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Abstract
The productivity of a deep drawing process strongly relies on its robustness as well as the experience of the machine opera-
tor. Steadily increasing requirements regarding weight, design and efficiency lead to a production operating increasingly 
closer to the process limits, making it more challenging to ensure a high robustness of the process. Minimal process fluctua-
tions caused by disturbances such as varying material properties or changing tribological conditions may negatively affect 
the process due to deteriorated product properties as well as an increased risk of scrap. Thus, a target-oriented adjustment 
of available parameters by the machine operator becomes more difficult, and an increased knowledge about the causes of 
defects is more important. In the past, several approaches with different combinations of sensors and actuators have been 
investigated to enable a stable process window based on a control system. This paper presents a method to address the need 
for a more robust process by developing an operator assistance system that enables the identification of the component state 
and provides decision support to the machine operator. The methodological approach includes a thorough process analysis to 
evaluate the expediency of such a system and to make a reasonable preselection of sensors in order to avoid unnecessary costs.

Keywords Variant simulations · Sensitivity analysis · Neural networks · Decision-making · Assistance system

1  Introduction and state of the art

The body-in-white represents about 40% of the total vehicle 
weight making it the heaviest element of modern conven-
tional vehicles. The consequent application and implemen-
tation of modern lightweight measures appears to be very 
effective and is of crucial importance for weight reduction 
in the vehicle production to ensure sustainable and finan-
cially affordable mobility as well as the competitiveness of 
a car manufacturer [1, 2]. To achieve these goals, in addition 
to the use of innovative multi-material concepts and mul-
tiphase steels, steadily decreasing wall thicknesses combined 
with complex part geometries and high production rates are 

pursued [3]. The overall complexity of this challenge is 
intensified by increasing requirements for stiffness, acoustics 
and crash performance, which are usually in conflict with 
principles and strategies of modern lightweight design [2]. 
Hence, deep drawing processes of car body parts are oper-
ated closer and closer to the process limits, which increases 
the challenge to ensure stable processes with high robustness 
[4]. Conditions of uncertainty as well as a lack of knowledge 
of the process may lead to deteriorated product properties 
and part failure resulting in a diminished productivity [5]. 
In particular, the influence of increasing tool temperatures 
on tribological conditions [6] as well as disturbances with 
stochastic fluctuations such as material properties [7] affect 
the deep drawing process. In the past, several approaches 
using different combinations of sensors and actuators have 
been investigated to meet the requirements for a more robust 
process. Purr et al. [8] are gathering data from different 
measurement systems implemented in a blanking line with 
the goal of identifying appropriate settings of the stamping 
line for each metal sheet prior to the start of production in 
order to obtain deep drawn parts of acceptable quality. For 
this purpose, the mechanical properties, the thickness and 
the roughness as well as the thickness of the oil layer of 
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the sheet metal are measured inline and analysed using data 
mining methods to track fluctuations of the sheet metal and 
their potential influence on the stamping process.

The most common approaches are based on a closed- or 
open-loop control system that uses sensor data from the 
stamping process as control variables. The concept of the 
systems mainly distinguishes between a part-to-part con-
trol [9] and the control during the stroke [10], depending 
on the available actuators and sensors. These systems are 
also referred to as off-line closed-loop control and on-line 
closed-loop control systems, following Allwood et al. [5]. 
In addition to measuring process forces as well as first-
order wrinkles [10], most control systems rely on the inline 
data acquisition of the flange draw-in of the deep drawn 
part. In one of the first approaches, the flange draw-in has 
been measured by a linear variable differential transformer 
(LVDT). The target force of the blank holder could be 
accomplished by the application of a PI controller using a 
control algorithm based on the draw-in [11, 12]. Comparable 
approaches use target curves and envelopes derived from 
draw-in measurements of reference parts to set up a closed 
loop control system that manipulates the binder force [10] 
or the force distribution [13].

Since material flow is one of the few measurands that 
allows conclusions to be drawn regarding part quality during 
and after the forming process [6], its measurement methods 
have been investigated and improved. Tactile displacement 
transducers [11] and their adaptation by a sheet metal tongue 
[10] do not appear to be suitable for series production due 
to the risk of jamming. Thus, inductive sensors withstand-
ing the harsh conditions of the production environment have 
been developed to investigate the draw-in of the sheet metal 
part [14]. Recently, however, optical measurement systems 
have been preferred, although there is a risk of contami-
nation by oil or dust, which may lower their operational 
suitability. Camera-based systems are able to capture the 
skid-line distance to the part flange [15] as well as the local 
material flow [16] and allow the measurement of the global 
blank draw-in [17] or at least large parts of the global blank 
draw-in [18]. While these systems are only able to detect the 
final state of the drawn part and neglect the draw-in curve, 
laser displacement sensors can overcome this shortcoming 
and may be an alternative [13]. Although several reliable 
data acquisition methods are available and control systems 
have been extensively investigated at laboratory [10, 13, 19] 
and production scale [9, 20, 21], a thorough preceding pro-
cess analysis evaluating the expedience of a control system 
in series production is often simplified. Furthermore, the 
application of alternative concepts in metal forming such as 
decision-making assistance systems is widely disregarded 
and neglected. In [22], an assisted setup for calculating opti-
mal start settings for deep drawing with progressive tools 
based on multiple quadratic regression models is presented. 

A more generic approach to assistance systems in forming 
technology applied to a roll forming process is introduced in 
[23]. However, the approaches are either specific or general 
to such a high degree that they do not provide an adequate 
basis for the application in deep drawing of car body parts.

This paper presents a method for developing an opera-
tor assistance system that allows the component state to 
be detected and provides decision support to the machine 
operator. The decision-making assistance offers recommen-
dations regarding the optimal settings to manipulate the local 
material flow and prevent part failure using newly designed 
adjustable spacers. A prior thorough and systematic pro-
cess analysis using variant simulations and experimental 
data allows to assess the expediency of the application of an 
assistance system, including the preselection of appropri-
ate sensor technologies. Different modelling approaches of 
selected quality criteria based on variant simulations consid-
ering various levels of complexity are discussed regarding 
their accuracy and suitability for a further analysis. A deep 
drawn car body part as application example is analysed in 
terms of its sensitivity to changes in disturbance variables 
considering first-order and higher order effects. Potential 
measurands are determined by the maximum achievable 
observability of part quality criteria that cannot be directly 
measured. The process analysis is complemented by the 
evaluation of the process robustness and investigation of 
the process controllability.

2  Methodological approach

An operator assistance system is not beneficial and can cause 
unnecessary costs if the process is sufficiently robust. There-
fore, a thorough and systematic process analysis is advisable 
to evaluate the expediency and to make a reasonable prese-
lection of sensors. The schematic for the process analysis as 
first part of the methodological approach is shown in Fig. 1. 
Every step is either based on experimental data, data from 
a numerical simulation and its variants or a combination of 
both.

