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Abstract

Cybersickness (CS) is a term used to refer to symptoms, such as nausea, headache, and dizziness that users experience during
or after virtual reality immersion. Initially discovered in flight simulators, commercial virtual reality (VR) head-mounted
displays (HMD) of the current generation also seem to cause CS, albeit in a different manner and severity. The goal of this
work is to summarize recent literature on CS with modern HMDs, to determine the specificities and profile of immersive
VR-caused CS, and to provide an outlook for future research areas. A systematic review was performed on the databases
IEEE Xplore, PubMed, ACM, and Scopus from 2013 to 2019 and 49 publications were selected. A summarized text states
how different VR HMDs impact CS, how the nature of movement in VR HMDs contributes to CS, and how we can use bio-
sensors to detect CS. The results of the meta-analysis show that although current-generation VR HMDs cause significantly
less CS (p < 0.001), some symptoms remain as intense. Further results show that the nature of movement and, in particular,
sensory mismatch as well as perceived motion have been the leading cause of CS. We suggest an outlook on future research,
including the use of galvanic skin response to evaluate CS in combination with the golden standard (Simulator Sickness
Questionnaire, SSQ) as well as an update on the subjective evaluation scores of the SSQ.

Keywords Immersive virtual reality - Head-mounted display - Cybersickness - Visually induced motion sickness

1 Introduction

Cybersickness (CS) (McCauley and Sharkey 1992), also
known as virtual simulator sickness (Howarth and Costello
1997), visually induced motion sickness (Kennedy et al.
2010), or virtual reality-induced symptoms (Cobb et al.
1999) and refers to the negative effects users experience dur-
ing or after immersion into virtual reality (VR) (Kim et al.
2015; Stanney et al. 2003; Merhi et al. 2007). CS is similar
to motion sickness and is commonly associated with vec-
tion (Hettinger and Riccio 1992; LaViola 2000; James Smart
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et al. 2002), but the exact relation between both is unknown.
Recent studies suggest that vection is a necessary, but not
sufficient, prerequisite for CS (Keshavarz et al. 2015; Ken-
nedy and Fowlkes 1992). CS is nevertheless not restricted to
VR and also occurs in other visual display systems, such as
large screens, curved screens, and CAVEs (Rebenitsch and
Owen 2016). However, in this systematic review, we focus
only on CS in current-generation immersive VR HMDs,
such as Oculus Rift and HTC Vive.

Empirical evidence shows that 60-95% of participants
experience some level of CS during exposure to a virtual
environment, whereas 6-12.9% of the participants prema-
turely end their exposure (Stanney et al. 2003; Arns and
Cerney 2005; Roberts and Gallimore 2005; Regan 1995a,
b; Kim et al. 2005). CS usually appears approximately
10-15 min after immersion (DiZio and Lackner 1997, 2000;
Lampton et al. 1994), although cases have been reported
with less time (So and Lo 1999). Once the user leaves the
VR environment, symptoms usually disappear in around
15 min (DiZio and Lackner 1997, 2000), but reimmersion
causes them to reappear abruptly and severely (DiZio and
Lackner 2000). The duration of this susceptibility is unclear
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(Viirre and Ellisman 2003) and some studies suggest that
aftereffects can also persist for hours (Johnson 2005).

Numerous potential solutions to CS have been discussed,
e.g., a virtual nose (Whittinghill et al. 2015; Wienrich et al.
2018) or motion sickness medication (Chen et al. 2015).
Many previous studies suggest different methods to reduce
the discrepancy between virtual and real movements, such
as restricting movement to instantaneous locomotion (Chris-
tou and Aristidou 2017), manipulating the limited physical
VR space with acoustic redirected walking (Nogalski and
Fohl 2016), or extrapolating and filtering head movements
(Garcia-Agundez et al. 2017). Including environmentally
meaningful features such as sound and vibration when
operating a virtual vehicle (Sawada et al. 2020) or snapping
the viewpoint in sections of significant movement (Farmani
and Teather 2018) have also been mentioned. However, user
adaptation is widely regarded as the best option to address
CS at the moment (Johnson 2005; Golding and Gresty
2015).

