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Abstract
We consider geometric Hermite subdivision for planar curves, i.e., iteratively refin-
ing an input polygon with additional tangent or normal vector information sitting
in the vertices. The building block for the (nonlinear) subdivision schemes we pro-
pose is based on clothoidal averaging, i.e., averaging w.r.t. locally interpolating
clothoids, which are curves of linear curvature. To this end, we derive a new strategy
to approximate Hermite interpolating clothoids. We employ the proposed approach
to define the geometric Hermite analogues of the well-known Lane-Riesenfeld and
four-point schemes. We present numerical results produced by the proposed schemes
and discuss their features.

Keywords Geometric Hermite subdivision · Non-linear subdivision ·
Circle-preserving scheme · Clothoid fitting · 2D curve design

Mathematics Subject Classification 2010 68U07 · 65D17

1 Introduction

Linear subdivision schemes are widely used in various areas such as geometric
modeling, multiscale analysis, and for solving PDEs, and are rather well studied;
references are for instance [11, 18, 23, 37].

In the last two decades, also the interest in nonlinear subdivision schemes has sig-
nificantly increased. One class of such schemes deals with scalar real valued data, but
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employs nonlinear averaging/prediction/interpolation techniques, e.g., [12, 19, 22,
26], making the corresponding schemes nonlinear. Motivation may be to get more
robust estimators for processing data or to be able to deal with discontinuities or
nonuniform data. Another class of nonlinear schemes addresses data which live in
a nonlinear space, such as a Riemannian manifold or a Lie group, see for instance
[21, 31, 42, 43, 45]. A third class considers data living in Euclidean space, typi-
cally of dimension 2 or 3, but the averaging rules are nonlinear to take account of
their geometric characteristics. Such rules may be formulated in terms of angles, per-
pendicular bisectors, interpolating circles, and the like, rather than acting on each
component separately, as linear schemes do. References of such geometric schemes
include [1, 13, 16, 29, 39].

In contrast to linear schemes, for which a rather well-established analysis is avail-
able, nonlinear schemes are less well understood, and there are ongoing efforts to
devise new and to improve existing tools. However, due to the nonlinear nature and
the diversity of the proposed schemes, not as general results as in the linear case can
be expected. The investigation of a particular class of nonlinear schemes is likely to
require an additional particular analysis component not covered by a general theory.
Papers providing an analysis framework for geometric curve subdivision are [17, 20].
The first reference derives sufficient conditions for a convergent interpolatory planar
subdivision scheme to produce tangent continuous limit curves. The second reference
deals with subdivision schemes which are geometric in the sense that they commute
with similarities and derives a framework to establish C1,α- and C2,α-regularity of
the generated limit curves.

In this paper, we present a family of geometric Hermite subdivision schemes for
the generation of planar curves where the data to be refined are point-vector pairs,
the latter serving as information on tangents or normals. Schemes refining point-
vector pairs of that type were already suggested in [14, 28]. The basic idea of these
two approaches is to locally fit circles to the data and then to sample new points
from them, but the specific methods are different. Also the strategies for determin-
ing new vectors are not the same so that the two schemes have significantly different
shape properties. In contrast, the approach proposed here relies on clothoids, which
are curves of linear curvature, rather than circles. The top row of Fig. 1 shows the

Fig. 1 Midpoint refinement using the proposed clothoid average (upper row), the circle average of [14]
(middle row), and the circle average of [28] (lower row). We always display the points p�

j together with

the normals n�
j = i exp

(
iα�

j

)
at level �
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refinement of initial data consisting of two point-normal pairs by the so-called
clothoid average, as described in this paper. The resulting curve is S-shaped and inter-
polates the initial data. Also the scheme of Chalmoviansky and Jüttler [14], as shown
in the middle row, interpolates the initial data, but has three turning points, leading to
a less natural shape and a less optimal distribution of curvature. The scheme of Dyn
and Lipovetsky [28], shown in the bottom row, produces a straight line (as it would
for any choice of parallel normals). This is likely not to address the designer’s intent,
and it also does not interpolate the normal directions specified at the endpoints. The
good performance of our scheme is related to the fact that it is not based on the
reproduction of circles, which can be seen as the geometric analogue of quadratic
polynomials, but on the reproduction of clothoids, which can be seen as the geomet-
ric analogue of cubic polynomials. Thus, it is able to mimic a much larger variety of
shapes.

The idea of geometric planar spline fitting, i.e., fitting splines based on clothoids
as building blocks can be traced through the literature for more than 50 years [4,
15, 25, 30, 34, 41]. Further recent contributions are for instance [7] presenting an
alternative to [41] for the computation of a C2 interpolating clothoid spline. Hermite
interpolation problems w.r.t. clothoids are for instance the topic of [6]. We also point
out [36] where the authors employ so called e-curves as approximative substitutes for
clothoids in the context of Hermite interpolation.

