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Abstract
Cybersickness (CS) is a term used to refer to symptoms, such as nausea, headache, and dizziness that users experience during 
or after virtual reality immersion. Initially discovered in flight simulators, commercial virtual reality (VR) head-mounted 
displays (HMD) of the current generation also seem to cause CS, albeit in a different manner and severity. The goal of this 
work is to summarize recent literature on CS with modern HMDs, to determine the specificities and profile of immersive 
VR-caused CS, and to provide an outlook for future research areas. A systematic review was performed on the databases 
IEEE Xplore, PubMed, ACM, and Scopus from 2013 to 2019 and 49 publications were selected. A summarized text states 
how different VR HMDs impact CS, how the nature of movement in VR HMDs contributes to CS, and how we can use bio-
sensors to detect CS. The results of the meta-analysis show that although current-generation VR HMDs cause significantly 
less CS ( p < 0.001 ), some symptoms remain as intense. Further results show that the nature of movement and, in particular, 
sensory mismatch as well as perceived motion have been the leading cause of CS. We suggest an outlook on future research, 
including the use of galvanic skin response to evaluate CS in combination with the golden standard (Simulator Sickness 
Questionnaire, SSQ) as well as an update on the subjective evaluation scores of the SSQ.

Keywords Immersive virtual reality · Head-mounted display · Cybersickness · Visually induced motion sickness

1 Introduction

Cybersickness (CS) (McCauley and Sharkey 1992), also 
known as virtual simulator sickness (Howarth and Costello 
1997), visually induced motion sickness (Kennedy et al. 
2010), or virtual reality-induced symptoms (Cobb et al. 
1999) and refers to the negative effects users experience dur-
ing or after immersion into virtual reality (VR) (Kim et al. 
2015; Stanney et al. 2003; Merhi et al. 2007). CS is similar 
to motion sickness and is commonly associated with vec-
tion (Hettinger and Riccio 1992; LaViola 2000; James Smart 

et al. 2002), but the exact relation between both is unknown. 
Recent studies suggest that vection is a necessary, but not 
sufficient, prerequisite for CS (Keshavarz et al. 2015; Ken-
nedy and Fowlkes 1992). CS is nevertheless not restricted to 
VR and also occurs in other visual display systems, such as 
large screens, curved screens, and CAVEs (Rebenitsch and 
Owen 2016). However, in this systematic review, we focus 
only on CS in current-generation immersive VR HMDs, 
such as Oculus Rift and HTC Vive.

Empirical evidence shows that 60–95% of participants 
experience some level of CS during exposure to a virtual 
environment, whereas 6–12.9% of the participants prema-
turely end their exposure (Stanney et al. 2003; Arns and 
Cerney 2005; Roberts and Gallimore 2005; Regan 1995a, 
b; Kim et  al. 2005). CS usually appears approximately 
10–15 min after immersion (DiZio and Lackner 1997, 2000; 
Lampton et al. 1994), although cases have been reported 
with less time (So and Lo 1999). Once the user leaves the 
VR environment, symptoms usually disappear in around 
15 min (DiZio and Lackner 1997, 2000), but reimmersion 
causes them to reappear abruptly and severely (DiZio and 
Lackner 2000). The duration of this susceptibility is unclear 
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(Viirre and Ellisman 2003) and some studies suggest that 
aftereffects can also persist for hours (Johnson 2005).

Numerous potential solutions to CS have been discussed, 
e.g., a virtual nose (Whittinghill et al. 2015; Wienrich et al. 
2018) or motion sickness medication (Chen et al. 2015). 
Many previous studies suggest different methods to reduce 
the discrepancy between virtual and real movements, such 
as restricting movement to instantaneous locomotion (Chris-
tou and Aristidou 2017), manipulating the limited physical 
VR space with acoustic redirected walking (Nogalski and 
Fohl 2016), or extrapolating and filtering head movements 
(Garcia-Agundez et al. 2017). Including environmentally 
meaningful features such as sound and vibration when 
operating a virtual vehicle (Sawada et al. 2020) or snapping 
the viewpoint in sections of significant movement (Farmani 
and Teather 2018) have also been mentioned. However, user 
adaptation is widely regarded as the best option to address 
CS at the moment (Johnson 2005; Golding and Gresty 
2015).

