a C1P solution by
adding 1s according to this fixed permutation; this is easy: just order the columns and
fill in the 1s that are needed for a strict C1P matrix. Each of the permutations yields a
feasible primal solution.

This method is very successful, because it is able to test quite a number of permu-
tations in a small amount of time.

Fig. 5 Examples of articulation
nodes for columns (left) and
rows (right) in the bipartite
graph. The bottom figure shows
two examples corresponding to
the cases with a column and row
articulation node, respectively

123

Optimal patchings for consecutive ones matrices 67

6 Computational results

We implemented the discussed algorithms using a bugfix version of SCIP 4.0.1, see
[26,32]. We use CPLEX 12.7.1 as the underlying LP solver. The computations were
performed on a cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, hav-
ing 32 GB main memory and 10 MB cache running Linux. All computations were
performed single threaded. The time limit is 1 h.

6.1 Data sets

In order to evaluate the performance of the algorithms, in particular, local cuts, we
created a testset as follows. We considered the following instances for the Weighted
Positive C1P Patching problem:

• 5807 instances from theConstraint ProgrammingModelingChallenge 2005, avail-
able at http://www.dcs.st-and.ac.uk/~ipg/challenge,

• 250 instances from Faggioli and Bentivoglio [13],
• 11 instances based on the VLSI application [10].

We first filtered out all instances that had less then 20 columns, since these can be
easily handled by dynamic programming. After this filtering the number of columns
for all instances ranges from 20 to 30. We then sorted out instances for which a basic
version of our code (RS-base, see below) took longer than one hour. This leaves
197 instances in a testset, which we call testopt. The instances not solved by the
basic version within one hour are sorted by their gap into sets with gap in (0, 10]%,
(10, 20]%, and (20, 30]%; we call the testsets testgap0-10, testgap10-20,
and testgap20-30, respectively.

Details of the following results are given in an online supplement.

6.2 Results for preprocessing

On each input, we apply the preprocessing steps described in Sect. 5.1. Table 4 in the
“Appendix” shows the number of rows and columns before and after preprocessing
for each instance in the testopt testset. The effect depends on the particular matrix.
The number of removed rows varies from 0 to 20 and the number of removed columns
from 0 to 6. The average number of removed rows and columns is only 0.78 and 0.83,
respectively. Thus, the effect is limited on average on this testset. However, prepro-
cessing is cheap and it can be extremely effective on some instances. For example,
when applied to some real world instances from manufacturing for the open stack
problem, the resulting sizes become so small that all instances can be solved within
seconds; we therefore do not report these results here.

123

http://www.dcs.st-and.ac.uk/~ipg/challenge

68 M. E. Pfetsch et al.

Moreover, during preprocessing we search for Tucker minors as described in
Sect. 4.1. The results are again shown in Table 4 in the “Appendix”. The num-
ber of found minors varies, but can be quite substantial. As described in Sect. 4.1,
these Tucker minors are used to generate inequalities into a pool, which are later
used in separation. Table 4 shows that the number of these cuts varies from 35 to
603 869.

6.3 Results with local cuts

We ran several variants of local cuts on the testopt test set. This includes local
cuts (LC), local cuts with tilting (LCT), and target cuts (TC). For each basic variant,
we consider subvariants. We vary the frequency of depths at which cuts are separated
(from 0, i.e., only at the root node, to 5, i.e., every fifth depth level of the tree); this is
indicated by the number attached to the basic variants, e.g., LCT1. Moreover, we vary
the number of columns in the submatrix considered for separation (between 6 and
12), where 10 is the default for LC and LCT; this is indicated by attaching “size”,
e.g., LCT1-size8. Finally, we consider the variant with primal separation, e.g.,
LCT1-primal, and a variant in which we turn the reduction of the submatrix sizes
off, e.g., LCT1-nored. In order to reduce the effects of heuristics, we initialized the
runs with an optimal solution in this section.

As a base case to compare with, we use three different settings using the separation
methods described in Sect. 4 that do not apply oracles:

• RS-base refers to the separation of dictionary inequalities (Sect. 4.1) and round-
ing inequalities (Sect. 4.2);

• OR-base refers to the techniques that were used by Oswald and Reinelt, i.e.,
rounding inequalities and the exact separation of the inequalities in Theorem 2,
see Sect. 4.2;

• base refers to the separation of all three previously mentioned techniques.

The results are given in Table 1. The table shows the shifted geometric mean1 of the
number of nodes in the branch-and-bound-tree, the shifted geometric mean of the CPU

1 The shifted geometric mean of values t1, . . . , tn with shift s is defined as

(∏
(ti + s)

)1/n − s.

We use a shift s = 10 for time and s = 100 for branch-and-bound nodes in order to decrease the strong
influence of very easy instances in the mean values.