Maybe the two striking reason why clothoid splines and approximations of them
are still a topic in the literature are as follows: (i) the corresponding clothoid splines
are rather expensive two compute; (ii) there are plenty of applications. Let us dis-
cuss these points in more details. Concerning (ii), for a long time clothoids have been
used by route designers as transitional curves between straight lines and circular arcs,
and between circular arcs of different radii; see for instance [3, 33]. Nowadays, they
are further used in connection with path planning for autonomous vehicles, e.g., [2,
5, 10] in computer vision and image processing [8, 27], in curve editing for design
purposes [24], or representing hand-drawn strokes sketched by a user [9, 32]. Con-
cerning (i), many of the above applications are rather time critical and it is often
important to have algorithms which are as fast as possible at a given (sometimes mod-
erate) approximation quality. Solving clothoidal spline fitting problems up to high
precision can be done rather fast [41] but even this is sometimes too expensive or not
needed. Instead, frequently faster strategies typically using some approximation are
employed. For instance, [9] locally fits clothoids and arcs as primitives and then opti-
mizes w.r.t. a certain graph to obtain a global fit. The paper [24] uses a variational
approach iteratively inserting control points and optimizing them such as to gener-
ate a polyline with linear discrete curvature (approximating the clothoid segment; for
details see also [40].) We mention that this approach uses subdivision (explicitly the
analogue of corner cutting) for clothoid blending. Other approaches replace clothoids
by approximating curve segments which are easier to handle, e.g., [35, 36]. We point
out that the clothoidal subdivision schemes suggested here may be used as a compu-
tationally rather cheap alternative to clothoid splines and that they may be employed
in the various applications discussed above.

The paper is organized as follows: after presenting some basic facts about two-
point Hermite interpolation with clothoids in the next section, we consider its
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approximate solution in Section 3. The formula we propose is explicit, fast to eval-
uate, and yields a very small error for a large range of input data. In Section 4,
this result is used to define the so-called clothoid average of a pair of points and
corresponding tangent directions, which in turn serves as a building block for new
families of geometric Hermite subdivision schemes. In particular, we obtain geomet-
ric Hermite analogues of the Lane-Riesenfeld schemes and the four-point scheme.
In Section 6, we present results produced by the proposed schemes and discuss their
features to illustrate the potential of the new method. As a first theoretical result,
Section 5 establishes convergence and G1-continuity of the Lane-Riesenfeld-type
algorithm of degree 1. Concluding remarks and an outlook are given in Section 7.

2 Two-point interpolation

In the following, points in the plane, and in particular images of planar curves, are
considered as complex numbers. In this sense, let p : [0, 1] → C be a twice dif-
ferentiable function parametrizing a planar curve which is regular in the sense that
the velocity v := |p′| vanishes nowhere. It is called uniform if the velocity is con-
stant. According to the lifting lemma, the tangent vector can be expressed in the form
p′ = v exp(iα) with a differentiable function α : [0, 1] → R, called the tangent
angle of p. We write α = argp′ for brevity, and assume throughout that α is unrolled
suitably so that jumps are avoided. The curvature of p is κ := α′/v = Imp̄′p′′/v3.
In the uniform case, on which we focus below, curve, velocity, and tangent angle are
related by the formula

p(t) = p(0) + v

∫ t

0
exp(iα(s)) ds, t ∈ [0, 1]. (1a)

The integral appearing here is abbreviated by

I (α, t) :=
∫ t

0
exp(iα(s)) ds, I (α) := I (α, 1),

so that p = p(0) + vI (α, ·). A curve q : [0, 1] → C starting at q0 := q(0) = 0
and ending at q1 := q(1) ∈ R

+ is said to be in normal position. To tell this from the
general case, we use the letters w = |q ′|, β = arg q ′, and λ = β ′/w to denote the
velocity, tangent angle, and curvature, respectively. We have the relation

q(t) = wI (β, t), t ∈ [0, 1]. (1c)

Curves in general and normal position are linked by similarity. Denoting the secant
between the endpoints of p by d := p1 − p0 and its angle by ϕ := arg d, we have
the relations

p = p0 + d

q1
q, v = |d|

q1
w, α = β + ϕ. (2)
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Fig. 2 Interpolation problem in general position (left) and normal position (right)

Let J = {0, 1}. Given points pJ = (p0, p1) with d := p1 − p0 �= 0 and angles
αJ = (α0, α1), the corresponding two-point Hermite interpolation problem is to find
a curve p such that

p(j) = pj , α(j) = αj , j ∈ J . (3)

A special case of the above problem is to find a curve q such that

q(j) = j, β(j) = βj , j ∈ J, (4)

for given βJ . We recall that we use letters q, β to indicate that the sought curve is in
normal position. Figure 2 illustrates the setting. While it is simple to specify curves
merely satisfying these constraints, the challenge is to find solutions which are fair
in some sense. For instance, it is a classical task to solve (3) in the space of clothoids,
which are curves characterized by a linear curvature profile. In principle, this non-
linear problem is well understood and various more or less complicated methods for
its numerical treatment are described in the literature, see for instance [6, 44] and
the references therein. Before we present our own approximate approach in the next
section, we introduce some notation and basic facts.

Using the symbol Pn to denote the space of polynomials of degree at most n over
the unit interval, we define

Kn := {p : κ ∈ Pn}
as the set of all uniform curves p : [0, 1] → C with curvature in Pn. The corre-
sponding subset of such curves in normal position is denoted by K+

n . In particular,
K0 contains straight lines and circular arcs, while curves in K1 \ K0 are segments of
clothoids. The tangent angle α = ∫

κ of a clothoid is a quadratic polynomial. For
clothoids, the integral appearing in (1a) can be transformed to the so-called Fresnel
integral F(x) := ∫ x

0 exp(iu2) du, which does not possess a finite representation with
respect to elementary functions. For later use, we state the following lemma.

Lemma 2.1 A regular curve p ∈ K1 is embedded (i.e. injective) unless it
parametrizes a full circle, i.e., unless p ∈ K0 and |α1 − α0| ≥ 2π .