The etiology of CS is undetermined and coexists with 
the possible causes of common motion sickness. The three 
most common theories are: (1) a sensory conflict theory that 
is based on a discrepancy between the visual, vestibular, 
and proprioceptive senses, as well as on expectation and 
past experience (Reason and Brand 1975), (2) the postural 
instability theory that describes a physiological response 
to the inability to maintain bodily postural control (Riccio 
and Stoffregen 1991), and/or (3) the eye movement theory 
(Ebenholtz et al. 1994). However, even though several stud-
ies support these theories, other studies present competing 
hypotheses for the cause of motion sickness. For example, 
Bos (2011) reviewed these findings and found negative cor-
relations between postural instability and CS. Similarly, 
Lubeck et al. (2015) conclude that postural sway is not nec-
essarily increased by visual motion. Another possible cause 
is the vergence-accommodation conflict, or the mismatch 
between the actual and eye focusing distance of a 3D object, 
as discussed by Kramida (2016). Further research suggests a 
subjective vertical mismatch theory: when subjective verti-
cal cannot be determined, this will cause motion sickness 
in general (Bles et al. 1998) and CS in particular (Bos et al. 
2008). Additional studies also mention the poison theory 
as a possible cause for CS (Treisman 1977); however, as 
already argued by LaViola (2000), this theory is substan-
tially different from the other mentioned before and difficult 
to verify.

There exist various questionnaires to assess CS, e.g., 
Motion Sickness Susceptibility Questionnaire (Golding 
1998) or Fast Motion Sickness Scale (Keshavarz and Hecht 
2011). However, the golden standard is the Simulator Sick-
ness Questionnaire (SSQ) (Kennedy et al. 1993). Studies 
have been made explicitly on its suitability for VR (Bruck 
and Watters 2011), considering the differences between CS 

and simulator sickness (Stanney et al. 1997). In the SSQ, the 
possible symptoms of CS are evaluated on a scale from zero 
(none) to three (severe) and then grouped into three blocks: 
nausea, oculomotor, and disorientation. Finally, a total SSQ 
score is derived from these three blocks and the simulation 
is then categorized depending on its score: negligible (SSQ 
lower than 5), minimal (5–10), significant (10–15), con-
cerning (15–20), and bad simulator (20 or higher) (Stanney 
et al. 1997). Disorientation symptoms are predominant in CS 
(Stanney et al. 2003; Kim et al. 2005; Lampton et al. 1994; 
So and Lo 1999; Lo and So 2001), whereas oculomotor ones 
are typical of simulators (Stanney et al. 1997) and nausea, as 
well as emesis, are predominant in motion sickness. Moreo-
ver, the incidence of CS has been reported to be 2.5–3 times 
higher than simulator sickness (Kennedy and Fowlkes 1992; 
Roberts and Gallimore 2005; Stanney et al. 1997).

Although the amount of research into CS is, as shown, 
quite extensive, user complaints are still fairly common 
(Rangelova et al. 2020), so an issue in current HMDs still 
remains. Current-generation HMD devices, such as the Ocu-
lus Rift, have already proven to cause CS (Kim et al. 2015; 
Garcia-Agundez et al. 2017; Gavgani et al. 2017). Many 
previous publications explored different factors affecting 
CS, e.g., individual (age, gender, illness, posture), device 
(lag, flicker, calibration, ergonomics), and task factors (con-
trol, duration) (LaViola 2000; Davis et al. 2014). Similarly, 
Chang et al. (2020) recently surveyed the causes of CS and 
identified three major factors (hardware, content, and human 
factors). Additionally, Rebenitsch and Owen (2016) provide 
an excellent review on CS. However, these publications usu-
ally focus on determining the factors affecting CS and do not 
consider different VR HMDs, such as HTC Vive.