123

Optimal patchings for consecutive ones matrices 69

Table 1 Comparison of different local cut separation variants on testopt

Setting #nodes Time #opt #calls #cuts septime rootgap

RS-base 130,745.5 1088.88 197 308,179.7 2,667,390.8 404.41 56.47

OR-base 30,915.1 452.00 197 86,885.1 9,40,920.1 254.52 40.98

base 28,232.7 423.09 197 79,479.5 8,59,287.4 239.04 40.67

LCT0 4447.3 202.95 197 116.2 1170.5 25.26 8.60

LCT1 2436.9 176.20 197 184.9 1830.1 38.74 8.60

LCT1-nored 2431.3 181.77 197 184.4 1836.4 42.27 8.62

LCT1-primal 3016.4 184.36 197 173.5 1607.6 36.85 9.64

LCT1-size8 6882.3 193.77 197 189.6 1463.4 9.74 13.56

LCT1-size9 4107.7 173.18 197 188.8 1733.3 19.37 11.03

LCT1-size11 4107.7 173.52 197 188.8 1733.3 19.39 11.03

LCT1-size12 1163.2 310.84 197 160.0 1670.2 168.50 5.48

LCT2 2826.8 179.83 197 157.5 1637.9 32.24 8.60

LCT3 3236.0 186.48 197 145.5 1546.3 29.47 8.60

LCT4 3640.5 192.69 197 135.5 1447.3 27.64 8.60

LCT5 4033.5 197.77 197 128.8 1371.2 26.14 8.60

LC0 9240.4 346.10 197 133.8 1120.5 30.79 9.38

LC1 5871.4 305.40 197 219.5 1767.6 44.08 9.38

LC1-primal 5716.6 290.36 197 197.9 1533.5 43.18 9.96

LC1-size6 10 862.3 231.33 197 205.2 1066.7 3.11 16.20

LC1-size7 11 660.6 268.81 197 205.1 1334.0 6.18 15.21

LC1-size8 9899.4 276.13 197 208.3 1514.1 12.21 13.47

LC1-size9 8019.4 289.25 197 207.0 1674.0 22.47 11.43

LC1-size11 4610.8 344.60 197 211.9 1625.4 77.73 7.80

LC2 6820.6 312.52 197 181.0 1514.7 36.85 9.38

LC3 7440.0 321.18 197 164.1 1404.9 34.17 9.38

LC4 8056.7 328.98 196 154.7 1328.4 32.77 9.38

LC5 8639.3 338.44 196 148.2 1275.0 31.94 9.38

TC0 5630.8 1304.07 149 64.3 508.2 520.93 21.80

TC1 3536.5 1446.79 134 105.1 773.5 810.98 21.80

TC1-primal 4106.4 1494.44 136 97.3 615.8 780.95 24.95

TC1-size8 3535.4 1446.72 134 105.0 773.5 810.57 21.80

TC1-size9 3536.2 1448.37 134 105.1 773.8 811.89 21.79

TC5 5380.4 1315.75 148 71.9 587.9 553.85 21.79

123

70 M. E. Pfetsch et al.

Fig. 6 Solving time diagram for different local cut variants on testopt: The x-axis depicts solving time,
the y-axis shows the percentage of instances solved within the given time

time in seconds, the number of instances that could be solved within the time-limit
(among 197), the geometric mean of the number of calls to the separation routine, the
geometric mean of the number of cuts added to the LP, the shifted geometric mean of
the total time used for separation, and the average gap of the root node. For the base
settings, the last three numbers refer to the basic separation via Tucker minors, while
for all other variants, the numbers refer to local cuts only.

We can draw the following conclusions:

• Variant LCT1-size9 and LCT1-size11 are the overall best variants in terms
of the average solving time, very closely followed by LCT1, which produces less
nodes in comparison to the first two.

• All variants of local cuts with tilting (LCT…), with the exception of variant
LCT1-size12, are faster than the other local cut variants, see also Fig. 6.

• Comparing LCT1 and LC1 shows that tilting significantly improves the perfor-
mance of local cuts.

• Target cuts are clearly the slowest: all target cuts are slower than the variants of
any other type. This is because the separation needs too many LP-solves in order
to converge to a possibly violated cut. Consequently, using target cuts only in the
root node (TC0) is faster than the other target cut variants, because it limits this
slow-down.

• When varying the separation frequency of local cuts with tilting, separation in
every node (LCT1) is the best option in terms of average performance, but LCT2
is closely behind and has a slightly smaller maximal solving time, see Fig. 7.

• Primal separation is not successful, but LC1-primal slightly improves on LC1.

123

Optimal patchings for consecutive ones matrices 71

Fig. 7 Solving time diagram for local cuts with tilting with different separation frequencies on testopt:
The x-axis depicts solving time and is truncated at 1000 seconds for better visibility, the y-axis shows the
percentage of instances solved within the given time. LCT1 and LCT0 correspond to the left and right most
solid line, respectively

• Turning off the submatrix reduction does not significantly increase the run
times.

• Increasing or decreasing the size of the submatrix has different effects for the
different variants: For LCT1, the right choice seems to be unclear, but 9, 10 or 11
columns produce excellent results. For LC1, smaller sizes seem to be better. For
TC1, the size does not significantly change the results.

6.4 Results for unsolved instances

The previous computations show the improvement of the additional cutting planes over
RS-base. Most variants solved all 197 instances in the testopt testset. We now
consider the instances that could not be solved by the RS-base settings within one
hour in order to see the additional effect of cutting planes and local cuts in particular.
Moreover, we consider the influence of the heuristics. Thus, we do not initialize the
optimization runs with an optimal solution. The result on the corresponding testsets
testgap0-10, testgap10-20, testgap20-30 are displayed in Table 2.

The results show that LCT1 is able to solve a significant number of instances within
the time limit that cannot be solved by RS-base. In fact, LCT1 solves about 93%
of the instances in testgap0-10 and about 59% in testgap10-20. However,
the solution becomes significantly more difficult for the instances in which RS-base
had a large gap. For example, LCT1 can only solve about 7% of the instances in

123

72 M. E. Pfetsch et al.

Table 2 Comparison of local cuts with tilting on unsolved instances

Setting #nodes Time #opt #calls #cuts septime rootgap

testgap0-10 (58 instances)

LCT1 8656.8 484.58 54 201.4 2002.3 46.15 10.03

testgap10-20 (271 instances)

LCT1 24 054.1 1294.97 160 233.0 2600.1 64.71 10.79

testgap20-30 (387 instances)

LCT1 43 295.6 3274.47 30 256.3 3038.7 84.06 16.54

Table 3 Comparison of the effect of heuristics on the testopt testset

Setting #nodes time #opt #calls #found heurtime

base 28,232.7 423.09 197 – – –

base-heur 28,171.1 483.99 197 983.8 2.6 61.42

LCT1 2436.9 176.20 197 – – –

LCT1-heur 2371.8 195.84 197 68.9 2.3 11.39

testgap20-30. Nevertheless, these results show the strength of the approach via
local cuts with tilting.

6.5 Results of the heuristic

In this section, we investigate the effect of applying the heuristic explained in Sect. 5.2.
To this end, we run base and LCT1 on the testopt testset with and without initial-
izingwith an optimal solution. The results are shown in Table 3. The last three columns
display the geometric mean of the number of calls to the heuristic, the geometric mean
of the number of solutions found, and the shifted geometric mean of the time spent in
the heuristic.

Not initializingwith an optimal solution shows a slowdown by about 12% for base
and by about 10% for for LCT1. Surprisingly, the number of nodes even slightly
decreases for the heuristic variant in shifted geometric mean. However, this is an
artifact of the mean, since the total number of nodes slightly increases. In any case,
the time difference essentially comes from the time needed for running the heuristic.

