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Abstract
We consider a general class of binary packing problems with a convex quadratic
knapsack constraint. We prove that these problems are APX-hard to approximate and
present constant-factor approximation algorithms based upon two different algorith-
mic techniques: a rounding technique tailored to a convex relaxation in conjunction
with a non-convex relaxation, and a greedy strategy. We further show that a com-
bination of these techniques can be used to yield a monotone algorithm leading to
a strategyproof mechanism for a game-theoretic variant of the problem. Finally, we
present a computational study of the empirical approximation of these algorithms for
problem instances arising in the context of real-world gas transport networks.

Mathematics Subject Classification 90C27 · 90C35 · 68Q25

1 Introduction

We consider packing problems with a convex quadratic knapsack constraint of the
form

maximize p�x
subject to x�Wx ≤ c, x ∈ {0, 1}n, (P)

Results were reported in preliminary form in [17].

B Marc E. Pfetsch
pfetsch@mathematik.tu-darmstadt.de

Max Klimm
klimm@math.tu-berlin.de

Rico Raber
raber@math.tu-berlin.de

Martin Skutella
skutella@math.tu-berlin.de

1 Institute of Mathematics, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

2 Department of Mathematics, TU Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01675-6&domain=pdf
http://orcid.org/0000-0002-0947-7193


362 M. Klimm et al.

whereW ∈ Qn×n
≥0 is a symmetric positive semi-definite (psd)matrixwith non-negative

entries, p ∈ Qn≥0 is a non-negative profit vector, and c ∈ Q≥0 is a non-negative budget.
Such convex and quadratically constrained packing problems are clearlyNP-complete
since they contain the classical (linearly constrained) NP-complete knapsack problem
(cf. Karp [14]) as a special case when W is a diagonal matrix. In this paper, we
therefore focus on the development of approximation algorithms. For some ρ ∈ [0, 1],
an algorithm is a ρ-approximation algorithm if its runtime is polynomial in the input
size and for every instance, it computes a solution with objective value at least ρ times
that of an optimum solution. The value ρ is then called the approximation ratio of the
algorithm. We note that for general matricesW no sensible approximation is possible,
e.g., when W is the adjacency matrix of an undirected graph and c = 0, (P) encodes
the problem of finding an independent set of maximal weight, which is NP-hard to
approximate within a factor better than n−(1−ε) for any ε > 0, even in the unweighted
case; see Håstad [10].

The packing problems that we consider also have a natural interpretation in terms
of mechanism design. Consider a situation where a set of n selfish agents demands a
service, and the subsets of agents that can be served simultaneously are modeled by a
convex quadratic packing constraint. Each agent j has private information p j about
its willingness to pay for receiving the service. In this context, a (direct revelation)
mechanism takes as input the matrix W and the budget c. It then elicits the private
value p j from agent j . Each agent j may misreport a value p′

j instead of its true value
p j if this is to its benefit. The mechanism then computes a solution x ∈ {0, 1}n to (P)
as well as a payment vector g ∈ Qn≥0. A mechanism is strategyproof if no agent has
an incentive in misreporting p j , no matter what the other agents report.

Before we present our results on approximation ratios and mechanisms for non-
negative, convex, and quadratically constrained packing problems, we give two real-
world examples that fall into this category.

Example 1 (Welfare maximization in gas supply networks) Consider a gas pipeline
network modeled by a directed graph G = (V , E) with different entry and exit nodes.
There is a set of n transportation requests (s j , t j , q j , p j ) for j ∈ [n] := {1, . . . , n},
each specifying an entry node s j ∈ V , an exit node t j ∈ V , the amount of gas to be
transported q j ∈ Q≥0, and an economic value p j ∈ Q≥0. Gas flows in pipe networks
are modeled by the Weymouth equations [29] of the form βe qe |qe| = πu − πv for all
e = (u, v) ∈ E . Here, the parameter βe ∈ Q>0 is a pipe specific value that depends
on physical properties of the pipe segment, such as length, diameter, and roughness.
Positive flow values qe > 0 denote flow from u to v, while a negative qe indicates
flow in the opposite direction. The value πu denotes the square of the pressure at node
u ∈ V . In real-life gas networks, there is typically a bound c ∈ Q≥0 on the maximal
difference of the squared pressures in the network. For the operation of gas networks,
it is a natural problem to find the welfare-maximal subset of transportation requests
that can be satisfied simultaneously while satisfying the pressure constraint.

To obtain the connection to our problem (P) we now restrict the setting to a path
topology and assume that for each request the entry node is left of the exit node; see
Fig. 1 for an example. Thus, the pressure in the network is decreasing from left to
right. For j ∈ [n], let E j ⊆ E denote the set of edges on the unique (s j , t j )-path in G.
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Fig. 1 Gas network with feed-in and feed-out nodes

Indexing the vertices v0, . . . , vk and edges e1, . . . , ek from left to right, the maximal
squared pressure difference in the network is given by

π0 − πk =
k∑

i=1

(
πi−1 − πi

) =
k∑

i=1

βei

( ∑

j∈[n]:ei∈E j

q j x j
)2

,

where x j ∈ {0, 1} indicates whether transportation request j ∈ [n] is being served.
For the matrix W = (wi j )i, j∈[n] defined by wi j = ∑

e∈Ei∩E j
βe qi q j , the pressure

constraint can be formulated as x�Wx ≤ c. To see that the matrixW is positive semi-
definite, we write W = ∑

e∈E βe qe (qe)�, where qe ∈ Qn≥0 is defined as qei = qi if
e ∈ Ei , and qei = 0, otherwise.

Gas networks are particularly interesting from a mechanism design perspective,
since several countries employ or plan to employ auctions to allocate gas network
capacities (cf. Newbery [22]), but theoretical and experimental work uses only linear
flow models thus ignoring the physics of the gas flow; see, e.g., McCabe et al. [19]
and Rassenti et al. [25].

Example 2 (Processor speed scaling) Consider a mobile device with battery capacity
c and k compute cores. Further, there is a set of n tasks (q j , p j ), each specifying a
load q j ∈ Qk≥0 for the k cores and a profit p j . The computations start at time 0 and
all computations have to be finished at time 1. In order to adapt to varying workloads,
the compute cores can run at different speeds. In the speed scaling literature, it is a
common assumption that energy consumption of core i when running at speed s is
equal to βi s2, where βi ∈ Q>0 is a core-specific parameter; see, e.g., Bansal et al. [3]
Irani and Pruhs [13] and Wierman et al. [30].1 The goal is to select a profit-maximal
subset of tasks that can be scheduled in the available time with the available battery
capacity.Given a subset of tasks, it iswithout loss of generality to assume that each core
runs at the minimal speed such that the core finishes at time 1, i.e., every core i runs at
speed

∑
j∈[n] x j q

j
i so that the total energy consumption is

∑k
i=1 βi (

∑
j∈[n] x j q

j
i )2.

The energy constraint can thus be formulated as a convex quadratic constraint.
Mechanism design problems for processor speed scaling are interesting when

the tasks are controlled by selfish agents and access to computation on the energy-
constrained device is determined via an auction.

1 Other works assume that the relationship is cubic, but experiments conducted by Wierman et al. [30]
suggest that the relationship is closer to quadratic than cubic.
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1.1 Our results

In Sect. 3 we derive a φ-approximation algorithm for packing problems with convex
quadratic constraints where φ = (

√
5− 1)/2 ≈ 0.618 is the inverse golden ratio. The

algorithm first solves a convex relaxation and scales the solution by φ, which turns it
into a feasible solution to a second non-convex relaxation. The latter relaxation has the
property that any solution can be transformed into a solutionwith atmost one fractional
component without decreasing the objective value. In the end, the algorithm returns
the integral part of the transformed solution. Combining this procedure with a partial
enumeration scheme yields aφ-approximation; see Theorem1. In Sect. 4we prove that
the Greedy Algorithm, when combined with partial enumeration, is a constant-factor
approximation algorithm with an approximation ratio between (1 − √

3/e) ≈ 0.363
and φ; see Theorems 2 and 3. In Sect. 5, we show that a combination of the results
from the previous sections allows to derive a strategyproof mechanism with constant
approximation ratio. In Sect. 6 we show that packing problems with convex quadratic
constraints of type (P) are APX-hard; see Theorem 5. Finally, in Sect. 7, we apply
the three algorithms devised in the paper to several instances of the problem type
described in Example 1 based on real-world data from the GasLib library [27].