The component to be analysed should either be ready for 
production or at least be in an advanced stage of tryout. Pre-
series tools at an early stage of tryout are constantly being 
adjusted and can affect the results of the process analysis. 
Once a component has been selected, disturbing variables 
of the process and their variation ranges, probability distri-
butions per parameter as well as the correlations between 
the parameters have to be determined. Typical disturbances 
of deep drawing processes are discussed in [24]. After a 
numerical baseline simulation of the corresponding process 
has been set up and validated, variants of the simulation are 
generated by a design of experiments (DoE) using a Latin 
hypercube sampling under consideration of the information 
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from the first step. The results gained from the variant simu-
lations are used to train several regression models, depend-
ing on the achievable goodness-of-fit per model as well 
as the input and output parameters needed for the process 
analysis. A variance-based sensitivity analysis taking into 
account first-order and higher order effects allows the inves-
tigation of the most influential input parameters on a selected 
quality criterion (output). The robustness of the process is 
evaluated using defects per million opportunities (DPMO) 
to determine the effectiveness of the process. The analysis of 
the maximum achievable observability taking into account 
different combinations of measurands ensures a preselec-
tion of sensors that offer benefit for the assistance system. 
The analysis of the controllability and the derivation of a 
compensation strategy can be done either experimentally 
or virtually by numerical simulations. The same applies to 
the evaluation of robustness, whereby the sensitivity and 
observability analyses are performed virtually on the basis 
of the results from the variant simulations, since a sound 
experimental data basis is usually not available.

The selection of another component is strongly recom-
mended if the process is sufficiently robust, not observable 
or not controllable. The process analysis is followed by the 

specific selection of sensor technologies and implementation 
of the measurement system considering functional, struc-
tural and economic criteria (Fig. 2). This step is strongly 
specific, depending on economic factors and resources as 
well as the basic conditions in the press shop and the press 
line. The operator assistance system consists of a process 
monitoring and a decision-making assistance, as shown in 
Fig. 3. Changes of the process state due to disturbances are 
detected by suitable sensor technologies and processed by 
the assistance system. The machine operator evaluates the 
information provided and acts at his own discretion, using 
available actuators to stabilize the process if necessary. The 
identification of the component state makes it possible to 
determine whether and in which area the component is criti-
cal, based on the analysis of previously recorded measure-
ment data from series production. The results of an experi-
mental setup under consideration of varied manipulated 
variables make it possible to model a relationship between 
the control variable and the adjustment of an actuator. This 
model enables a decision support for the machine operator 
by offering recommendations on how to set process parame-
ters to prevent part failure. The implementation is completed 
after a successful proof of concept in series production.

i. Numerical baseline simulation

ii. Latin hypercube sampling (DoE) (nV ≈ 150)

iii. Extract simulation output

2. Variant simulations

i. Select quality criterion to be analyzed

ii. Select regression model

iii. Train metamodel f (X)

iv. Evaluate goodness-of-fit

v. Train different type of metamodel if 

necessary

3. Regression model

4. Analysis criteria

i) Sensitivity
a. 1.i) – 1.iii)

b. Latin hypercube sampling (DoE) (n >> nV)

c. Select estimators for sensitivity indices

d. Monte Carlo integration

e. First order Si and total effects STi

iii) Observability
a. Stepwise regression (ideal set of measurands)

b. Further combinations of measurands

c. Max. achievable observability

ii) Robustness
a. Defects per million opportunities (DPMO)

iv) Controllability & compensation strategy
a. Effectiveness of available manipulated 

variables on part quality

Component selection

i. Define variation ranges per parameter k

ii. Define correlations between parameters

iii. Associate probability distributions

1. Identification of disturbing influences

Preselection of sensors and measurands

failed

experimentalvirtual

Fig. 1  Schematic of the process analysis
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3  Application example and variant 
simulations

The spare wheel well of a passenger car was chosen as 
an application example for this work. It is a double part 
with a drawing depth of 225 mm made from a hot-dipped 
galvanized bake hardening steel (CR180B2) in four opera-
tions, starting with one drawing operation, followed by 
two trimming operations and one flanging operation. Since 
forming is performed close to the process limits in terms 
of formability, quality issues are mainly limited to necking 
and tearing in the rib of the part as well as flange wrinkles 
that can occur during the drawing operation (Fig. 4). Sur-
face defects caused by particles of zinc coating or imprints 
due to trim waste may appear in rare cases, whereas scrap 
due to dimensional deviations caused by springback has 

not been reported in production and will be compensated 
for by global and local overbending of the parts in the 
trimming and flanging operation.

The behaviour of the part when any material or process 
parameter changes is assessed by variant simulations of a 
numerical baseline simulation. The DoE is generated by 
Latin hypercube sampling, using 175 simulations based 
on ESI’s commercial finite element software Pam-Stamp. 
The nominal values of the baseline simulation and the 
variation ranges of its variants can be seen in Table 1. 
The results from uniaxial tensile tests were used for the 
material modelling.

The baseline simulation uses a flow curve approximated 
as proposed by Swift/Krupkowsky [25] and a Vegter 2017 
[26, 27] yield locus. The forming limit curve (FLC) has been 
determined by Nakajima tests [28], whereas the Keeler-
Goodwin approach [29, 30] has been used for the variants.

8. Proof of concept trial

i. Test the decision-making assistance system in a 

virtual environment

ii. Test the decision-making assistance system in 

series production

iii. Evaluate effectiveness and system limitations

i. Analyse measurement data from series 

production

ii. Associate component state to measurement 

data

6. Identification of the component state

i. Define working principle of decision-making 

assistance system

ii. Define and select working algorithm

iii. Train decision-making assistance system

7. Decision-making assistance for the operator

i. Evaluate functional, structural and economic 

aspects

ii. Consider measurands of secondary 

importance

iii. Implement the measurement system

5. Selection of relevant sensor technology

fa
ile

d

experimentalvirtual

Fig. 2  Schematic of the implementation

Input Output

SensorsActuator

Machine operator

Operator assistance system

1. Process monitoring 
(Statistical process control)

2. Decision-making 

assistance

Disturbance

Forming process

i
HMI

Fig. 3  Concept of the operator assistance system
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The tool surfaces in the simulation were derived from 3D 
scans of the real tooling using a GOM Atos system. Since 
the variation range of each parameter should correspond 
to the variation range to be expected in series production 
in order to avoid an over- or underestimation of parame-
ters [31], several offline measurements were carried out in 
advance for the application example. The variation range 
of each parameter was derived from results of 936 uniaxial 
tensile tests, considering 35 coils in total. The sheet thick-
ness is deduced from inline measurements in the coil line, 
while the constant friction coefficients were estimated based 
on strip drawing tests considering different tool tempera-
tures (20–60 °C), contact pressures (2–10 MPa) and sliding 
velocities (10–300 mm/s).

The baseline simulation is validated by the draw-in 
of two digitized parts scanned by a GOM Atos system 
and a full-field strain analysis carried out by a Vialux 
Autogrid-comsmart device. The deviations in the flange 
draw-in between the digitized parts and the numerical 

simulation for 20 positions are shown in Fig. 5. All posi-
tions are arranged uniformly but not symmetrically, except 
for positions 3 and 13 as well as 8 and 18. The numerical 
simulation meets the real parts very well in terms of flange 
draw-in.