The etiology of CS is undetermined and coexists with
the possible causes of common motion sickness. The three
most common theories are: (1) a sensory conflict theory that
is based on a discrepancy between the visual, vestibular,
and proprioceptive senses, as well as on expectation and
past experience (Reason and Brand 1975), (2) the postural
instability theory that describes a physiological response
to the inability to maintain bodily postural control (Riccio
and Stoffregen 1991), and/or (3) the eye movement theory
(Ebenholtz et al. 1994). However, even though several stud-
ies support these theories, other studies present competing
hypotheses for the cause of motion sickness. For example,
Bos (2011) reviewed these findings and found negative cor-
relations between postural instability and CS. Similarly,
Lubeck et al. (2015) conclude that postural sway is not nec-
essarily increased by visual motion. Another possible cause
is the vergence-accommodation conflict, or the mismatch
between the actual and eye focusing distance of a 3D object,
as discussed by Kramida (2016). Further research suggests a
subjective vertical mismatch theory: when subjective verti-
cal cannot be determined, this will cause motion sickness
in general (Bles et al. 1998) and CS in particular (Bos et al.
2008). Additional studies also mention the poison theory
as a possible cause for CS (Treisman 1977); however, as
already argued by LaViola (2000), this theory is substan-
tially different from the other mentioned before and difficult
to verify.

There exist various questionnaires to assess CS, e.g.,
Motion Sickness Susceptibility Questionnaire (Golding
1998) or Fast Motion Sickness Scale (Keshavarz and Hecht
2011). However, the golden standard is the Simulator Sick-
ness Questionnaire (SSQ) (Kennedy et al. 1993). Studies
have been made explicitly on its suitability for VR (Bruck
and Watters 2011), considering the differences between CS
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and simulator sickness (Stanney et al. 1997). In the SSQ, the
possible symptoms of CS are evaluated on a scale from zero
(none) to three (severe) and then grouped into three blocks:
nausea, oculomotor, and disorientation. Finally, a total SSQ
score is derived from these three blocks and the simulation
is then categorized depending on its score: negligible (SSQ
lower than 5), minimal (5-10), significant (10-15), con-
cerning (15-20), and bad simulator (20 or higher) (Stanney
et al. 1997). Disorientation symptoms are predominant in CS
(Stanney et al. 2003; Kim et al. 2005; Lampton et al. 1994;
So and Lo 1999; Lo and So 2001), whereas oculomotor ones
are typical of simulators (Stanney et al. 1997) and nausea, as
well as emesis, are predominant in motion sickness. Moreo-
ver, the incidence of CS has been reported to be 2.5-3 times
higher than simulator sickness (Kennedy and Fowlkes 1992;
Roberts and Gallimore 2005; Stanney et al. 1997).

Although the amount of research into CS is, as shown,
quite extensive, user complaints are still fairly common
(Rangelova et al. 2020), so an issue in current HMDs still
remains. Current-generation HMD devices, such as the Ocu-
lus Rift, have already proven to cause CS (Kim et al. 2015;
Garcia-Agundez et al. 2017; Gavgani et al. 2017). Many
previous publications explored different factors affecting
CS, e.g., individual (age, gender, illness, posture), device
(lag, flicker, calibration, ergonomics), and task factors (con-
trol, duration) (LaViola 2000; Davis et al. 2014). Similarly,
Chang et al. (2020) recently surveyed the causes of CS and
identified three major factors (hardware, content, and human
factors). Additionally, Rebenitsch and Owen (2016) provide
an excellent review on CS. However, these publications usu-
ally focus on determining the factors affecting CS and do not
consider different VR HMDs, such as HTC Vive.

Hence, in contrast to related work, we conducted a meta-
analysis, comparing different HMDs (e.g., Oculus Rift vs.
HTC Vive) and stimuli (matched vs. mismatched). The goal
of this systematic review is to provide further insight of CS
in current-generation immersive VR HMD from three per-
spectives. Firstly, we aim to determine whether there are sig-
nificant differences in the intensity and patterns of CS, meas-
ured by the SSQ among different VR HMDs (see Sect. 3.1).
Secondly, we explore the nature of movement that causes
sensory mismatch (see Sect. 3.2). Finally, we determine
how biosignals may detect CS (see Sect. 3.3). This may help
researchers to draw more definite conclusions into whether
these factors do have a significant impact on CS.