1.2 Related work

When W is a non-negative diagonal matrix, the quadratic constraint in (P) becomes
linear and the problem is then equivalent to the 0-1-knapsack problem which admits
a fully polynomial-time approximation scheme (FPTAS); see Ibarra and Kim [12].
Another interesting special case is when W is completely-positive, i.e., it can then
be written as W = UU� for some matrix U ∈ Qn×k

≥0 with non-negative entries. The
minimal k for which W can be expressed in this way is called the cp-rank of W ; see
Berman and Shaked-Monderer [4] for an overview on completely positive matrices.
The quadratic constraint in (P) can then be expressed as ‖U�x‖2 ≤ √

c. For the case
thatU ∈ Qn×2

≥0 , this problem is known as the 2-weighted knapsack problem for which
Woeginger [31] showed that it does not admit an FPTAS, unless P = NP. Chau et al.
[6] settled the complexity of this problem showing that it admits a polynomial-time
approximation scheme (PTAS). Elbassioni et al. [7] generalized this result to matrices
with constant cp-rank. It is worth noting that the welfare maximization problem for
gas networks discussed in Example 1 has only constant cp-rank in general if the
number of edges in the gas network is constant, so that these results do not apply
here. Similarly, the speed scaling problem discussed in Example 2 has only constant
cp-rank for a constant number of processors in general. Exchanging constraints and
objective in (P) leads to knapsack problems with quadratic objective function and
a linear constraint first studied by Gallo [8]. These problems have a natural graph-
theoretic interpretation where nodes and edges have profits, the nodes have weights,
and the task is to choose a subset of nodes so as to maximize the total profit of the
induced subgraph. Rader and Woeginger [24] give an FPTAS when the graph is edge
series-parallel. Pferschy and Schauer [23] generalize this result to graphs of bounded
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Packing under convex quadratic constraints 365

treewidth. They also give a PTAS for graphs not including a forbidden minor which
includes planar graphs.

Mechanism design problems with a knapsack constraint are contained as a special
case when W is a diagonal matrix. For this special case, Mu’alem and Nisan [20]
give a mechanism that is strategyproof and yields a 1/2-approximation. Briest et al.
[5] give a general framework that allows to construct a mechanism that is an FPTAS
for the objective function. Aggarwal and Hartline [2] study knapsack auctions with
the objective to maximize the sum of the payments to the mechanism. Chau et al. [6]
develop truthful mechanisms for knapsack problems with complex demand.

In a technical report, we also develop an approximation algorithm for the more
general problem with multiple quadratic constraints [15].

2 Preliminaries

For ease of exposition, we assume that all matrices and vectors are integer. The
general problem with rational input can be reduced to this problem by scaling. Let
[n] := {1, . . . , n} and W = (wi j )i, j∈[n] ∈ Nn×n be a symmetric psd matrix. Fur-
thermore, let p ∈ Nn be a profit vector and let c ∈ N be a budget. We consider
problems of the form (P), i.e., max {p�x : x�Wx ≤ c, x ∈ {0, 1}n}. Throughout the
paper, we denote the characteristic vector of a subset S ⊆ [n] by χS ∈ {0, 1}n , i.e.,
χS = (χS,1, . . . , χS,n)

� where for i ∈ [n] we have χS,i = 1 if i ∈ S and χS,i = 0,
otherwise.

We first state the intuitive result that after fixing xi = 1 for i ∈ N1 ⊆ [n] and fixing
xi = 0 for i ∈ N0 ⊆ [n] (with N0 ∩ N1 = ∅), we again obtain a packing problem
with a convex and quadratic packing constraint.

Lemma 1 Let W ∈ Nn×n be symmetric psd, p ∈ Nn, and c ∈ N. Further, let N0,
N1 ⊆ [n] with N0 ∩ N1 = ∅ and N0 ∪ N1 � [n] be arbitrary. Then, there exist ñ ∈ N,
W̃ ∈ Nñ×ñ symmetric psd, p̃ ∈ Nñ , and c̃ ∈ N such that

max
{
p�x : x�Wx ≤ c, x ∈ {0, 1}n, xi = 0 ∀i ∈ N0, xi = 1 ∀i ∈ N1

}

= p�χN1 + max
{
p̃� x̃ : x̃�W̃ x̃ ≤ c̃, x̃ ∈ {0, 1}ñ}.

Proof Let n0 = |N0|, n1 = |N1|, and ñ := n − n0 − n1. Without loss of generality
we can assume that [ñ] = [n]\(N0 ∪ N1). Consider the matrix W̃ = (w̃i j ) ∈ Nñ×ñ

defined as

w̃i j =
{

wi j if i �= j,

wi j + 2
∑

k∈N1
wik if i = j,

i, j ∈ [ñ].

Note that W̃ is obtained by taking a principal submatrix of W and adding a diag-
onal matrix with non-negative entries so that W̃ is positive semi-definite. Let c̃ =
c−χ�

N1
WχN1

. With a slight abuse of notation, for a set S ⊆ [ñ], let χ̃S denote its char-

acteristic vector in {0, 1}ñ and χS its characteristic vector in {0, 1}n . We then obtain
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for all S ⊆ [ñ] the equality

χ̃�
S W̃ χ̃S =

∑

i∈S

(
wi i + 2

∑

k∈N1

wik

)
+

∑

i, j∈S:i �= j

2wi j

= χ�
S∪N1

WχS∪N1
− χ�

N1
WχN1

.

Thus, we have χ̃�
S W̃ χ̃S ≤ c̃ if and only if χ�

S∪N1
WχS∪N1

≤ c. Defining p̃ ∈ Nñ with
p̃i = pi for all i ∈ [ñ] then establishes the claimed result. ��

Using Lemma 1, we show that the following assumptions are without loss of gen-
erality.

Lemma 2 It is without loss of generality to assume that 0 < wi i ≤ c and pi > 0 for
all i ∈ [n].
Proof Ifwi i > c for some i ∈ [n], then xi = 0 in every feasible solution x . Ifwi i = 0,
then the positive semi-definiteness of W implies wi j = w j i = 0 for every j ∈ [n].
Hence, the value of xi does not influence the value of x�Wx and it is without loss of
generality to assume that xi = 1. Furthermore, if pi = 0 then the value of xi does not
influence the value of p�x and it is without loss of generality to assume that xi = 0.
In all cases, Lemma 1 yields the result. ��

3 Approximation via two relaxations

In this section, we derive a φ-approximation algorithm for packing problems with
convex quadratic constraints of type (P) where φ = (

√
5 − 1)/2 ≈ 0.618 is the

inverse golden ratio. To this end, we first solve a convex relaxation of the problem.
We then use the resulting solution to compute a feasible solution to a non-convex
relaxation of the problem. The second relaxation has the property that any solution
can be transformed so that it has at most one fractional value, and the transformation
does not decrease the objective value. Together with a partial enumeration scheme in
the spirit of Sahni [26], this yields a φ-approximation.