A maximum deviation of + 5.5 mm is observed for posi-
tion 18, whereas the deviation is significantly lower for most 
other positions. A full-field strain analysis after the forming 
process as second validation criterion requires marking the 
sheet metal with a squared grid pattern. Electrolytic mark-
ing with a 2.5 mm grid and one-point coding was used. The 
comparison of the thinning behaviour between the numerical 
simulation and the part from series production is shown in 
Fig. 6. Gaps in the digitized part result from the size of the 
stencil. The component was divided into 20 measurement 
areas, which were reassembled at the end. As before, the 
results of the numerical simulation are close to the experi-
mental data, and no large discrepancies can be detected 
between the simulated and measured thinning.

In general, differences in the draw-in behaviour and thin-
ning distribution are a result of simplifications within the 
simulation. This includes the constant friction coefficient, 
the consideration of rigid tools neglecting elastic behaviour 
and the non-consideration of a mixed isotropic-kinematic 
hardening in particular. However, the baseline simula-
tion can be considered as suitable operational point for 
the variant simulations due to its high conformity with the 
measurements.

4  Setup of regression models

The results extracted from the variant simulations enable the 
estimation of a relationship between k independent variables 
such as the varied parameters Xi and a dependent variable Y  , 
which may represent a quality criterion as a function of the 
independent variables Y = f (X) . Simulation-based regres-
sion models are often referred to as metamodels and can be 

Fig. 4  Quality issues of the 
spare wheel well after 98,494 
produced parts (a) and first 
operation including main type 
of defects (b)

x

y

z

Wrinkles
Rupture

225 mm

11.8%

1.0%

0.4% 3.0%

Necking / rupture
Wrinkles
Surface defect - Contamination (Zinc)
Surface defect - Trim waste
Others

83.8%

(a) (b)

Table 1  Parameters and its ranges for the variant simulations

Parameter Nominal value Variation range

Friction coefficient 0.08 0.06–0.12
Blank thickness 0.65 mm 0.618–0.673
Yield strength 212 MPa 181–244 MPa
Tensile strength (0°) 322 MPa 301–336 MPa
Tensile strength (45°) 334 MPa 309–347 MPa
Tensile strength (90°) 320 MPa 301–333 MPa
r value (0°) 2.27 1.49–3.42
r value (45°) 1.57 1.06–2.04
r value (90°) 2.49 1.38–3.99
Uniform elongation (0°) 20.02% 19.41–22.62%
Uniform elongation (45°) 17.67% 16.80–20.21%
Uniform elongation (90°) 19.17% 18.49–21.50%
Strain hard. exp 0.196 0.159–0.216
x-position blank 0 mm  ± 2.5 mm
y-position blank 0 mm  ± 2.5 mm
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calculated by a large variety of approximation or interpola-
tion approaches. Especially in forming technology, either the 
approximating response surface methodology (RSM) such 
as multiple linear regression (MLR) or multiple quadratic 
regression models (MQR) (including or excluding interac-
tion terms) [32] and interpolating approaches such as radial 
basis functions (RBF) are widely used [33, 34]. Recently, 
however, machine learning approaches have been increas-
ingly pursued since they allow to approximate even complex 
non-linear relationships. In the present work, the established 
RSM and RBF models are applied to calculate the quality 
criteria rupture risk derived from the forming limit diagram 
(FLD) as well as the wrinkling �wc . The latter is based on the 
evaluation of the strain state to detect wrinkles and depends 

on the average anisotropic exponent R as well as the major 
strain �1 and minor strain �2 [35]:

Both criteria represent the main quality issues of the 
application example. The regression results are compared 
with the two popular machine learning approaches support 
vector regression (SVR) and multilayer artificial neural net-
works (ANN) in terms of their coefficient of determination 
 (R2) considering a sevenfold cross-validation, as shown in  
Table 2. As a consequence, approximately 15% of the data 
set of 175 simulations is used as independent test data. Mul-
tiquadric RBF’s were used for both quality criteria providing 
the highest goodness-of-fit compared to the cubic, thin plate 

(1)�wc = max

[

−

(

�2 +
R

1 + R
�1

)

, 0

]

Fig. 5  Absolute deviation of the 
flange draw-in between digitized 
part and baseline simulation
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Fig. 6  Comparison of the thickness reduction between simulation (a) and digitized part (b)
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spline, inverse multiquadric, inverse quadric or Gaussian 
RBF types. For the SVR models, a linear kernel provided  
best results compared to a quadratic, cubic or Gaussian 
kernel.

Finally, the neural networks are calculated using the Lev-
enberg–Marquardt algorithm [36] considering 70% training 
data and 15% validation data. Each hidden layer contains 10 
to 60 neurons, and the depth of the neural networks is lim-
ited to four hidden layers. The calculation is terminated once 
a depth of four hidden layers and 60 neurons per layer or a 
minimum  R2 of 86.5% is reached for the training, validation 
and test phase. This termination criterion is necessary since 
artificial neural networks, in contrast to the model types 
1–4, are not deterministic in terms of the global optimum 
achieved.

The results indicate that comparatively less complex 
models such as the MLR or MQR including interaction 
terms already provide a high goodness-of-fit and robust 
results regarding the approximation of the selected qual-
ity criteria. The same applies to the SVR models with all 
 R2 above 90%. Thus, these models would be suitable for 

further analysis. However, the ANN models appear to be the 
most reliable and robust regarding the estimation of the rup-
ture risk and wrinkles of the application example, although 
their calculation is the most expensive one. RBF models are 
the least suitable for the present cases. The high deviation 
between the  R2 of the training and test data implies a strong 
tendency to data-overfitting.

5  Evaluation of the process

The implementation and application of an operator assis-
tance system does not necessarily offer advantages in terms 
of productivity for every deep drawing process in series 
production. Thus, a systematic process analysis consider-
ing key criteria that need to be met for an expedient opera-
tion is beneficial to avoid unnecessary costs. In addition, 
the selection of suitable sensor technologies is becoming 
increasingly important when such solution approaches are 
being considered, especially since quality criteria in deep 
drawing are only measurable with great effort, so that sub-
stitute measurands are generally indispensable for efficient 
inline measurements.

