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Abstract 
Optical investigations of the dynamics of concentrated suspensions, such as in blood flows (Fitzgibbon et al. in Biophys J 
108(10):2601–2608, 2015. http://doi/org/10.1016/j.bpj.2015.04.013) or slurry flows (Li et al. in Ocean Eng 163(October 
2017):691–705, 2018. http://doi/org/10.1016/j.oceaneng.2018.06.046), are challenging due to reduced optical accessibility. 
Furthermore, the suspension particle image size can strongly deviate from the optimal particle image size for PIV meas-
urements. Optical accessibility can be achieved by refractive index matching of surface labelled suspension particles. This 
results in particle images that are transparent in the particle image centre, but fluoresce at the particle image rim, resulting 
in ring-shaped particle images. In the present study, the influence of the particle image size on the cross-correlation result 
of such ring-shaped particle images is compared with Gaussian and plateau-shaped particle images. Particles of Gaussian 
image shape result from fully labelled particles with small image diameters and are commonly used in PIV measurements. 
Such particles are also utilized for the determination of the continuous phase velocities in the experimental part of the present 
study. With increasing image diameter, fully labelled particles are observed to assume plateau-shaped particle images. Monte 
Carlo simulations of synthetically generated images show that ring-shaped particle images have a superior behaviour, i.e. 
they assume a reduced displacement estimation error for noisy as well as for noise-free image data, compared to Gaussian 
and plateau-shaped particle images. This is also true for large particle image diameters when particle images are intersected 
at interrogation window borders or when different values of nonzero particle image displacements are considered. The 
detectability is similar for all three particle image shapes as long as particles do not intersect with the interrogation window 
border. Interestingly, for intersected particles of large image diameter, ring-shaped particle images show a slightly improved 
detectability compared to particle images of Gaussian and plateau shape. Furthermore, the detectability is insensitive against 
a nonzero particle image displacement. The usage of refractive index matched, ring-shaped particle images results in a good 
optical accessibility of the suspension. This allows to perform simultaneous cross-correlation evaluations on large ring-
shaped particle images and fluid tracers with Gaussian particle images that are two orders of magnitude smaller compared to 
suspension particle images. Velocity measurements are taken on a suspension containing 5 vol% surface labelled, refractive 
index matched 60 μm polymethylmethacrylate (PMMA) particles. Simultaneously, μPIV measurements of the carrier liquid 
flow are performed utilizing 1.19 μm fluorescent polystyrene (PS) particles. Measurement results reveal a parabolic shape of 
the velocity profiles of both phases with a mean slip velocity of 7.4% at the position of maximum streamwise velocity in a 
580 μm high trapezoidal channel. An error analysis confirms the presence of these slip velocities within a 68.5% confidence 
interval. A measurement uncertainty in the order of magnitude of O(10−1 px) is reached for both fluid tracers and suspension 
particles. Overall, the present study demonstrates theoretically and experimentally that the usage of suspension particles with 
ring-shaped images is superior compared to Gaussian and plateau-shaped particle images of the same size. Additionally, the 
present study demonstrates that the usage of ring-shaped particle images allows to investigate suspension bulk dynamics by 
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measuring velocity fields of both the suspended and the continuous phase simultaneously and with an overall uncertainty 
that is in the same order of magnitude as for standard μPIV measurements.

Graphic abstract

List of symbols
APTV	� Astigmatism PTV
CCD	� Charge-coupled device
D	� Detectability
Dp	� Particle diameter
DPI	� Particle image diameter
dt	� Inter-framing time
dz	� Spatial distance in z direction
Δd	� Specified particle image displacement
�d	� Calculated particle image displacement
FI	� In-plane loss-of-pairs factor
FO	� Out-of-plane loss-of-pairs factor
h	� Microchannel height
I(Xi)	� Single exposed image
I(x)	� Gaussian density function
I	� Intensity distribution
K5	� Amount of particle images intersected at inter-

rogation window borders
l	� Interrogation window edge length
LDV	� Laser Doppler velocimetry
LIF	� Laser-induced fluorescence
LL	� Lower limit
M	� Magnification
NA	� Numerical aperture
NI	� Number of particle images
nD	� Refractive index at the sodium D-line
NIW	� Number of interrogation windows
Nppp	� Particle image density
Nd:YAG​	� Neodymium-doped yttrium aluminium garnet
OPF	� One-phase flow
PIV	� Particle Image Velocimetry
PMMA	� Polymethylmethacrylate
PS	� Polystyrene
PTV	� Particle Tracking Velocimetry
R(s)	� Cross-correlation function
R0	� Maximum value of highest correlation peak

RC(s)	� Mean intensity cross-correlation function
RD(s)	� Particle image displacement cross-correlation 

function
RF(s)	� Fluctuating noise cross-correlation function
R±1	� Correlation values next to R0

RPI	� Particle image radius
Reb	� Bulk Reynolds number
RMSE	� Root mean square error
s	� Separation vector
St	� Stokes number
SCL	� Suspension carrier liquid
SP	� Suspension particles
Δt	� Time interval
t0	� Reference time
U	� Uncertainty
u	� Component of the velocity vector in stream-

wise direction
ub	� Bulk fluid velocity
UL	� Upper limit
v	� Component of the velocity vector in spanwise 

direction
W1	� Interrogation area
Xi	� Particle image centre positions
y	� Coordinate in spanwise direction
z	� Coordinate in out-of-plane direction
�DoC	� Depth of correlation
�1, �2	� Error contributions to the displacement estima-

tion error
𝜖G	� Gaussian peak fit estimator
�	� Mean of Gaussian density function
�	� Kinematic viscosity
�	� Volumetric particle concentration
�	� Density
�2	� Variance of Gaussian density function
var

{

𝜖G
}

	� Displacement estimation error
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1  Introduction

Particle Image Velocimetry (PIV) is an established method 
for non-invasive flow measurements. If optical accessibility 
is granted, it can be applied to any type of particle seeded 
flow to trace the fluid motion, provided that particles behave 
as ideal fluid tracers. Usually in PIV measurements, tracer 
particles are chosen such that they follow the liquid-phase 
slip-free, i.e. Stokes number St ≪ 1 . This guarantees that 
measured tracer particle velocities are representative for the 
liquid-phase velocity field. However, if the Stokes number 
or the particle size compared to the characteristic channel 
dimensions is large, a significant slip velocity between sus-
pended particles and the carrier fluid may occur. Thus, the 
particle velocities are not representative for the liquid-phase 
flow field. Instead, particle velocities can be used to measure 
the bulk dynamics of particles themselves. In the experimen-
tal section of the present study (Sect. 5), we demonstrate that 
the simultaneous usage of both small tracer particles and 
large suspension particles allows to measure liquid-phase 
velocities as well as suspension particle velocities from the 
same set of recordings, i.e. at the same time. PIV is com-
monly applied to situations of high particle seeding density. 
It is suitable to measure transient flow fields, also in combi-
nation with other optical measurement techniques (Skarman 
et al. 1996; Funatani et al. 2004; Kordel et al. 2016). In clas-
sical PIV applications, fluid tracers should assume a small 
image diameter of only a few pixels (Willert 1996; West-
erweel 1997). Without astigmatism effects, their intensity 
profile will be typically Gaussian (Adrian 1991; Willert and 
Gharib 1991). The accuracy and reliability of PIV measure-
ments for Gaussian particle images is a function of various 
parameters, such as the amount of particles per interroga-
tion window, the particle image density, the particle image 
diameter, the signal-to-noise ratio, out-of-plane as well as 
in-plane loss-of-pairs and velocity gradients (Adrian 1991; 
Willert 1996; Westerweel 1997).

A measure for the accuracy of a cross-correlation result 
is the displacement estimation error. It is known to mini-
mize for particle image diameters of DPI = 2 − 3 px , while 
it grows for larger diameters due to random errors (West-
erweel 1997). While PIV is typically used to quantify flow 
fields, it is applicable to any kind of displacement field as 
long as the particle image shape and particle group forma-
tion do not change significantly between correlated frames.

A measure for the reliability of PIV measurements is 
the detectability, which is the ratio of the highest to the 
second highest correlation peak. It can be understood as 
the probability that the highest correlation peak corre-
sponds to the real particle image displacement (Adrian 
1991). Detailed information regarding the detectability 
and the displacement estimation error is given in Sect. 2.

Due to a reduced optical accessibility of suspension 
flows, PIV measurements of multiphase flows were often 
limited to dilute suspensions (Koutsiaris et al. 1999) or 
bubble flows of low gas volume fractions (Lindken and 
Merzkirch 2002). For optical investigations of suspension 
flows with higher volume fractions, a refractive index 
matching of the liquid to the solid phase can be done to 
increase the optical accessibility (Wiederseiner et al. 2011; 
Blanc et al. 2013). The concept of refractive index match-
ing can be applied to every liquid–solid combination with 
a transparent liquid and solid phase. Solely difficulties in 
handling of highly flammable or toxic liquids may restrict 
the choice of materials (Hassan and Dominguez-Ontiveros 
2008; Wiederseiner et al. 2011). Hence, this concept was 
already successfully applied for Particle Tracking Veloci-
metry (PTV) (Wang et al. 2008), laser Doppler velocime-
try (LDV) (Haam et al. 2000), laser-induced fluorescence 
(LIF) (Chen et al. 2005) and Astigmatism Particle Track-
ing Velocimetry (APTV) (Brockmann et al. 2020; Brock-
mann and Hussong 2021) measurements in multiphase 
flows. An advantage of the PIV measurement technique 
compared to other optical, non-invasive measurement 
techniques like the APTV approach is that no sophisticated 
calibration technique is required and all suspension parti-
cles can be labelled and, therefore, contribute to the meas-
urement result. In the present study, we apply refractive 
index matching of a ternary carrier liquid to suspension 
particles to gain optical access. This mixture is used as a 
basis for synthetic particle image generation (see Sect. 3) 
as well as for suspension flow measurements (see Sect. 5.)