Denote by d ∈ Nn the diagonal of W ∈ Nn×n and let D := diag(d) ∈ Nn×n be
the corresponding diagonal matrix. For a vector x ∈ {0, 1}n we have x2i = xi for all
i ∈ [n] and, thus, we obtain x�Wx ≥ x�Dx = d�x for all x ∈ {0, 1}n . We arrive at
the following relaxation of (P):

maximize �p�x�
subject to x�Wx ≤ c, d�x ≤ c, x ∈ [0, 1]n . (R1)

The following lemma shows that an exact optimal solution to (R1) is computable
in polynomial time.

Lemma 3 The relaxation (R1) can be solved exactly in polynomial time.
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Packing under convex quadratic constraints 367

Proof For every x ∈ [0, 1]n , we have �p�x� ∈ P := {0, . . . ,∑i∈[n] pi }. For fixed
q ∈ P , consider the mathematical program

minimize x�Wx

subject to p�x ≥ q, d�x ≤ c, x ∈ [0, 1]n (Dq )

with optimal value c(q). Since (Dq ) is quadratic and convex with linear constraints,
it can be solved exactly in polynomial time; see Kozlov et al. [18]. If c(q) > c, we
conclude that the maximal value of (R1) is strictly smaller than q. If c(q) ≤ c, the
corresponding solution x solves (R1) with an objective value of q. With binary search
over P , we compute themaximal value q∗ ∈ P such that (Dq ) has a solution of at most
c. The thus computed value q∗ is the maximal objective of (R1) and the corresponding
optimal solution x of (Dq ) is an optimal solution of (R1). ��

We proceed to propose a second relaxation of (P). To this end, note that for every
x ∈ {0, 1}n we have

x�Wx = x�(W − D)x + x�Dx = x�(W − D)x + d�x .

Relaxing the integrality condition yields the following relaxation of (P):

maximize p�x
subject to x�(W − D)x + d�x ≤ c, x ∈ [0, 1]n . (R2)

Note that since the diagonal of W − D is zero, W − D is not positive semi-definite,
unless W is a diagonal matrix. Therefore, relaxation (R2) is in general not convex.

Applying a rounding technique resembling “pipage rounding" introduced byAgeev
et al. [1], we show that every feasible solution to (R2) can be transformed into another
solution with at most one fractional variable without decreasing the objective value.
For x ∈ Rn , let N0(x) := {i ∈ [n] : xi = 0}, N1(x) := {i ∈ [n] : xi = 1}, and
N f (x) := [n] \ (N1(x) ∪ N0(x)).

Lemma 4 For any feasible solution x of (R2), a feasible solution x̄ with |N f (x̄)| ≤ 1
and p� x̄ ≥ p�x can be constructed in linear time.

Proof Let x be a feasible solution of (R2). Assume |N f (x)| ≥ 2, and consider i ,
j ∈ N f (x) with i �= j , in particular, xi , x j ∈ (0, 1). We proceed to construct a
feasible solution x̄ with |N f (x̄)| ≤ |N f (x)| − 1 and p� x̄ ≥ p�x ; see Fig. 2 for an
illustration.

Denote v(x) := x�(W − D)x + d�x , and for k ∈ {i, j} let

νk(x) := ∂

∂xk
v(x) =

∑

l∈[n]\{k}
2wkl xl + wkk, rk(x) := pk

νk(x)
.

ByLemma 2 it is without loss of generality to assume thatwkk > 0 and thus νk(x) > 0.
Note that νk(x) does not depend on xk and therefore, for all x ∈ Rn and t ∈ R, we
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Fig. 2 Any feasible solution x of
(R2) with |N f (x)| ≥ 2 can be
transformed into a feasible
solution x̄ with
|N f (x̄)| ≤ |N f (x)| − 1 without
decreasing the objective value

v(x) ≤ c

1

1

xi

xj

(x̄i, x̄j)

p

have that

v(x + tχk) = v(x) + t νk(x), (1)

where χk ∈ {0, 1}n denotes the k-th unit vector. Without loss of generality, assume
that ri (x) ≥ r j (x) and define

ε̄ := νi (x)

ν j (x)
(1 − xi ), ε := min(x j , ε̄), δ := ν j (x)

νi (x)
ε.

Consider the vector x̄ = x − εχ j + δχi . By the definition of ε, we have x̄ j =
x j − ε ≥ 0. We further obtain

x̄i = xi + δ = xi + ν j (x)

νi (x)
ε ≤ xi + ν j (x)

νi (x)
ε̄ = 1.

Note that x̄ j = 0 if ε = x j and x̄i = 1 if ε = ε̄ so that at least one of the inequalities
x̄ j ≥ 0 and x̄i ≤ 1 is tight. We conclude that x̄ ∈ [0, 1]n and |N f (x̄)| ≤ |N f (x)| − 1.
Furthermore, applying Equation (1), we obtain

v(x̄) = v(x − εχ j + δχi ) = v(x − εχ j ) + δνi (x − εχ j )

= v(x) − εν j (x) + δνi (x − εχ j ) ≤ v(x) − εν j (x) + δνi (x) = v(x).

Thus, x̄ is a feasible solution of (R2). Moreover, we have

p� x̄ = p�x − εp j + δ pi = p�x − εp j + εν j (x)
pi

νi (x)
= p�x − εp j + εν j (x)ri (x)

≥ p�x − εp j + εν j (x)r j (x) = p�x − εp j + εp j = p�x .

Applying this construction iteratively (at most) |N f (x)| − 1 ≤ n − 1 times yields the
required result. ��
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Algorithm 1: Golden Ratio Algorithm
1 foreach H ⊆ [n] with |H | ≤ 3 do
2 yH ← sol. of (R1) with xi = 1∀i ∈H , xi = 0 ∀i ∈ { j ∈ [n] \ H : p j > minh∈H ph};
3 zH ← transformation of φyH containing at most one fractional variable;

4 z̄H ← �zH �;
5 H∗ ← argmax {p� z̄H : H ⊆ [n] with |H | ≤ 3};
6 return z̄H

∗
;

Remark 1 The algorithm in the proof of Lemma 4 can be improved by setting

ε̄ := (1 − xi ) νi (x)

ν j (x) + 2wi j (1 − xi )
, ε := min(x j , ε̄), δ := ε ν j (x)

νi (x) − 2wi j x j ε
.

In this way, we obtain v(x̄) = v(x) and increase the objective value at least as much as
in the proof of Lemma 4 while still ensuring that x̄ is feasible for (R2) and |N f (x̄)| ≤
|N f (x)| − 1.

We proceed to devise a φ-approximation algorithm. The algorithm iterates over all
sets H⊆[n] with |H | ≤ 3. For each set H it computes an optimal solution yH to the
convex relaxation (R1) with the additional constraints

xi = 1 for all i ∈ H , and

xi = 0 for all i ∈ { j ∈ [n]\H : p j > minh∈H ph}.

Then, we scale down yH by a factor of φ and show that φyH is a feasible solution
to the non-convex relaxation (R2). By Lemma 4, we can transform this solution into
another solution zH with at most one fractional variable. The integral part of zH is our
candidate solution for the starting set H . In the end, we return the best thus computed
candidate over all possible sets H ; see Algorithm 1.

Theorem 1 Algorithm 1 computes a φ-approximation for (P).