7 Conclusions

We considered the weighted positive C1P patching problem, as a variant of the
weighted C1P problem. The problem is NP-hard and it has several applications, spe-
cially defined on weight matrices with nonnegative entries. In the paper, we exploited
the polyhedral properties of the positive patching polytope P+(M) in order to design
a new branch-and-cut algorithm to solve the problem to optimality. In particular, we

123

Optimal patchings for consecutive ones matrices 73

first extended some facet defining inequalities to P+(M) that where known for the
C1P polytope, we gave sufficient conditions for the 0-lifting procedure to produce
facet defining inequalities, and we presented polyhedral properties of the dominant
polyhedron of P+(M).

Thenwedefined separation procedures for a large set of families of valid inequalities
that we used as cutting planes in our implementation of a branch-and-cut algorithm.
Among these separation procedures, we in particular focused on oracle-basedmethods
for the on-line generation of valid inequalities.

We finally tested the overall solution algorithm via extensive computational exper-
iments on instances taken from the literature. The results clearly show that the
oracle-based methods are very effective. This good performance also results from
the right choice of parameters, e.g., frequency and submatrix size. In general, this
approach seems to be well suited for optimization problems for which it is difficult to
obtain a polyhedral description like the weighted positive C1P patching problem.

Acknowledgements We thank Sebastian Leipert for supplying his PQ-tree code. Moreover, we thank the
three reviewers for their valuable comments and helpful suggestions.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

See Table 4.

123

http://creativecommons.org/licenses/by/4.0/

74 M. E. Pfetsch et al.

Ta
bl
e
4

St
at
is
tic
s
fo
r
pr
ep
ro
ce
ss
in
g
of

t
e
s
t
o
p
t
:G

iv
en

ar
e
th
e
nu

m
be
r
of

ro
w
s
m
,c
ol
um

ns
n
an
d
th
e
de
ns
ity

δ
(n
um

be
r
of

1s
/(
m

·n
))
in

th
e
or
ig
in
al
in
pu

tm
at
ri
x
an
d
af
te
r

pr
ep
ro
ce
ss
in
g.
M
or
eo
ve
r,
w
e
re
po

rt
th
e
nu

m
be
ro

fT
uc
ke
rm

in
or
s
th
at
ar
e
fo
un

d:
th
e
nu

m
be
rf
ou

nd
as

a
su
bm

at
ri
x
(#

su
b)
,t
he

nu
m
be
rf
ou

nd
by

co
ns
id
er
in
g
as
te
ri
od
ia
lt
ri
pl
es

(#
A
T
),
th
e
nu

m
be
r
of

co
pi
es

fo
un

d
(#

co
pi
es
),
an
d
th
e
to
ta
ln

um
be
r
(#

to
ta
l)
.F

in
al
ly
,w

e
sh
ow

th
e
to
ta
ln

um
be
r
of

sm
al
li
ns
ta
nc
e
cu
ts
ge
ne
ra
te
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