Hence, in contrast to related work, we conducted a meta-
analysis, comparing different HMDs (e.g., Oculus Rift vs. 
HTC Vive) and stimuli (matched vs. mismatched). The goal 
of this systematic review is to provide further insight of CS 
in current-generation immersive VR HMD from three per-
spectives. Firstly, we aim to determine whether there are sig-
nificant differences in the intensity and patterns of CS, meas-
ured by the SSQ among different VR HMDs (see Sect. 3.1). 
Secondly, we explore the nature of movement that causes 
sensory mismatch (see Sect. 3.2). Finally, we determine 
how biosignals may detect CS (see Sect. 3.3). This may help 
researchers to draw more definite conclusions into whether 
these factors do have a significant impact on CS.

2  Methods

In order to conduct the study, we performed a systematic 
search with the following keywords: virtual reality AND 
(cybersickness OR simulator sickness OR motion sickness) 
AND (application OR game), published since January 1, 
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2013 (release of the first current-generation HMD, Oculus 
Rift DK11). The search was performed on July 17th, 2019. 
Inclusion criteria were: (1) the immersive VR application 
uses a current-generation HMD, (2) the study measures CS 
with a standard questionnaire, and (3) the study reports some 
degree of CS among its participants. Exclusion criteria were: 
(1) non-HMD-based VR applications (e.g., large screens or 
CAVEs), (2) the study does not specify the immersion time, 
(3) reviews, (4) keynotes, and (5) books.

Figure 1 shows an overview of the study selection, as 
proposed by Moher et al. (2009). In total, we identified 1358 
articles through database searching and three further articles 
through other sources that meet our requirements. After the 
preliminary screening (i.e., screening of title and abstract), 
we excluded 1219 records because they did not rely on an 
immersive VR system (thus, not using a HMD). Afterward, 
we applied eligibility criteria, again excluding further 93 
articles. Finally, we could reduce our corpus to a total of 
49 articles.

For the analysis, we extracted important information, 
e.g., number of users, total immersion time, version of HMD 
used in experiments, type of application, condition (sitting 
or standing), and locomotion technique. Then we grouped 
the publications based on the HMD version and stimuli. We 
furthermore obtained for each publication total SSQ score 
(mean and standard deviation). All resulting data for the 
studies can be consulted in Table 1. Data refers exclusively 
to post-immersion, non-normalized SSQ scores since nor-
malization was not always performed.

We furthermore conducted a meta-analysis using the 
“meta” package in R statistical software (Schwarzer et al. 
2015). We calculate the overall effect (mean differences), 
its confidence interval, and p-values to compare SSQ val-
ues for different types of VR HMDs (e.g., Oculus Rift vs. 
HTC Vive) and different stimuli (matched vs. mismatched 

stimuli). Therefore we filtered the research corpus again and 
excluded articles that (1) did not employ the SSQ or (2) 
did not provide explicit SSQ data. The results of the meta-
analysis of 32 leftover articles are detailed in Tables 2 and 3.

3  Results

3.1  On the differences in CS patterns with different 
HMDs

In order to determine if there are differences in the CS pat-
terns based on different HMDs, we obtained the total SSQ 
score and subscores (nausea, oculomotor, and disorientation 
scores) if available. The results of this analysis are presented 
in Fig. 2.

Several observations can be extracted from this data. The 
HTC Vive shows clearly the best SSQ values in total score 
as well as in nausea and disorientation subscores. Regarding 
oculomotor scores, Oculus Rift DK1 and HTC Vive have 
similar results. However, this may be due to the limited 
sample size since there are only four available subscores 
for DK1 (in contrast, for Vive, nine studies reported sub-
scores, including nausea, oculomotor, and disorientation). 
As detailed in Table 3, there are also significant differences 
between the HTC Vive and the Oculus Rift DK1 as well as 
DK2 for all stimuli ( p < 0.0001 ). Unfortunately, there are 
not enough studies or information to elicit a comparison 
between the Oculus Rift CV1 and HTC Vive. In any case, 
future studies would likely increase statistical power.