Proof Fix an optimal solution x∗ of (P) and define S∗ := {i ∈ [n] : x∗
i = 1}. Since the

algorithm iterates over all solutions of size at least three, it is without loss of generality
for our following arguments to assume that |S∗| ≥ 4. Let H∗ ⊂ S∗ with |H∗| = 3
be chosen such that pi ≤ minh∈H∗ ph for all i ∈ S∗, and consider the run of the
algorithm when starting with H∗. Let

H̄ := {i ∈ [n] \ H∗ : pi > min
h∈H∗ ph}

and k := |H̄ |. It is without loss of generality to assume that [n]\(H∗∪ H̄) = [n−k−3].
Consider the packing problem where as additional constraints we have xi = 1 for all
i ∈ H∗ and xi = 0 for all i ∈ H̄ . By Lemma 1, this packing problem can be written
as
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maximize p̃�x
subject to x�W̃ x ≤ c̃, x ∈ {0, 1}n−k−3,

(P̃)

where W̃ is a symmetric and positive semi-definite matrix. We then have p�x∗ =∑
h∈H∗ pi + p̃� x̃∗ for an optimal solution x̃∗ of (P̃).
Let y be an optimal solution to the convex relaxation (R1) of (P̃). Since (R1) is a

relaxation of (P̃), we have p̃�y ≥ p̃� x̃∗. We proceed to show that φy is feasible for
the non-convex relaxation (R2) of (P̃). To this end, we calculate

(φy)�(W̃ − D̃)(φy) + φ d̃�y = φ2y�(W̃ − D̃)y + φ d̃�y ≤ φ2c̃ + φc̃ = c̃,

where for the inequality we used that y is feasible for the convex relaxation and, thus,
y�W̃ y ≤ c̃ and d̃�y ≤ c̃. By Lemma 4, we can transform φy into a solution z such
that p̃�z ≥ φ p̃�y and z has at most one fractional value z� with � ∈ [n − k − 3].

Let S = H∗ ∪ {i ∈ [n − k − 3] : zi = 1} and consider the solution χS . We have
that

χ�
S WχS ≤ χ�

H∗WχH∗ + z�W̃ z ≤ χ�
H∗WχH∗ + c̃ = c,

so that χS is feasible for (P). Moreover, we obtain

p�χS =
∑

h∈H∗
ph + p̃�z − p�z� ≥

∑

h∈H∗
ph + φ p̃�y − p� ≥

∑

h∈H∗
ph + φ p̃� x̃∗ − p�

= φ p�x∗ + (1 − φ)
∑

h∈H∗
ph − p� ≥ φ p�x∗ + (3(1 − φ) − 1) min

h∈H∗ ph ≥ φ p�x∗,

establishing the claimed result. ��

As a result of Theorem 1, we can derive an upper bound on the optimal value of
(R1). This will turn out to be useful when constructing a monotone greedy algorithm
in Sect. 5.

Corollary 1 Let x∗ and y∗ be optimal solutions to (P) and (R1), respectively. Then
p�y∗ ≤ 2

φ
p�x∗.

Proof Since y∗ is feasible for (R1), we have

(φy∗)�(W − D)(φy∗) + d�(φy∗) ≤ φ2(y∗)T Wy∗ + φd�y∗ ≤ (φ2 + φ)c = c.

Therefore, φy∗ is feasible for (R2). By Lemma 4, we can transform φy∗ into a vector
z with p�z ≥ p�(φy∗) = φ p�y∗ and |N f (z)| ≤ 1. The integral part �z� of z is
feasible for (P), and thus, p�z ≤ p��z� + maxi∈[n] pi ≤ 2p�x∗. We conclude that
p�y∗ ≤ 1

φ
p�z ≤ 2

φ
p�x∗. ��
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Algorithm 2: Greedy Algorithm with partial enumeration
1 foreach U ⊆ [n] with |U | ≤ 2 do
2 S ← U , I ← [n] ;
3 while I\S �= ∅ do
4 i ← argmax

j∈I\S
p j

w(S∪{ j})−w(S)
;

5 if w(S ∪ {i}) ≤ c then
6 S ← S ∪ {i};
7 else
8 I ← I\{i};
9 SU ← S;

10 U∗ ← argmax {p�χSU : U ⊆ [n] : |U | ≤ 2};
11 return χSU∗

4 The Greedy algorithm

In this section we analyze the Greedy Algorithm and show that, when combined with
a partial enumeration scheme in the spirit of Sahni [26], it is at least a (1 − √

3/e)-
approximation for packing problemswith quadratic constraints of type (P).We further
show that its approximation ratio can be bounded from above by the inverse golden
ratio φ = (

√
5−1)/2. Even though this approximation ratio is thus not better than the

one guaranteed by the Golden Ratio Algorithm (Theorem 1), it is worth analyzing it
for several reasons. Firstly, it is simple to understand as well as to implement and turns
out to have a much better running time in practice than the Golden Ratio Algorithm
developed inSect. 3; see the computational results in Sect. 7.And, secondly, theGreedy
Algorithm serves as a main building block to devise a strategyproof mechanism with
constant welfare guarantee; see Sect. 5.

For a set S ⊆ [n], we write w(S) := χ�
S WχS . The core idea of the Greedy Algo-

rithm is as follows. Assume that we have an initial solution S ⊂ [n]. Amongst all
remaining items in [n]\S, we pick an item i that maximizes the ratio between profit
gain and weight gain, i.e.,

i ∈ argmax
j∈[n]\S

p j

w(S ∪ { j}) − w(S)
.

If adding i to the solution set would make it infeasible, i.e., w(S ∪ {i}) > c, then
we delete i from [n]. Otherwise, we add i to S. We repeat this process until [n]\S is
empty.

It is known from the knapsack problem that, when starting the Greedy Algorithm
as described above with the empty set as initial set, then the produced solution can be
arbitrarily bad compared to an optimal solution. However, the Greedy Algorithm can
be turned into a constant-factor approximation by using partial enumeration: For all
feasible subsets U ⊆ [n] with |U | ≤ 2, we run the Greedy Algorithm starting with
U as initial set. In the end we return the best solution set found in this process; see
Algorithm 2.
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The analysis of the algorithm is similar to the one of Sviridenko [28] for the
Greedy Algorithm for maximizing a submodular function under a linear knapsack
constraint. Roughly speaking (and ignoring the issue of partial enumeration of solu-
tions), Sviridenko considers the sequence of densities θ1, θ2, . . . , θm of the items
of the greedy solution in the order they appear in it. This allows to express the
profit of the greedy solution as

∑m
i=1 θi (wi − wi−1) where wi is the total weight

after the insertion of i items, and m is the number of items inserted. On the other
hand, one can show that the profit of the optimal solution is bounded from above by
mint∈{0,...,m−1}

∑t
i=1 θi (wi − wi−1) + c θt+1. Intuitively, this means that the optimal

solution cannot be better than following a prefix of t items of the greedy solution, and
then filling the whole knapsack capacity with the next highest density. An inequality
due to Wolsey [32] shows that the worst case ratio of

∑m
i=1 θi (wi − wi−1)

mint∈{0,...,m−1}
∑t

i=1 θi (wi − wi−1) + c θt+1

is 1 − 1/e, which yields the result of Sviridenko. A main challenge when applying
this analysis to the case of non-linear constraints is the following. For maximizing a
submodular function subject to a linear constraint, it is not harmful for the Greedy
Algorithm to include items that are not contained in the optimal solution except for
the lost capacity. However, when the constraint is quadratic, including an item not
included in the optimal solution may be harmful since it increases the weight of future
items in a nonlinear way. To deal with this issue, we bound this effect by introducing
an additional correction term. In the end, we bound the profit of the optimal solution by∑t

i=1 θi (wi −wi−1)+θt+1(c+2
√

wt c) for all t ∈ {0, . . . ,m−1}. For this expression,
we cannot apply the result ofWolsey and, thus, we need to provide a worst-case bound
on the ratio

∑m
i=1 θi (wi − wi−1)

mint∈{0,...,m−1}
∑t

i=1 θi (wi − wi−1) + θt+1(c + 2
√

wt c)
.

The lower bound that we will finally obtain is 1− √
3/e. Before we prove this result,

we need the following technical lemma.

Lemma 5 Let m ∈ N and consider the sequence (θt )t∈N defined by the recursive
formula θ1 = 1

m and 1− (
m + 2

√
tm

)
θt+1 = ∑t

i=1 θi for all t ≥ 1. Then
∑m

t=1 θt ≥
1 −

√
3
e .