To assess the suitability of cross-correlation-based meas-
urement techniques like PIV for measurements in dense sus-
pensions, we evaluate the displacement estimation error and 
the detectability of zero-displaced Gaussian, ring- and pla-
teau-shaped particle images of different particle image diam-
eters by means of Monte Carlo simulations that are based 
on synthetically generated particle images (see Sects. 4.1 
and 4.2). These show that the accuracy and reliability of 
particles with large image diameter strongly depends on the 
particle image shape. While a Gaussian intensity distribution 
is characteristic for small particle image diameters (Willert 
and Gharib 1991), particles assume rather a plateau-shaped 
intensity distribution for large image diameters (see also 
Sect. 3). To separate the size effect from the shape effect for 
PIV measurements, we study the behaviour of both Gaussian 
and plateau-shaped particle images over the whole investi-
gated image size regime. Ring-shaped intensity profiles may 
emerge for refractive index matched particles with fluores-
cent surface labelling. This situation may be encountered for 
optical investigations of dense particle laden flows but also 
in situations where particles naturally contain mainly carrier 
liquid such as hydrogel particles (Byron and Variano 2013) 
or cells (Lima et al. 2006).
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For small particle images, an in-plane loss-of-pairs refers 
to particles that are located only in one interrogation win-
dow of the first or second frame (Keane and Adrian 1992). 
However, when considering large particle image sizes, the 
contribution of intersected particle images may become rel-
evant, too. This effect is investigated for Gaussian, ring- and 
plateau-shaped particle images in Sect. 4.3.

In real measurement situations, particle images are dis-
placed between two consecutive frames. The influence of 
nonzero particle image displacements on the estimation 
error, the detectability and the deviation of the resulting 
displacement vector is investigated based on Monte Carlo 
simulations in Sect. 4.4.

To understand the dynamics of suspended particles, the 
relative motion between particles and surrounding fluid is 
evaluated. Relative motion may, for example, occur when 
the particle diameter is in the order of magnitude of the 
characteristic channel dimensions and, therefore, is much 
larger than the diameter of tracer particles commonly used 
in PIV measurements. To demonstrate the suitability of the 
utilized ring-shaped particle images to measure such suspen-
sion dynamics, micro-Particle Image Velocimetry ( μPIV) 
measurements are performed (see Sect. 5). As, additionally, 
small tracer particles are suspended to the flow, a simultane-
ous evaluation of the velocity profiles of both the continuous 

and the particulate phase is possible and slip velocities can 
be calculated.

A flow chart of the structure of the theoretical and the 
experimental part of the present study is given in Fig. 1.

2 � Theoretical background

This section deals with the mathematical description of the 
cross-correlation of two images. The choice of a suitable 
peak fit estimator is discussed for the determination of dis-
placement vectors (Sect. 2.1). Afterwards, the concept of 
detectability and displacement estimation error are intro-
duced (Sect. 2.2).

2.1 � Cross‑correlation and peak fit estimator

Two single exposed images I1(X1) and I2(X2) recorded 
at times t0 and t0 + Δt are considered, where Xi generally 
contains the centre positions of all particle images in the 
respective image. If particle images are displaced during 
the time interval Δt by a separation vector s , then it follows 
that X2 = X1 + s and the cross-correlation function R(s) of 
the two images I1(X1) and I2(X2) can be defined as (Keane 
and Adrian 1992):
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Here, W1 denotes the interrogation area. The separation 
vector s can be also interpreted as the vector by which the 
second image I2(X2) has to be shifted to match the particle 
positions of the first image, i.e. s = −

(

X2 − X1

)

= −ΔXP . 
According to Keane and Adrian (1992), the estimator for the 
cross-correlation can be decomposed into three characteris-
tic parts for single exposed double-frame images:

RC(s) and RF(s) contain the convolution of the mean intensi-
ties and the fluctuating noise of I1(X) and I2(X) , respectively. 
RD(s) results from the relative displacement of particle 
images between I1(X) and I2(X) and is hence on referred to 
as displacement correlation peak. As shown by Willert and 
Gharib (1991), RD(s) shows a Gaussian peak shape for parti-
cle images with a Gaussian intensity distribution. Therefore, 
a Gaussian peak fit estimator 𝜖G can be used to interpolate 
the centre position of RD(s) from discrete correlation val-
ues. With this, peak-locking effects can be reduced and the 
detection accuracy of the centre position of the displacement 
correlation peak can be extended to sub-pixel range (Willert 
and Gharib 1991). The Gaussian peak fit estimator reads 
(Westerweel 1997):

with R0 = RD(ΔXP) and R±1 = RD(ΔXP ± 1) . For ring-
shaped particle images, the corresponding correlation peak 
values can be approximated by a Gaussian function, as well. 
Thus, the peak fit estimator described in (3) is used for the 
investigation of the correlation results based on ring-shaped 
particle images in the following.

2.2 � Detectability and displacement estimation 
error

The quality of PIV measurements or more precisely, the 
accuracy with which the displacement correlation peak 
position is determined and the probability that the position 
of a displacement correlation peak is equivalent to the real 
particle image displacement, can be evaluated through the 
displacement estimation error and the detectability. Thus, 
they are a measure to describe the accuracy and the reli-
ability of a cross-correlation result.

The detectability D of a displacement correlation peak 
can be interpreted as the probability that a displacement cor-
relation peak is correctly identified as valid and, therefore, 
corresponds to the real particle image displacement. It is 
defined as the ratio of the correlation peak values of the 

(1)R(s) = ∫W1

I1(X1)I2(X1 + s) dX

(2)R(s) = RC(s) + RD(s) + RF(s)

(3)𝜖G =
ln
(

R−1

)

− ln
(

R+1

)

2
[

ln
(

R−1

)

+ ln
(

R+1

)

− 2 ln
(

R0

)] ,

highest and the second highest correlation peak of a correla-
tion function R(s) (Coupland and Pickering 1988; Keane and 
Adrian 1990; Adrian and Westerweel 2011):

The displacement estimation error can be expressed as the 
variance of its corresponding peak fit estimator. For a Gauss-
ian peak fit estimator, it can be described in a general math-
ematical form as (Westerweel 1997):

In case of a non-fractional displacement, (5) can be 
expressed as follows:

with both terms �1 and �2 representing different properties 
of the displacement correlation peak. The first term �1 is 
the squared derivative of the Gaussian peak fit estimator 𝜖G 
given in (3):

If the correlation peak flattens out, i.e. R±1 → R0 , the 
denominator of (7) approaches zero sooner than the nomi-
nator and �1 , and therefore, also var

{

𝜖G
}

 goes to infinity. The 
second term �2 reads:

It is a measure of (i) the spread of the normalized correla-
tion peak slope, i.e. its width as well as (ii) the spread of the 
correlation peak symmetry of an ensemble. For an ensem-
ble with only perfectly symmetric correlation peaks (that 
is, R+1 = R−1 ), the second term and (6), respectively, will 
approach zero for a finite correlation peak width.

3 � Synthetic particle image generation

In the present study, we investigate the influence of the parti-
cle image diameter on the cross-correlation result for differ-
ent particle image shapes. For this, synthetic particle images 
are generated with Gaussian, ring- and plateau-shaped inten-
sity profiles. While Gaussian intensity profiles are based on 
an analytical function, ring- and plateau-shaped profiles are 

(4)D =
R(s)max,1

R(s)max,2

(5)var
{

𝜖G
}

≈

+1
∑

i=−1

+1
∑

j=−1

𝜕𝜖G

𝜕Ri

𝜕𝜖G

𝜕Rj

cov
{

Ri,Rj

}

(6)var
{

𝜖G
}

≈ 𝜖1 ⋅ 𝜖2,

(7)

𝜖1 =

(

𝜕𝜖G

𝜕R±1

)2

=

(

4 ⋅
[

ln(R∓1) − ln(R0)
]

R±1

[

2 ⋅ ln(R±1) − 4 ln(R0) + 2 ⋅ ln(R∓1)
]2

)2

(8)�2 =
[

var
{

R−1

}

+ var
{

R+1

}

− 2cov
{

R−1,R+1

}]
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taken from fit functions of experimental image data. For 
this, self-labelled and commercially labelled PMMA par-
ticles with a nominal particle diameter of Dp = 60 μm are 
suspended in a carrier liquid and recorded under laser illu-
mination. Examples of both ring- and plateau-shaped parti-
cle images with DPI ≈ 70 px image diameter are shown in 
Fig. 2a, d, respectively. A particle image of Gaussian shape 
is given in Fig. 2g.