5.1  Variance‑based sensitivity analysis

Sensitivity analysis allows the identification of parameters 
with the highest influence on a predefined dependent vari-
able, such as main failure modes and quality criteria, lead-
ing to a deeper understanding of the process. Especially 

Table 2  Maximum achieved 
coefficients of determination 
regarding different modelling 
approaches

Model type R2 Rupture risk Wrinkling

1) Multiple linear regression (MLR) R2 Train 92.96% 97.95%
R2 Test 91.66% 96.28%
R2 All 92.80% 96.90%

2) Multiple quadratic regression
incl. interactions (MQR)

R2 Train 96.24% 99.69%
R2 Test 94.35% 87.48%
R2 All 96.03% 95.93%

3) Radial basis function (RBF) R2 Train 100.00% 100.00%
R2 Test 3.98% 5.88%
R2 All 80.34% 81.49%
Type Multiquadric Multiquadric

4) Support vector regression (SVR) R2 Train 92.86% 97.88%
R2 Test 90.41% 96.32%
R2 All 92.61% 97.28%
Kernel Linear Linear

5) Multilayer artificial neural
networks (ANN)

R2 Train 99.40% 98.16%
R2 Val 95.40% 96.12%
R2 Test 95.47% 98.59%
R2 All 97.94% 97.44%
Neurons [10; 16; 16] [10; 10]

Table 3  Radial design of the 
re-sample matrix A(i)

B
  

Step Sampling

A   a11, a12, a13,… , a1k

A
(1)

B
   b11, a12, a13,… , a1k

A
(2)

B
   a11, b12, a13,… , a1k

A
(3)

B
   a11, a12, b13,… , a1k

… …

A
(k)

B
   a11, a12, a13,… , b1k
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variance-based sensitivity analyses are becoming increas-
ingly popular due to their ability to deal with highly complex 
models since they do not rely on linearity, monotonicity or 
continuity which allows them to be applied to a wide range 
of problems [37]. The variance of an input parameter is used 
as an indicator of importance in terms of fractional contribu-
tion to the output variance V(Y) . This variance decomposi-
tion is often referred to as the Sobol method following [38, 

39]. It allows the measurement of main effects of an input 
parameter by varying Xi alone (first-order sensitivity index 
Si ) as well as the total effect, which additionally includes all 
variance caused by its interactions with other parameters 
(total order sensitivity index STi ). A solution of multidimen-
sional integrals is required since the computation of the sen-
sitivity indices is based on the decomposition of the function 
f (X) into summands of increasing dimensionality [39]:

Fig. 7  Classification of the 
simulation results regarding 
rupture risk (a) and DPMO per 
quality criterion (b)

13.36%

7.15%
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Wrinkles

)sdnasuoht
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O
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D
L
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niartsroja
M

Minor strain
FLC Safety barrier  (10 % offset)

(b)(a)

Table 4  Standardized Sobol 
indices for rupture risk and 
wrinkling

Rupture risk Wrinkling

Parameter 1. Order Total 1. Order Total

Friction coefficient 82.5% 70.9% 61.1% 69.5%

Blank thickness 0.5% 0.7% 1.4% 0.2%

Yield strength 0.3% 0.8% 2.8% 2.3%

Tensile strength (0°) 0.0% 1.6% 3.1% 2.9%

Tensile strength (45°) 0.2% 0.9% 1.5% 1.0%

Tensile strength (90°) 1.3% 2.3% 2.1% 1.9%

r-value (0°) 0.2% 1.4% 1.7% 1.1%

r-value (45°) 0.0% 1.9% 3.4% 4.1%

r-value (90°) 0.2% 1.3% 9.8% 9.9%

Uniform elongation (0°) 0.3% 2.0% 1.3% 0.4%

Uniform elongation (45°) 0.8% 1.6% 1.8% 0.6%

Uniform elongation (90°) 0.7% 1.5% 1.4% 0.2%

Strain hard. exp. 9.9% 9.3% 1.9% 0.9%

x-position blank 0.3% 0.6% 1.5% 0.5%

y-position blank 0.7% 1.1% 2.6% 1.9%

Unknown 2.1% 2.1% 2.6% 2.6%
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Thus, in the vast majority of cases, the indices are approx-
imated numerically by the Monte Carlo method using Latin 
hypercube sampling, pseudo-random or quasi-random 
numbers. The estimators proposed by Jansen [40] represent 
best practices in terms of computational costs according to 
investigations of Saltelli et al. [41] and are applied for the 
sensitivity analysis in this work. The estimations of the first-
order sensitivity index Si and the total order sensitivity index 
STi according to Jansen are defined as:

(2)
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)
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∑
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fi
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Xi
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∑
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The index i runs from one to k representing the number 
of independent variables, while index j runs from one to n , 
the number of simulations by the Monte Carlo method. The 
matrices A and B are two independent sampling matrices 
with aij and bij as generic elements and are generated by a 
Latin hypercube sampling. The re-sample matrix A(i)

B
 con-

tains all columns from A except the i-th column, which is 
from B . A so-called radial design [42] as recommended in 
[41] is used to set up A(i)

B
 . The design of the re-sample matrix 

is illustrated in Table 3. The calculations of the sensitivity 
indices were carried out using the ANN models of the rup-
ture risk and the wrinkling criterion in line with the results 
of the evaluation of regression models in Table 2.

The Sobol indices are standardized based on the  R2 All, 
whereas the modelling error and share of influences that 
cannot be explained by the ANN models are included as 
‘Unknown’ (see Table 4). Both sensitivity indices indi-
cate the friction to be the dominant influence of the pro-
cess regarding the rupture risk as well as the appearance of 
wrinkles. However, the material properties appear to affect 
the process as well, although to a lesser extent. The most 
influential material property with regard to the rupture risk 
is the strain hardening exponent, which affects the slope of 
the flow curve as well as the position of the FLC. Moreover, 
the sensitivity indices of the rupture risk show that the con-
sideration of interaction effects can lead to a higher influ-
ence of the material properties. The higher STi of the yield 
strength and tensile strength compared to their Si is a result 
of unfavourable combinations between the tensile and yield 
strength, which worsen the flow behaviour of the material 
(high yield strength and low tensile strength). Combinations 
of low r values may also increase the risk of rupture. An 
increased influence of material properties on the wrinkling 
behaviour can only be observed for the r values. Based on 
the wrinkling criterion �wc (see Eq. (1)), the wrinkling risk 
increases with decreasing average anisotropic exponents. 
The influence of the blank thickness and the position of the 
blank are not significant and negligible for the application 
example.

5.2  Evaluation of the process robustness

The results of a sensitivity analysis allow to identify root 
causes of failure modes and the main influences on the 
quality criteria, leading to a deeper understanding of the 
process. However, conclusions about process robustness 
are not possible, and a process highly dominated by fric-
tion, such as the application example in this work, does not  

(6)
STi ≈ ŜTi =

1

2n

∑n
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�

f (A)j − f
�

A
(i)

B

�

j

�2

V(Y)

Table 6  Modelling of quality criteria under consideration of different 
measurand combinations

No Combination of parameter Rupture risk Wrinkling

RSM1 Draw-in - 86.47% 84.54%
RSM2 Material proper-

ties
- 32.04% 32.27%

RSM3 Draw-in Position blank 86.87% 83.98%
RSM4 Draw-in Material proper-

ties
92.57% 95.06%

RSM5 Draw-in
Blank thickness

Position blank
-

83.92% 82.65%

RSM6 Draw-in
Blank thickness

Position blank
Material proper-

ties

86.19% 94.58%

ANN1 Draw-in - 92.84% 95.33%
ANN2 Material proper-

ties
- 57.18% 59.62%

Table 5  Defects per million opportunities for rupture risk and wrin-
kling

Quality criteria abs %

Necking 65,217 6.52%
Rupture 6,289 0.63%
Wrinkles 62,112 6.21%
Total 133,619 13.36%
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necessarily justify a low robustness. Thus, the evaluation of 
the process robustness and performance is necessary. It can 
be realized by the calculation of the DPMO, which has the 
advantage of considering multiple defects of the same type 
and does not rely on an upper and lower specification limit 
such as the Cpk value. Therefore, the DMPO is a suitable 
criterion to assess robustness based on the rupture risk and 
wrinkling, since both criteria rely on an upper limit only. 
One possibility to identify challenging processes based on 
DPMO is the evaluation of shift reports from series pro-
duction. However, results from variant simulations can be 
a good alternative if a reliable data basis from series pro-
duction is lacking. In this work, the simulation results are 
classified into three different categories in terms of rupture 
risk (Fig. 7a). Simulations containing nodes above the FLC 
are considered failed parts (NOK) and simulations with all 
nodes below the safety barrier as good parts (OK), and the 
remaining results are classified as critical. The offset of 10% 

to the FLC which defines the critical area is derived from 
internal guidelines and represents parts, where necking can 
be expected, while wrinkles are observed for values above 
0.25. The total DMPO for both quality criteria is summa-
rized in Fig. 7b, while Table 5 shows all DPMO values. 
Processes with expected scrap rates above 5% are considered 
difficult with low robustness.