Considering the differences between the Oculus Rift DK1 
and the DK2 are not significant ( p = 0.4764 ), we suspect 
that changes in resolutions and refresh rates have had only 
a marginal impact on CS when compared to changing the 
means of locomotion and environment interaction, which is 
the essential difference between the presented HMDs (see 
also Sect. 3.2). In fact, we observed higher scores in the 
Oculus Rift DK2 in comparison to the DK1 (see Fig. 2). 
However, as already mentioned before, this may be due 
to the limited sample size. Nevertheless, as can be seen in 
Table 1, Oculus Rift DK1 causes a higher withdrawal rate 
( 24.50% ) compared to DK2 ( 9.60% ). Since the production 
of Oculus Rift DK1 and DK2 has been stopped, it is unlikely 
that more results will arise in the future.

3.2  On nature of movement

3.2.1  Sensory mismatch

Many studies have drawn attention to the fact that mis-
matched stimuli cause subjects to experience CS. In par-
ticular, CS occurs when the users perceive self-move-
ment in the virtual environment while actually remaining 

Fig. 1  PRISMA (Moher et al. 2009) flowchart of study selection

1 https:// www. kicks tarter. com/ proje cts/ 15233 79957/ oculus- rift- step- 
into- the- game/ posts/ 440293, last visited on October 25th, 2019.

https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/posts/440293
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game/posts/440293
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stationary, e.g., different kinds of driving or flying simula-
tors (see Sect. 3.2.2) and different locomotion techniques 
(see Sect. 3.2.3).

Therefore, to further investigate the effect of sensory mis-
match, we conducted a meta-analysis on different VR HMDs 
and different stimuli. The data in Table 2 and Fig. 3 show 
lower SSQ scores for virtual environments with matched 
stimuli (average SSQ values of 12.78) compared to virtual 
environments with mismatched stimuli (average SSQ values 
of 31.84). Furthermore, on average, 7.11% of the subjects 
dropped out when perceived and real motions do not match 
(see Table 1). In contrast, studies with matched stimuli show 
lower withdrawal rates (on average, 3.21% of the subjects 
dropped). These results show that the SSQ scores and the 
withdrawal rate are higher for mismatched stimuli. Moreo-
ver, the meta-analysis results in Table 3 show that total SSQ 
scores between mismatched and matched stimuli are signifi-
cantly different ( p < 0.0001).

We furthermore analyzed the SSQ scores of matched 
and mismatched stimuli depending on different HMDs. 
As detailed in Table 3, there is a significant difference 
between matched and mismatched scores for Oculus Rift 
DK1 ( p < 0.0001 ) and HTC Vive ( p = 0.0169 ). In fact, 
we found a significant difference for HTC Vive compared 
to other HMDs for mismatched stimuli; however, not for 
matched stimuli. For example, we found a significant dif-
ference between mismatched stimuli between HTC Vive 
and Oculus Rift DK1 ( p < 0.0001 ) as well as Vive and 
DK2 ( p < 0.0001 ); however, not between matched stimuli 
for Vive and DK1 ( p = 0.0944 ). Unfortunately, we could 
not compare HTC Vive and Oculus Rift DK2 because our 
analysis does not include any study reporting SSQ values 
for matched stimuli for DK2. Nevertheless, because there is 
a significant difference between matched and mismatched 
stimuli independently of the HMD, we can assume that the 
mismatched stimuli are one of the main causes of CS.

Additionally, a too high latency can cause a mismatch 
between the perceived and real motions. Thus, the latency 
of a HMD can contribute to CS, especially when the users 
can perceive a latency lag between the head movements and 
the corresponding visual feedback on the HMD. Latency 
jitter seems to significantly affect CS (Stauffert et al. 2018). 
Delays above 40 ms already evoke CS (DiZio and Lackner 
2000), although significant CS symptoms appear upwards 
from 75 ms (Caserman et al. 2019). Many researchers sug-
gest keeping the latency below 20 ms; however, the latency 
does not appear to be the main cause for CS and a significant 
decrease in the overall system’s latency will not abolish CS 
(Fuchs 2017).