The proof follows immediately from the Tait-Kneser Theorem.
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In the following, for simplicity of wording, the term clothoid addresses not only
segments of true clothoids, but also segments of circles and straight lines. In this
sense, we consider the solution of (3) with clothoids, i.e., with curves p ∈ K1. By
similarity according to (2), this problem can be reduced to (4) with data βJ = αJ −
arg d, which are the angles between the secant d and the boundary tangent angles of
p. Using the quadratic Lagrange polynomials

�20 := (t − 1)(2t − 1), �21/2(t) := 4t (1 − t), �21(t) := t (2t − 1),

with respect to the break points 0, 1/2, 1, the tangent angle of q can be written as

β = β0�
2
0 + β1/2�

2
1/2 + β1�

2
1.

Hence, given βJ , the sought solution is characterized by the value β1/2 = β(1/2)
and the velocity w by means of (1c). The task is to find these two values. Figure 3
demonstrates that the solution of (4) is not unique. More precisely, it is known that for
each pair βJ there exists a countable family of solutions, but in applications, one is
typically interested in curves avoiding excess rotation. For instance, if the boundary
data βJ are small in modulus, also the overall maximum ‖β‖∞ of tangent angles
should be small. The following theorem guarantees existence of such a solution. It
is characterized by some function F , mapping given angles βJ to the intermediate
angle β1/2 and the corresponding velocity w.

Theorem 2.2 There exists a smooth function F : U → R
2, defined on some

neighborhood U = (−u, u)2 of the origin, with

F(0, 0) =
[
0
1

]
, DF(0, 0) =

[−1/4 −1/4
0 0

]
,

and the following property: Let
[
β1/2
w

]
:= F(β0, β1), β := β0�

2
0 + β1/2�

2
1/2 + β1�

2
1,

then the tangent angle β and the velocity w define a solution q = wI (β, ·) ∈ K+
1 of

(4). In particular, I (β) = 1/w is real and positive.

Fig. 3 Four out of infinitely many clothoid solutions to the geometric Hermite interpolation problem (4)
with angles β0 = π/2, β1 = 0. The solid line shows the preferred choice, which avoids excess rotation
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Actually, it is possible to choose the domainU = (−π, π)2 for F , covering almost
all possible pairs of boundary tangent angles, but this is neither needed nor proven
here.

Proof The idea is to parametrize the set solutions of (4) for varying βJ as a two-
dimensional surface in R

4 and then to apply the implicit function theorem. Given
αJ ∈ R

2, define the tangent angle α := α0�
2
0 + α1�

2
1 and the clothoid p :=

I (α, ·) ∈ K1. Then, q := p/p(1) ∈ K+
1 connects q(0) = 0 and q(1) = 1.

Its velocity is w = 1/|p(1)|, and its tangent angle β = α − argp(1) has values
βj := β(j) = αj − argp(1), j ∈ J, and β1/2 := β(1/2) = − argp(1). With
these data, we define the surface 	(α0, α1) := [β1/2, w, β0, β1]T . It is well defined
and smooth in a neighborhood of the origin since p(1) = 1 for α0 = α1 = 0. Let
‖αJ ‖∞ = h. Then, ‖α‖∞ = h and

p(1) = 1 +
∫ 1

0
iα(s) ds + O(h2) = 1 + i

α0 + α1

6
+ O(h2)

so that w = 1 + O(h2) and argp(1) = (α0 + α1)/6 + O(h2). We conclude that

	(0, 0) =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ , D	(0, 0) = 1

6

⎡
⎢⎢⎣

−1 −1
0 0
5 −1

−1 5

⎤
⎥⎥⎦ ,

are value and derivative of 	 at the origin. The lower (2× 2)-submatrix of D	(0, 0)
has determinant 2/3. Hence, by the implicit function theorem, there exists a neigh-
borhood U of the origin and a smooth function F : U → R2 such that [F(βJ ), βJ ]T
defines a point on the trace of	 for all βJ ∈ U , corresponding to the clothoid solving
(4). Value and derivative of F at the origin are given by

F(0, 0) =
[
0
1

]
, DF(0, 0) =

[−1 −1
0 0

]
·
[
5 −1

−1 5

]−1

=
[−1/4 −1/4

0 0

]
.

One might suspect that employing functions α of the general form α = α0�
2
0 +

α1/2�
2
1/2 + α1�

2
1 would define even more solutions of (4). To see that this is not true,

let α̃ := α−α1/2 = (α0−α1/2)�
2
0+(α1−α1/2)�

2
1 be an angle function as considered

above. Then, the corresponding clothoids p := I (α, ·) and p̃ := I (α̃, ·) are related
by p = exp(iα1/2)p̃ so that their normal forms coincide,

q = p

p(1)
= exp(iα1/2)p̃

exp(iα1/2)p̃(1)
= p̃

p̃(1)
= q̃.
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Let pJ , αJ be boundary data for the general problem (3) with d = p1 − p0 �= 0. If q

is the solution of (4) for data βJ := αJ − arg d according to the preceding theorem,
then p := p0 + dq solves (3). With q = wI (β, ·), an equivalent expression is

p = p0 + d

I (β)
I (β, ·), (5)

which is independent of the velocity w. Hence, it suffices to know the first coordinate
function

f : U → R, f (β0, β1) = β1/2,

of F to construct the crucial tangent angle β := β0�
2
0 + f (β0, β1)�

2
1/2 + β1�

2
1.