This applies both to the application example in terms of 
rupture risk and to the occurrence of wrinkles justifying 
the implementation of an operator assistance system. It has 
to be considered that the appearance of ruptured parts is 
predicted to be comparably unlikely, which is in fact in line 
with the experience from series production. In general, parts 
are already rejected, and process parameters are adjusted as 
soon as necking is detected. Furthermore, the large number 
of parts in the critical area of necking indicates close opera-
tion at the process limits.

Fig. 8  Comparison of dimen-
sional deviations after 10 parts 
(part no. 2 with 1800 kN) (a), 
after 350 parts (part no. 3 with 
1800 kN) (b) and after 460 parts 
(part no. 5 with 1600 kN) (c)
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Fig. 10  Comparison of thinning and rupture risk at homogeneous initial tool temperatures of 60 °C and 1800 kN (a) and 1600 kN (b) blank 
holder force under consideration of the nominal parameter set
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Fig. 11  Comparison of wrinkling at homogeneous initial tool temperatures of 60 °C and 1800 kN (a) and 1600 kN (b) blank holder force under 
consideration of the nominal parameter set

0.375

1450 kN1800 kN

(a) (b)

x
y

zx
y

z

Thinning

0.162

0.247

0.340

Fig. 12  Comparison of thinning and rupture risk at homogeneous initial tool temperatures of 60 °C and 1800 kN (a) and 1450 kN (b) blank 
holder force under consideration of the worst-case parameter set
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5.3  Preselection of measurands based 
on observability

In most cases, it is difficult to draw conclusions regarding the 
part quality during the forming process since quality criteria 
and failure modes are not directly measurable. A measure-
ment after the forming process is usually associated with a 
high effort, leading to a significant loss in productivity if a 
broad sample is to be taken into account. Thus, observers are 
often utilized to provide an estimate of the part quality. The 
quality criteria rupture risk and wrinkling are approximated 
based on different combinations of measurable input param-
eters using the RSM as before, i.e. either a MLR or MQR 
model is used. However, the friction coefficient is omitted 
as input to the models due to the lack of measurement pos-
sibilities and the flange draw-in serves as possible input 
instead. The observability per combination is quantified by 
the achievable  R2 after cross-validation (Table 6). In a first 
step, a combination set considering all input parameters is 
used (combination set no. RSM6). A stepwise regression 

based on the backward elimination approach is carried 
out to determine the optimal combination of measurands 
per quality criterion. Thus, only parameters with an added 
value to the goodness-of-fit will be left in that model. Not 
all draw-in positions or material parameters are necessarily 
included as consequence of this approach. The results of 
these ideal combinations per quality criterion are highlighted 
by underlining in Table 6. The observability analysis indi-
cates a combination of draw-in, and material properties (no. 
RSM4) appear to be the most promising solution in terms 
of the achieved  R2.

However, the measurement of the draw-in is essential to 
draw conclusions regarding the rupture risk and the appear-
ance of wrinkles. The consideration of the measurement of 
material properties only provides a small advantage. Espe-
cially a sole measurement of material properties (no. RSM2) 
is not recommended since it does not allow a reliable and 
trustworthy statement about the selected quality criteria due 
to the low  R2. The same applies to the blank thickness and 
the position of the blank. The consideration of the blank 
position at the beginning of the process leads to a slight 
increase of the observability at least for the rupture risk, 
while both together may even reduce the observability of 
the process, as shown by combination no. RSM5 and no. 
RSM6. This is in agreement with the results of the sensi-
tivity analysis regarding the dominant influence of friction, 
taking into account that the draw-in is a suitable indicator 
to reflect changes of the frictional behaviour due to changes 
in the resulting restraining forces [43]. The application of 
a more complex model like ANN allows the reduction of 
the number of necessary measurands without loss in per-
formance (no. ANN1) compared to the ideal set or at least 
enables an increase in observability (no. ANN2).

1450 kN1800 kN

(a) (b)

x
y

zx
y

z

Wrinkling

0.234

0.217

0.247

0.237

Fig. 13  Comparison of wrinkling at homogeneous initial tool temperatures of 60 °C and 1800 kN (a) and 1450 kN (b) blank holder force under 
consideration of the worst-case parameter set

Table 7  Unfavourable parameters with regard to rupture risk

Parameter Value

Friction coefficient �G

(

p, vrel,T
)

Blank thickness 0.6615 mm
Yield strength 217 MPa
Tensile strength (0°/45°/90°) 326/339/321 MPa
r value (0°/45°/90°) 1.91/1.28/2.17
Uniform elongation (0°/45°/90°) 20.3/17.1/19.7%
Strain hard. exp 0.186
x-position blank  + 0.04 mm
y-position blank  − 1.11 mm
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5.4  Controllability and compensation strategy

In the series production of car body parts, there is usu-
ally a limited number of actuators available for process 
intervention. All measures have in common that an adjust-
ment of the material flow within the process is aimed when 
quality issues or part failures arise. Adjustments of the 
blank holder force or the height of the spacers leading to 
different global or local pressure conditions can compen-
sate part failure due to adapted restraining forces. Further-
more, it is possible to increase the amount of lubrication 
of the blanks to enable a greater material flow. However, 
the effectiveness of these measures has to be analysed to 
evaluate the controllability of the process and to derive 
possible compensation strategies. In this work, the adjust-
ment of the blank holder force is used to analyse whether 
the process is generally controllable. For this purpose, a 
sample of five deep drawn parts was taken from a pro-
duction run at different times and digitized by a GOM 
Atos system. Two parts were taken at the beginning of the 
production and do not include any part failure. The third 
part was taken after necking in the right rib was detected 
forcing the machine operator to reduce the blank holder 
force uniformly from 1800 to 1600 kN. The two remain-
ing parts were taken after adjusting the blank holder force 
and meet the quality requirements. A comparison of the 
dimensional deviations between the second, the third and 
the last part using the first part as reference is shown in 
Fig. 8. For this part, only a low variability of dimensional 
deviations is observed during the production run. Further-
more, the dimensional deviations between the first and 

the third digitized part reveal the necking in the right rib 
of the third part (Fig. 8b). This deviation in the rib of the 
part vanishes almost completely after the reduction of the 
blank holder force, Fig. 8c shows.