3.2.2  Perceived motion in VR simulators

Some studies explicitly investigated the severity of CS in 
VR simulators, e.g., roller coasters or other driving and fly-
ing simulators. Roller coasters usually cause participants to 
terminate the ride prematurely due to nausea. For exam-
ple, researchers report a withdrawal rate of up to 92.86% 
(Nesbitt et al. 2017; Nalivaiko et al. 2015; Gavgani et al. 
2017). These kinds of driving or flying simulators provoke 
CS because subjects usually sit in a stationary chair while 
exposed to linear and angular accelerations. Furthermore, 
several studies show that SSQ scores are generally higher 
in VR-HMD conditions compared to non-VR conditions. 
For example, Walch et al. (2017) studied the intensity of 
CS while the participants either drove a car visible on the 
flat screen or via a HMD. In this study, the participants 
reported higher CS symptoms scores in VR-HMD setup 
(SSQ scores of 29.09) compared to the screen setup (SSQ 
scores of 16.41). Weidner et al. (2017) have expressed a 
similar view. The researchers report that in the VR-HMD 
condition, the participants reported significantly higher CS 
symptoms (SSQ scores of 30.91) than in the stereoscopic 3D 
condition (SSQ scores of 13.49). As discussed by Kramida 
(2016), the vergence-accommodation conflict could be an 
explanation for this difference.

Table 2  SSQ scores regarding different HMDs and stimuli

We excluded publications with no dispersion (SD) data
/ that no studies reported SSQ values
MS matched stimuli, MMS mismatched stimuli, M mean, SD standard 
deviation

# of users M (SD)

MMS, all devices 667 31.84 (30.29)
MMS, Oculus Rift DK1 174 39.63 (32.09)
MMS, Oculus Rift DK2 281 31.97 (31.41)
MMS, Oculus Rift DK1+DK2 455 34.9 (31.86)
MMS, HTC Vive 99 17.51 (21.7)
MS, all devices 203 12.78 (16.35)
MS, Oculus Rift DK1 55 15.93 (14.81)
MS, Oculus Rift DK2 0 /
MS, Oculus Rift DK1+DK2 55 15.93 (14.81)
MS, HTC Vive 148 11.61 (16.78)
DK1, all stimuli 229 33.94 (30.6)
DK2, all stimuli 281 31.97 (31.41)
Oculus Rift DK1+DK2, all stimuli 510 32.86 (31.04)
Vive, all stimuli 247 13.98 (19.08)
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These results suggest that immersive VR applications 
such as virtual roller coasters (Nesbitt et al. 2017; Nali-
vaiko et al. 2015; Sra et al. 2019; Gavgani et al. 2017; Jin 
et al. 2018; Onuki et al. 2017), car simulations (Walch et al. 
2017; Weidner et al. 2017; Rietzler et al. 2018; Oishi et al. 
2016), bike driving simulators (Tran et al. 2018; Mittel-
städt et al. 2019), flight simulations (Garcia-Agundez et al. 
2019a; Mirhosseini et al. 2017) and wheelchair simulators 
(John et al. 2018; Chowdhury et al. 2017b) cause higher 
SSQ scores due to sensory mismatch and, in particular, due 
to perceived self-motion while remaining stationary. Some 
studies suggest that air cushions (Onuki et al. 2017) or vibro-
kinetic seats (Gardé et al. 2018) can mitigate CS symptoms 
while driving. Sra et al. (2019) furthermore found a similar 
result and reported that galvanic vestibular stimulation could 
also reduce CS.

3.2.3  Locomotion techniques

Many studies investigated the effects of different locomo-
tion techniques (see Table 4). The SSQ scores reported by 
Christou and Aristidou (2017) and Frommel et al. (2017) 
indicate that artificial continuous locomotion techniques 
are generally more likely to cause CS than discrete locomo-
tion techniques. These results are also in agreement with 
Habgood et al. (2018). The authors did not provide explicit 
SSQ values; however, their results show that locomotion 
techniques with continuous movements, such as free joy-
stick-based movements, cause significantly higher nausea 
and oculomotor scores than discrete movements, such as 
teleportation. Furthermore, Tregillus et al. (2017) compared 
different continuous locomotion techniques and according 
to Stanney et al. (1997) (pointing out that scores higher than 
20 indicate a bad simulator), all three locomotion techniques 
seem to elicit CS.