W
ar
w
ic
k_

01
44

10
20

40
.0

10
20

40
.0

16
26

0
83

4
11

10
10

31
1

W
ar
w
ic
k_

01
50

10
20

40
.0

10
19

38
.0

15
19

5
60

9
81

9
13

12
8

W
ar
w
ic
k_

02
43

10
20

30
.0

10
20

30
.0

14
17

1
29

5
48

0
10

9,
79

4

W
ar
w
ic
k_

02
48

10
20

30
.0

10
18

27
.0

13
12

2
17

4
30

9
47

,7
07

W
ar
w
ic
k_

02
50

10
20

30
.0

10
19

28
.5

12
11

5
23

6
36

3
37

,2
66

W
ar
w
ic
k_

02
57

10
20

40
.0

10
20

40
.0

17
29

6
93

2
12

45
44

,3
15

W
ar
w
ic
k_

02
61

10
20

50
.0

10
20

50
.0

16
35

9
15

36
19

11
13

,2
21

W
ar
w
ic
k_

02
65

10
20

50
.0

10
20

50
.0

18
40

7
15

37
19

62
13

,5
04

W
ar
w
ic
k_

02
71

10
30

20
.0

10
24

16
.0

15
30

7
51

37
3

65
,9
57

W
ar
w
ic
k_

02
83

10
30

30
.0

10
26

26
.0

21
46

1
10

06
14

88
33

4,
64

4

W
ar
w
ic
k_

02
85

10
30

30
.0

10
26

26
.0

22
38

6
89

3
13

01
10

1,
01

1

W
ar
w
ic
k_

02
88

10
30

30
.0

10
26

26
.0

23
39

4
96

1
13

78
21

4,
19

9

W
ar
w
ic
k_

02
92

10
30

40
.0

10
28

37
.3

25
69

3
26

31
33

49
10

5,
53

4

W
ar
w
ic
k_

02
94

10
30

40
.0

10
28

37
.3

24
66

0
24

99
31

83
10

5,
45

7

W
ar
w
ic
k_

02
96

10
30

40
.0

10
26

34
.7

23
61

2
21

91
28

26
74

,1
13

W
ar
w
ic
k_

02
98

10
30

40
.0

10
28

37
.3

24
69

7
26

74
33

95
25

6,
83

1

W
ar
w
ic
k_

03
01

10
30

50
.0

10
29

48
.3

25
11

84
55

21
67

30
53

,9
94

W
ar
w
ic
k_

03
02

10
30

50
.0

10
28

46
.7

25
13

49
54

37
68

11
42

,2
92

W
ar
w
ic
k_

03
05

10
30

50
.0

10
28

46
.7

23
11

74
49

71
61

68
42

,2
72

W
ar
w
ic
k_

03
08

10
30

50
.0

10
28

46
.7

24
12

03
46

36
58

63
32

,3
53

W
ar
w
ic
k_

03
12

10
30

20
.0

10
27

19
.0

13
11

8
17

6
30

7
55

,0
75

123

Optimal patchings for consecutive ones matrices 75

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

W
ar
w
ic
k_

03
13

10
30

20
.0

10
27

19
.0

16
82

19
4

29
2

39
,1
32

W
ar
w
ic
k_

03
15

10
30

20
.0

10
24

17
.0

12
59

10
6

17
7

34
,7
37

W
ar
w
ic
k_

03
17

10
30

20
.0

10
28

19
.0

15
11

6
22

1
35

2
48

,7
96

W
ar
w
ic
k_

03
23

10
30

23
.3

10
26

21
.0

16
14

6
29

8
46

0
12

,3
67

W
ar
w
ic
k_

03
25

10
30

23
.3

10
26

22
.0

16
15

1
36

7
53

4
77

,1
49

W
ar
w
ic
k_

03
26

10
30

23
.3

10
26

22
.0

21
14

8
43

1
60

0
14

,6
95

W
ar
w
ic
k_

03
31

10
30

26
.7

10
29

26
.0

23
25

4
67

6
95

3
42

,8
62

W
ar
w
ic
k_

03
32

10
30

26
.7

10
30

26
.7

25
29

3
82

7
11

45
59

,2
90

W
ar
w
ic
k_

03
39

10
30

26
.7

10
29

26
.0

22
35

3
79

0
11

65
22

8,
95

8

W
ar
w
ic
k_

03
41

10
30

30
.0

10
29

29
.7

21
36

5
10

68
14

54
45

,6
30

W
ar
w
ic
k_

03
42

10
30

30
.0

10
28

29
.0

22
44

2
10

54
15

18
74

,0
53

W
ar
w
ic
k_

03
44

10
30

30
.0

10
29

29
.7

24
40

4
11

45
15

73
19

9,
72

5

W
ar
w
ic
k_

03
47

10
30

30
.0

10
29

29
.0

21
33

1
99

8
13

50
24

,1
80

W
ar
w
ic
k_

03
51

10
30

33
.3

10
29

32
.3

22
47

1
13

41
18

34
17

3,
21

5

W
ar
w
ic
k_

03
53

10
30

33
.3

10
30

33
.3

24
53

1
17

40
22

95
71

,2
33

W
ar
w
ic
k_

03
55

10
30

33
.3

10
30

33
.3

24
56

8
17

87
23

79
59

,1
48

W
ar
w
ic
k_

03
56

10
30

33
.3

10
30

33
.3

24
50

4
16

46
21

74
15

9,
55

1

W
ar
w
ic
k_

03
57

10
30

33
.3

10
29

32
.7

22
51

3
16

40
21

75
31

,7
46

W
ar
w
ic
k_

03
58

10
30

33
.3

10
29

32
.7

24
52

5
16

66
22

15
23

,5
51

W
ar
w
ic
k_

03
60

10
30

33
.3

10
28

32
.0

20
48

4
12

04
17

08
12

6,
88

3

W
ar
w
ic
k_

03
63

10
30

36
.7

10
28

35
.0

23
54

2
18

91
24

56
25

,8
59

W
ar
w
ic
k_

03
67

10
30

36
.7

10
28

33
.7

23
74

4
24

16
31

83
29

,7
33

W
ar
w
ic
k_

03
69

10
30

36
.7

10
30

36
.7

24
56

1
20

91
26

76
38

,3
01

123

76 M. E. Pfetsch et al.

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

W
ar
w
ic
k_

03
75

10
30

40
.0

10
29

38
.3

22
73

6
25

27
32

85
62

,1
84

W
ar
w
ic
k_

03
76

10
30

40
.0

10
30

40
.0

24
80

0
28

75
36

99
34

,6
77

W
ar
w
ic
k_

03
77

10
30

40
.0

10
30

40
.0

24
65

7
20

57
27

38
62

,4
89

W
ar
w
ic
k_

03
78

10
30

40
.0

10
29

38
.3

24
82

3
25

67
34

14
52

,8
25

W
ar
w
ic
k_

03
80

10
30

40
.0

10
30

40
.0

25
80

3
30

23
38

51
45

,2
90

W
ar
w
ic
k_

03
82

10
30

43
.3

10
30

43
.3

25
98

7
39

68
49

80
48

,0
66

W
ar
w
ic
k_

03
89

10
30

43
.3