The function f has the symmetry properties

f (β0, β1) = f (β1, β0), f (−β0, −β1) = −f (β0, β1). (6)

Hence, the second order derivatives vanish at the origin and we obtain the expansion

f (β0, β1) = −β0 + β1

4
+ O(‖βJ ‖3).

3 Approximate solution

Computing accurate solutions of the nonlinear problem (4) is possible, but the deter-
mination of β1/2 = f (β0, β1) requests more or less elaborate and/or computationally
expensive numerical methods. Instead, we propose a good explicit approximation f̃

for later use with subdivision algorithms. More precisely, we seek a function f̃ with
the following properties:

i) f̃ : R2 → R is a cubic polynomial. This choice combines modest complexity
with sufficient flexibility to achieve good global approximation.

ii) f̃ (0, 0) = f (0, 0) and Df̃ (0, 0) = Df (0, 0). Thus, f̃ approximates f very
good for small data.

iii) f̃ inherits the symmetry properties (6) from f ,

f̃ (β0, β1) = f̃ (β1, β0), f̃ (−β0, −β1) = −f̃ (β0, β1).

iv) For a wide range of boundary data, say βJ ∈ B := [−π/2, π/2]2, the angle
defect

δ(βJ ) := arg I (β), β := β0�
2
0 + f̃ (β0, β1)�

2
1/2 + β1�

2
1

is small in modulus.

Before presenting our solution, let us explain the meaning of the angle defect as a
measure for the quality of the approximation f̃ .

Theorem 3.1 Given Hermite data pJ , αJ with d = p1−p0 �= 0, let βJ := αJ −arg d

and β := β0�
2
0 + f̃ (β0, β1)�

2
1/2 + β1�

2
1, as above. Then, analogous to (5),

p := p0 + d

I (β)
I (β, ·)

50   Page 8 of 22 Adv Comput Math (2021) 47: 50



defines a clothoid interpolating the point data, i.e., p(0) = p0, p(1) = p1. At the
boundaries, its tangent angle α differs from the prescribed values by the angle defect,

α(0) = α0 − δ(βJ ), α(1) = α1 − δ(βJ ).

Proof Interpolation of the point data is trivial. For the tangent angle, we obtain

α(j) = arg d + β(j) − arg I (β) = arg d + βj − δ(βJ ) = αj − δ(βJ ), j ∈ J .

To construct a suitable function f̃ , we adopt the idea used in the proof of Theo-
rem 2.2. For a large collection of angles αi

J , i ∈ I , we compute points 	
(
αi
0, α

i
1

) =
[βi

1/2, w
i, βi

0, β
i
1]T representing clothoids in normal position. Points for which one of

the angles βi
0, β

i
1/2, β

i
1 lies outside the interval B are discarded as they correspond to

clothoids with too large tangent angles, which are of little relevance for most appli-
cations, e.g., for design purposes. Denoting the index set of the remaining points by
Ĩ , the task is to determine f̃ such that f

(
βi
0, β

i
1

) ≈ βi
1/2 for all i ∈ Ĩ . The ansatz for

the cubic polynomial f̃ satisfying ii) with symmetry properties according to iii) is

f (β0, β1) = (β0 + β1)
(
f1

(
β2
0 + β2

1

)
+ f2β0β1 − 1/4

)
.

Now, we can determine the unknown parameters f1, f2 by standard approximation
methods. The following choice was found when striving for a good compromise
between the maximal angle defect ‖δ(βJ )‖∞ and simplicity of the coefficients.

Theorem 3.2 Let

f̃ (β0, β1) := (β0 + β1)

(
β2
0 + β2

1

68
− β0β1

46
− 1

4

)
. (7)

There exist constants c1, c2 such that the angle defect is bounded by

|δ(β0, β1)| ≤ min
{
c1, c2|β0 + β1| · ‖βJ ‖2

}

for all βJ ∈ B := [−π/2, π/2]2.

A feasible numerical value for both constants is c1 = c2 = 1/800, which is less
than a tenth of a degree, see Fig. 4.

Proof Boundedness of the angle defect by some constant c1 follows immediately
from continuity over the compact domain B. Concerning existence of a bound in
terms of |β0 + β1| · ‖βJ ‖2, we note that properties ii) and iii) together with (6) imply
that f (βJ ) − f̃ (βJ ) = O(‖β‖3) and f (βJ ) = f̃ (βJ ) = 0 for β0 + β1 = 0. Thus,
there exists a constant c̃2 such that

|f (βJ ) − f̃ (βJ )| ≤ c̃2|β0 + β1|(β2
0 + β2

1 ), βJ ∈ U .
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It remains to show that this qualitative behavior is inherited by δ. To this end, we
define the function

�(βJ , β1/2) := ∣∣arg I (β)
∣∣, βJ ∈ B, β1/2 ∈ f (B) ∪ f̃ (B),

with β = β0�
2
0 + β1�

2
1 + β1/2�

2
1/2. Since |β1 − β0| < 2π for βJ ∈ B, Lemma 2.1

implies that the integral is nonzero so that � is a smooth function over a compact
domain and hence Lipschitz with some constant L. We obtain

δ(βJ ) = �(βJ , f̃ (βJ )) = �(βJ , f̃ (βJ )) − �(βJ , f (βJ ))

≤ L|f̃ (βJ ) − f (βJ )| ≤ c̃2L|β0 + β1|(β2
0 + β2

1 )

for βJ ∈ U . For βJ �∈ U , continuity of δ shows that the inequality remains valid
with a possibly enlarged constant c2. The given numerical value for c1 and c2 can be
verified by evaluation over a fine grid on B, see Fig. 4.