Additional studies compared different artificial locomo-
tion techniques with natural walking. In general, the results 
in Table 4 show low SSQ scores (on average, below 20) 
for natural walking. For example, Christensen et al. (2018) 
investigated two different conditions. The participants 
reported negligible symptoms when they could physically 
walk in the real world (SSQ scores of 1.87) and concerning 
symptoms when using a joystick (SSQ scores of 19.45). Sim-
ilarly, the work of Llorach et al. (2014) shows that a position 
estimation system (SSQ scores of 15.93) induces less CS 
than game controllers (SSQ scores of 32.27). Furthermore, 
research by Wilson et al. (2018) suggests that natural walk-
ing without translation gain (one-to-one mapping of virtual 
space to physical space) causes only minimal CS symptoms 
(SSQ scores of 10.0). In contrast, additional translation gain 
causes significant CS symptoms (SSQ scores of 21.0). More-
over, Krekhov et al. (2018) pointed out that natural walking 

as a giant causes lower SSQ scores (SSQ scores of 10.47) 
than teleportation (SSQ scores of 19.95).

3.3  On biosignal‑based alternatives to the SSQ

As already stated in Sect. 1, the SSQ is a commonly used 
method to quantify CS. Another option to explore CS is to 
study its physiological effects. This effect can be measured 
via the analysis of different biosignals, as an alternative to 
subjective measures such as the SSQ. For example, CS has 
been reported to increase cortisol levels in saliva (Kennedy 
et al. 2010) or to cause tachycardia (Hu and Stern 1999; Imai 
et al. 2006). Furthermore, it seems that CS often correlates 
with facial pallor, sweating, and respiration rate variations 
(Johnson 2005) as well as with heart rate variability (Rieder 
et al. 2011). Unfortunately, individual differences in auto-
nomic regulation and variations caused by the experience 

Fig. 2  SSQ score results classified by HMD
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but not by a negative reaction to it (sickness) make it chal-
lenging to predict CS based on variables such as the heart 
rate or respiration rate (Kiryu and Iijima 2014).

Thus, in this section, we aim to determine how reli-
able biosignals are in detecting CS. The corpus was again 
filtered and all articles that did not use biosignals were 
excluded. A total of six articles fulfilled this criterion, 
which are presented in Table 5.

From these results, several observations can be drawn. 
Firstly, changes in galvanic skin response seem to be the 
most reliable method to detect CS. Four out of six studies 
used galvanic skin response to detect CS and also reported 
an increase or at least changes of statistical significance. 
Secondly, although CS clearly elicits changes in heart rate 
and heart rate variability, it does not seem that an increase 
or decrease can be explicitly linked to higher rates of CS. 
For example, an increase in heart rate can occur due to 
physical activity, whereas a decrease in heart rate vari-
ability can indicate a higher stress level. Thus, the heart 
rate does not seem to increase only due to CS. In this 
sense, heart rate alterations may be used to verify CS that 
has already been detected by a different method, such as 
galvanic skin response, changes of in-game behavior, or 
verbal communication.

Results also suggest that increases in the respiratory 
rate, basal finger temperature, or tachygastria may also 
be used to predict CS. In general, we believe these results 
confirm the advantage of biosignals to determine CS with-
out using subjective questionnaires, such as SSQ.

4  Discussion

In this paper, we analyzed 49 studies that investigated CS 
among participants while they were immersed in a virtual 
environment using a current-generation HMD. We focused 
on determining whether there are differences in the CS pat-
terns based on different HMDs, whether CS increases when 
stimuli do not match, and how biosignals can detect CS. A 
summary of the statistical conclusions based on the meta-
analysis is provided in Table 6.