10
30

43
.3

25
80

7
30

27
38

59
55

,8
25

W
ar
w
ic
k_

03
90

10
30

43
.3

10
30

43
.3

24
84

4
34

19
42

87
27

,4
73

W
ar
w
ic
k_

03
91

10
30

46
.7

10
30

46
.7

25
10

78
45

97
57

00
28

,5
66

W
ar
w
ic
k_

03
94

10
30

46
.7

10
30

46
.7

25
12

66
51

59
64

50
91

,6
16

W
ar
w
ic
k_

03
98

10
30

46
.7

10
30

46
.7

27
95

6
36

43
46

26
30

,7
24

W
ar
w
ic
k_

04
01

10
30

50
.0

10
30

50
.0

25
18

26
73

00
91

51
43

,7
14

W
ar
w
ic
k_

04
03

10
30

50
.0

10
30

50
.0

25
12

31
47

23
59

79
35

,2
20

W
ar
w
ic
k_

04
05

10
30

50
.0

10
29

48
.7

25
11

74
52

41
64

40
51

,9
71

W
ar
w
ic
k_

04
07

10
30

50
.0

10
30

50
.0

25
12

41
54

94
67

60
36

,0
75

W
ar
w
ic
k_

04
09

10
30

50
.0

10
30

50
.0

25
14

81
58

52
73

58
45

,5
91

W
ar
w
ic
k_

04
11

10
30

20
.0

10
22

14
.7

13
23

6
42

29
1

44
,5
29

W
ar
w
ic
k_

04
15

10
30

20
.0

10
25

16
.7

16
37

8
34

42
8

68
,8
67

W
ar
w
ic
k_

04
19

10
30

20
.0

10
23

15
.3

14
26

3
35

31
2

47
,5
64

W
ar
w
ic
k_

04
20

10
30

20
.0

10
24

16
.0

16
31

7
61

39
4

74
0,
09

W
ar
w
ic
k_

04
21

10
30

30
.0

10
27

27
.0

21
40

2
11

13
15

36
38

4,
96

2

W
ar
w
ic
k_

04
22

10
30

30
.0

10
26

26
.0

21
40

4
12

94
17

19
54

0,
21

5

W
ar
w
ic
k_

04
26

10
30

30
.0

10
29

29
.0

23
56

6
15

55
21

44
60

3,
86

9

123

Optimal patchings for consecutive ones matrices 77

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

W
ar
w
ic
k_

04
29

10
30

30
.0

10
25

25
.0

20
36

0
94

4
13

24
37

2,
07

0

W
ar
w
ic
k_

04
40

10
30

40
.0

10
27

36
.0

23
69

3
25

96
33

12
13

5,
40

4

W
ar
w
ic
k_

06
35

15
30

13
.3

15
27

12
.0

13
19

3
55

26
1

28
,0
21

W
ar
w
ic
k_

06
40

15
30

13
.3

13
28

12
.0

15
27

9
67

36
1

43
,9
48

W
ar
w
ic
k_

06
91

15
30

13
.3

15
28

12
.9

13
72

94
17

9
13

,8
28

W
ar
w
ic
k_

06
94

15
30

13
.3

15
26

12
.4

13
56

93
16

2
13

,3
17

W
ar
w
ic
k_

06
95

15
30

13
.3

15
24

11
.8

12
26

46
84

12
,3
88

W
ar
w
ic
k_

07
00

15
30

13
.3

15
27

12
.7

10
43

10
3

15
6

90
20

W
ar
w
ic
k_

10
31

20
20

15
.0

17
20

14
.2

12
63

45
12

0
17

,7
40

W
ar
w
ic
k_

10
34

20
20

15
.0

16
20

14
.0

12
59

87
15

8
24

,9
27

W
ar
w
ic
k_

10
47

20
20

20
.0

17
20

19
.2

16
64

18
6

26
6

25
,9
87

W
ar
w
ic
k_

10
48

20
20

20
.0

19
20

19
.8

14
47

14
2

20
3

20
,5
42

W
ar
w
ic
k_

10
49

20
20

20
.0

16
20

19
.0

15
10

0
17

5
29

0
49

,7
25

W
ar
w
ic
k_

10
56

20
20

25
.0

18
20

24
.5

16
12

5
39

5
53

6
12

5,
71

4

W
ar
w
ic
k_

10
57

20
20

25
.0

20
20

25
.0

16
79

30
4

39
9

93
,9
77

W
ar
w
ic
k_

10
59

20
20

25
.0

20
20

25
.0

16
10

6
35

4
47

6
38

,9
13

W
ar
w
ic
k_

11
21

20
20

15
.0

20
20

15
.0

8
30

29
67

62
93

W
ar
w
ic
k_

11
22

20
20

15
.0

20
20

15
.0

12
20

54
86

18
,8
77

W
ar
w
ic
k_

11
23

20
20

15
.0

20
20

15
.0

12
28

52
92

10
,9
07

W
ar
w
ic
k_

11
24

20
20

15
.0

20
19

14
.8

11
21

33
65

60
38

W
ar
w
ic
k_

11
25

20
20

15
.0

20
20

15
.0

10
24

39
73

37
44

W
ar
w
ic
k_

11
27

20
20

15
.0

20
20

15
.0

12
26

46
84

86
44

W
ar
w
ic
k_

11
30

20
20

15
.0

20
20

15
.0

10
44

56
11

0
17

,3
66

123

78 M. E. Pfetsch et al.

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

W
ar
w
ic
k_

11
50

20
20

25
.0

20
20

25
.0

15
10

0
35

8
47

3
97

,6
13

W
ar
w
ic
k_

11
55

20
20

30
.0

20
20

30
.0

16
12

9
68

8
83

3
28

,5
44

W
ar
w
ic
k_

12
17

20
20

15
.0

20
20

15
.0

12
31

64
10

7
48

28

W
ar
w
ic
k_

17
19

30
30

6.
7

19
26

5.
1

3
7

6
16

13
2

W
ar
w
ic
k_

18
53

30
30

6.
7

29
28

6.
4

6
5

0
11

35

Sh
aw

_1
1

20
20

30
.0

20
20

30
.0

14
10

9
68

5
80

8
23

6,
76

6

Sh
aw

_1
2

20
20

30
.0

20
20

30
.0

18
11

5
58

2
71

5
44

,0
55

Sh
aw

_1
5

20
20

30
.0

19
20

29
.8

16
15

7
76

5
93

8
36

,5
62

Sh
aw

_1
6

20
20

30
.0

19
20

29
.8

15
13

4
60

5
75

4
24

,2
14

Sh
aw

_1
8

20
20

30
.0

18
20

29
.5

17
17

6
94

0
11

33
52

,9
81

Sh
aw

_1
20

20
30

.0
19

20
29

.8
16

11
1

56
2

68
9

95
,0
86

Sh
aw

_2
0

20
20

30
.0

20
20

30
.0

16
10

9
52

5
65

0
85

,9
54

Sh
aw

_2
2

20
20

30
.0

20
20

30
.0

15
13

1
62

2
76

8
55

,1
04

Sh
aw

_2
4

20
20

30
.0

19
20

29
.8

15
12

5
52

7
66

7
10

8,
77

7

Sh
aw

_3
20

20
30

.0