An estimate on the pointwise error will be presented in Section 6.
In many applications, an error of less than a tenth of a degree for the interpola-

tion of tangent angles will be acceptable so that the given approximation can be used
directly. Moreover, the theorem shows that the approximation is exact for the sym-
metric case f (β0, −β0) = f̃ (β0, −β0) = 0, whose solution is a segment of a circle
or a straight line.

If, in the general case, higher accuracy is required, one step of the Newton iteration

β1/2 �−→ β1/2 − arg I (β)/Re

⎛
⎝

∫ 1
0 �21/2(t) exp(iβ(t)) dt

I (β)

⎞
⎠

reduces the maximal angle defect to less than 5×10−8, and a second step to less than
5×10−16.

Fig. 4 Plots of 800·|δ(βJ )| (left) and 800·|δ(βJ )|/(|β0+β1|(β2
0 +β2

1 )) (right) for −π/2 ≤ β0, β1 ≤ π/2.
The upper bound 1 in both cases indicates that c1 = c2 = 1/800 is a feasible value for the constants in
Theorem 3.2
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4 Hermite subdivision by the clothoid average

If a whole sequence of Hermite data points is to be interpolated, one might join
always two of them by a clothoid and connect the segments to form a single compos-
ite curve. If the clothoids are determined exactly, their contact is G1, meaning that
points and tangent directions of neighboring clothoids coincide at the junctions. If the
clothoid is only approximated, as described in the preceding section, the contact is
still continuous, but not G1 in a strict sense. In any case, curvature is discontinuous,
what may be insufficient for many design applications. Below, we propose different
subdivision strategies to generate a (visually) smooth curve from a sequence p0

j of

points in C and corresponding tangent angles α0
j , j ∈ Z. As building block we define

the (approximate) clothoid average as follows:

Definition 4.1 Given a pair of Hermite couples hj := (pj , αj ), j ∈ J , with d :=
p1−p0 �= 0, let p ∈ K1 be the clothoid with endpoints p̃(j) = pj and tangent angles
α(j) ≈ αj constructed by the approximation F̃ of F according to Theorem 3.2. Then,
the approximate clothoid average of h0 and h1 at t ∈ R is defined by evaluation of p

and the corresponding angle function α at t , and written as

th0 ⊕ (1 − t)h1 := (
p(t), α(t)

)
.

Sequences of Hermite couples are denoted by H := (hj )j∈Z. Now, we generate
sequences H 0, H 1, H 2, . . . from given initial data H 0 by means of a binary sub-
division operator S : H� �→ H�+1, the rules of which are based on the clothoid
average.

The simplest subdivision operator of that type is inserting a new Hermite couple
always between two given ones,

S1 := H� �→ H�+1, h�+1
2j = h�

j , h�+1
2j+1 = 1

2
h�

j ⊕ 1

2
h�

j+1.

Formally, S1 corresponds to the Lane-Riesenfeld algorithm of degree 1. Defining
the averaging operator

A := H �→ H ′, h′
j = 1

2
hj ⊕ 1

2
hj+1,

we can proceed in that direction and define Lane-Riesenfeld-type algorithms of
degree n by applying (n − 1) rounds of averaging to the output of S1,

Sn := An−1S1, n ∈ N.

For instance, the Chaikin-type algorithm, obtained for n = 2, explicitly reads

S2 := H� �→ H�+1, h�+1
2j = 1

2
h�

j⊕
1

2

(1
2
h�

j⊕
1

2
h�

j+1

)
, h�+1

2j+1 = 1

2

(1
2
h�

j⊕
1

2
h�

j+1

)
⊕1

2
h�

j+1.

Needless to say that this symbolic representation of a nonlinear process cannot be
simplified through commutativity, associativity, or distributivity.
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As a further example, we define a family of interpolatory four-point schemes S4
ω

with tension parameter ω < 0,

S4
ω :=H� �→H�+1, h�+1

2j :=h�
j , h�+1

2j+1 := 1

2

(
ωh�

j−1 ⊕ (1−ω)h�
j

)
⊕1

2

(
(1−ω)h�

j+1 ⊕ ωh�
j+2

)
.

Of course, many other subdivision schemes, including schemes of arbitrary arity,
can be constructed in this spirit.

Let H� = S�H 0 =
(
h�

j

)
j∈Z be the sequence of Hermite couples h�

j =
(
p�

j , α
�
j

)

at level � ∈ N0. A common feature of the algorithms presented above is the repro-
duction of circles. That is, if there exists a midpoint m ∈ C and a radius r > 0 such

that p�
j = m − ir exp

(
iα�

j

)
for all j , then p�+1

j = m − ir exp
(
iα�+1

j

)
for all j .

Furthermore, clothoids are almost reproduced. That is, if p ∈ K1 is a clothoid with
angle function α, and if

p�
j = p

(
t�j

)
, α�

j = α
(
t�j

)
, j ∈ Z,

for certain parameters t�j , then there exist parameters t�+1
j such that

p�+1
j ≈ p

(
t�+1
j

)
, α�+1

j ≈ α
(
t�+1
j

)
, j ∈ Z.

The quality of the approximation is determined by the magnitude of the angle defect
according to the preceding section.