Obviously, self-labelled PMMA particles assume a ring-
shaped particle image, while commercially labelled particles 
show a plateau-shaped intensity profile. To achieve ring-
shaped particle images, first a molecular Rhodamine B dye 
is solved in distilled water. Afterwards, PMMA particles 
are suspended in this solution. After half an hour at room 
temperature, particles are recovered by sedimentation. The 
remaining solution of water and Rhodamine B is removed. In 
the end, labelled particles are dried in a heat bath at 70 ◦C . 
After this procedure, particles show to have a limited take 
up of dye, such that only the particle surface is labelled. 
When the particles are suspended in a refractive index 
matched liquid consisting of distilled water, glycerine and 

ammoniumthiocyanate (Bailey and Yoda 2003), they appear 
transparent with a fluorescent particle rim. In contrast to 
this, the material of commercially available particles is com-
pletely labelled, resulting in a plateau-shaped particle image.

Radial intensity distributions of ring- and plateau-shaped 
particle images are determined from approximately 500 
recorded, individual particle images by fitting a smooth-
ing spline to all intensity distributions. With that, different 
synthetic particle image diameters are realized for synthetic 
data generation of ring-shaped and plateau-shaped particle 
images by scaling the smoothing spline function. To create 
synthetic Gaussian particle images, the Gaussian density 
function is used:

with � = 0 . The variance of the Gaussian density function �2 
is adjusted iteratively, so that the width of the Gaussian den-
sity function corresponds to the prescribed particle image 
diameter. This width is defined to be at the point where the 
Gaussian curve reaches 0.5% of its maximum value. Finally, 
this threshold value is subtracted from the resulting shape 
function to reach a zero intensity value at RPI∕RPI,max = 1 . 
The resulting radial intensity distributions I

(

RPI∕RPI,max

)

 
normalized by the corresponding maximum intensity Imax 
of all three particle image shapes are shown in Fig. 3.

To create particle images of different discrete pixel sizes, 
radial intensity distributions are intersected and piecewise 
averaged intensity values are assigned to the corresponding 
pixel locations. Synthetic ring- and plateau-shaped particle 
images of DPI = 60 px are shown in Fig. 2b, e, respectively. 
As experimental data are usually affected by image noise, 
both, synthetic particle images without (see Fig. 2b, e, h) 
and with 8.5% image noise (see Fig. 2c, f, i), are analysed 
and compared in the course of this paper. Image noise is 
calculated as the ratio of the mean background intensity 

(9)I(x) =
1

√

2��2

⋅ exp

�

−0.5 ⋅
(x − �)2

�2

�

,

Fig. 2   a Recorded ring-shaped particle image; b synthetically gen-
erated ring-shaped particle image; c synthetically generated ring-
shaped particle image with 8.5% image noise; d recorded plateau-
shaped particle image; e synthetically generated plateau-shaped 
particle image; f synthetically generated plateau-shaped particle 
image with 8.5% image noise; g recorded Gaussian particle image; h 
synthetically generated Gaussian particle image; i synthetically gener-
ated Gaussian particle image with 8.5% image noise
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Fig. 3   Radial, fitted intensity distributions of Gaussian, ring- and pla-
teau-shaped particle images
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and the maximum intensity value of images with a particle 
image diameter of DPI = 60 px . Noise levels in the order of 
magnitude as mentioned above are encountered, even after 
pre-processing of raw recordings of suspension flows with 
ring-shaped particle images.

It may be noted that assigning a continuous intensity 
function (as given in Fig. 3) to discrete pixels leads to a 
reduction of the maximum particle intensity values for small 
particle image diameters. Figure 4 shows the intensity max-
ima as a function of the particle image diameter.

As can be seen, this discretization error becomes promi-
nent for small particle images of a few pixels diameter and 
is strongest for ring-shaped particle images due to a very 
sharp intensity peak atRPI∕RPI,max ≈ 2∕3 , evident in Fig. 3. 
However, in real experimental situations where, for example, 
noise-affected ring-shaped particle images may indeed give 
a weaker fluorescence signal for identical laser energy input 
compared to noise-affected plateau-shaped particle images, 
the cross-correlation result may be significantly affected for 
particle image diameters of DPI ≤ 10 px . Further details are 
discussed in Sect. 4.

To evaluate the size sensitivity of Gaussian, ring- and pla-
teau-shaped particle images on the cross-correlation result, 
500 double-frame images with five randomly distributed 
particle images in each interrogation window are created 
synthetically. To investigate solely the influence of the par-
ticle image shape on the cross-correlation result by means 
of the detectability and the displacement estimation error, 
defocused particle images are not considered, i.e. all particle 
images are in focus in all synthetically generated images. 
Furthermore, particle images either assume a zero displace-
ment between consecutive frames or, in case of nonzero-
displaced particle images, are always fully located inside 
interrogation windows. Due to this, neither an in-plane loss-
of-pairs nor an out-of-plane loss-of-pairs is present and the 
corresponding factors with which these effects are taken into 
account, FI and FO , respectively, assume FI = FO = 1 . This 

results in a constant effective number of particle images of 
NIFIFO = NI = 5 for all particle image diameters, which is 
in agreement with the recommended value for PIV measure-
ments (Keane and Adrian 1992). The displacement estima-
tion error is evaluated based on (6). For all investigations the 
interrogation window size is chosen to be 256 × 256 px . At 
first, overlapping particle images as well as particle images 
intersected at the interrogation window border are sup-
pressed to isolate the effect of the particle image size and 
shape on the cross-correlation result (see Sects. 4.1 and 4.2). 
Thus, particle images are also zero-displaced between two 
consecutive frames.

The influence of zero-displaced particle images that are 
located on the interrogation window border is investigated 
separately in Sect. 4.3. For this, sets of double-frame images 
with one, three and five out of five particle images are placed 
with their centre point on the interrogation window border. 
Particle images inside the interrogation window and those 
on its border are distributed randomly whereas particle over-
laps are excluded again. Examples of synthetically generated 
ring-shaped particle images of DPI = 60 px with zero and 
three intersected particle images are shown in Fig. 5a, b.

The effect of nonzero particle image displacements on the 
cross-correlation result is investigated in Sect. 4.4. Overlap-
ping particle images and intersections at the interrogation 
window borders are excluded.

4 � Results

To evaluate the influence of the particle image diameter 
and shape on the displacement estimation error and the 
detectability, Monte Carlo simulations based on ensembles 
of 500 double-frame images are performed. For the cross-
correlation of synthetically generated data (see Sect. 3), a 
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commercial PIV evaluation software (DaVis 8.4, LaVision 
GmbH) is used.

4.1 � Influence of particle image shape and diameter 
on the estimation error

In the present section, the influence of the particle image 
shape and diameter on the displacement estimation error 
is described. Excluded is the effect of particle images that 
are intersected at interrogation window borders, which is 
discussed in Sect. 4.3.

Figure 6a–f shows single cross-correlation results for two 
particle image sizes of synthetic image data with Gaussian, 
ring- and plateau-shaped particle images.

Cross-correlation results for particle image diameters of 
DPI = 5 px (Fig. 6a, c, e), as well as DPI = 60 px (Fig. 6b, 
d, f) and zero displacement are shown on the left and right 
hand side, respectively. It is evident that the correlation peak 
width increases with particle image diameter for all three 
types of particle image shapes. Furthermore, a comparison 

of displacement correlation peaks close to their maxi-
mum values reveals that correlation peaks resulting from 
ring-shaped particle images are most narrow compared to 
those of Gaussian and plateau-shaped particle images (see 
Fig. 7a–c).

The scaling behaviour between particle image shape and 
displacement estimation error is evident in the correlation 
peak width [see (6)]. Here, the first term �1 grows with an 
increasing displacement correlation peak width, while the 
second term �2 of the displacement estimation error denotes 
random errors. Thus, in comparison with Gaussian parti-
cle images a reduced estimation error is expected for ring-
shaped particle images while a slightly increased estimation 
error is expected for plateau-shaped particle images. Fig-
ure 8 shows the displacement estimation error in a semi-
logarithmic scale as a function of the particle image diam-
eter derived from a Monte Carlo simulation for Gaussian, 
ring- and plateau-shaped particle images.

Every data point results from 500 cross-correlated double 
frames, each containing five particle images and zero dis-
placement between corresponding frames. All graphs resem-
ble a non-monotonic relationship with a minimum estima-
tion error at DPI ≈ 2 − 3 px as it is also shown for Gaussian 
particle images by Westerweel (1997). Obviously, this 
minimum value corresponds to the optimum particle image 
diameter for PIV measurements as also given in the com-
mon literature (Raffel et al. 2007; Adrian and Westerweel 
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2011). For smaller particle image diameters, peak-locking 
effects occur, which result in an increased estimation error. 
For larger particle image diameters random errors lead to 
an increased estimation error (Westerweel 1997). While 
the estimation error appears to stay in the same order of 
magnitude for Gaussian and plateau-shaped particle images 
with growing image diameter, a clear distinction has to be 
made for ring-shaped particle images for DPI ≳ 10 px . Fig-
ure 8 shows a reduction of the displacement estimation error 
of up to one order of magnitude for ring-shaped particle 
images compared to Gaussian or plateau-shaped particle 
images (for DPI ≳ 10 px ). This can be understood from the 
fact that, for a constant particle image diameter, ring-shaped 
particle images decorrelate faster than Gaussian or plateau-
shaped particle images, due to their large intensity gradient 
at the particle image border and a nearly transparent centre 
region. Thus, the correlation peak width decreases (see also 
Fig. 6d), resulting in an improved displacement estimation 
error.