2 Methods

In order to conduct the study, we performed a systematic
search with the following keywords: virtual reality AND
(cybersickness OR simulator sickness OR motion sickness)
AND (application OR game), published since January 1,
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3 of additional publications identified
through other sources

1358 of records identified through database searching
IEEE Xplore: 66 PubMed: 20
ACM: 840 Scopus: 432

1219 of records excluded |

1361 of records screened H

93 of full-text articles excluded with

reason: no immersive VR (n=44), no

| — current-generation HMD (n=13), no

standard questionnaire (n=29), immersion
time missing (n=6), duplicates (1)

142 of full-text articles assessed for eligibility
|EEE Xplore: 36 PubMed: 16
ACM: 49 Scopus: 38
Other: 3

I

49 of studies included in qualitative synthesis
(meta-analysis)

Fig.1 PRISMA (Moher et al. 2009) flowchart of study selection

2013 (release of the first current-generation HMD, Oculus
Rift DK1"). The search was performed on July 17th, 2019.
Inclusion criteria were: (1) the immersive VR application
uses a current-generation HMD, (2) the study measures CS
with a standard questionnaire, and (3) the study reports some
degree of CS amonyg its participants. Exclusion criteria were:
(1) non-HMD-based VR applications (e.g., large screens or
CAVEsg), (2) the study does not specify the immersion time,
(3) reviews, (4) keynotes, and (5) books.

Figure 1 shows an overview of the study selection, as
proposed by Moher et al. (2009). In total, we identified 1358
articles through database searching and three further articles
through other sources that meet our requirements. After the
preliminary screening (i.e., screening of title and abstract),
we excluded 1219 records because they did not rely on an
immersive VR system (thus, not using a HMD). Afterward,
we applied eligibility criteria, again excluding further 93
articles. Finally, we could reduce our corpus to a total of
49 articles.

For the analysis, we extracted important information,
e.g., number of users, total immersion time, version of HMD
used in experiments, type of application, condition (sitting
or standing), and locomotion technique. Then we grouped
the publications based on the HMD version and stimuli. We
furthermore obtained for each publication total SSQ score
(mean and standard deviation). All resulting data for the
studies can be consulted in Table 1. Data refers exclusively
to post-immersion, non-normalized SSQ scores since nor-
malization was not always performed.

We furthermore conducted a meta-analysis using the
“meta” package in R statistical software (Schwarzer et al.
2015). We calculate the overall effect (mean differences),
its confidence interval, and p-values to compare SSQ val-
ues for different types of VR HMDs (e.g., Oculus Rift vs.
HTC Vive) and different stimuli (matched vs. mismatched

L https://www.kickstarter.com/projects/1523379957/oculus-rift-step-
into-the-game/posts/440293, last visited on October 25th, 2019.

stimuli). Therefore we filtered the research corpus again and
excluded articles that (1) did not employ the SSQ or (2)
did not provide explicit SSQ data. The results of the meta-
analysis of 32 leftover articles are detailed in Tables 2 and 3.

3 Results

3.1 On the differences in CS patterns with different
HMDs

In order to determine if there are differences in the CS pat-
terns based on different HMDs, we obtained the total SSQ
score and subscores (nausea, oculomotor, and disorientation
scores) if available. The results of this analysis are presented
in Fig. 2.

Several observations can be extracted from this data. The
HTC Vive shows clearly the best SSQ values in total score
as well as in nausea and disorientation subscores. Regarding
oculomotor scores, Oculus Rift DK1 and HTC Vive have
similar results. However, this may be due to the limited
sample size since there are only four available subscores
for DK1 (in contrast, for Vive, nine studies reported sub-
scores, including nausea, oculomotor, and disorientation).
As detailed in Table 3, there are also significant differences
between the HTC Vive and the Oculus Rift DK1 as well as
DK?2 for all stimuli (p < 0.0001). Unfortunately, there are
not enough studies or information to elicit a comparison
between the Oculus Rift CV1 and HTC Vive. In any case,
future studies would likely increase statistical power.