Concerning convergence, the examples in the next section suggest that all algo-
rithms presented here are G1-convergent in the following sense: there exists a curve
p in C with tangent angle α which, respectively, are the limits of points and angles
generated by the algorithm. More precisely, if j (�) is a sequence of integers such that
t = lim�→∞ 2−�j (�), then

lim
�→∞ p�

j (�) = p(t) and lim
�→∞ α�

j (�) = argp′(t) = α(t).

This is analogous to standard Hermite subdivision, where the slope of the limit must
coincide with the limit of slopes, and that is why we suggest to call the procedures
introduced here Geometric Hermite subdivision. A proof of G1-convergence of the
Lane-Riesenfeld-type algorithm S1 of degree 1 is given in Section 5; a more general
theory is currently developed and beyond the scope of this paper.

5 G1-convergence of the scheme S1

While the focus of this paper is on the construction of geometric Hermite sub-
division schemes, we also want to outline a proof for the G1-convergence of the
Lane-Riesenfeld-type algorithm S1. It is based on the results in [17], but we want to
remark that the notion of G1 used there is special. It would be good to have a link
between the approach of Dyn/Hormann and standard theory, which calls a curve G1

if it has a C1-reparametrization.
To prepare our analysis, we establish two inequalities. They show that the scheme

S1 is shrinking secant lengths and angles at geometric rates.
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Lemma 5.1 Let (p′, α′) := 1
2h0 ⊕ 1

2h1 be the clothoid average of the Hermite
couples h0 = (p0, α0) and h1 = (p1, α1). Furthermore, denote secants by d :=
p1 − p0, d

′
0 := p′ − p0, d

′
1 := p1 − p′ and angles by βJ := αJ − arg d, β ′

0,J =
(α0, α

′) − arg d ′
0, β

′
1,J = (α′, α1) − arg d ′

1. There exist constants γ1, γ2 ∈ (0, 1) such
that

max
{|d ′

0|, |d ′
1|

} ≤ γ1|d|, max
{‖β ′

0,J ‖2, ‖β ′
1,J ‖2

} ≤ γ2‖βJ ‖2,
whenever d �= 0 and βJ ∈ D := {βJ : ‖βJ ‖2 ≤ π/2}.

Validity of the inequalities is invariant with respect to similarities so that it suffices
to consider the special case p0 = 0, p1 = 1, leaving only the angles βJ ∈ D variable.
For that case, Fig. 5 shows the ratios

�1(βJ ) := max
{|d ′

0|, |d ′
1|

}

|d| and �2(βJ ) := max
{‖β ′

0,J ‖2, ‖β ′
1,J ‖2

}

‖βJ ‖2 (8)

evaluated on a relatively fine polar grid covering the diskD. It indicates that γ1 = .61
and γ2 = .93 are feasible constants. A rigorous proof of the lemma can be found in
the Appendix.

Convergence and smoothness are local properties of S1 in the sense that the Her-
mite couples h�

j depend only on h0k, h
0
k+1 for k ≤ j2−� ≤ k + 1, corresponding

to the interval [k, k + 1] of the standard parametrization. That is, convergence and
smoothness can be studied for initial data H 0 which are periodic in the sense that
h0j = h0j+k, j ∈ Z, for some k ≥ 2. This assumption avoids technical problems

with unboundedness of sequences. Throughout, as before, H� =
(
h�

j

)
j∈Z , h�

j =
(
p�

j , α
�
j

)
. Furthermore, we define the vectors d�

j := p�
j+1−p�

j and the pairs of angles

β�
j,J =

(
β�

j,0, β
�
j,1

)
by

β�
j,0 := α�

j − arg d�
j , β�

j,1 := α�
j+1 − arg d�

j .

Theorem 5.2 Let H 0 be periodic. If d0
j �= 0 and β0

j,J ∈ D for all j ∈ Z, then

the iterates H� := S�
1H

0 define a sequence of polygons
(
p�

j

)
j∈Z converging to a

Fig. 5 Contraction rates �1(βJ ) (left) and �2(βJ ) (right) plottet over the disk D
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G1-limit in the sense of [17]. Moreover, the angles α�
j converge to the arguments of

d�
j ,

lim
�→∞max

j∈Z

(
α�

j − arg
(
d�
j

))
= 0.

Proof Applying the inequalities of Lemma 5.1 iteratively, we obtain for the maximal
secant lengths and angles at level �

max
j

|d�
j | ≤ γ �

1 max
j

|d0
j |, max

j
‖β�

j,J ‖2 ≤ γ �
2 max

j
‖β0

j,J ‖2.

First, the sequence of maximal secant lengths is summable,

∞∑
�=0

max
j

|d�
j | ≤ maxj |d0

j |
1 − γ1

< ∞,

implying that the sequence of polygons (p�
j )j∈Z, converges to a continuous limit, see

Theorem 3 and Proposition 4 in [17]. Second, to address G1-continuity, we consider
the exterior angles

δ�
j := arg

(
d�
j

)
− arg

(
d�
j−1

)
= β�

j−1,1 − β�
j,0

between consecutive secants. They are bounded by

max
j∈Z

|δ�
j | ≤ 2max

j∈Z
‖β�

j,J ‖2 ≤ 2 · γ �
2 max

j∈Z
‖β0

j,J ‖2.

Hence, also the sequence of maximal exterior angles is summable,

∞∑
�=0

max
j

|δ�
j | ≤ 2maxj ‖β0

j,J ‖2
1 − γ2

< ∞.