Proof Consider the initial value problem

ψ ′(x) = 1 − ψ(x)

1 + 2
√
x

, x ∈ [0, 1], ψ(0) = 0.

Since the function f : [0, 1]×R → R, (x, s) �→ 1−s
1+2

√
x
is Lipschitz-continuous in s,

by the Picard-Lindelöf Theorem, this problem has a unique solution, which is given
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by

ψ(x) = 1 − e−√
x
√
1 + 2

√
x, x ∈ [0, 1].

Since its first derivative

ψ ′(x) = e−√
x

√
1 + 2

√
x
, x ∈ [0, 1],

is monotonically decreasing, it follows that ψ is concave.
Define zt := ∑t

i=1 θi , t ∈ {0, . . . ,m}. We claim that for every t ∈ {0, . . . ,m}

zt ≥ ψ
( t
m

)
(2)

holds. Note that (2) implies the result using
∑m

t=1 θt = zm ≥ ψ(1) = 1 −
√
3
e . We

proceed to prove (2) by induction. We have z0 = 0 = ψ(0). Now assume that (2)
holds for some arbitrary but fixed t ∈ {0, . . . ,m − 1}. By the recursive definition of
(θt )t∈N and the concavity of ψ , it then follows that

zt+1 = zt + θt+1 = zt + 1 − zt
m + 2

√
tm

= zt

(
1 − 1

m + 2
√
tm

)
+ 1

m + 2
√
tm

≥ ψ
( t
m

) (
1 − 1

m + 2
√
tm

)
+ 1

m + 2
√
tm

= ψ
( t
m

) + 1 − ψ( t
m )

m + 2
√
tm

= ψ
( t
m

) + 1
mψ ′( t

m

)

≥ ψ
( t+1

m

)
,

completing the proof. ��
The following lemma will be used to bound the ratio of the profit of the optimal

solution and the solution of the Greedy Algorithm.

Lemma 6 Let w0, . . . , wm ∈ N with 0 = w0 < w1 < . . . < wm, and θi ≥ 0, i ∈ [m].
Then,

m∑

i=1

θi (wi −wi−1) ≥
(
1−

√
3

e

)
min

t=0,...,m−1

t∑

i=1

θi (wi −wi−1) + θt+1(wm+2
√

wtwm).

Proof We first show the statement for sequences 0 = w0 < w1 < · · · < wm with the
additional property that wi − wi−1 = 1 for all i ∈ [m]. For this case, we need that
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∑m
i=1 θi ≥ (1 −

√
3
e )mint=0,...,m−1

∑t
i=1 θi + θt+1(m + 2

√
tm). It suffices to show

that the optimal value of the following optimization problem is at least 1 − √
3/e.

minimize
m∑

i=1

θi

subject to
t∑

i=1

θi + θt+1(m + 2
√
tm) ≥ 1 for all t = 0, . . . ,m − 1,

θi ≥ 0, for all i = 1, . . . ,m.

(3)

We claim that every optimal solution to (3) satisfies all inequalities with equality.
For a contradiction, fix an optimal solution θ∗

1 , . . . , θ∗
m and suppose there is s ∈

{0, . . . ,m − 1} such that ∑s
i=1 θ∗

i + θ∗
s+1(m + 2

√
sm) > 1. Choosing the minimal s

with this property, we have θ∗
s+1 > 0. Let

δ = min

{
θ∗
s+1,

∑s
i=1 θ∗

i + θ∗
s+1(m + 2

√
sm) − 1

m + 2
√
sm

}
,

and consider the solution θ ′
1, . . . , θ

′
m defined as

θ ′
i =

⎧
⎪⎨

⎪⎩

θ∗
i if i < s + 1,

θ∗
i − δ if i = s + 1,

θ∗
i + δ

m+2
√

(i−1)m
if i > s + 1.

We first check that the solution θ ′
1, . . . , θ

′
m is feasible. For the inequalities for t =

0, . . . , s − 1, there is nothing to show since the involved variables are not altered. For
t = s, the inequality is satisfied by the choice of δ. For t > s, we obtain

t∑

i=1

θ ′
i +θ ′

t+1(m+2
√
tm) ≥

t∑

i=1

θ∗
i −δ+

(
θ∗
t+1+

δ

m+2
√
tm

)
(m+2

√
tm) ≥ 1,

where for the second inequality we used that θ∗
1 , . . . , θ∗

m is feasible. Finally, we note
that

m∑

i=1

θ∗
i −

m∑

i=1

θ ′
i = δ −

m∑

i=s+2

δ

m + 2
√

(i − 1)m
≥ δ

(
1 − m − 1

m

)
> 0,

contradicting the optimality of θ∗
1 , . . . , θ∗

m . We conclude that every optimal solution
of (3) satisfies all inequalities with equality. The result then follows from Lemma 5.

It is left to show that the statement holds for arbitrary finite sequences 0 = w0 <

w1 < · · · < wm . Fix such a sequence, let m′ := wm , and let θ ′
1, . . . , θm′ be such that
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there are first w1 − w0 copies of θ1, then w2 − w1 copies of θ2, and so on. We thus
obtain

m∑

i=1

θi (wi − wi−1) =
m′∑

i=1

θ ′
i

≥
(
1 −

√
3

e

)
min

t=0,...,m′−1

t∑

i=1

θ ′
i + θ ′

t+1(m
′ + 2

√
tm′)

=
(
1 −

√
3

e

)
min

t=w0,...,wm−1

t∑

i=1

θ ′
i + θ ′

t+1(m
′ + 2

√
tm′)

=
(
1 −

√
3

e

)
min

t=0,...,m−1

t∑

i=1

(wi − wi−1)θi + θt+1(wm + 2
√
twm),

yielding the result. ��
We are now in position to prove the approximation ratio of the Greedy Algorithm.

Theorem 2 The Greedy Algorithm with partial enumeration (Algorithm 2) is an
approximation algorithm with approximation ratio 1 −

√
3
e for (P).

Proof Let x∗ be an optimal solution of (P) and set S∗ := {i ∈ [n] : x∗
i = 1}. Number

the itemsof S∗ = {i∗1 , i∗2 , . . . , i∗k } such that pi∗1 ≥ pi∗2 ≥ · · · ≥ pi∗k . Since the algorithm
enumerates all solutions with at most two items, it is without loss of generality to
assume that |S∗| ≥ 3. Consider the run of the Greedy Algorithm with U = {i∗1 , i∗2 }.
Without loss of generality, we assume that i∗1 = n − 1 and i∗2 = n. Set S0 :=U , and
for t = 1, 2, . . . , denote by St and it the values of S and i after the t-th pass of the
while loop. Furthermore, define

θt := pit
w(St−1 ∪ {it }) − w(St−1)

.

By Lemma 1, we can treat the problem after fixing xi∗1 = xi∗2 = 1 as a new
problem of the same form with matrix W̃ ∈ N(n−2)×(n−2), profit vector p̃, and budget
c̃. In the following, for a set S ⊆ [n]\U we write w̃(S) := χ�

S W̃χS . Note that w̃ is
supermodular, i.e., for any two sets S, S′ ⊆ [n] \U we have

∑

i∈S′\S
w̃(S ∪ {i}) − w̃(S) ≤ w̃(S ∪ S′) − w̃(S).

By Lemma 2, it is without loss of generality to assume w̃(S ∪ {i}) − w̃(S) > 0. Let T
be the first step of the Greedy Algorithm for which iT ∈ S∗ but the algorithm does not
add iT to its solution set. It is without loss of generality to assume that in all previous
iterations t ∈ {1, . . . , T − 1} we had St = St−1 ∪ {it } as otherwise item it would
be neither contained in the optimal solution nor the solution computed by the Greedy
Algorithm; thus, removing it from the instancewould not change the analysis. Since iT
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is not included in the solution, we have w̃(ST−1 ∪ {iT }\U ) > c̃. In the following, we
write ST := ST−1 ∪ {iT }, S̃∗ := S∗ \U , and for t ∈ {0, . . . , T }, we write S̃t := St\U .