Considering the differences between the Oculus Rift DK1
and the DK2 are not significant (p = 0.4764), we suspect
that changes in resolutions and refresh rates have had only
a marginal impact on CS when compared to changing the
means of locomotion and environment interaction, which is
the essential difference between the presented HMDs (see
also Sect. 3.2). In fact, we observed higher scores in the
Oculus Rift DK2 in comparison to the DK1 (see Fig. 2).
However, as already mentioned before, this may be due
to the limited sample size. Nevertheless, as can be seen in
Table 1, Oculus Rift DK1 causes a higher withdrawal rate
(24.50%) compared to DK2 (9.60%). Since the production
of Oculus Rift DK1 and DK2 has been stopped, it is unlikely
that more results will arise in the future.

3.2 On nature of movement

3.2.1 Sensory mismatch

Many studies have drawn attention to the fact that mis-
matched stimuli cause subjects to experience CS. In par-

ticular, CS occurs when the users perceive self-move-
ment in the virtual environment while actually remaining

@ Springer
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stationary, e.g., different kinds of driving or flying simula-
tors (see Sect. 3.2.2) and different locomotion techniques
(see Sect. 3.2.3).

Therefore, to further investigate the effect of sensory mis-
match, we conducted a meta-analysis on different VR HMDs
and different stimuli. The data in Table 2 and Fig. 3 show
lower SSQ scores for virtual environments with matched
stimuli (average SSQ values of 12.78) compared to virtual
environments with mismatched stimuli (average SSQ values
of 31.84). Furthermore, on average, 7.11% of the subjects
dropped out when perceived and real motions do not match
(see Table 1). In contrast, studies with matched stimuli show
lower withdrawal rates (on average, 3.21% of the subjects
dropped). These results show that the SSQ scores and the
withdrawal rate are higher for mismatched stimuli. Moreo-
ver, the meta-analysis results in Table 3 show that total SSQ
scores between mismatched and matched stimuli are signifi-
cantly different (p < 0.0001).

We furthermore analyzed the SSQ scores of matched
and mismatched stimuli depending on different HMDs.
As detailed in Table 3, there is a significant difference
between matched and mismatched scores for Oculus Rift
DK1 (p < 0.0001) and HTC Vive (p = 0.0169). In fact,
we found a significant difference for HTC Vive compared
to other HMDs for mismatched stimuli; however, not for
matched stimuli. For example, we found a significant dif-
ference between mismatched stimuli between HTC Vive
and Oculus Rift DK1 (p < 0.0001) as well as Vive and
DK2 (p < 0.0001); however, not between matched stimuli
for Vive and DK1 (p = 0.0944). Unfortunately, we could
not compare HTC Vive and Oculus Rift DK2 because our
analysis does not include any study reporting SSQ values
for matched stimuli for DK2. Nevertheless, because there is
a significant difference between matched and mismatched
stimuli independently of the HMD, we can assume that the
mismatched stimuli are one of the main causes of CS.

Additionally, a too high latency can cause a mismatch
between the perceived and real motions. Thus, the latency
of a HMD can contribute to CS, especially when the users
can perceive a latency lag between the head movements and
the corresponding visual feedback on the HMD. Latency
jitter seems to significantly affect CS (Stauffert et al. 2018).
Delays above 40 ms already evoke CS (DiZio and Lackner
2000), although significant CS symptoms appear upwards
from 75 ms (Caserman et al. 2019). Many researchers sug-
gest keeping the latency below 20 ms; however, the latency
does not appear to be the main cause for CS and a significant
decrease in the overall system’s latency will not abolish CS
(Fuchs 2017).