20

20
30

.0
17

12
7

58
5

72
9

11
3,
55

1

Sh
aw

_4
20

20
30

.0
20

20
30

.0
14

12
1

55
4

68
9

18
6,
51

8

Sh
aw

_6
20

20
30

.0
20

20
30

.0
17

12
5

58
9

73
1

23
,5
81

Sh
aw

_8
20

20
30

.0
20

20
30

.0
16

12
8

65
6

80
0

65
,8
76

H
S_

pr
ob

le
m
_2

20
4

20
20

22
.2

20
20

22
.2

14
72

19
8

28
4

25
,2
80

H
S_

pr
ob

le
m
_2

20
9

20
20

19
.2

18
20

18
.8

13
75

18
2

27
0

74
,3
16

H
S_

pr
ob

le
m
_2

21
1

20
20

20
.5

19
20

20
.2

12
58

18
0

25
0

25
,3
04

H
S_

pr
ob

le
m
_2

21
2

20
20

18
.8

19
20

18
.5

12
56

15
3

22
1

42
,9
49

H
S_

pr
ob

le
m
_2

21
4

20
20

20
.8

19
20

20
.5

16
42

14
2

20
0

23
,3
61

123

Optimal patchings for consecutive ones matrices 79

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

H
S_

pr
ob

le
m
_2

21
9

20
20

21
.8

20
20

21
.8

12
47

21
4

27
3

24
,8
92

H
S_

pr
ob

le
m
_2

22
4

20
20

27
.5

20
20

27
.5

14
94

42
6

53
4

48
,1
10

H
S_

pr
ob

le
m
_2

22
5

20
20

24
.0

20
20

24
.0

12
67

25
6

33
5

54
,8
45

H
S_

pr
ob

le
m
_2

22
8

20
20

23
.0

18
20

22
.5

13
82

28
8

38
3

21
,5
92

H
S_

pr
ob

le
m
_2

23
4

20
20

28
.0

19
20

27
.8

17
10

7
47

5
59

9
22

,7
49

H
S_

pr
ob

le
m
_2

23
5

20
20

25
.2

19
19

24
.2

12
14

4
45

9
61

5
75

,3
35

H
S_

pr
ob

le
m
_2

23
6

20
20

25
.8

20
20

25
.8

16
78

34
4

43
8

34
,9
39

H
S_

pr
ob

le
m
_2

24
8

20
20

30
.8

20
20

30
.8

17
11

1
58

0
70

8
21

,0
93

H
S_

pr
ob

le
m
_2

25
1

20
20

28
.0

20
20

28
.0

17
12

8
46

4
60

9
12

,3
09

H
S_

pr
ob

le
m
_2

30
4

20
20

45
.0

20
20

45
.0

18
32

7
21

08
24

53
14

,8
24

H
S_

pr
ob

le
m
_2

30
7

20
20

45
.2

20
20

45
.2

17
28

5
19

41
22

43
19

,8
64

H
S_

pr
ob

le
m
_2

31
7

20
20

46
.5

20
20

46
.5

17
25

0
16

53
19

20
13

,0
91

H
S_

pr
ob

le
m
_2

31
8

20
20

46
.2

20
20

46
.2

17
30

6
23

25
26

48
22

,9
44

H
S_

pr
ob

le
m
_2

34
1

20
20

56
.2

20
20

56
.2

18
41

0
33

27
37

55
21

,6
65

H
S_

pr
ob

le
m
_2

34
3

20
20

55
.2

20
20

55
.2

18
40

6
31

58
35

82
18

,9
68

H
S_

pr
ob

le
m
_2

34
4

20
20

57
.5

20
20

57
.5

18
66

1
51

48
58

27
24

,4
67

H
S_

pr
ob

le
m
_2

34
6

20
20

56
.8

20
20

56
.8

18
40

6
30

89
35

13
16

,4
28

H
S_

pr
ob

le
m
_2

35
2

20
20

60
.5

20
20

60
.5

18
63

2
51

31
57

81
22

,2
04

H
S_

pr
ob

le
m
_2

35
6

20
20

60
.5

20
20

60
.5

18
44

8
35

87
40

53
19

,9
94

H
S_

pr
ob

le
m
_2

36
1

20
20

60
.2

20
20

60
.2

17
46

4
36

85
41

66
16

,9
36

H
S_

pr
ob

le
m
_2

36
2

20
20

58
.2

20
20

58
.2

16
46

8
37

59
42

43
14

,6
33

H
S_

pr
ob

le
m
_2

36
3

20
20

59
.0

20
20

59
.0

18
47

5
36

64
41

57
19

,9
10

H
S_

pr
ob

le
m
_2

36
5

20
20

56
.2

20
20

56
.2

18
52

9
45

18
50

65
17

,2
18

123

80 M. E. Pfetsch et al.

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

H
S_

pr
ob

le
m
_2

36
6

20
20

61
.8

20
20

61
.8

18
53

6
40

20
45

74
23

,9
70

H
S_

pr
ob

le
m
_2

36
8

20
20

58
.2

20
20

58
.2

18
63

9
53

44
60

01
15

,4
61

H
S_

pr
ob

le
m
_2

37
0

20
20

57
.5

20
20

57
.5

18
44

6
37

87
42

51
20

,2
68

H
S_

pr
ob

le
m
_2

37
2

20
20

56
.2

20
20

56
.2

18
52

0
40

60
45

98
20

,1
12

H
S_

pr
ob

le
m
_2

37
9

20
20

63
.0

20
20

63
.0

18
82

2
66

42
74

82
33

,7
76

H
S_

pr
ob

le
m
_2

38
1

20
20

65
.2

20
20

65
.2

18
59

3
48

66
54

77
14

,7
29

H
S_

pr
ob

le
m
_2

38
4

20
20

64
.2

20
20

64
.2

18
60

0
49

32
55

50
14

,3
09

H
S_

pr
ob

le
m
_2

38
5

20
20

66
.2

20
20

66
.2

18
64

8
52

69
59

35
24

,7
81

H
S_

pr
ob

le
m
_2

38
6

20
20

65
.2

20
20

65
.2

18
60

7
50

63
56

88
13

,5
64

H
S_

pr
ob

le
m
_2

38
7

20
20

68
.5

20
20

68
.5

18
74

7
59

72
67

37
20

,7
36

H
S_

pr
ob

le
m
_2

38
9

20
20

66
.2

20
20

66
.2

17
84

4
70

27
78

88
25

,7
28

H
S_

pr
ob

le
m
_2

39
3

20
20

66
.0

20
20

66
.0

18
75

2
60

10
67

80
30

,3
45

H
S_

pr
ob

le
m
_2

39
4

20
20

68
.5

20
20

68
.5

18
73

6
60

40
67

94
20

,8
24

H
S_

pr
ob

le
m
_2

39
7

20
20

61
.2

20
20

61
.2

18
56

4
44

34
50

16
19

,4
77

H
S_

pr
ob

le
m
_2

39
8

20
20

65
.8

20
20

65
.8

18
60

7
51

19
57

44
14

,8
52

H
S_

pr
ob

le
m
_2

40
0

20
20

65
.5

20
20

65
.5

18
71

0
54

12
61

40
17

,5
77

H
S_

pr
ob

le