For all t ∈ {0, . . . , T − 1}, we obtain
∑

i∈S̃∗
pi ≤

∑

i∈S̃t
pi +

∑

i∈S̃∗\S̃t
pi

=
∑

i∈S̃t
pi +

∑

i∈S̃∗\S̃t

pi

w̃(S̃t ∪ {i}) − w̃(S̃t )

(
w̃(S̃t ∪ {i}) − w̃(S̃t )

)

≤
∑

i∈S̃t
pi + θt+1

∑

i∈S̃∗\S̃t

(
w̃(S̃t ∪ {i}) − w̃(S̃t )

)

≤
∑

i∈S̃t
pi + θt+1

(
w̃(S̃t ∪ S̃∗) − w̃(S̃t )

)
,

where we used the supermodularity of w̃. By the Cauchy-Schwarz inequality it holds
that

w̃(S̃t ∪ S̃∗) − w̃(S̃t ) = (χS̃t + χS̃∗\St )
�W̃ (χS̃t + χS̃∗\S̃t ) − w(S̃t )

≤ w̃(S̃∗\S̃t ) + 2
√

w̃(S̃t )w̃(S̃∗ \ S̃t )

≤ c̃ + 2
√

w̃(S̃t )c̃.

Thus, we get

∑

i∈S̃∗
pi ≤

∑

i∈S̃t
pi + θt+1

(
c̃ + 2

√
w̃(S̃t )c̃

)
for all t ∈ {0, . . . , T − 1}.

Since c̃ < w̃(S̃T ), it follows that

∑

i∈S̃∗
pi ≤ min

t=0,...,T−1

∑

i∈S̃t
pi + θt+1

(
w̃(S̃T ) + 2

√
w̃(S̃T )w̃(S̃t )

)

= min
t=0,...,T−1

t∑

i=1

θi

(
w̃(S̃i )−w̃(S̃i−1)

)
+ θt+1

(
w̃(S̃T )+2

√
w̃(S̃T )w̃(S̃t )

)
.

Furthermore,

∑

i∈S̃T
pi =

T∑

i=1

θi

(
w̃(S̃i ) − w̃(S̃i−1)

)
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and thus, by Lemma 6,

∑

i∈S̃T
pi ≥

(
1 −

√
3

e

) ∑

i∈S̃∗
pi .

Finally, this leads to

∑

i∈ST−1

pi =
∑

i∈U
pi +

∑

i∈S̃T−1

pi

=
∑

i∈U
pi +

∑

i∈S̃T
pi − piT

≥
∑

i∈U
pi +

(
1 −

√
3

e

) ∑

i∈S̃∗
pi − piT

≥
∑

i∈U
pi +

(
1 −

√
3

e

) ∑

i∈S̃∗
pi − 1

2

∑

i∈U
pi

≥
(
1 −

√
3

e

) ∑

i∈S∗
pi .

Since the Greedy Algorithm with starting solution U obtains a profit of at least∑
i∈ST−1 pi , this implies the claimed result. ��
We proceed to show that the approximation ratio of the Greedy Algorithm can be

bounded from above by the inverse golden ratio.

Theorem 3 The approximation ratio of theGreedyAlgorithmwith partial enumeration
is at most φ = (

√
5 − 1)/2, even if we allow partial enumeration over an arbitrary

but fixed number of items.

Proof Consider the following instance. Let m, �, k ∈ N with � < k and denote by χi

the i-th unit vector in Rm . Let there be two types of items: m items of type 1 with
profit p(1) = 1 and weight vector y(1)

i = kχi , i ∈ [m], andm� type 2 items with profit

p(2) = 1+2�
k2+2k�

and weight vector y(2)
i = χ� i

�
�, i ∈ [m�]; see Fig. 3 for an illustration.

We wish to solve

maximize p(S1, S2) := |S1| p(1) + |S2| p(2)

subject to w(S1, S2) :=
∥∥∥

∑

i∈S1
y(1)
i +

∑

i∈S2
y(2)
i

∥∥∥
2

2
≤ mk2,

S1 ⊆ [m], S2 ⊆ [m�].

Setting Y := [y(1)
1 , . . . , y(1)

m , y(2)
1 , . . . , y(2)

m� ], this optimization problem can be refor-
mulated as in (P) with weight matrix W = Y�Y , which is clearly nonnegative and
positive semidefinite.
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Fig. 3 A partial greedy solution
S = (S1, S2) with initial set
S0 = (S01 , S02 ), where

S01 = {1, 2} and S02 = ∅. The
long bars represent type 1 items
whereas the short bars represent
type 2 items

k

�

1 2 . . . m

We first derive the solution produced by the Greedy Algorithm. Partition [m�] =⋃m
i=1 Ti , where Ti = { j ∈ [m�] : � j

�
� = i}. Consider a partial greedy solution

S = (S1, S2) and assume that i /∈ S1 and j /∈ S2 for some type 1 item i ∈ [m] and
type 2 item j ∈ Ti . Let h := |S2 ∩Ti | < �. Then we have w(S1, S2 ∪{ j})−w(S1, S2)
= (h + 1)2 − h2 = 1 + 2h, and thus

p(2)

w(S1, S2 ∪ { j}) − w(S1, S2)
= 1 + 2�

(k2 + 2k�)(1 + 2h)

>
1 + 2�

(k2 + 2kh)(1 + 2�)
= 1

k2 + 2kh
= p(1)

w(S1 ∪ {i}, S2) − w(S1, S2)
.

Hence, the Greedy Algorithm will always include type 2 item j ∈ Ti before type 1
item i in its solution.

Assume that for a partial solution S = (S1, S2) we have i ∈ S1, i ′ /∈ S1, and j /∈ S2
for some type 1 items i , i ′ ∈ [m] and a type 2 item j ∈ Ti . Since |S2 ∩ Ti ′ | ≤ �, we
have

p(1)

w(S1 ∪ {i ′}, S2) − w(S1, S2)
≥ 1

k2 + 2k�

>
1 + 2�

(1 + 2k)(k2 + 2k�)
≥ p(2)

w(S1, S2 ∪ { j}) − w(S1, S2)
.

Consequently, the Greedy Algorithm always adds type 1 item i ′ before type 2 item
j ∈ Ti to its solution given that type 1 item i is already included.
Thus, the Greedy Algorithm starts with some initial solution S0 = (S01 , S

0
2 ). After-

wards, it includes all type 2 items in [m�] \ ⋃
i∈S01 Ti (Step 1). Finally, it adds type 1

items until the capacity bound of mk2 is reached (Step 2). Let s := |S01 |. The weight
of the partial solution after Step 1 is given by sk2 + (m − s)�2. Adding any type 1
item in Step 2 increases the weight of the solution by k2 + 2k�. Hence, in Step 2,

r := mk2 − sk2 − (m − s)�2

k2 + 2k�
= (m − s)(k2 − �2)

k2 + 2k�

123



Packing under convex quadratic constraints 379

type 1 items are added until the capacity is reached. (It is without loss of generality
to assume that r ∈ Z since otherwise after adding �r� type 1 items, the remaining
capacity would be filled with type 2 items and the resulting approximation ratio would
be even lower.) Thus, the profit of the solution Ŝ produced by the Greedy Algorithm
is given by

p(Ŝ) = (s + r)p(1) + (m − s)�p(2)

= s + (m − s)(k2 − �2)

k2 + 2k�
+ (m − s)�(1 + 2�)

k2 + 2k�

= s + (m − s)(k2 + �2 + �)

k2 + 2k�

= m

⎡

⎣ s

m
+ (1 − s

m )(1 + �2

k2
+ �

k2
)

1 + 2 �
k

⎤

⎦

= m

[
s

m
+ (1 − s

m )(1 + q2 + q
k )

1 + 2q

]
,

where q := �
k .