Figure  8 displays results for noise-free data only, a 
situation that is hardly found in experiments. To validate 
cross-correlation results of images that are closer to pre-
processed experimental measurement data, image noise of 
8.5% is added (for details of the synthetic image generation 
see Sect. 3) and the data set is analysed as well. The resulting 
estimation errors are shown in Fig. 9.

A clear difference in displacement estimation error for all 
three particle image shapes is evident in Fig. 9. However, 
image noise leads to a strong increase in random errors in 
the correlation plane (Meinhart et al. 2000). Thus, in com-
parison with the noise-free data that are shown in Fig. 8, 
the overall level of displacement estimation error is now 
increased by approximately four orders of magnitude. This 
is due to an increase in the correlation peak asymmetry, rep-
resented by �2 in (6), i.e. random errors in the correlation 
plane.

Furthermore, it is remarkable to see that noisy Gaussian 
particle images have a significantly higher estimation error 
compared to noisy plateau-shaped particle images while the 
corresponding noise-free particle images lead to very similar 
displacement estimation errors (see Fig. 8). Figure 10 shows 
both �1 and �2 as a function of the particle image diameter 
DPI for noise-free and noisy image data. It should be noted 
that results of �1 for images with and without noise coincide. 
Therefore, results of noisy image data are left out in Fig. 10 
for a clearer presentation.

As shown in Fig. 10, the increased estimation error of 
Gaussian particle images results from an increased amount 
of random errors in the correlation plane. This is obvious, 
since the values of �1 are similar for Gaussian and plateau-
shaped particle images with and without noise, but values 
of �2 differ significantly.

For particle image diameters of DPI < 3 px, the particle 
image diameter is of the same length scale as the image 
noise, leading to an increased asymmetry of individual 
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particle image peaks. This induces an increase in random 
errors represented by �2 , as shown in Fig. 10. Here, �2 for 
images with noise shows increased values for all three parti-
cle image shapes, compared to the values of �2 without noise. 
For larger particle images the random error decreases as the 
particle image diameter becomes significantly larger than 
the length scale of the image noise.

4.2 � Influence of the particle image size and shape 
on the detectability

Figure 11 shows the detectability D as a function of the par-
ticle image diameter for Gaussian, ring- and plateau-shaped 
particle images without and with image noise of 8.5%.

A general decrease in the detectability with increasing 
particle image diameter can be associated with a signifi-
cant increase in the particle image density Nppp , i.e. the por-
tion of pixels that is occupied by particle images relative to 
the total amount of pixels within an interrogation window 
increases. While the effective number of particle images is 
constant ( NI = 5 for all images), the particle image density 
increases from Nppp ≈ 0.00006 for DPI = 1 px to Nppp ≈ 0.22 
for DPI = 60 px . Since the particle image density Nppp 
mainly influences the height of the secondary correlation 
peak (Scharnowski et  al. 2018), an increase in particle 
image diameter and Nppp , respectively, reduces the detect-
ability for a constant NI . Furthermore, Fig. 11 shows that 
the detectability decreases slower for growing ring-shaped 
particle images compared to those with Gaussian or plateau 
shape. We assume that this is due to the characteristics of 
ring-shaped particle images, as slightly shifted ring-shaped 
particle image groups decorrelate faster than corresponding 
Gaussian or plateau-shaped particle image groups.

Figure  11 also shows the detectability as a function 
of the particle image diameter for images with noise (as 
described in Sect. 3). Obviously, image noise affects espe-
cially the detectability for small particle image diameters 
( DPI < 10 px ). This is to be expected, as for small particle 
images the signal-to-noise ratio is decreased, leading to a 
lower detectability and thus to an increased probability of 
erroneous cross-correlations. A reduced signal-to-noise ratio 
originates from particle image discretization where very nar-
row particle image intensity peaks are averaged over a full 
pixel, thereby being reduced in their maximum intensity 
value (see also Fig. 4). This effect is well known from clas-
sical PIV experiments where one strives for particle image 
diameters of two to three pixels.

4.3 � Influence of intersected particle images 
on the cross‑correlation result

To study the influence of intersected particle images on the 
cross-correlation result, three cases are considered for one, 
three and five out of five particle images located with their 
centre points on the interrogation window border. These 
cases with particle images located only to 50% inside the 
interrogation window are denoted with K5 = 1 , 3 and 5, 
respectively, where the index of K denotes the total amount 
of particle images inside the corresponding interrogation 
window. An intersection ratio of 50% is chosen, because the 
amount of pixels at which an intensity gradient jump occurs 
is largest for this situation. Thus, the influence of intersected 
particle images on the displacement estimation error and the 
detectability is assumed to be most significant.

Figure 12 shows the displacement estimation error as a 
function of the particle image diameter for K5 = 1 , 3 and 
5 for Gaussian and ring-shaped particle images. Since the 
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results of plateau-shaped particle images strongly coincide 
with that of Gaussian particle images, results of plateau-
shaped particle images are omitted here. It is obvious that 
the amount of intersected particle images has a stronger 
influence on the displacement estimation error for Gaussian 
particle images compared to ring-shaped particle images.

Figure 13 displays the displacement estimation error as a 
function of K5 for Gaussian, ring- and plateau-shaped parti-
cle images of DPI = 60 px.

The displacement estimation error reduces for intersected 
Gaussian and plateau-shaped particle images for increasing 
K5-values. This is because intersected particle images deliver 
a sharp intensity jump at the interrogation window border. 
Such a sharp intensity jump leads to a reduction in the cor-
relation peak width and hence an improved displacement 
estimation error. As more particles are intersected, their con-
tribution to the cross-correlation result enhances the afore-
mentioned effect. As already shown in Sect. 4.1, ring-shaped 
particle images decorrelate faster for slight image shifts due 
to the relatively small ring width and the transparent inner 
region. This is also the reason why the effect of intersected 
particle images on the estimation error is strongly reduced 
compared to Gaussian and plateau-shaped particle images. 
Nevertheless, it should be noted that the development of 
the displacement estimation error may change significantly 
if particle images within an interrogation window are dis-
placed by values other than zero. Especially if the particle 
image displacement is smaller than the portion of particle 
images that is located inside the interrogation window, 
cross-correlation-based evaluations may lead to systematic 
errors. To overcome this, apodization window functions as 
they are described by Eckstein et al. (2008) and Eckstein and 
Vlachos (2009) may be used. Nevertheless, such apodization 
window functions have not been applied in the present study.

The influence of intersected particle images at the interro-
gation window border on the detectability D is illustrated in 

Figs. 14 and 15. Figure 14 shows how D alters as a function 
of the particle image diameter DPI for Gaussian and ring-
shaped particle images with K5 = 1 , 3 and 5. For a better 
conciseness, curves for plateau-shaped particle images are 
omitted as they show no significant differences to those of 
Gaussian particle images.

Comparing different values of K5 , a qualitative change 
in the detectability evolution can be recognised. While a 
monotonous decrease in the detectability can be observed 
for K5 = 1 with growing particle image size, it appears to 
be non-monotonous for K5 = 3 and K5 = 5 . This qualitative 
behaviour is found for all particle image shapes and indicates 
that different competing effects come into play here. Firstly, 
a decrease in detectability with increasing particle image 
size is also observed when no particle images intersect the 
interrogation window border (see Fig. 11). It originates from 
the relative increase in secondary correlation peak values 
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that are a result of an increase in the particle image density 
Nppp for a constant effective number of particle images NI . 
A growing number of intersected particle images is in our 
case associated with a decreasing number of particle images 
located inside the interrogation window (as the total number 
of particle images is chosen to be constant here). Thus, an 
increasing number of intersected particle images leads to a 
decreased particle image density Nppp , which in turn results 
in an improved detectability due to a decrease in secondary 
correlation peak values. However, the overall detectability 
seems to be lowest for K5 = 3 while it is clearly enhanced 
for smaller or larger K5 values. Therefore, this effect alone 
does not explain the overall behaviour. We assume that the 
detectability is decreased as the probability of erroneous 
correlations resulting from particle images inside the inter-
rogation window correlating with intersected particle images 
is largest for K5 ≈ 1∕2 ⋅ NI . This is due to a similar number 
of particle images inside the interrogation window and on 
the interrogation window border, respectively. Furthermore, 
the location of particle images at the interrogation window 
border is strongly restricted. This obviously leads to a rela-
tive increase in secondary correlation peak values and hence 
a reduced detectability. It should be noted that, to overcome 
a decrease in detectability due to a certain amount of inter-
sected particle images, apodization window functions may 
be applied.

Figure 15 shows detectability values of Gaussian, ring- 
and plateau-shaped particle images of DPI = 60 px diameter 
as a function of K5.