m
_2

40
2

20
20

71
.2

20
20

71
.2

18
80

4
62

67
70

89
12

,5
55

H
S_

pr
ob

le
m
_2

40
4

20
20

69
.2

20
20

69
.2

17
77

2
65

86
73

75
20

,7
14

H
S_

pr
ob

le
m
_2

40
8

20
20

69
.2

20
20

69
.2

17
78

1
63

73
71

71
16

,6
41

H
S_

pr
ob

le
m
_2

40
9

20
20

67
.8

20
20

67
.8

18
75

9
61

97
69

74
19

,2
38

H
S_

pr
ob

le
m
_2

41
0

20
20

69
.5

20
20

69
.5

18
80

1
64

57
72

76
17

,5
49

H
S_

pr
ob

le
m
_2

41
2

20
20

69
.5

20
20

69
.5

18
78

5
61

75
69

78
21

,2
08

H
S_

pr
ob

le
m
_2

41
5

20
20

72
.0

20
20

72
.0

18
80

7
62

24
70

49
14

,8
74

123

Optimal patchings for consecutive ones matrices 81

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

H
S_

pr
ob

le
m
_3

19
1

15
30

22
.0

15
30

22
.0

21
27

1
85

7
11

49
15

5,
15

1

H
S_

pr
ob

le
m
_3

19
5

15
30

19
.8

14
30

19
.6

22
18

7
59

6
80

5
10

1,
93

5

H
S_

pr
ob

le
m
_3

35
4

15
30

62
.2

15
30

62
.2

27
24

53
16

,1
47

18
,6
27

63
,3
47

H
S_

pr
ob

le
m
_3

37
1

15
30

64
.9

15
30

64
.9

28
22

30
14

,0
14

16
,2
72

49
,3
66

H
S_

pr
ob

le
m
_3

37
3

15
30

64
.0

15
30

64
.0

27
22

97
15

,6
04

17
,9
28

43
,5
92

H
S_

pr
ob

le
m
_3

37
4

15
30

64
.4

15
30

64
.4

28
23

76
16

,3
19

18
,7
23

47
,7
59

H
S_

pr
ob

le
m
_3

37
6

15
30

69
.8

15
30

69
.8

28
23

71
15

,9
39

18
,3
38

30
,3
82

H
S_

pr
ob

le
m
_3

37
9

15
30

63
.6

15
30

63
.6

27
23

30
14

,9
16

17
,2
73

57
,8
97

H
S_

pr
ob

le
m
_3

38
3

15
30

64
.0

15
30

64
.0

28
22

78
16

,3
52

18
,6
58

39
,8
59

H
S_

pr
ob

le
m
_3

38
6

15
30

68
.4

15
30

68
.4

27
28

70
19

,9
49

22
,8
46

55
,8
77

H
S_

pr
ob

le
m
_3

38
7

15
30

67
.6

15
30

67
.6

28
22

76
15

,4
82

17
,7
86

37
,7
65

H
S_

pr
ob

le
m
_3

39
1

15
30

70
.4

15
30

70
.4

27
27

47
18

,8
11

21
,5
85

36
,1
71

H
S_

pr
ob

le
m
_3

39
5

15
30

70
.7

15
30

70
.7

27
25

68
16

,5
77

19
,1
72

38
,6
41

H
S_

pr
ob

le
m
_3

39
6

15
30

68
.9

15
30

68
.9

27
24

29
14

,8
17

17
,2
73

40
,0
14

H
S_

pr
ob

le
m
_3

39
7

15
30

68
.4

15
30

68
.4

28
23

71
15

,4
84

17
,8
83

47
,6
83

H
S_

pr
ob

le
m
_3

39
8

15
30

63
.8

15
30

63
.8

27
23

02
15

,8
96

18
,2
25

58
,1
32

H
S_

pr
ob

le
m
_3

39
9

15
30

69
.6

15
30

69
.6

27
29

83
21

,7
91

24
,8
01

46
,9
26

H
S_

pr
ob

le
m
_3

40
0

15
30

69
.8

15
30

69
.8

27
25

30
17

,9
16

20
,4
73

44
,6
14

H
S_

pr
ob

le
m
_3

40
1

15
30

71
.1

15
30

71
.1

26
26

87
17

,3
20

20
,0
33

37
,0
90

H
S_

pr
ob

le
m
_3

40
2

15
30

68
.2

15
30

68
.2

27
27

99
18

,9
16

21
,7
42

53
,2
70

H
S_

pr
ob

le
m
_3

40
4

15
30

71
.3

15
30

71
.3

27
25

62
16

,4
78

19
,0
67

37
,7
43

H
S_

pr
ob

le
m
_3

40
6

15
30

70
.9

15
29

67
.8

25
23

63
16

,3
22

18
,7
10

31
,9
11

H
S_

pr
ob

le
m
_3

40
7

15
30

67
.1

15
30

67
.1

27
23

71
15

,5
38

17
,9
36

42
,5
02

123

82 M. E. Pfetsch et al.

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
l

Pr
ep
ro
c.

T
uc
ke
r
m
in
or
s

#
cu
ts

m
n

δ
%

m
n

δ
%

#
su
b

#
A
T

#
co
pi
es

#
to
ta
l

H
S_

pr
ob

le
m
_3

41
0

15
30

71
.6

15
30

71
.6

28
25

92
16

,3
41

18
,9
61

39
,6
01

p2
02

0n
0

18
20

18
.1

15
19

16
.1

13
65

92
17

0
45

,4
69

p2
02

0n
3

19
20

17
.6

17
20

17
.1

14
65

18
3

26
2

64
,6
29

p2
02

0n
6

18
20

18
.3

15
20

17
.5

12
71

14
0

22
3

43
,0
98

p2
03

0n
1

30
20

12
.3

21
20

10
.8

13
35

93
14

1
24

,0
47

p2
03

0n
7

30
20

12
.2

20
20

10
.5

12
38

77
12

7
25

,7
52

p2
04

0n
3

40
20

10
.0

23
20

7.
9

10
26

33
69

51
04

p2
04

0n
4

40
20

9.
8

21
20

7.
4

11
43

54
10

8
21

,7
47

p2
04

0n
8

40
20

9.
5

22
20

7.
2

9
34

33
76

10
,0
85

p2
04

0n
9

40
20

9.
8

20
20

7.
2

9
28

37
74

16
,8
21

p2
52

0n
6

20
25

16
.4

18
25

16
.0

16
13

1
28

5
43

2
94

,4
45

p3
01

0n
2

10
30

31
.0

9
29

29
.7

24
50

9
14

46
19

79
99

,0
68

p3
01

0n
4

10
30

30
.7

9
28

28
.3

21
55

0
10

96
16

67
15

9,
88

3

p3
01

0n
5

10
30

31
.3

9
29

30
.0

22
60

8
15

78
22

08
19

7,
29

8

p3
01

0n
6

10
30

29
.3

9
27

26
.7

21
43

3
12

41
16

95
29

4,
23

5

123

Optimal patchings for consecutive ones matrices 83

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational
Study. Princeton University Press, Princeton (2006)