@ Springer

Table 2 SSQ scores regarding different HMDs and stimuli

# of users M (SD)

MMS, all devices 667 31.84 (30.29)
MMS, Oculus Rift DK1 174 39.63 (32.09)
MMS, Oculus Rift DK2 281 31.97 (31.41)
MMS, Oculus Rift DK1+DK?2 455 34.9 (31.86)
MMS, HTC Vive 99 17.51 21.7)
MS, all devices 203 12.78 (16.35)
MS, Oculus Rift DK1 55 15.93 (14.81)
MS, Oculus Rift DK2 0 /

MS, Oculus Rift DK1+DK?2 55 15.93 (14.81)
MS, HTC Vive 148 11.61 (16.78)
DKI1, all stimuli 229 33.94 (30.6)
DK2, all stimuli 281 31.97 (31.41)
Oculus Rift DK1+DK?2, all stimuli 510 32.86 (31.04)
Vive, all stimuli 247 13.98 (19.08)

We excluded publications with no dispersion (SD) data
/ that no studies reported SSQ values

MS matched stimuli, MMS mismatched stimuli, M mean, SD standard
deviation

3.2.2 Perceived motion in VR simulators

Some studies explicitly investigated the severity of CS in
VR simulators, e.g., roller coasters or other driving and fly-
ing simulators. Roller coasters usually cause participants to
terminate the ride prematurely due to nausea. For exam-
ple, researchers report a withdrawal rate of up to 92.86%
(Nesbitt et al. 2017; Nalivaiko et al. 2015; Gavgani et al.
2017). These kinds of driving or flying simulators provoke
CS because subjects usually sit in a stationary chair while
exposed to linear and angular accelerations. Furthermore,
several studies show that SSQ scores are generally higher
in VR-HMD conditions compared to non-VR conditions.
For example, Walch et al. (2017) studied the intensity of
CS while the participants either drove a car visible on the
flat screen or via a HMD. In this study, the participants
reported higher CS symptoms scores in VR-HMD setup
(SSQ scores of 29.09) compared to the screen setup (SSQ
scores of 16.41). Weidner et al. (2017) have expressed a
similar view. The researchers report that in the VR-HMD
condition, the participants reported significantly higher CS
symptoms (SSQ scores of 30.91) than in the stereoscopic 3D
condition (SSQ scores of 13.49). As discussed by Kramida
(2016), the vergence-accommodation conflict could be an
explanation for this difference.
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These results suggest that immersive VR applications ® - —
such as virtual roller coasters (Nesbitt et al. 2017; Nali- wl B Etasea ||

vaiko et al. 2015; Sra et al. 2019; Gavgani et al. 2017; Jin ] Disorientation

et al. 2018; Onuki et al. 2017), car simulations (Walch et al.
2017; Weidner et al. 2017; Rietzler et al. 2018; Oishi et al.
2016), bike driving simulators (Tran et al. 2018; Mittel-
stadt et al. 2019), flight simulations (Garcia-Agundez et al.
2019a; Mirhosseini et al. 2017) and wheelchair simulators
(John et al. 2018; Chowdhury et al. 2017b) cause higher
SSQ scores due to sensory mismatch and, in particular, due
to perceived self-motion while remaining stationary. Some
studies suggest that air cushions (Onuki et al. 2017) or vibro-
kinetic seats (Gardé et al. 2018) can mitigate CS symptoms
while driving. Sra et al. (2019) furthermore found a similar
result and reported that galvanic vestibular stimulation could
also reduce CS.

3.2.3 Locomotion techniques

Many studies investigated the effects of different locomo-
tion techniques (see Table 4). The SSQ scores reported by
Christou and Aristidou (2017) and Frommel et al. (2017)
indicate that artificial continuous locomotion techniques
are generally more likely to cause CS than discrete locomo-
tion techniques. These results are also in agreement with
Habgood et al. (2018). The authors did not provide explicit
SSQ values; however, their results show that locomotion
techniques with continuous movements, such as free joy-
stick-based movements, cause significantly higher nausea
and oculomotor scores than discrete movements, such as
teleportation. Furthermore, Tregillus et al. (2017) compared
different continuous locomotion techniques and according
to Stanney et al. (1997) (pointing out that scores higher than
20 indicate a bad simulator), all three locomotion techniques
seem to elicit CS.