These observations are consistent with measurement 
results regarding the flange draw-in of the parts. A compari-
son with regard to the flange draw-in of all parts is shown 
in Fig. 9. The draw-in positions correspond to Fig. 5. A 
decrease of the flange draw-in in almost the whole part can 
be observed until necking is detected. However, the change 
in flange draw-in is not uniform as would be expected from 
a symmetrical component in an idealized case. The decrease 
of the flange draw-in on the right side (pos. 6–10) is signifi-
cantly higher than on the left side (pos. 16–20) and leads to 
necking. Differences can also be observed between positions 
3 and 13.

In agreement with the results of the sensitivity analysis, 
an increased friction coefficient due to the heating of the 
tools leads to higher restraining forces and thus to failure 
of the part. However, the reduction of the blank holder 
force allows an increase of the material flow leading to an 
improved thinning behaviour. Faultless parts are regained 
although the draw-in reaches the initial state at individual 
positions only. The possibility of compensating for such 
formability issues by a simple reduction of the blank holder 
force can also be confirmed by simulation results. For this 
purpose, an advanced thermal–mechanical coupled simu-
lation is used, taking into account a friction model that 
depends on the sliding velocity, contact pressure and tem-
perature. Detailed information on the mechanical and ther-
mal properties as well as the contact and friction modelling 

Laser displacement

sensor

Adjustable spacer

9.5 mm

Pyrometer

© μ

Temperature13 8

12 11

15

14

10 9

Draw-in

1C 2C

3C

4C

5C6C

0C

7C

x

y

(a) (b)

(c)

Fig. 14  Sensor technology implemented in the blank holder including adjustable spacers (a), measuring positions of the draw-ins (b) and meas-
uring positions of the tool temperatures (c)
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of this simulation can be found in [44]. Assuming a simpli-
fied initial homogeneous temperature on the tools of 60 °C 
and an initial metal sheet temperature of 20 °C, rupture 
and necking are to be expected in the rib of the part (see 
Fig. 10a). A reduction of the blank holder force as is done in 
series production results in decreased restraining forces and 
an improved formability in terms of thinning without rupture 
or necking. However, reducing the blank holder force may 
facilitate the formation of wrinkles, especially in the flange 
of the part. Severe wrinkling was not observed in any of the 
parts from the production sample. According to the simula-
tion results, the reduction of the blank holder force causes 
only a slight increase in wrinkling, which is not significant 
and negligible (see Fig. 11). It can be expected that a reduc-
tion of the blank holder force is a sufficient compensation 
option in the vast majority of cases, since friction is the 
most influential parameter of the process with regard to the 
appearance of rupture and wrinkles.

However, the simulation results from Figs. 10 and 11 
are based on the nominal values (see Table 1) and neglect 
further negative influences on the formability of the part 
which are caused by other parameters, especially by vary-
ing material properties. For this purpose, the metamodels 
are used to determine the most unfavourable parameter 
set in terms of rupture based on a sampling matrix with 
10,000 parameter sets generated by Latin hypercube sam-
pling, considering a constant friction coefficient and the 
variation ranges from Table 5. The unfavourable param-
eters of this scenario can be found in Table 7.

In this worst-case scenario, rupture and necking in the 
rib of the part are expected at initial homogeneous tool 
temperatures of 60 °C as before (see Fig. 12a). However, 
the thinning and risk of rupture are considerably higher. 
Reducing the blank holder force is still an effective way 
of improving formability in terms of excessive thinning. 
In contrast to the first case, a lower blank holder force is 

Fig. 15  Measurement of the 
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tures in series production [43] Lubrication

Idle strokes

Blank holder

Punch

508 parts 1082 parts

Measuring positions according to Figure 11b

D
ra

w
-i

n
 [

m
m

]

[ ser
utare

p
met l

o
o

T
°C

]

Time [hh:mm:ss]

Blank holder force 

Measuring positions according to Figure 11c

Fig. 16  Characteristic draw-in 
curves (position 6C) (a) and 
upper and lower limits of the 
flange draw-in regarding main 
failure criteria (b)

 -40.0

 -35.0

 -30.0

 -25.0

 -20.0

 -15.0

 -10.0

 -5.0

 +0.0

 +5.0

 +10.0

 +15.0

0C 1C 2C 3C 4C 5C 6C 7C

∆
 D

ra
w

-i
n
 [

m
m

]

Wrinkles

Increased wrinkle risk

OK

Increased necking risk

Rupture

100

90

80

70

60

50

40

30

20

10

0
0         0.1       0.2      0.3        0.4       0.5      0.6        0.7       0.8       0.9        1

]
m

m[ 
n

oitis
o

p
e

g
nal

F

Time [s]

(a) (b)

UCL

UWL

OK

LWL

LCL

2422 The International Journal of Advanced Manufacturing Technology (2022) 119:2409–2428



1 3

necessary to compensate for the negative effects. Although 
an increased risk of wrinkles can be observed, it is still not 
significant (see Fig. 13).

6  Selection of sensor technologies 
and implementation of an assistance 
system

The results of the process analysis have shown that the 
implementation of an operator assistance system is expedi-
ent and justifiable for the application example. The consid-
eration of the flange draw-in as sole measurand is the most 
reliable and efficient solution based on the results of the 
observability analysis and is supported by the investigation 
of the process controllability. However, the specific selection 
of sensor technologies to measure the draw-in is difficult. 
A generally valid quantitative and objective evaluation of 
existing solutions is practically impossible since most draw-
in measurement solutions are in-house developments which 
are not available on the market such as a sheet metal tongue 
[10], a track ball [6], an eddy current sensor [45], image 
sensor technologies [46] or camera-based systems [14, 17]. 
Thus, this step is strongly specific, depending on economic 
factors and development resources as well as the basic cir-
cumstances in the press shop and the press line. All solutions 
are tool-integrated and spot measurement systems, except for 
camera-based systems, which allow a measurement of the 
draw-in outline independent of the process if integrated into 
the press line. However, the costs regarding hardware, devel-
opment, implementation and calibration are comparatively 
high. Furthermore, the draw-in curve and varying positions 
of the sheet metal are neglected. A measurement system 
based on laser triangulation sensors is the most appropriate 
solution in most cases due to the high benefits in terms of an 
economic point of view. Numerous types of laser triangula-
tion sensors are available on the market and usually ensure 
a plug-and-play principle for fast installation and commis-
sioning. The biggest disadvantage is the restriction regarding 
positioning possibilities due to drawbeads or step beads in 
the tools. An accurate and complete measurement of the 
draw-in can only be performed up to the drawbead in this 
case. The determination of appropriate measurement posi-
tions is strongly recommended before installation, even if 
the repositioning effort is comparatively low.