The detectability shows a non-monotonic behaviour for 
growing K5 values. Furthermore, the detectability of Gauss-
ian and plateau-shaped particle images assumes similar val-
ues (see also Fig. 11), while it is slightly increased for ring-
shaped particle images. It may be noted here that values of 
K5 = 5 are a hypothetical case. However, for high-resolution 
studies on dense particle systems such as suspension micro-
flows, large values of K can be expected as K scales with the 
particle image diameter or, respectively, decreasing inter-
rogation window size.

Figure 16 illustrates the evolution of the ratio of K to the 
total amount of particle images per interrogation window as 
a function of the ratio between interrogation window edge 
length l to particle image diameter DPI , for in-plane particle 
images with simple cubic packing (see inset of Fig. 16).

As can be seen, values in the order of one can be expected 
for a ratio of interrogation window size and particle image 
diameter of l∕DPI < 5 - a situation easily encountered in sus-
pension flow studies.

Similar qualitative results in terms of estimation error and 
detectability as shown in Figs. 13 and 15 are also obtained 
from experiments. Both the estimation error and detect-
ability are determined for experimental images containing 
ring- or plateau-shaped particle images of DPI = 60 μm , 

respectively. Images are auto-correlated in the commercial 
software DaVis 8.4 (LaVision GmbH) utilizing decreas-
ing interrogation window sizes. The latter results in inter-
rogation window length-to-particle image diameter ratios 
of l∕DPI = 5.3 , 2.6, 1.3, 0.7 and 0.3. Similar to the results 
obtained from synthetically generated images, also for 
experimental images the dominant term of the displacement 
estimation error �1 is one to two orders of magnitude smaller 
for ring-shaped particle images than for plateau-shaped par-
ticle images (see also Figs. 10 and 13). This holds true for 
all considered values of l∕DPI.

The detectability of experimental ring-shaped particle 
images is slightly larger than for experimental plateau-
shaped particle images for l∕DPI = 5.3 . Qualitatively, this 
is in accordance to the detectability results obtained from 
synthetic data for l∕DPI = 4.3 (see also Fig. 15). For smaller 
values of l∕DPI , the variation of the detectability of experi-
mental ring-shaped particle images increases, such that 
similar detectabilities are obtained for both particle image 
shapes.

4.4 � Influence of nonzero particle image 
displacements on the cross‑correlation result

In the preceding sections, the influence of the particle image 
size and shape on the cross-correlation result has been inves-
tigated only for zero-displaced particle images. The influ-
ence of nonzero particle image displacements on the cross-
correlation result is discussed in the following.

As a basis, 500 synthetic double-frame images, each 
consisting of 5 Gaussian, ring- or plateau-shaped particle 
images, are generated without image noise (see also Sect. 3). 
Particle images assume a constant diameter of DPI = 60 px . 
Between both frames, particle images are displaced uni-
formly by several non-fractional values that range from 
Δd = 1 px to Δd = 60 px = DPI ≈ 0.25 ⋅ l in horizontal 
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direction. The cross-correlation evaluation is performed in 
the commercial software DaVis 8.4 (LaVision GmbH) and 
is analysed with regard to the displacement estimation error, 
the detectability and the deviation between the calculated 
and the specified particle image displacement.

Figure 17 shows the displacement estimation error as a 
function of the magnitude of the displacement vector Δd , i.e. 
the horizontal displacement, for Gaussian, ring- and plateau-
shaped particle images.

Compared to zero-displaced particle images (non-filled 
markers; see also Fig. 8 in Sect. 4.1), the displacement esti-
mation error slightly increases for particle image displace-
ments of Δd ≥ 1 px for all considered particle image shapes. 
Figure 17 also shows that the displacement estimation error 
slightly increases with increasing particle image displace-
ment for Gaussian and ring-shaped particle images. Quali-
tatively, this is in agreement with the development of the 
estimation error for Gaussian particle images of DPI = 2 px 
(Westerweel 1997). This increase can be associated with an 
increase in the second term of the displacement estimation 
error �2 [see also (6)], as shown in Fig. 18. Here, the devia-
tions of �1 and �2 for nonzero displacements relative to zero 
displacements are plotted as a function of the magnitude of 
the particle image displacement.

Figure 18 shows that the first estimation error term �1 is 
insensitive to a nonzero displacement for all particle image 
shapes considered. In contrast to this, the second term �2 
increases with increasing particle image displacement for 
Gaussian and ring-shaped particle images. For plateau-
shaped particle images, the second term �2 is generally larger 
for nonzero particle image displacements than for a zero dis-
placement, but remains constant over the whole considered 
particle image displacement range. This is a result of the 
plateau shape of the particle image that leads to a broadening 
of the displacement correlation peaks in comparison with 
those of Gaussian and ring-shaped particle images (see also 

Fig. 7). Obviously, this makes the correlation result insensi-
tive against errors that result from a nonzero particle image 
displacement. Nevertheless, it should be noted that the high-
est displacement estimation errors are generally observed 
for plateau-shaped particle images . Overall, for ring-shaped 
particle images, the estimation error is approximately one 
order of magnitude smaller than for Gaussian and plateau-
shaped particle images over the whole range of considered 
particle image displacements.

Figure 19 shows the detectability D as a function of the 
particle image displacement for Gaussian, ring- and plateau-
shaped particle images.

Compared to zero-displaced particle images of the same 
size (non-filled markers; see also Fig. 11 in Sect. 4.2), the 
respective detectability is slightly lower for each particle 
image shape. A comparison of the detectability evolution for 
different displacement values reveals that the detectability 
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is insensitive against a particle image displacement of up 
to one particle image diameter for all considered particle 
image shapes. Overall, the detectability for ring-shaped 
particle images is slightly larger than for Gaussian and pla-
teau-shaped particle images for all considered displacement 
values.

Figure 20 shows the deviations of the calculated displace-
ments �d to the specified displacements Δd in horizontal 
direction as a function of the specified displacement mag-
nitude. For this, the vector results of all 500 double-frame 
images are averaged for each particle image shape and dis-
placement value, respectively.

Interestingly, calculated displacements of ring-shaped 
particle images seem to show negligible deviations. In 
contrast to this, calculated displacements of Gaussian and 
plateau-shaped particle images deviate from the specified 
displacements. For Gaussian particle images, the standard 
deviations are significantly larger compared to plateau-
shaped particle images for displacements of Δd ≥ 5 px . 
Nonzero displacements of Gaussian particle images lead to 
an increase in �2 , which is less significant for plateau-shaped 
particle images (see also Fig. 18), resulting in larger standard 
deviations of the calculated particle image displacements.

5 � Experimental application

The previous study shows that the usage of particles with an 
image size larger than 10 px leads to a reduced displacement 
estimation error, if they assume a ring-shaped particle image 
instead of a plateau or Gaussian shape. Such particle images 
are encountered in a refractive index matched suspension 
with surface labelled suspension particles. We demonstrate 
in the following that such suspension systems allow to study 
in detail the bulk behaviour of suspensions of up to 5% vol-
ume fraction by means of μPIV. For this, PMMA particles of 

DPI = 60 μm diameter that assume ring-shaped images are 
suspended in a ternary carrier liquid. Flow velocities of both 
phases of the suspension flow are determined. The results 
are discussed in Sect. 5.4. These show that a spatial resolu-
tion beyond the particle image size can be reached through 
ensemble averaging to reveal the suspension bulk dynamics. 
Through refractive index matching and a labelling of only 
the suspension particle surfaces, an enhanced optical acces-
sibility of the suspension flow could be reached. It should be 
noted that the intensity signal of ring-shaped particle images 
is reduced compared to fully labelled particles of the same 
size. Thus, a suitable illumination source is needed to obtain 
a sufficient intensity signal. However, in the present study 
a similar signal-to-noise ratio is obtained for ring-shaped 
particle images and for plateau-shaped particle images of 
the same size as well as for standard PIV tracer particles. 
In this way, it was possible to measure velocity profiles of 
the suspension carrier liquid simultaneously with those of 
suspension particles. Measurement results of the one-phase 
flow with refractive index matched carrier liquid are com-
pared to measurements of the liquid and particle phase of the 
suspension flow. For this, flow field results for both phases 
are derived from a single recording, i.e. at the same time.

5.1 � Experimental set‑up

A straight microchannel with trapezoidal cross section, a 
channel height of h = 580 μm and a top and bottom width of 
578 μm and 321 μm , respectively, is used (Micronit GmbH). 
The inclination of the microchannel sidewalls results from 
the fabrication process. A schematic of the microchannel is 
given in Fig. 21 to illustrate the measurement position.

The suspension consists of a ternary carrier liquid of 
distilled water, glycerine and ammoniumthiocyanate (Bai-
ley and Yoda 2003) and 60 μm PMMA particles that are 
labelled as already described in Sect. 3. The carrier liquid 
has a density of �l = 1178.07 ± 0.37 kg m−3 , a refrac-
tive index of nD,l = 1.489 and a dynamic viscosity of 
0.00596 ± 0.00011 Pas . PMMA particles (Microbeads 
Spheromers CA60) assume a density of �p = 1200 kg m−3 
and a refractive index of nD,p = 1.4895 ± 0.0035 . Thus, the 
deviations between carrier liquid and particle properties are 
less than 2% in density and 0.3% in refractive index. A nomi-
nal volumetric concentration of � = 5% is used throughout 
the experiments. Standard polystyrene tracer particles of 
1.19 ± 0.03 μm diameter (microParticles GmbH) are added 
to the suspension. The same tracer particles are also used 
for reference measurements of the one-phase flow. For both 
reference and suspension flow measurements, the same batch 
of carrier liquid is used.