Additional studies compared different artificial locomo-
tion techniques with natural walking. In general, the results
in Table 4 show low SSQ scores (on average, below 20)
for natural walking. For example, Christensen et al. (2018)
investigated two different conditions. The participants
reported negligible symptoms when they could physically
walk in the real world (SSQ scores of 1.87) and concerning
symptoms when using a joystick (SSQ scores of 19.45). Sim-
ilarly, the work of Llorach et al. (2014) shows that a position
estimation system (SSQ scores of 15.93) induces less CS
than game controllers (SSQ scores of 32.27). Furthermore,
research by Wilson et al. (2018) suggests that natural walk-
ing without translation gain (one-to-one mapping of virtual
space to physical space) causes only minimal CS symptoms
(SSQ scores of 10.0). In contrast, additional translation gain
causes significant CS symptoms (SSQ scores of 21.0). More-
over, Krekhov et al. (2018) pointed out that natural walking
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Fig.3 SSQ scores classified by type of stimuli

as a giant causes lower SSQ scores (SSQ scores of 10.47)
than teleportation (SSQ scores of 19.95).

3.3 Onbiosignal-based alternatives to the SSQ

As already stated in Sect. 1, the SSQ is a commonly used
method to quantify CS. Another option to explore CS is to
study its physiological effects. This effect can be measured
via the analysis of different biosignals, as an alternative to
subjective measures such as the SSQ. For example, CS has
been reported to increase cortisol levels in saliva (Kennedy
et al. 2010) or to cause tachycardia (Hu and Stern 1999; Imai
et al. 2006). Furthermore, it seems that CS often correlates
with facial pallor, sweating, and respiration rate variations
(Johnson 2005) as well as with heart rate variability (Rieder
et al. 2011). Unfortunately, individual differences in auto-
nomic regulation and variations caused by the experience

@ Springer
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Table 4 Summary of studies investigating different locomotion techniques

Article Mismatched stimuli

Matched stimuli

Christou and Aristidou (2017)
locomotion® (25.4)

Frommel et al. (2017)
touchpad® (38.34)

Tregillus et al. (2017)

Pointing® (36.4) and gaze-directed

Guided locomotion® (35.84) and

Teleportation® (17.5)

Fixpoint teleportation® (23.38) and free teleportation® (21.97)

Tilt* (28.28 + 30.8, walking-in-place

combined with tilt* (27.58 + 17.0),

and joystick?® (23.26 + 34.6)
Joystick® (19.45)
Joystick® (32.27 + 29.26)

Christensen et al. (2018)
Llorach et al. (2014)

Wilson et al. (2018)
(21.0)

Krekhov et al. (2018)

Natural walking® (1.87)
Position estimation® (15.93 + 14.81)

Natural walking with translation gain® Natural walking without translation gain® (10.0)

Natural walking as a giant* (10.47 + 10.21) and teleportation®
(19.95 +21.24)

The numbers in brackets show average SSQ scores
# continuous

Pdiscrete locomotion technique

but not by a negative reaction to it (sickness) make it chal-
lenging to predict CS based on variables such as the heart
rate or respiration rate (Kiryu and lijima 2014).

Thus, in this section, we aim to determine how reli-
able biosignals are in detecting CS. The corpus was again
filtered and all articles that did not use biosignals were
excluded. A total of six articles fulfilled this criterion,
which are presented in Table 5.

From these results, several observations can be drawn.
Firstly, changes in galvanic skin response seem to be the
most reliable method to detect CS. Four out of six studies
used galvanic skin response to detect CS and also reported
an increase or at least changes of statistical significance.
Secondly, although CS clearly elicits changes in heart rate
and heart rate variability, it does not seem that an increase
or decrease can be explicitly linked to higher rates of CS.
For example, an increase in heart rate can occur due to
physical activity, whereas a decrease in heart rate vari-
ability can indicate a higher stress level. Thus, the heart
rate does not seem to increase only due to CS. In this
sense, heart rate alterations may be used to verify CS that
has already been detected by a different method, such as
galvanic skin response, changes of in-game behavior, or
verbal communication.

Results also suggest that increases in the respiratory
rate, basal finger temperature, or tachygastria may also
be used to predict CS. In general, we believe these results
confirm the advantage of biosignals to determine CS with-
out using subjective questionnaires, such as SSQ.

@ Springer

4 Discussion

In this paper, we analyzed 49 studies that investigated CS
among participants while they were immersed in a virtual
environment using a current-generation HMD. We focused
on determining whether there are differences in the CS pat-
terns based on different HMDs, whether CS increases when
stimuli do not match, and how biosignals can detect CS. A
summary of the statistical conclusions based on the meta-
analysis is provided in Table 6.