Following Theorem 18 in [17], the limit curve is G1. Third, the final statement of the

theorem is a simple consequence of α�
j − arg

(
d�
j

)
= β�

j,0.

6 Numerical experiments

In this section, we present numerical examples illustrating the shape properties of the
Hermite subdivision algorithms Sn and S4

ω as introduced in the preceding section.
Throughout, we use the same set of initial data H 0. To avoid a special treatment

of boundaries, it is assumed to be periodic, h0j = h0j+8, j ∈ Z. All figures are struc-

tured as follows: On the left hand side, we see the initial points p0
j and normals

n0j := i exp
(
iα0

j

)
together with the polygon p�

j as obtained after � = 8 rounds of

subdivision. The middle figure shows the points p�
j for � = 5 together with the cor-
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Fig. 6 Maximal relative
pointwise error ε(r) for
r ∈ [0, π/2]

responding normals n�
j := i exp

(
iα�

j

)
. On the right hand side, estimated curvature

values κ�
j , � = 8, are plotted versus the normalized chord length

s�
j := σ

j−1∑
i=0

∣∣p�
i+1 − p�

i

∣∣,

where σ is chosen such that the length of one loop equals 1. Specifically, the cur-
vature value κ�

j is computed as the reciprocal radius of the circle interpolating the

points p�
j−1, p

�
j , p

�
j+1. The Fresnel-integrals I (β, ·) appearing in the definition of the

clothoid average are computed using Gauss-Legendre quadrature with three nodes,
I3(β, a, b) ≈ ∫ b

a
exp(β(s)) ds. With this standard subroutine, the algorithm for

computing the clothoid average

(p, α) = th0 ⊕ (1 − t)h1

of the data h0 = (p0, α0), h1 = (p1, α1) proceeds as follows:

d := p1 − p0

βi := αi − arg d, i ∈ {0, 1}
β1/2 := (β0 + β1)

((
β2
0 + β2

1

)
/68 − β0β1/46 − 1/4

)

β(s) := exp(i((s − 1)(2s − 1)β0 + 4s(1 − s)β1/2 + s(2s − 1)β1))

p := p0 + d · I3(β, 0, t)/(I3(β, 0, t) + I3(β, t, 1))

α := β1/2 + arg d

Our MATLAB implementation computes more than 100,000 clothoid averages per
second on a standard laptop. This admits high frame rates for interactive curve design
with dozens of control points for subdivision schemes like S1, . . . , S5, and S4

ω.
The perfect position p̂ of the clothoid average would be obtained by evaluation

of the exact interpolant using exact quadrature. Instead, p is determined using an
approximate interpolant and approximate quadrature. While the angle defect has been
studied already above, the function

ε(r) := max‖βJ ‖2=r

p − p̂

|p1 − p0] ,
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Fig. 7 Lane-Riesenfeld-type subdivision of degree n = 1

measures the maximal relative pointwise deviation for pairs of angles with norm r as
obtained for midpoint evaluation, t = 1/2. Figure 6 shows a logarithmic plot of ε for
pairs of angles with norm less than π/2. The maximum is less that .15 permille, and
much smaller values are attained as r tends to zero.

Figure 7 shows the Lane-Riesenfeld-type algorithm S1. By construction, it is inter-
polatory. The plots suggests that the limit isG1, i.e., free of kinks, and that the tangent
angle of the limit equals the limit of tangent angles. The same observation is true for
all subsequent cases. Curvature looks piecewise linear, as it would be the case when
connecting always two consecutive points by a clothoid. In fact, the pieces are not
exact clothoids due to the angle defect, but the deviation is very small. The uneven
distribution of spikes in the middle figure indicates that the standard parametrization

t�j = j2−� �→ p�
j

does not converge to a differentiable limit.
Figure 8 shows the Lane-Riesenfeld-type algorithm S2. The scheme is no longer

interpolatory, even though the initial data points p0
j are very close to the generated

curve. The same is true for all schemes Sn, n ≥ 2. Curvature looks continuous,
but it still has certain imperfections. Thanks to the averaging step, the standard
parametrization is now smoothed out, and we conjecture that it is C1.

Figure 9 shows the Lane-Riesenfeld-type algorithm S3. Now, the curvature distri-
bution is free of artifacts so that the generated curve can be rated Class A according
to the conventions of the automotive industry. However, there are certain spots where

Fig. 8 Lane-Riesenfeld-type subdivision of degree n = 2
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Fig. 9 Lane-Riesenfeld-type subdivision of degree n = 3

Fig. 10 Four-point subdivision with weight ω = −1/18

Fig. 11 Four-point subdivision with weight ω = −1/9
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curvature seems to be not differentiable with respect to arc length. That is, the limit
is G2, but not G3. The same seems to be true also for Lane-Riesenfeld variants of
even higher degree.

Figure 10 shows the four-point scheme with weight ω = −1/18. It is interpolatory
and seems to generate a G2-limit. Extended experiments show that the value ω =
−1/18 yields visually fairest curves. For comparison, Fig. 11 shows the much less
satisfactory result for ω = −1/9.