The experimental set-up consists of an epifluorescent 
microscope (Nikon Eclipse LV100) that is used in com-
bination with an infinity-corrected objective lens (20X 
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Fig. 20   Deviation between calculated and specified particle image 
displacement in horizontal direction as a function of the particle 
image displacement magnitude for Gaussian, ring- and plateau-
shaped particle images of DPI = 60 px
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Nikon CFI60 TU Plan Epi ELWD) of M = 20 magnifi-
cation and a numerical aperture of NA = 0.4 . For flow 
field measurements, a double-pulsed Nd:YAG laser of type 
Litron Nano S 65-15 PIV and a double-frame CCD camera 
of type LaVision Imager pro SX is used. The camera has 
a resolution of 2058 × 2456 px , which results in a field of 
view of 0.57 mm × 0.48 mm . For image acquisition and 
evaluation the commercial software DaVis 8.4 (LaVision 
GmbH) is used.

5.2 � Experimental procedure

All measurements are taken at a bulk Reynolds number 
of Reb =

(

ub ⋅ h
)

∕� = 0.71 . Here, ub denotes the bulk fluid 
velocity calculated from the volume flow rate and the 
measured microchannel cross section and � denotes the 
kinematic viscosity of the ternary carrier liquid, based 
on the measured dynamic viscosity and density (see 
Sect. 5.1). Resulting velocity fields of the suspension flow 
are compared to velocity results of the one-phase flow at 
the same bulk Reynolds number. As the depth of correla-
tion (Olsen and Adrian 2000) assumes �DoC ≈ 16 μm for 
1.19 μm PIV tracer particles in combination with the pre-
scribed optical configuration, measurements are taken at 
25 different z-planes with a spatial distance of dz ≈ 22 μm 
from each other to prevent an overlapping of measurement 
volumes. At every measurement plane, 500 double-frame 
images are recorded with a frequency of 4 Hz. An inter-
framing time of dt = 750 μs is used.

5.3 � Image pre‑processing and evaluation

Image pre-processing steps are performed before the actual 
cross-correlation evaluation to increase the signal-to-noise 
ratio of the particle images. The image pre-processing pro-
cedure that is applied in the present study is described in 
Sect. 5.3.1.

In the experimental study, tracer particles with small 
particle image diameters and suspension particles with 
large particle image diameters are suspended to the flow 
to measure bulk slip velocities. However, for the cross-
correlation evaluation both types of particle images have 
to be segmented from each other before processing. The 
procedure that is used to do this is described in Sect. 5.3.2.

Finally, pre-processed and segmented particle images 
are evaluated by cross-correlation. The parameters that are 
used for this are described in Sect. 5.3.3 for both phases 
individually.

5.3.1 � General image pre‑processing

The general image pre-processing procedure consists of 
three steps. In a first step, a minimum intensity image of 
the first 19 images of each recording sequence is gener-
ated and subtracted from each recorded image of the same 
recording sequence. This reduces stationary background 
noise and reflections. In a second step, a spatial sliding 
average filter of 3 px edge length including a Gaussian 
weighting function is applied to each image to reduce salt-
and-pepper noise. In a third step, a spatial subtract sliding 
average filter of 200 px edge length is applied to each 
image to further enhance the signal-to-noise ratio. This 
results in an increased intensity gradient at the ring-shaped 
suspension particle image rim and, therefore, facilitates 
the detection of ring-shaped suspension particle images. 
The segmentation procedure is described in the following 
section.

5.3.2 � Particle image segmentation

Pre-processed images contain signals from both PIV trac-
ers and ring-shaped suspension particle images. To segment 
individual particle groups, an in-house MATLAB code is 
used. The segmentation procedure is based on Anders et al. 
(2019).

The first step during image segmentation is to detect large 
suspension particle images, specifically their centre points 
and radii. This is done for both frames of a double-frame 
image. The centre point and radius information are used to 
define one masking function that is applied on both frames. 
With this, intensity information of the area that is covered 
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Fig. 21   Schematic figure of the microchannel device including the 
region of interest shown with black dashed lines
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by suspension particle images within the original, pre-pro-
cessed images are extracted.

The extraction of suspension particle images leaves 
spaces with zero intensity in the original images (that now 
contain only signals from PIV tracer particles). As shown 
by Anders et al. (2019), this can lead to a velocity bias, 
when using cross-correlation-based evaluation methods. 
To overcome this, a spectral random masking algorithm is 
proposed. This utilizes the image noise information of the 
vicinity of suspension particle images and combines these 
with a bilinear fit of the spatial intensity information to fill 
the regions, where suspension particle images are extracted.

Intensity information of extracted suspension particle 
images are stored in a separate double-frame image. As 
these images may contain also intensity information result-
ing from small PIV tracer particles, further pre-processing 
steps are performed to obtain solely the intensity signals 
of suspension particles. Specifically, a sliding average filter 
with 7 px edge length and a Gaussian weighting function is 
utilized first. Afterwards, a bandwidth filter is applied that 
retains only structures with a length between 7 px and 25 px.

5.3.3 � Cross‑correlation evaluation

Based on the pre-processed and segmented particle image 
recordings, velocity fields are obtained by performing sum-
of-correlation cross-correlations with the commercial DaVis 
software (LaVision GmbH). A multi-pass method (Will-
ert 1996) with decreasing interrogation window sizes of 
256 × 256 px during the first pass and 128 × 128 px during 
both the second and third pass are utilized for the evalu-
ation of the carrier liquid flow, i.e. for PIV tracer particle 
images. As suspension particles assume a particle image 
diameter of DPI ≈ 270 px , interrogation window sizes are 
set to 512 × 512 px during the first pass and 256 × 256 px 
during the second and third pass. This is suitable, as we 
showed in Sect. 4.3 that the estimation error of ring-shaped 
particle images is insensitive to intersection at the interroga-
tion window borders. For all cross-correlation evaluations, a 
50% overlap of interrogation windows is used. Vector post-
processing is performed to eliminate erroneous velocity 
data. Specifically, vector results with a detectability below 
2 are deleted and, additionally, an universal outlier detec-
tion is applied with a 5 × 5 median filter. This median filter 
defines velocity vectors as outliers if the value of a velocity 
component exceeds the median of the surrounding velocity 
data by an absolute value that corresponds to one times the 
median absolute deviation. Emerging empty vector spaces 
are filled with velocity information resulting from the 2nd, 
3rd or 4th highest correlation peak, if they fulfil the median 
outlier criterion instead. In the end, all remaining empty 
vector spaces are filled up by interpolation. Overall, 4−6% 

of all vector information are replaced in an evaluation. 90% 
of all replaced vectors are interpolated.

5.4 � Experimental results

This section discusses experimental flow field results that are 
obtained by μPIV measurements on a ternary carrier liquid 
and particles of a suspension flow (Sect. 5.4.1). An error 
analysis of the μPIV measurement results is performed in 
Sect. 5.4.2.

5.4.1 � Flow field results

The performed flow field measurements demonstrate the 
ability to use ring-shaped particle images in combination 
with standard PIV tracer particles to determine simultane-
ously velocity fields from both phases of a suspension flow 
by means of μPIV.

PIV vector fields are derived through ensemble averaging 
of 500 double-frame images. Measurements are taken at 25 
equidistantly spaced measurement planes. Velocity results of 
the one-phase flow (OPF) are compared against the suspen-
sion carrier liquid (SCL) and the suspension particles (SP) 
velocities. Velocity fields are averaged in streamwise direc-
tion. For the one-phase flow, this results in the streamwise 
averaged velocity field that is shown over the cross section 
in Fig. 22. The microchannel walls are sketched as cross-
hatched regions, indicating the trapezoidal cross-sectional 
shape.

The velocity profile assumes its maximum at z ≈ 335 μm 
(horizontal dashed line in Fig. 22). The corresponding veloc-
ity profile is shown in Fig. 23a for the one-phase flow (OPF), 
the suspension carrier liquid (SCL) and the suspension par-
ticle (SP) flow.

-2000200
0

300
335

600

y / m

z
/

m

0

0.5

1

1.5
·10−2

√
u
2
+

v
2
/
m

s−
1

Fig. 22   Streamwise averaged velocity magnitudes in the microchan-
nel cross-section obtained from μPIV measurements of the one-phase 
flow (OPF). Velocity profiles are analysed on xy- and xz-planes as 
indicated here by dashed lines. Channel walls are sketched as cros-
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Figure 23a, b shows the velocity profiles of the one-
phase flow, the suspension carrier liquid and the suspen-
sion particle flow, respectively, at z ≈ 335 μm and at the 
microchannel bisector, i.e. y = 0 μm . Error bars indicate 
the overall measurement uncertainty that results from 
streamwise averaging and the uncertainty estimation of the 
particle image displacement detection at the upper limit of 
the 68.5% confidence interval. Further details on the error 
analysis are given in Sect. 5.4.2. The in-plane velocity 
profile of the one-phase flow (OPF) as shown in Fig. 23a 
assumes a parabolic shape with a maximum velocity of 
u = 0.0136 ± 0.0001 m s−1 . At the microchannel side walls, 
velocities deviate from zero, which results from the pres-
ence of near-wall tracer particles that move with a nonzero 
velocity. Due to spatial averaging inside near-wall inter-
rogation windows and a high-velocity gradient in these 

regions, the presence of those tracer particles results in 
velocities that assume nonzero values.