Although more studies on the Oculus Rift CV1 are
required, it is clear that last-generation HMD devices have
significantly fewer problems with CS, although CS is still
present. A comparison between different HMDs showed
that HTC Vive with accurate positional tracking causes
significantly less nausea and disorientation symptoms, but
oculomotor ones remain at similar levels (see Sect. 3.1).
More particularly, a meta-analysis revealed statistically
significantly lower (p < 0.0001) SSQ scores for HTC Vive
compared to Oculus Rift DK1 and DK2 (see also Table 6).
Nevertheless, given the expansion of the VR market, numer-
ous more studies are required to test all new HMDs reaching
the market (Valve Index, Oculus Rift S, Oculus Quest, Sam-
sung Odyssey, and Microsoft Augmented Reality devices).

Regarding the nature of movement, the meta-analysis
revealed significant higher SSQ scores (p < 0.0001) for
studies with mismatched stimuli compared to the studies
with matched stimuli (see Sect. 3.2.1). In particular, VR
simulations that force movements upon the users, e.g.,
virtual roller coasters, driving, and flying simulations, are
more susceptible to CS (see Sect. 3.2.2). Additionally, the
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Table 5 Summary of studies using biosignals

Article Dennison et al. Nalivaiko et al. Gavgani et al. Garcia-Agundez ~ Garcia-Agundez ~ Gardé et al. (2018)
(2016) (2015) (2017) et al. (2019b) et al. (2019a)

# of users 20 26 14 13 66 45

VR time [min] 10 14 15 15 9.5 10

HMD Oculus Rift DK2  Oculus Rift DK1  Oculus Rift DK1  Oculus Rift DK2  Oculus Rift DK2  Oculus Rift CV1

Epochs [s] 120 Not specified 60 Whole dataset 30 Whole dataset

Heart rate Increase** Increase** Increase** Decrease Decrease

Heart rate variability Decrease* Increase* Decrease*

Gastric rhythm Increase* Increase

Blink rate Increase* Decrease

Respiratory rate Increase** Increase* Decrease

Galvanic skin response Increase Increase** Changes* Increase**

Basal finger temperature Changes

ACC 78% 82%

ACC denotes maximum classifier accuracy in case the data was fed to a machine learning classifier algorithm. For this section, Dennison et al.
(2016) refers to VR vs. non-VR (Monitor) classification, while Garcia-Agundez et al. (2019a) refers to CS vs. non-CS classification

*Statistic significance for p < 0.05 and **statistical significance for p < 0.005

results show that locomotion techniques (see Sect. 3.2.3)
with mismatched stimuli (e.g., joystick-based locomotion
techniques) cause significantly higher severity symptoms
compared to locomotion techniques with matched stimuli
(e.g., continuous movements such as natural walking or dis-
crete movements such as teleportation). Especially joystick-
based locomotion techniques that allow the user to sit on a
stationary chair to explore the virtual environment through
continuous movements significantly increase the probability
that CS occurs. In contrast, natural walking results in lower
SSQ scores, indicating that it does not provoke CS. This
evidence complements related work (Rebenitsch and Owen
2016), showing that the navigation is still strongly correlated
with CS. Recent research suggests that adding motion cues
to the visual stimuli may not necessarily reduce CS (Kliiver
et al. 2015). Interestingly, there is evidence opposed to this
conclusion in the case of simulators (Gardé et al. 2018).

Concerning biosignals, galvanic skin response is by far
the best signal to predict and detect CS. More numerous
studies exploring galvanic skin responses in users experienc-
ing CS may provide sufficient information to develop a reli-
able linear regression algorithm to more accurately predict
CS in real-time.

In summary, based on the meta-analysis, it appears
that the nature of movement is the main reason for CS. To
prevent that CS occurs in immersive VR applications and
games, the developers should avoid sensory mismatch, i.e.,
they should provide room-scale environments where users
can naturally walk in the physical and virtual world. If the
direct mapping of movements in VR is limited by the physi-
cal tracking space, then the game should instead employ dis-
crete locomotion techniques, such as teleportation. Modern

HMDs with accurate head tracking can also help to prevent
CS.