7 Conclusion and outlook

In this paper, we have proposed geometric Hermite subdivision schemes and we have
demonstrated that they are a reasonable means for designing curves with prescribed
tangents or normals. More precisely, we have first proposed an explicit strategy to
approximate Hermite interpolating clothoids and used it to define the clothoid aver-
ages. Then, we have used clothoid averaging to define geometric Hermite subdivision
schemes. Particular instances considered were the geometric Hermite analogues of
the Lane-Riesenfeld schemes and of the four-point scheme. Examples demonstrate
that these schemes yield very convincing results. Finally, we have presented some
first smoothness results. More precisely, we obtain smoothness in the sense of [17]
for the first order geometric Lane-Riesenfeld Hermite scheme. However, the notion
of [17] is not standard; standard theory calls a curve G1 if it has a C1 reparametriza-
tion. It would be desirable to obtain related G1- or even G2-smoothness results for
wider classes of schemes. This is an interesting topic of ongoing research.

Appendix: Proof of Lemma 5.1

Validity of the lemma is supported by the two plots in Fig. 5. However, they show
merely the evaluation on a finite grid using standard double precision arithmetic, and
do not constitute a credible proof. While an analytic treatment is cumbersome, inter-
val arithmetic provides a convenient way to settle the issue in a numerical, though
rigorous way. Here, we used INTLAB [38] to verify the claim for bounds γ1 = .9 and
γ2 = .999. Smaller constants are possible, but lead to quite long computation times
without providing deeper insight.

We start with considering the ratio �1 according to (8). By symmetry, it satisfies

�1(β0, β1) = �1(−β0, −β1) = �1(β1, β0).

We employ polar coordinates (β0, β1) = (r cosφ, r sinφ) to represent the parameter
vector β = (β0, β1). By the above symmetry, it suffices to verify

�∗
1(r, ϕ) := �1(β0, β1) ≤ γ1 for (r, ϕ) ∈ D∗

1 := [0, π/2] × [−π/4, π/4]
to cover the whole domain D = {(β0, β1) : r ≤ π/2}. To this end, we partition D∗

1
into a uniform rectangular grid of 9×9 subcells. On each of these subcells, a rigorous
upper bound of the function �∗

1 is determined using INTLAB, where the range of the
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Fig. 12 Strict upper bound on the ratio �∗
1 for (r, ϕ) ∈ D∗

1

integrals appearing in the formula for S1 is enclosed by upper and lower sums corre-
sponding to a partition of the domain of integration into 200 equal pieces. Figure 12
shows a piecewise constant upper bound on the function �∗

1 over the domain D∗
1

based on this computation. The maximal value .872 is less than γ1, what verifies the
claim for the shrinkage of secant lengths.

Establishing the contraction of angles is more involved since the ratio �2(β0, β1)

is not defined for β0 = β1 = 0. To settle this issue, we distinguish two cases. First,
we consider pairs of angles βJ in the annulus A2 := {βJ : π/4 ≤ r ≤ π/2}, thus
staying away from the singularity at the origin. �2 has the same symmetry properties
as �1. Hence, as before, we have to show that

�∗
2(r, ϕ) := �2(β0, β1) ≤ γ2 for (r, ϕ) ∈ A∗

2 := [π/4, π/2] × [−π/4, π/4].
Evaluation on a uniform grid is posssible, but not efficient since it would have to be
quite fine. Instead, we implemented a recursive algorithm that computes an upper
bound on a given rectangle. If it is less than γ2, the rectangle is accepted. Otherwise,
it is split into four equal parts, and the procedure is repeated for all of them. Starting
from A∗

2, the algorithm terminates, and Fig. 13 (right) shows the resulting partition
of the domain A∗

2, consisting of 2011 rectangles.
The remaining case of angles βJ in the disk D2 := {βJ : r ≤ π/4} is treated as

follows: We want to show that the function

�(βJ ) := γ 2
2 ‖βJ ‖22 − ‖β ′

0,J ‖22 (9)

is nonnegative. A direct verification by means of interval arithmetic is not possible
since the true range is necessarily over-estimated, and �(0) = 0. Instead, we set
�∗(r, ϕ) := �(βJ ) and consider

∂2r �∗(r, ϕ) for (r, ϕ) ∈ D∗
2 := [0, π/4] × [−π/2, π/2].

Unlike�∗ and ∂r�
∗, this function is strictly positive, and indeed, a recursive INTLAB

algorithm analogous to the one described above confirms that ∂2r �∗(r, ϕ) > 0 on
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Fig. 13 Adaptive partition of D∗
2 (left) and A∗

2 (right)

D∗
2 . Figure 13 (left) shows the resulting partition of the domain, consisting of 616

rectangles.
Using �∗(0, ϕ) = ∂r�

∗(0, ϕ) = 0, we integrate twice to find

�∗(r, ϕ) =
∫ r

s=0

∫ s

t=0
∂2r �∗(t, ϕ) dtds ≥ 0

for (r, ϕ) ∈ D∗
2 . Hence, �(βJ ) ≥ 0 for pairs of angles in the right half plane, i.e.,

βJ ∈ {(β0, β1) ∈ D2 : β0 ≥ 0}. However, by symmetry, �(−βJ ) = �(βJ ) so that
�(βJ ) ≥ 0 for βJ ∈ D2. Consequently,

‖β ′
0,J ‖2 ≤ γ2‖βJ ‖2 for βJ ∈ D2.

Concerning β ′
1,J , we flip the angles β0, β1 and set β̃ := (β1, β0). Again by symmetry,

�(β̃J ) = γ 2
2 ‖β ′

1,J ‖22 − ‖β̃‖22 = γ 2
2 ‖β ′

1,J ‖22 − ‖β‖22 ≥ 0.

This yields

‖β ′
1,J ‖2 ≤ γ2‖βJ ‖2 for βJ ∈ D2,

and the proof is complete.
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