A comparison of the in-plane velocity profiles at 
z = 335 μm between the one-phase flow (OPF) and the sus-
pension carrier liquid (SCL) flow shows no significant differ-
ences. Suspension particles (SP) generally tend to lag behind 
the suspension carrier liquid (SCL) up to 7.4%. An error 
analysis shows that this can be confirmed within a 68.5% 
confidence interval (see also Sect. 5.4.2). Liquid-particle slip 
velocities are expected, due to a suspension particle size 
which assumes a similar order of magnitude as the micro-
channel height 

(

DP∕h = 0.1
)

 and is a well-known effect 
in Poiseuille flow for neutrally buoyant particles (Brenner 
1966; Feng et al. 1994; Guazzelli and Morris 2011). Numer-
ical investigations of Loisel et al. (2015) showed similar 
trends of such relative velocities compared to our results in 
suspension flows with homogeneously distributed particles 
and volume concentrations of up to 5%. Their results indi-
cate that the particle slip velocity is rather a function of the 
Reynolds number than of the particle volume concentration 
in the investigated particle volume concentration regime.

The velocity profiles in the xz-plane on the microchan-
nel bisector ( y = 0 μm , see also vertical dashed line in 
Fig. 22), are shown in Fig. 23b. In the lower part of the 
microchannel for z < 300 μm , the suspension carrier liquid 
(SCL) lags behind the one-phase flow (OPF) up to 12%. In 
contrast to this, similar flow velocities can be observed in 
the top region of the microchannel for z ≳ 300 μm . Suspen-
sion particles (SP) in turn assume a generally lower velocity 
than the suspension carrier liquid (SCL) at the microchan-
nel centre, as already discussed above. This can be qualita-
tively understood when looking at the particle image density 
over the channel height, being an indication for the particle 
concentration distribution, see Fig. 24. The number of seg-
mented suspension particle images NI within the field of 
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Fig. 23   Velocity profiles obtained from μPIV measurements of the 
one-phase flow (OPF), the suspension carrier liquid (SCL) and the 
suspension particle (SP) flow a on the xy-plane at z = 335 μm above 
the channel bottom and b on the xz-plane in the channel bisector at 
y = 0 μm . Error bars indicate the uncertainty resulting from stream-
wise averaging and the particle image displacement detection uncer-
tainty at the upper limit of the 68.5% confidence interval
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view during the whole time series is divided by the amount 
of interrogation windows NIW of the resulting vector field in 
streamwise direction. These values are plotted for the micro-
channel bisector as a function of the microchannel height. 
A particle image is assigned to an interrogation window, if 
its centre point is located inside the corresponding inter-
rogation window borders. Therefore, the ratio NI∕NIW indi-
cates how many particle images contribute on average to 
the displacement correlation peak of a single interrogation 
window. Clearly, particles are distributed inhomogeneously 
over the microchannel height. We anticipate that a particle 
drift away from the channel top is induced at the inlet region 
where a sharp corner flow is induced, accelerating particles 
towards the channel bottom. It may be noted that the data 
of Fig. 24 display the particle image number density within 
each measurement volume.

For z ≳ 300 μm , the amount of particle images per inter-
rogation window assumes on average NI∕NIW < 5 which 
is below the effective number of particle images which 
ensures a high detectability in PIV measurements (Keane 
and Adrian 1992). This becomes evident through increasing 
standard deviations of suspension particle velocity data for 
z > 300 μm in Fig. 23b. As the particle concentration is sig-
nificantly reduced in this region, the velocity of the suspen-
sion carrier liquid assumes that of the one-phase flow here.

5.4.2 � Error analysis of the flow field results

Different uncertainty quantification methods are available 
and comprehensive overviews of these approaches can be 
found in Sciacchitano et al. (2015) and Sciacchitano (2019). 
Generally, different methods can be categorized into statisti-
cal and, following Sciacchitano (2019), direct and indirect 
methods.

Statistical approaches calculate the deviation of a flow 
quantity from its time or spatial average to determine the 
measurement uncertainty (Sciacchitano and Wieneke 2016). 
Therefore, the statistical calculations are applied on the 
velocity or displacement results.

Direct uncertainty quantification approaches are the par-
ticle disparity (Sciacchitano et al. 2013) or the correlation 
statistics (Wieneke 2015) approach. Both methods use the 
displacement field of a PIV evaluation to remove the image 
shift between two corresponding frames. As measurement 
errors result in mismatches between such frames, either the 
contribution of individual particle images or individual pix-
els inside an interrogation window to the displacement cor-
relation peak, are used to calculate the measurement uncer-
tainty. Other examples for direct methods are the moment 
of correlation plane (Bhattacharya et al. 2018) and the error 
sampling approach (Smith and Oberkampf 2014). The 
moment of correlation plane approach calculates the stand-
ard uncertainty from the second moment of the generalized 

cross-correlation that is convolved with a two-dimensional 
Gaussian fit function. The error sampling approach suggests 
to repeat an experiment several times while systematically 
varying different aspects of the experiment that affect the 
measurement error to receive an accurate estimate of the 
overall error.

Indirect methods are the uncertainty surface approach 
(Timmins et al. 2012) and the correlation signal-to-noise 
ratio metrics (Charonko and Vlachos 2013; Xue et al. 2014) 
approach. The uncertainty surface approach utilizes syn-
thetic data that are representative for the corresponding 
measurement situation to determine an uncertainty sur-
face, from which the resulting measurement uncertainty 
is calculated. In contrast to this, the correlation SNR met-
rics approach uses an empirical equation to calculate the 
measurement uncertainty at the upper and lower limit of the 
68.5% and 95% confidence intervals from differently defined 
signal-to-noise ratios of the correlation plane. With this, Xue 
et al. (2014) showed that the error magnitude of PIV data is 
not necessarily normally distributed.

It shall be noted that not all of the uncertainty estimation 
approaches that are described in the preceding are appli-
cable to the experimental results of the present study. One 
reason for this is the usage of an ensemble-averaged cross-
correlation method that determines particle image displace-
ments from an average that is performed in the correlation 
plane. Another reason is the usage of large ring-shaped par-
ticle images that can lead to displacement correlation peaks 
where only the correlation peak region can be approximated 
by a Gaussian function.

In the present study, an error analysis is performed by 
utilizing two different approaches. Firstly, the spatial dis-
tributions of the root mean square errors (RMSE) of the 
streamwise velocity component are calculated. The second 
approach determines the measurement uncertainty U of the 
displacement magnitude at the upper limit (UL) and lower 
limit (LL) of the 68.5% and 95% confidence intervals. These 
are based on the empirical equation developed by Xue et al. 
(2014). For this, the correlation map entropy is used as rep-
resentative correlation SNR metric. Thus, these uncertainty 
estimates are measures for the random errors of the cross-
correlation evaluations.

For the calculation of the RMSE distributions of the 
streamwise velocity component, RMS errors of consecu-
tive vector results in streamwise direction are calculated. 
The resulting RMSE distributions for the one-phase flow 
(OPF), the suspension carrier liquid (SCL) and the suspen-
sion particle (SP) flow, respectively, are shown in Fig. 25a–c 
as contour plots.

A comparison of Fig. 25a and b reveals that the RMSE 
of the one-phase and the suspension carrier liquid flow are 
similar. It may be noted that 25a and b are both derived 
from PIV recordings of 1.19 μm fluid tracers. A comparable 
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RMSE for these flows shows that the separation of fluid 
tracer and suspension particle images, as described in 
Sect. 5.3.2, has only a minor influence on the image result. 
From Fig. 25a–c, average RMSE values are calculated. 
These are shown in Table 1 in displacement (px) and veloc-
ity ( mm s−1 ) dimensions.

The average RMSE of the suspension particle flow is 
approximately one order of magnitude larger than for the 
one-phase flow and the suspension carrier liquid flow. 
This is assumed to result from an inhomogeneous particle 
distribution over the microchannel cross section (see also 
Fig. 24) as well as interactions between suspension particles 
and microchannel walls and particle–particle interactions, 
which are known to occur in suspension flows with volume 
concentrations of 5%.

The measurement uncertainties at the upper and lower 
limit of the 68.5% and 95% confidence intervals are calcu-
lated for the ensemble-averaged cross-correlation results uti-
lizing the empirical relation developed by Xue et al. (2014). 
In the present study, the correlation entropy is utilized to 

calculate uncertainty estimates for each interrogation win-
dow. Exemplary distributions of the measurement uncer-
tainties at the upper limit of the 95% confidence interval 
are shown in Fig. 26a–c for the one-phase flow (OPF), the 
suspension carrier liquid (SCL) and the suspension particle 
(SP) flow at z = 335 μm.