In general terms, it seems the traditional evaluation
scales for the SSQ, with scores over 20 describing “a bad
simulator,” are outdated. Significantly higher values can
be expected across all HMDs and a new evaluation scale
should be implemented. Considering that in our corpus a
SSQ score of 40 or higher usually means a withdrawal rate
of approximately one third, we suggest 40 would be a more
precise value to describe “a bad simulator,” meaning an out-
dated HMD or a VR scenario design that causes specifically
abnormal levels of CS for current standards. This is not a
critique on the SSQ itself, but more of an observation of
differences of current VR and the simulators it was initially
designed for.

Finally, we believe it is also important to restate some
general remarks into how to conduct CS or SSQ-based stud-
ies in the future: samples should be larger than 15 users
(Kennedy and Fowlkes 1992) and immersion times should
be of at least 20 min (Wilson 1996). During the evalua-
tion, early indicators of CS may be atypical eye movements,
sweating, or fiddling with the HMD (Cobb et al. 1999). In
general terms, the more correlated virtual and real move-
ments are, the less CS than it is to be expected (LaViola
2000; Regan 1995a). Finally, SSQ values of up to 40 can
be expected.

4.1 Limitations
We aimed to identify the main causes of CS; however, this

article presents several limitations. Firstly, the number and
nature of studies on the Oculus Rift CV1 are insufficient to

@ Springer
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Table 6 Summary of the meta-analysis

Group Result Conclusion

Different VR HMD

HTC Vive vs. Oculus Rift (DK1, DK2) p < 0.0001 Statistically significant (lower) SSQ scores for HTC Vive
(13.98 £ 19.08) compared to Oculus Rift DK1 (33.94 + 30.6)
and DK2 (31.97 + 31.41)

Oculus Rift DK1 vs. DK2 p = 04764 No statistical difference between both version of the Oculus
Rift

Nature of movement

Matched vs. mismatched stimuli, independent of the HMD p < 0.0001 Statistically significant (higher) SSQ scores for mismatched
(31.84 +30.29) compared to matched stimuli (12.78 + 16.35)

Matched vs. mismatched stimuli for Oculus Rift DK1 p < 0.0001 Statistically significant (lower) SSQ scores for Oculus Rift
DK1 with matched (15.93 + 14.81) compared to mismatched
stimuli (39.63 + 32.09)

Matched vs. mismatched stimuli for HTC Vive p =0.0169 Statistically significant (lower) SSQ scores for HTC Vive with

matched (11.61 + 16.78) compared to mismatched stimuli
(17.51 £21.7)

draw any significant conclusions on the impact of CS on this
device. The same can be said for other HMDs released dur-
ing 2019. In general terms, the number of studies on which
we performed our meta-analysis was limited. Secondly,
authors on VR-based CS studies tend not to provide full
SSQ results or information on the dropout/CS complaint
rates. However, despite these limitations, several conclu-
sions based on statistically significant differences can be
drawn from our meta-analysis.

5 Conclusion

In this paper, we have reviewed the state of the art research
on CS with current-generation VR HMDs. We included 49
studies that met our criteria. To discuss the main causes of
immersive VR-caused CS, we conducted a meta-analysis and
compared different HMDs (e.g., Oculus Rift vs. HTC Vive)
and stimuli (matched vs. mismatched). Firstly, the meta-
analysis results show that last-generation HMD devices have
significantly fewer problems with CS, although these are still
present. Secondly, mismatched stimuli cause a significant
increase in CS compared to matched stimuli. Especially VR
flying or driving simulators as well as continuous locomo-
tion techniques with mismatched stimuli (e.g., joystick-based
movements), cause higher SSQ scores. In contrast, discrete
locomotion techniques, such as teleportation or room-scale
setups enabling natural walking cause significantly lower
CS symptoms. Finally, concerning biosignals, galvanic skin
response seems by far the best signal to predict and detect
CS in real-time. We hope that this survey will encourage
game developers and researchers in the future to study the
causes and solutions regarding CS using modern HMDs.
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