For the purpose of this work, a measurement system 
based on laser triangulation sensors was integrated into the 
drawing tools of the application example (Fig. 14a). The 
flange draw-in is recorded inline at eight different positions 
by laser displacement sensors of the type optoNCDT 1420 
from Micro-Epsilon. The risk of contamination by dirt is 
reduced to a minimum by using a casing. The exact positions 
as shown in Fig. 11b have been derived from the results of 

Fig. 9. All 20 positions have been ranked according to their 
draw-in variability due to the heating of the tools (draw-in 
deviation between OK parts and NOK part at 1800 kN) and 
their draw-in variability after the reduction of the global 
blank holder force (draw-in deviation between NOK part at 
1800 kN and OK parts at 1600 kN).

The positions 8, 12 and 14 have not been selected due to 
restrictions caused by the drawbeads, although they show 
a high variability. The low draw-in variability on the left 
side of the part (positions 16–20) does not justify placing a 
draw-in sensor there. However, the tools were also equipped 
with adjustable spacers controlling their heights by servo-
motors to manipulate local pressure conditions and thus the 
local material flow, as described in [17]. The electrically 
driven spacers replaced eight of a total of sixteen conven-
tional spacers, including two spacers on the left side. There-
fore, two laser displacement sensors were installed on the 
left side of the blank holder to monitor the material flow at 
these positions as well. Temperature changes of the tools 
are recorded by eight pyrometers on the backside of the 
blank holder and punch. The integration of Micro-Epsilon’s 
CT-SF15-C3 pyrometers into drill holes reaching 9.5 mm 
to the tool surface allows a convenient configuration due to 
the creation of a black body. The measured temperatures at 
the bottom of the holes can be assumed as approximately 
equal to the surface temperatures. The six pyrometers in the 
blank holder (8–13) are arranged symmetrically and point to 
the drawbead, whereas sensors 14 and 15 measure the tem-
perature of the punch radius (Fig. 14c). Their consideration 
is only of secondary importance and is not decisive for the 
application of the operator assistance system. Nevertheless, 
sensor information about the development of the tool tem-
perature during the process provides insight into frictional 
changes. The contact pressure and sliding velocity as one of 
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the main influences on friction in sheet metal forming [47] 
can be assumed to be approximately constant in series pro-
duction if manipulating variables such as the blank holder 
force or the stroke rate are not adjusted or varied. As a con-
sequence, temperature-induced friction effects are expected 
to be substantial for friction-dominated processes.

6.1  Identification of the component state

A process monitoring system is set up based on the pre-
sented measurement system. Information regarding the 
draw-in and the tool temperatures is monitored throughout 
the process, and the occurrence of potential part failures is 
submitted to the machine operator via warning message. 
Such a monitoring system corresponds to a second-level 
assistance system according to [48] and offers the pos-
sibility to increase the transparency of the manufacturing 
process. Statistical process control (SPC) [49] based on 
the draw-in per sensor is used for process monitoring pur-
poses and the identification of the component state with 
respect to the main failure criteria of necking and rupture 

as well as wrinkling. The machine operator was informed 
as soon as a measurement position leaves the predefined 
range of faultless parts. The determination of the warning 
and control limits per sensor position requires informa-
tion about their reference values and the corresponding 
variation range in which faultless parts are produced. For 
this purpose, measurement data from series production, 
consisting of 12,234 parts from a total of 32 production 
runs, were evaluated. The reference values represent the 
average value of the draw-in from the first 10 parts of each 
production run as long as no significant change in tool 
temperature was observed ( ΔTtools ≤ 1◦C ). The distance 
from the reference value to the upper and lower limits 
is largest. In general, an increasing draw-in increases the 
risk of wrinkles, whereas a decreased draw-in may trig-
ger necking and rupture. The control limits (CL) at which 
necking and rupture or wrinkles are to be expected were 
also derived from the production data. The development 
of the draw-in and the tool temperatures for an exemplary 
production run with a batch size of 1082 deep drawn parts 
and a stroke rate of 11 strokes per minute is shown in 
Fig. 15. Each triangle represents the draw-in of a drawn 
part including the corresponding tool temperatures. The 
measurement system only records data when the press is 
running to keep the data volume as small as possible. Gaps 
in the figure thus indicate breaks and interruptions during 
production.

The measurement data will not be discussed in-depth in 
this paper, since a detailed analysis with regard to the influ-
ence of temperature, blank holder force and lubrication on 
the material flow in the flange has already been carried out 
in [43].

In brief, it was found that the material flow of the pro-
cess is mainly driven and disturbed by the tool temperature, 
resulting in higher friction and increased restraining forces, 
which lead to a decreased draw-in and cause part failure 
due to necking and tearing. As a consequence, the cylinder 
pressure in the drawing cushion was reduced after 508 parts 
by the machine operator in order to stabilize the process. 
The draw-in per sensor position at that time is used as the 
lower control limit (LCL) with respect to the occurrence 
of necking and rupture. All production runs are evaluated 
according to this procedure, enabling the determination and 
refinement of the CL values regarding necking, rupture and 
wrinkles. Fig. 16a shows the corresponding draw-in curves 
exemplarily for sensor position 6C according to the meas-
urement positions from Fig. 14b. The draw-in curve rep-
resenting necking shows a similar shape compared to the 
reference curve, except for the final draw-in. However, the 
shape changes as soon as rupture occurs. The final draw-in is 
not only significantly lower, but the material flow decelerates 
abruptly and almost stops after 0.55 s, since critical tensile 
stresses in the rib of the part exceed the tensile strength of 
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Fig. 18  Controlled production run for a batch size of 497 parts

Table 8  Distribution of drawn parts per SPC limit of an uncontrolled 
and controlled production run

SPC limits Uncontrolled Controlled

abs % abs %

UCL 0 0.00% 0 0.00%
UWL 1 0.08% 36 7.23%
OK 640 59.14% 412 82.86%
LWL 437 40.57% 49 9.91%
LCL 4 0.21% 0 0.00%
TOTAL 1082 100% 497 100%
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the material and lead to rupture. The material flow in the 
flange does not stop completely because the final drawing 
depth has not yet been reached. However, the deceleration of 
the material flow indicates that the rupture acts like a relief 
cut supporting the material flow in the rib; thus, the mate-
rial has not primarily to come from the forming zone in the 
flange. The resulting lower and upper control limits (UCL) 
and warning limits (WL) per sensor position regarding the 
main failure criteria after evaluation of all production runs 
are shown in Fig. 16b. Since the process is highly dominated 
by temperature-induced friction effects leading to exces-
sive thinning, the occurrence of wrinkles is comparatively 
less frequent, resulting in a smaller data basis of parts with 
wrinkles. The lower and upper limits as well as the area of 
faultless parts indicate that the sensor positons 1C, 2C and 
6C are the most sensitive with respect to the process. Since 
the assistance system is intended to support the machine 
operator even before part failure occurs, warning limits have 
been specified to represent areas of increased risk in terms 
of necking and wrinkles. Twenty percent of the total data 
above the LCL defines the lower warning limit (LWL) and 
thus the area of increased necking risk, whereas 20% of the 
total data below the UCL represents the upper warning limit 
(UWL) and an increased risk of wrinkling. This assumption 
was made due to the lack of thinning and wrinkling data 
of each part and does not necessarily imply the occurrence 
of part failure. A complete measurement of each part with 
regard to thinning and wrinkling after the forming process is 
basically not possible in series production. However, consist-
ent avoidance of this area will improve the overall quality 
of the production batch by drawing as few parts as possible 
close to these limits. The draw-in differences between the 
reference values and the actual values per sensor position (∆ 
Draw-in) of the exemplary production run from Fig. 15 are 
included in Fig. 16b. Each point represents a drawn part. It 
can be observed that a large number of parts were produced 
below the LWL and close to the process limits most likely, 
although they appeared unremarkable in production.