The resulting uncertainty estimates at the upper and lower 
limit of the 68.5% and 95% confidence intervals are aver-
aged over all interrogation windows of all measurement 
planes. The results are also shown in Table 1 in displace-
ment ( px ) and velocity ( mm s−1 ) dimensions. The average 
uncertainty estimates are at least one order of magnitude 
smaller than the maximum streamwise velocities. Further-
more, the uncertainty estimates are similar for all particle 
image shapes considered.

Thus, the presence of a slip velocity between carrier 
liquid and suspension particles can be confirmed within 
a 68.5% confidence interval for which the uncertainty is 
approximately one order of magnitude smaller than for 
measured slip velocities (see also the velocity profiles shown 
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Fig. 25   Root mean square error distributions over the microchannel cross-section for a the one-phase flow (OPF), b the suspension carrier liquid 
(SCL) flow and c the suspension particle (SP) flow

Table 1   Average root mean 
square error (RMSE) and 
measurement uncertainty U 
at the upper limit (UL) and 
lower limit (LL) of the 68.5% 
and 95% confidence intervals 
for the one-phase flow (OPF), 
suspension carrier liquid (SCL) 
and suspension particle (SP) 
flow

OPF SCL SP

RMSEΔx/px 0.58 ± 0.21 0.38 ± 0.13 1.7 ± 0.5

RMSEΔu/mm s−1 0.18 ± 0.065 0.12 ± 0.040 0.53 ± 0.017

UΔx,UL,68.5/px 0.27 ± 0.00044 0.27 ± 0.00042 0.27 ± 0.00092

UΔx,LL,68.5/px 0.053 ± 0.000079 0.053 ± 0.000077 0.053 ± 0.00019

UΔu,UL,68.5/mm s−1 0.084 ± 0.00013 0.084 ± 0.00013 0.084 ± 0.00028

UΔu,LL,68.5/mm s−1 0.016 ± 0.000025 0.016 ± 0.000024 0.016 ± 0.000058

UΔx,UL,95/px 1.75 ± 0.0028 1.8 ± 0.0027 1.75 ± 0.0055

UΔx,LL,95/px 0.020 ± 0.000033 0.020 ± 0.000032 0.020 ± 0.000075

UΔu,UL,95/mm s−1 0.54 ± 0.00087 0.54 ± 0.00085 0.54 ± 0.0017

UΔu,LL,95/mm s−1 0.0063 ± 0.000010 0.0063 ± 0.0000098 0.0063 ± 0.000023
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in Fig. 23a, b). Furthermore, the usage of large ring-shaped 
particle images for the cross-correlation evaluation does not 
lead to a significant increase in the measurement uncertainty 
within the considered uncertainty bounds.

6 � Conclusion

Overall, we demonstrate that refractive index matched and 
surface labelled suspension particles open up the possibil-
ity to investigate both suspension and carrier bulk dynam-
ics simultaneously by means of μIV. The size sensitivity of 
Gaussian, ring- and plateau-shaped particle images on cross-
correlation-based PIV evaluations is compared. When par-
ticle images become large compared to standard PIV tracer 
particle images, accuracy and reliability of cross-correla-
tions on resulting standard Gaussian or plateau-shaped parti-
cle images are known to decrease. At higher particle volume 
fractions, the optical accessibility of such suspension flows 
is usually limited, as well. To overcome this, we perform a 
refractive index matching of a carrier fluid to PMMA sus-
pension particles. Furthermore, a surface labelling of such 
suspension particles leads to ring-shaped particle images. 
The suitability of such particle images with regard to a PIV 
cross-correlation evaluation is investigated in this work. For 
all parameter studies, cross-correlation results of synthetic 
particle images are evaluated by means of displacement esti-
mation error and detectability for particle image diameters 
between 1 px ≤ DPI ≤ 60 px . The study is based on Monte 
Carlo simulations with 500 double-frame images for each 
particle image diameter. Particle images are cross-correlated 
using a commercial PIV evaluation algorithm.

It is shown that ring-shaped particle images assume a 
reduced displacement estimation error for particle image 
diameters beyond DPI = 10 px compared to Gaussian and 

plateau-shaped particle images while there is no significant 
difference in the detectability for different particle image 
shapes. This reduction in displacement estimation error of 
ring-shaped particle images is related to increased inten-
sity gradients at the particle image rim in combination with 
a nearly transparent centre region. This leads to a faster 
decorrelation and thus reduces the correlation peak width. 
When image noise is added, the overall estimation error is 
increased by several orders of magnitude due to an increase 
in random errors (here an increase in four orders of mag-
nitude was observed for 8.5% image noise). Thus, special 
attention has to be spent on the elimination of image noise 
during pre-processing of experimental data, since image 
noise generally leads to an increased displacement estima-
tion error for all investigated particle image shapes at vari-
ous particle image diameters. However, also in this situation 
ring-shaped particle images assume a reduced displacement 
estimation error compared to Gaussian and plateau-shaped 
particle images.

Furthermore, the influence of particle images being inter-
sected at the interrogation window border is investigated. 
For this, synthetic images with one, three and five inter-
sected particle images out of five within each interrogation 
window are evaluated for Gaussian, ring- and plateau-shaped 
particle images. While the displacement estimation error of 
ring-shaped particle images appears to be insensitive to par-
ticle image intersection at the interrogation window border, a 
strong reduction in estimation error is observed for Gaussian 
and plateau-shaped particle images with increasing amount 
of intersected particle images. This can be explained by 
intensity jumps of particle images that occur at the inter-
section line along the interrogation window border. These 
intensity jumps, which are much more prominent for Gauss-
ian and plateau-shaped particle images, lead to a reduction 
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Fig. 26   Measurement uncertainty at the upper limit of the 95% confidence interval based on the correlation entropy (Xue et al. 2014) for a the 
one-phase flow, b the suspension carrier liquid (SCL) flow and c the suspension particle (SP) flow at z = 335 μm
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of the correlation peak width and hence a reduced estimation 
error.

When a nonzero particle image displacement is consid-
ered, the displacement estimation error increases with the 
displacement value for Gaussian and ring-shaped particle 
images. In contrast to this, the displacement estimation error 
of plateau-shaped particle images is insensitive against a 
nonzero particle image displacement within the investigated 
range. Compared to a zero particle image displacement, the 
displacement estimation error increases for all considered 
particle image shapes. However, the displacement estimation 
error is approximately one order of magnitude smaller for 
ring-shaped particle images than for Gaussian and plateau-
shaped particle images for all particle image displacements 
considered.

The quality of a PIV evaluation can be evaluated from 
the displacement estimation error and the detectability. 
The detectability is known to depend on the signal-to-noise 
ratio, the effective number of particle images, the correlated 
ensemble size and the particle image density. In the pre-
sent study, the first three parameters are fixed for all particle 
image shapes. Therefore, no significant difference in detect-
ability is observed between different particle image shapes 
for particle images located inside the interrogation window. 
This holds also true for particle images of DPI = 60 px , 
when a nonzero particle image displacement is considered. 
However, the detectability is found to decrease with increas-
ing particle image size. This is due to a rise in the particle 
image density Nppp associated with an increasing particle 
image diameter. Secondly, a decrease in detectability is 
observed for particle image diameters below DPI = 10 px 
with image noise of 8.5%. That is, because intensity values 
are averaged over a full pixel leading to a reduction in inten-
sity peaks, especially for small particle images. This leads 
to a significant decrease in signal-to-noise ratio and hence a 
reduced detectability.

Furthermore, the detectability is investigated for a grow-
ing number of intersected particle images, keeping the total 
number of particle images within the interrogation window 
constant. Here, a nonlinear behaviour is observed with a 
minimum in detectability for a similar number of particle 
images located inside the interrogation window and on the 
interrogation window border. We assume that for K5 being 
approximately equal to half the total amount of particle 
images per interrogation window the probability for par-
ticle images inside the interrogation window to correlate 
with intersected particle images is increased, leading to an 
increase in secondary correlation peak values.

Summed up, the usage of refractive index matched and 
surface labelled particles not only enhances optical acces-
sibility, but also leads to a reduction of the displacement 
estimation error and a similar or even better detectability 
compared to Gaussian or plateau-shaped particle images. 

This holds true also for situations where intersected particle 
images at interrogation window borders occur.

Refractive index matching led to an enhanced optical 
accessibility of the system. Combined with a labelling, the 
accuracy and reliability of the μPIV evaluation are enhanced 
compared to Gaussian particle images. We demonstrate 
both theoretically and experimentally that such particle 
systems are suitable to study the bulk dynamics of sus-
pension flows. Measurements are performed with surface 
labelled and refractive index matched suspension particles 
that assume ring-shaped particle images. Hence, the particle 
bulk dynamics of a 5 vol% suspension is measured together 
with the carrier liquid flow and the measurement uncer-
tainty is estimated. By this, liquid-particle slip velocities 
are determined.

Overall, we demonstrate that μ IV measurements on ring-
shaped particle images bring along advantageous properties, 
from both a theoretical and practical point of view. These 
are demonstrated to be an important step to perform μPIV 
measurements in a variety of suspension flows. For studies 
of even higher volume fractions, a well-defined tempera-
ture control will be required to achieve a matching of the 
refractive index between particles and carrier liquid up to 
the fourth digit (Wiederseiner et al. 2011).
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