Although more studies on the Oculus Rift CV1 are 
required, it is clear that last-generation HMD devices have 
significantly fewer problems with CS, although CS is still 
present. A comparison between different HMDs showed 
that HTC Vive with accurate positional tracking causes 
significantly less nausea and disorientation symptoms, but 
oculomotor ones remain at similar levels (see Sect. 3.1). 
More particularly, a meta-analysis revealed statistically 
significantly lower ( p < 0.0001 ) SSQ scores for HTC Vive 
compared to Oculus Rift DK1 and DK2 (see also Table 6). 
Nevertheless, given the expansion of the VR market, numer-
ous more studies are required to test all new HMDs reaching 
the market (Valve Index, Oculus Rift S, Oculus Quest, Sam-
sung Odyssey, and Microsoft Augmented Reality devices).

Regarding the nature of movement, the meta-analysis 
revealed significant higher SSQ scores ( p < 0.0001 ) for 
studies with mismatched stimuli compared to the studies 
with matched stimuli (see Sect. 3.2.1). In particular, VR 
simulations that force movements upon the users, e.g., 
virtual roller coasters, driving, and flying simulations, are 
more susceptible to CS (see Sect. 3.2.2). Additionally, the 

Table 4  Summary of studies investigating different locomotion techniques

The numbers in brackets show average SSQ scores
a continuous
bdiscrete locomotion technique

Article Mismatched stimuli Matched stimuli

Christou and Aristidou (2017) Pointinga (36.4) and gaze-directed 
locomotiona (25.4)

Teleportationb (17.5)

Frommel et al. (2017) Guided locomotiona (35.84) and 
touchpada (38.34)

Fixpoint teleportationb (23.38) and free teleportationb (21.97)

Tregillus et al. (2017) Tilta ( 28.28 ± 30.8 , walking-in-place 
combined with tilta ( 27.58 ± 17.0 ), 
and joysticka ( 23.26 ± 34.6)

Christensen et al. (2018) Joysticka (19.45) Natural walkinga (1.87)
Llorach et al. (2014) Joysticka ( 32.27 ± 29.26) Position estimationa ( 15.93 ± 14.81)
Wilson et al. (2018) Natural walking with translation gaina 

(21.0)
Natural walking without translation gaina (10.0)

Krekhov et al. (2018) Natural walking as a gianta ( 10.47 ± 10.21 ) and teleportationb 
( 19.95 ± 21.24)
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results show that locomotion techniques (see Sect. 3.2.3) 
with mismatched stimuli (e.g., joystick-based locomotion 
techniques) cause significantly higher severity symptoms 
compared to locomotion techniques with matched stimuli 
(e.g., continuous movements such as natural walking or dis-
crete movements such as teleportation). Especially joystick-
based locomotion techniques that allow the user to sit on a 
stationary chair to explore the virtual environment through 
continuous movements significantly increase the probability 
that CS occurs. In contrast, natural walking results in lower 
SSQ scores, indicating that it does not provoke CS. This 
evidence complements related work (Rebenitsch and Owen 
2016), showing that the navigation is still strongly correlated 
with CS. Recent research suggests that adding motion cues 
to the visual stimuli may not necessarily reduce CS (Klüver 
et al. 2015). Interestingly, there is evidence opposed to this 
conclusion in the case of simulators (Gardé et al. 2018).

Concerning biosignals, galvanic skin response is by far 
the best signal to predict and detect CS. More numerous 
studies exploring galvanic skin responses in users experienc-
ing CS may provide sufficient information to develop a reli-
able linear regression algorithm to more accurately predict 
CS in real-time.

In summary, based on the meta-analysis, it appears 
that the nature of movement is the main reason for CS. To 
prevent that CS occurs in immersive VR applications and 
games, the developers should avoid sensory mismatch, i.e., 
they should provide room-scale environments where users 
can naturally walk in the physical and virtual world. If the 
direct mapping of movements in VR is limited by the physi-
cal tracking space, then the game should instead employ dis-
crete locomotion techniques, such as teleportation. Modern 

HMDs with accurate head tracking can also help to prevent 
CS.