2. Baptiste, P.: Simple MIP formulations to minimize the maximum number of open stacks. In: Smith,
B.M., Gent, I.P. (eds.) Proceedings of IJCAI’05—Constraint Modelling Challenge 2005, pp. 9–13.
Edimburgh (2005)

3. Bentley, J.: Programming Pearls. Addison-Wesley, Reading (1986)
4. Booth, K.S.: PQ-tree algorithms. Ph.D. thesis, University of California Berkeley (1975)
5. Booth,K.S., Lueker,G.S.: Testing for the consecutive ones property, interval graphs, andgraphplanarity

using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)
6. Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Oper. Res. Lett. 36(4), 430–433 (2008)
7. Christof, T., Jüunger,M., Kececioglu, J.,Mutzel, P., Reinelt, G.: A branch-and-cut approach to physical

mapping of chromosomes by unique end-probes. J. Comput. Biol. 4, 433–447 (1997)
8. Chvátal, V., Cook, W., Espinoza, D.: Local cuts for mixed-integer programming. Math. Program.

Comput. 5, 171–200 (2013)
9. De Giovanni, L., Brentegani, L., Festa, M.: New facets for the consecutive ones polytope. Tech. rep.,

Optimization Online (2018). http://www.optimization-online.org/DB_HTML/2018/06/6674.html
10. De Giovanni, L., Massi, G., Pezzella, F., Pfetsch, M., Rinaldi, G., Ventura, P.: A heuristic and an

exact method for the gate matrix connection cost minimization problem. Int. Trans. Oper. Res. 20(5),
627–643 (2013). https://doi.org/10.1111/itor.12025

11. de la Banda, M.G., Stuckey, P.J.: Dynamic programming to minimize the maximum number of open
stacks. INFORMS J. Comput. 19(4), 607–617 (2007)

12. Eisenbrand, F., Rinaldi, G., Ventura, P.: Primal separation for 0/1 polytopes. Math. Program. 95, 475–
491 (2003)

13. Faggioli, E., Bentivoglio, C.A.: Heuristic and exact methods for the cutting sequencing problem. Eur.
J. Oper. Res. 110, 564–575 (1998)

14. Fink, A., Voß, S.: Applications of modern heuristic search methods to pattern sequencing problems.
Comput. Oper. Res. 26, 17–34 (1999)

15. Fukuda, K.: cdd home page. http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
16. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)
17. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Kalai, G.,

Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation, DMV Seminar, vol. 29, pp. 43–74.
Birkhäuser, Basel (2000)

18. Gawrilow, E., Joswig, M.: polymake: an approach to modular software design in computational
geometry. In: Proceedings of the 17th Annual Symposium on Computational Geometry, pp. 222–231.
ACM (2001)

19. Gawrilow, E., Joswig, M.: polymake: Version 2.1.0. http://www.math.tu-berlin.de/polymake (2007)
20. GNU Multiple Precision Arithmetic Library. http://gmplib.org
21. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.

Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Heidelberg (1993)
22. Kendall, D.: Incidencematrices, interval graphs and seriation in archaeology. Pac. J.Math. 28, 565–570

(1969)
23. Kreher, D., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration, and Search, vol. 7. CRC

Press, Cambridge (1998)
24. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund.

Math. 51, 45–64 (1962)
25. Linhares, A., Yanasse, H.H.: Connections between cutting-pattern sequencing, VLSI design, and flex-

ible machines. Comput. Oper. Res. 29, 1759–1772 (2002)
26. Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hendel, G., Koch, T.,

Lübbecke, M.E., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S.,
Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite
4.0. Tech. rep., Optimization Online (2017). http://www.optimization-online.org/DB_HTML/2017/
03/5895.html

27. Oswald, M.: Weighted consecutive ones problems. Ph.D. thesis, University of Heidelberg (2003)
28. Oswald, M., Reinelt, G.: Constructing new facets of the consecutive ones polytope. In: Jünger, M.,

Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You Shrink! Papers Dedicated to

123

http://www.optimization-online.org/DB_HTML/2018/06/6674.html
https://doi.org/10.1111/itor.12025
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://www.math.tu-berlin.de/polymake
http://gmplib.org
http://www.optimization-online.org/DB_HTML/2017/03/5895.html
http://www.optimization-online.org/DB_HTML/2017/03/5895.html

84 M. E. Pfetsch et al.

Jack Edmonds, 5th International Workshop, Aussois, 2001, LNCS, vol. 2570, pp. 147–157. Springer,
Berlin (2003)

29. Oswald, M., Reinelt, G.: Computing optimal consecutive ones matrices. In: Grötschel, M. (ed.) The
Sharpest Cut, The Impact of Manfred Padberg and His Work, Optimization, pp. 173–184. MPS/SIAM
(2004)

30. Papadimitriou, C.H.: TheNP-completeness of the bandwidthminimization problem. Computing 16(3),
263–270 (1976)

31. Roberts, F.: Discrete Mahematical Models with Applications to Social, Biological, and Environmental
Problems. Prenctice-Hall, Englewood Cliff (1976)

32. SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
33. Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory Ser. B 12, 153–162

(1972)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://scip.zib.de/

	Optimal patchings for consecutive ones matrices
	Abstract
	1 Introduction
	1.1 Applications
	1.2 Outline of the paper

	2 Basic definitions and results
	3 Polyhedral properties of the C1P patching polytope
	3.1 Basic results
	3.2 Projection and lifting
	3.3 The dominant polyhedron

	4 Separation
	4.1 A dictionary of inequalities
	4.2 Inequalities from Oswald and Reinelt
	4.3 Oracle-based separation
	4.3.1 The local cuts method
	4.3.2 Generating local cuts of high dimensions
	4.3.3 The target cuts method
	4.3.4 Interior point
	4.3.5 Optimization oracles

	5 Algorithmic aspects
	5.1 Preprocessing
	5.2 Primal heuristic

	6 Computational results
	6.1 Data sets
	6.2 Results for preprocessing
	6.3 Results with local cuts
	6.4 Results for unsolved instances
	6.5 Results of the heuristic

	7 Conclusions
	Acknowledgements
	Appendix
	References