On the other hand, consider the solution S∗ = (S∗
1 , S

∗
2 )with S∗

1 = [m] and S∗
2 = ∅.

It fulfills p(S) = m and w(S) = mk2. Thus, we have

ρ(q) := lim
k,m→∞

p(Ŝ)

p(S∗)
= 1 + q2

1 + 2q
.

Under the constraint q ∈ (0, 1), the ratio ρ(q) attains its minimum at q = φ with

value q(φ) = φ, where φ =
√
5−1
2 is the inverse golden ratio. ��

5 Monotone algorithms

To illustrate the need for monotone algorithms, reconsider the situation described in
Example 1 with a set of n selfish agents requesting permission to send gas through a
pipeline. Each agent j has a private value p j expressing the monetary gain from being
allowed to send the gas. A natural objective of a system provider is to maximize social
welfare, i.e., to solve (P). Since the true value p j is the private information of agent j ,
the system designer has to employ a mechanism that incentivizes the agents to report
their true values p j .2 It is without loss of generality to assume the following form of
a direct revelation mechanism; see Gibbard [9] and Myerson [21]. The mechanism
elicits a (potentiallymisrepresented) bid p′

j from each agent j and computes a solution

2 We here make the standard assumption that the true values of the source vertex s j , the target vertex t j , and
the quantity of gas q j are public knowledge. This is reasonable since these values are physically measurable
by the system provider so that misreporting them would be pointless for the agent. This assumption is also
frequently made in the knapsack auction literature; see, e.g., Aggarwal and Hatline [2], Briest et al. [5], and
Mu’alem and Nisan [20].
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Algorithm 3: Monotone Greedy Algorithm
1 y∗ ← solution of (R1);

2 if maxi∈[n] pi ≥ (
1 −

√
3
e

)
/
(
1 + 4√

5−1

)
p�y∗ then

3 return χi∗ for i∗ ∈ argmaxi∈[n] pi ;
4 else
5 return solution of Greedy Algorithm without partial enumeration.

x(p′) ∈ {0, 1}n to (P) based on these values. Further, the mechanism computes a
payment g j for each agent j . The utility of agent j , when its true valuation is p j and
the agents report p′, is then p j x j (p′) − g j (p′). The mechanism is strategyproof if
truthtelling is a dominant strategy of each agent j in the underlying game where each
agent chooses a value to report.

Myerson [21] shows that an algorithmA can be turned into a strategyproof mecha-
nism if and only if it is monotone in the following sense. Let x(p′) denote the feasible
solution to (P) computed by A as a function of the reported valuations. Then A is
monotone if for all agents j the function x j (p′) is nondecreasing in p′

j for all fixed val-
ues p′

i with i �= j . For a monotone algorithm, charging every agent j with x j (p′) = 1
the critical bid inf {z ∈ R≥0 : x j (z, p′− j ) = 1} and charging all other agents nothing
yields a strategyproof mechanism. Here, x j (z, p′− j ) denotes the binary variable x j as
a function of the bid of agent j , when the bids p′− j of the other agents are fixed.

We note that the algorithms designed in Sects. 3 and 4 are unlikely to be monotone,
since the partial enumeration schemes in both of them are not monotone. On the other
hand, without the enumeration scheme, they do not provide a constant approximation,
even when W is a diagonal matrix. However, by combining ideas from both algo-
rithms, we derive a monotone algorithm with constant approximation guarantee; see
Algorithm 3.

Theorem 4 Algorithm 3 is a monotone α-approximation algorithm for (P), where
α = (

1 −
√
3
e

)
/
(
1 + 4√

5−1

) ≈ 0.086. The corresponding critical payments can be
computed in polynomial time.

Proof We first prove the approximation ratio. For φ :=
√
5−1
2 and ρ := 1 −

√
3
e , we

have α = ρ/1+ 2
φ
. Let p∗ and q∗ be the optimal values of Problems (P) and (R1),

respectively. Since (R1) is a relaxation of (P) we have that q∗ ≥ p∗. If pi ≥ αq∗ for
some i ∈ [n] it follows that p�χi ≥ α p∗.

Assume that pi < αq∗ for all i ∈ [n], and let x be the solution computed by the
Greedy Algorithm (without partial enumeration). Following the proof of Theorem 2
we see that p�x ≥ ρ p∗− p j for some item j ∈ [n]. Since p j < αq∗, and byCorollary
1 we have q∗ ≤ 2

φ
p∗, we obtain p�x ≥ (ρ − 2α

φ
)p∗ = α p∗.

Next, we prove the monotonicity of the algorithm. To this end, let p, p̂ ∈ Nn be
two declared profit vectors such that there is i ∈ [n]with p̂i = pi +1 and p̂ j = p j for
all j �= i . Let x and x̂ be the corresponding solutions computed by Algorithm 3 and
assume that xi = 1. It is to show that x̂i = 1. Let q∗ and q̂∗ be the optimal values of
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(R1) with respect to p and p̂. Then q∗ ≤ q̂∗ ≤ q∗ +1. Let H := { j ∈ [n] : p j ≥ αq∗}
and Ĥ := { j ∈ [n] : p̂ j ≥ αq̂∗}.

First, assume that H �= ∅. Since by assumption xi = 1, it follows that pi ≥ αq∗
and pi = max j∈[n] p j . Therefore,

p̂i = pi + 1 ≥ αq∗ + 1 ≥ α(q∗ + 1) ≥ αq̂∗,

and thus Ĥ �= ∅. Furthermore, i is the only item in argmax
j∈[n]

p̂ j and hence x̂i = 1.

Next, assume that H = ∅. Then either Ĥ = {i} and thus x̂i = 1, or Ĥ = ∅. In the
latter case, Algorithm 3 executes the Greedy Algorithm for both p and p̂. But since
for every S ⊆ [n]\{i}

p̂i
w(S ∪ {i}) − w(S)

>
pi

w(S ∪ {i}) − w(S)

and for every j ∈ [n] \ {i} and every S ⊆ [n] \ { j}

p̂ j

w(S ∪ { j}) − w(S)
= p j

w(S ∪ { j}) − w(S)
,

when the Greedy Algorithm adds item i to its solution after k iterations for p, then it
also adds i to its solution after at most k iterations for p̂. The critical payments can be
computed with binary search. ��

6 Approximation hardness

In this section, we show that packing problems with convex quadratic constraints of
type (P) are APX-hard.

Theorem 5 It is NP-hard to approximate packing problems with convex quadratic
constraints by a factor of 91

92 + ε, for any ε > 0.

Proof We reduce from the 6-set packing problem which is NP-hard to approximate by
a factor of 22

23 + ε for all ε > 0; see Hazan et al. [11]. An instance of a 6-set packing is
given by a ground set [m] and a family S ⊆ 2[m] of subsets of [m] such that |S| = 6
for all S ∈ S. A subfamily S∗ ⊆ S is a feasible solution to the 6-set packing problem
if S ∩ T = ∅ for all S, T ∈ S∗ with S �= T . For a given instance of 6-set packing, and
a value k ∈ N the gap problem is the decision problem to decide whether:

Yes: there is a solution to the 6-set packing problem of size at least k, or
No: every solution has size strictly smaller than 22

23k.