In general terms, it seems the traditional evaluation 
scales for the SSQ, with scores over 20 describing “a bad 
simulator,” are outdated. Significantly higher values can 
be expected across all HMDs and a new evaluation scale 
should be implemented. Considering that in our corpus a 
SSQ score of 40 or higher usually means a withdrawal rate 
of approximately one third, we suggest 40 would be a more 
precise value to describe “a bad simulator,” meaning an out-
dated HMD or a VR scenario design that causes specifically 
abnormal levels of CS for current standards. This is not a 
critique on the SSQ itself, but more of an observation of 
differences of current VR and the simulators it was initially 
designed for.

Finally, we believe it is also important to restate some 
general remarks into how to conduct CS or SSQ-based stud-
ies in the future: samples should be larger than 15 users 
(Kennedy and Fowlkes 1992) and immersion times should 
be of at least 20 min (Wilson 1996). During the evalua-
tion, early indicators of CS may be atypical eye movements, 
sweating, or fiddling with the HMD (Cobb et al. 1999). In 
general terms, the more correlated virtual and real move-
ments are, the less CS than it is to be expected (LaViola 
2000; Regan 1995a). Finally, SSQ values of up to 40 can 
be expected.

4.1  Limitations

We aimed to identify the main causes of CS; however, this 
article presents several limitations. Firstly, the number and 
nature of studies on the Oculus Rift CV1 are insufficient to 

Table 5  Summary of studies using biosignals

ACC denotes maximum classifier accuracy in case the data was fed to a machine learning classifier algorithm. For this section, Dennison et al. 
(2016) refers to VR vs. non-VR (Monitor) classification, while Garcia-Agundez et al. (2019a) refers to CS vs. non-CS classification
*Statistic significance for p < 0.05 and **statistical significance for p < 0.005

Article Dennison et al. 
(2016)

Nalivaiko et al. 
(2015)

Gavgani et al. 
(2017)

Garcia-Agundez 
et al. (2019b)

Garcia-Agundez 
et al. (2019a)

Gardé et al. (2018)

# of users 20 26 14 13 66 45
VR time [min] 10 14 15 15 9.5 10
HMD Oculus Rift DK2 Oculus Rift DK1 Oculus Rift DK1 Oculus Rift DK2 Oculus Rift DK2 Oculus Rift CV1
Epochs [s] 120 Not specified 60 Whole dataset 30 Whole dataset
Heart rate Increase** Increase** Increase** Decrease Decrease
Heart rate variability Decrease* Increase* Decrease*
Gastric rhythm Increase* Increase
Blink rate Increase* Decrease
Respiratory rate Increase** Increase* Decrease
Galvanic skin response Increase Increase** Changes* Increase**
Basal finger temperature Changes
ACC 78% 82%
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draw any significant conclusions on the impact of CS on this 
device. The same can be said for other HMDs released dur-
ing 2019. In general terms, the number of studies on which 
we performed our meta-analysis was limited. Secondly, 
authors on VR-based CS studies tend not to provide full 
SSQ results or information on the dropout/CS complaint 
rates. However, despite these limitations, several conclu-
sions based on statistically significant differences can be 
drawn from our meta-analysis.

5  Conclusion

In this paper, we have reviewed the state of the art research 
on CS with current-generation VR HMDs. We included 49 
studies that met our criteria. To discuss the main causes of 
immersive VR-caused CS, we conducted a meta-analysis and 
compared different HMDs (e.g., Oculus Rift vs. HTC Vive) 
and stimuli (matched vs. mismatched). Firstly, the meta-
analysis results show that last-generation HMD devices have 
significantly fewer problems with CS, although these are still 
present. Secondly, mismatched stimuli cause a significant 
increase in CS compared to matched stimuli. Especially VR 
flying or driving simulators as well as continuous locomo-
tion techniques with mismatched stimuli (e.g., joystick-based 
movements), cause higher SSQ scores. In contrast, discrete 
locomotion techniques, such as teleportation or room-scale 
setups enabling natural walking cause significantly lower 
CS symptoms. Finally, concerning biosignals, galvanic skin 
response seems by far the best signal to predict and detect 
CS in real-time. We hope that this survey will encourage 
game developers and researchers in the future to study the 
causes and solutions regarding CS using modern HMDs.
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