6.2  Decision‑making assistance for the operator

A fourth-level assistance system does not only present 
information regarding the transition of the process from 
a permissible to an impermissible state, but also provides 
the machine operator with a suitable action recommenda-
tion based on real-time data [48]. In the present work, a 
decision-making assistance is provided as soon as a warn-
ing limit is exceeded; otherwise, the default parameters of 
the process are recommended. The assistance is based on 
a model using experimental results under consideration of 
varying manipulated variables. The DoE is generated by a 
Latin hypercube sampling, which accounts for the variation 
in height of eight adjustable spacers within the range of ± 

0.34 mm to manipulate local pressure conditions and the 
local material flow. A uniform distribution considering no 
correlations was used for the calculation of the DoE, in con-
trast to the parameters of the variant simulations, which are 
based on normal distributions under consideration of cor-
relations between the material parameters. The experiments 
were carried out at room temperature, and a variation of the 
blank holder force as well as the lubrication amount was 
not considered. Furthermore, the experimental procedure is 
extended to include the variation of single spacer positions 
as well as the simultaneous variation of all spacers, result-
ing in a total of 191 experiments and deep drawn parts. The 
maximum achievable draw-in deviations to the references 
values (∆ Draw-in) per sensor position are shown in Fig. 17. 
As before, each point represents a drawn part. The values 
cannot be combined arbitrarily and show extreme values, 
i.e. reaching a maximum draw-in deviation can also have 
an influence on the draw-in at other sensor positions. The 
data indicates that it is generally possible to control the pro-
cess only by adjusting the height of the spacers. Both wrin-
kles and necking and rupture can be adequately prevented, 
leading to an increased distance of the actual draw-in to the 
warning and control limits if appropriate spacer heights 
are applied. However, the relationship between the spacer 
heights and the resulting draw-in deviations is non-linear and 
requires complex models due to the multiple input and mul-
tiple output. Multivariate multiple regression models only 
provide very poor results regarding the goodness-of-fit. The 
same applies for ANN models, although this is likely due to 
the comparatively small amount of experimental data. Thus, 
recommendations based on these models would be associ-
ated with a very high degree of uncertainty. Nevertheless, 
in order to be able to provide the machine operator with a 
decision-making assistance and a suitable configuration of 
the spacer heights during the process as soon as the warning 
limit is exceeded, a 1-nearest-neighbour classifier is applied.

This classifier is a special case of the k-nearest-neighbour 
and does not require learning, since it assigns a point to 
its closest neighbour in feature space among training points 
based on a predefined distance metric.

In the present case, the measured draw-in deviations are 
assigned to the closest neighbour from the experimental 
database during the process, with the aim of minimizing the 
∆ Draw-in of the next part at every position. The operator 
receives a recommendation for a suitable adjustment of the 
spacers after each stroke. This approach can be considered 
off-line control [5] and assumes that the process conditions 
do not change suddenly between two consecutive parts, since 
the recommended settings of the current part are based on 
the draw-in measurements of the previous part. The deter-
mination of the distance enabling this classification uses the 
standardized Euclidian distance between two J-dimensional 
vectors as proposed by Slater [50]:
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where xsj is the actual ∆ Draw-in, ytj is the ∆ Draw-in from 
the experimental database and sj is the standard deviation of 
the j-th variable or sensor position. Standardization avoids 
that values with large intersample differences dominate the 
calculation suppressing individual sensor positions. This is 
the case for positions 1C, 2C and 6C which show the highest 
variation in the process.

6.3  Proof of concept trial

The operator assistance system, consisting of the process 
monitoring and the decision support, was transferred into a 
human machine interface (HMI) based on National Instru-
ments’ LabVIEW for the visual interface and MathWorks’ 
MATLAB for the calculations. A simplified software-in-the-
loop simulation using raw data from past productions runs 
was generated as an ideal test environment for debugging 
purposes, before testing the operator assistance system under 
real production conditions. After successful troubleshooting, 
a proof of concept trial was carried out in series production 
considering a batch size of 497 parts and a stroke rate of 
11 strokes per minute. The draw-in differences between the 
reference values and the actual values per sensor position 
(∆ Draw-in) of this controlled production run are included 
in Fig. 18.

As before, each point represents a drawn part. The heights 
of the spacers were adjusted a total of four times based on 
the recommendation of the operator assistance system after 
the draw-in has exceeded the LWL. All parts meet the qual-
ity requirements, and there was no scrap produced due to 
early intervention. A clear shift of the draw-ins to their ref-
erence values can be observed in comparison to the results 
of the exemplary production run from Fig. 16b, except for 
the draw-in of sensor position 7C. However, a majority of 
the parts has been produced within their warning limits. 
The average number of parts per sensor position within 
their warning limits (OK area), outside their warning lim-
its (UWL and LWL area) and outside their control limits 
for the uncontrolled and controlled production run can be 
found in Table 8. The distribution of parts confirms that 
the number of parts within the LWL has been significantly 
reduced resulting in a greater proportion of parts within their 
warning limits. As a result, the overall quality of the parts 
produced was improved by the operator assistance system.

(7)dst =

�

�

�

�

�

∑J

j=1

�

xsj − ytj
�2

s2
j

7  Conclusion and outlook

The approach for a development of an operator assistance 
system as proposed in this work serves as a guideline to 
fulfil the need for a more robust process. A thorough process 
analysis using variant simulations offers a cost-efficient eval-
uation regarding the expediency of an operator assistance 
system and the identification of suitable and mandatory 
sensor technologies to ensure a successful implementation. 
Processes which do not justify an operator assistance sys-
tem can be detected at an early stage avoiding unnecessary 
expenses. The process of the application example introduced 
in this work justified the implementation of an assistance 
system based on draw-in measurements. The variance-based 
sensitivity analysis predicted a strong influence of friction 
on both quality criteria rupture risk and wrinkling, which 
was confirmed by measurements from series production. 
Furthermore, it could be shown that the process is control-
lable through typical manipulated variables such as the 
blank holder force and the lubrication amount as well as 
the adjustment of the spacer heights. An operator assistance 
system consisting of SPC-based process monitoring and 
a decision-making assistance using a 1-nearest-neighbour 
algorithm considering varying spacer heights only is a prom-
ising strategy to significantly stabilize and improve the pro-
cess. A proof of concept trial in series production showed 
that the operator assistance system is capable of significantly 
improving the overall quality of the parts produced. None-
theless, it is expected that the actuating limits of the deci-
sion-making assistance caused by the focus on adjustable 
spacers can be extended by the varying of the blank holder 
force and, if necessary, additional lubrication amounts.
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