For optimal sizes in the interval [ 2223k, k) any answer is admissible. The approximation
hardness of 6-set packing implies that the gap problem is anNP-hard decision problem.
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Let n := |S| and number the sets S = {S1, S2, . . . , Sn}. Define the matrix A =
(ai j )i, j ∈ {0, 1}m×n by ai j = 1 if and only if i ∈ S j , and letW = A�A. Consider the
problem

maximize 1�x
subject to x�Wx ≤ 6k, x ∈ {0, 1}n, (SP)

where 1 = (1, . . . , 1)� is the all-ones vector. We calculate

x�Wx = ‖Ax‖22 =
m∑

i=1

( n∑

j=1

ai j x j

)2
=

m∑

i=1

( ∑

j∈[n]:i∈S j
x j

)2

. (4)

Suppose, we have a Yes-instance for the gap problem and let S∗ be a subset of
pairwise disjoint sets of cardinality k. Then a feasible solution for (SP) is given by
x∗ defined as x∗

j = 1 if S j ∈ S∗, and x∗
j = 0, otherwise. Since every set S j , j ∈ [n],

contributes exactly 6 to the left hand side of the knapsack constraint (4), this solution
is also optimal for (SP) and has an objective value of k.

Next, consider aNo-instance for the gap problem, let x∗ be a corresponding optimal
solution of (SP), and let k′ be its objective value. Since for aNo-instance every solution
of the 6-set packing problem has size strictly less than 22

23k, every set that is picked
beyond the first � 22

23k� sets, intersects at least once with at least one of the first � 22
23k�

sets. Thus, the first � 22
23k� sets each contribute at least 6 to (4), and each of the further

k′ − � 22
23k� sets each contributes at least 5 + 4 − 1 = 8 to (4). We obtain

6k ≥ (x∗)�Wx∗ ≥ 6

⌊
22

23
k

⌋
+ 8

(
k′ −

⌊
22

23
k

⌋)
≥ 8k′ − 44

23
k

implying k′ ≤ 91
92k. We conclude that for a Yes-instance the objective value of (SP)

is at least k while for a No-instance it is strictly less than 91
92k. Therefore, the problem

is NP-hard to approximate by a factor of 91
92 + ε for any ε > 0. ��

7 Computational results

We apply our algorithms to gas transportation as described in Example 1, using the
GasLib-134 instance [27]; see Fig. 4. The instance contains upper and lower pressure
bounds for every node v ∈ V as well as all physical properties to compute the pipe
resistances βe, e ∈ E . Sources and sinks are denoted by S and T , respectively. Every
sink t ∈ T has a demand of qt units of gas. To ensure network robustness in the sense
of [16], we assume that all sinks between s1 and s2 are supplied by s1, all sinks between
s3 and t45 by s3, and all other sinks by s2. Denote by Ti the set of sinks supplied by
si , i = 1, 2, 3. For simplicity, we assume that the economic welfare is proportional to

123



Packing under convex quadratic constraints 383

t45

s1

s2

s3

Fig. 4 The Gaslib-134 instance. Sources are shown as pentagons, sinks as circles

the amount of transported gas, i.e., there is a constant θ > 0 such that for every sink
t ∈ T , the economic welfare pt of transporting qt units of gas to t equals θqt .

The goal is to choose a welfare-maximal subset of transportations that can be routed
simultaneously, while the pressures at all nodes are within their feasible interval. Since
our algorithms are only applicable to path topologies, we solve a relaxation of the
problem by only requiring that the pressures of all nodes on the path between the first
sink s1 and the last source t45 are feasible. Let Ē denote the path from s1 to t45, and
for every t ∈ Ti denote by Et the path from si to t , i = 1, 2, 3. Let p = (pt )t∈T ,
W = (wt,t ′)t,t ′∈T , with wt,t ′ = ∑

e∈Ē∩Et∩Et ′ βe qt qt ′ , and let c = π̄s1 − π
¯ t45

, where
π̄v and π

¯ v denote the upper and lower bound on the squared pressure at node v,
respectively. Finally, let x = (xt )t∈T ∈ {0, 1}T , where xt = 1 if and only if sink t is
supplied. This results in a formulation as (P); see Example 1.

TheGasLib-134 instance contains different scenarios,where each scenario provides
demands q̂t for every sink t ∈ T . In order tomake the optimization problemnon-trivial,
we increase the node demands by setting qt = γ q̂t , for γ ∈ �:={5, 10, 50, 100}. We
apply the Golden Ratio Algorithm devised in Sect. 3, the Greedy Algorithm devised in
Sect. 4, and the Monotone Greedy Algorithm devised in Sect. 5 to the first 100 scenar-
ios, using each γ ∈ �. The first two algorithms are executed using k initial elements
in partial enumeration for each k ∈ {0, 1, 2, 3}. The Monotone Greedy Algorithm is
only executed without partial enumeration in order to guarantee its monotonicity.

For the Golden Ratio Algorithm, instead of scaling the optimal solution y of (R1)
by φ, we scale it by the largest number λ ∈ [φ, 1] such that λ y is feasible for (R2),
using binary search. The result of each algorithm is compared to an optimal solution
computed with Gurobi 9.0 applied to the following mixed-integer program

maximize p�x
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Table 1 Mean and standard deviation (SD) of the approximation ratio of the Golden Ratio Algorithm
(GO), the Greedy Algorithm (GR), and the Monotone Greedy Algorithm (MO) with partial enumeration
of k ∈ {0, 1, 2, 3} elements

k = 0 k = 1 k = 2 k = 3

Mean SD Mean SD Mean SD Mean SD

GO 0.870 0.1290 0.944 0.0769 0.966 0.0553 0.976 0.0464

GR 0.927 0.0814 0.985 0.0247 0.996 0.0091 0.999 0.0034

MO 0.387 0.1829 – – – – – –

The best approximation ratio for each k is printed in bold face
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(b) Runtimes in seconds

Fig. 5 Approximation ratios and runtimes for the Golden Ratio Algorithm (GO), the Greedy Algorithm
(GR), both with partial enumeration of k ∈ {0, 1, 2, 3} elements, the Monotone Greedy Algorithm (MO),
and the optimal solution (OPT) computed with Gurobi 9.0. Boxes are from lower quartile to upper quartile,
median is thick, lower whisker is smallest data point larger than lower quartile minus 150% of interquartile
range, upper whisker equivalently, and data points outside whiskers are shown as dots

subject to
n∑

i=1

zi ≤ c,

zi ≥ max

{
0,

n∑

j=1

wi j (xi + x j − 1)

}
for all i ∈ [n],

x ∈ {0, 1}n,

which can be shown to be equivalent to (P). The computations were executed on
a 4-core Intel Core i5-2520M processor with 2.5 GHz. The code is implemented in
Python 3.6 and we use the SLSQP algorithm of the SciPy optimize package to
solve (R1). The results are shown in Table 1 and as box plots in Fig. 5.
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The Greedy Algorithm achieves the best approximation ratios on average and is,
when executed without partial enumeration, around 200 times faster than computing
the optimal solution with Gurobi 9.0 and around 20 times faster than the Golden Ratio
Algorithm and the Monotone Greedy Algorithm, because the latter rely on solving
the convex relaxation (R1) first. As expected, combining the algorithms with partial
enumeration drastically increases their running times.

The approximation ratios of all three algorithms are on average much higher than
their proven worst case lower bounds, even when executed without partial enumera-
tion. However, the quality of the solutions produced by the Golden Ratio Algorithm
is subject to strong fluctuations. By running the algorithm with partial enumeration
with k = 3 initial elements, the ratio is at least φ for every instance, as guaranteed
by Theorem 1. Among the tested algorithms, only the Greedy Algorithm without par-
tial enumeration and the Monotone Greedy Algorithm are known to be monotone.
Although the approximation ratio of the Greedy Algorithm without partial enumer-
ation may be arbitrarily low, we see that it performs much better in practice and
outperforms the Monotone Greedy Algorithm.
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