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Abstract
We study the problem of estimating conditional distribution functions from data con-
taining additional errors. The only assumption on these errors is that a weighted sum of
the absolute errors tends to zero with probability one for sample size tending to infin-
ity. We prove sufficient conditions on the weights (e.g. fulfilled by kernel weights)
of a local averaging estimate of the codf, based on data with errors, which ensure
strong pointwise consistency. We show that two of the three sufficient conditions on
the weights and a weaker version of the third one are also necessary for the spc. We
also give sufficient conditions on the weights, which ensure a certain rate of conver-
gence. As an application we estimate the codf of the number of cycles until failure
based on data from experimental fatigue tests and use it as objective function in a
shape optimization of a component.
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1 Introduction

Let (X ,Y ) be a random vector, such that X is Rd - valued and Y is real-valued, with
conditional distribution function (codf) F , i.e.,

F(y, x) = P{Y ≤ y | X = x} = E
{
I{Y≤y}

∣∣ X = x
}
.

One idea to construct estimates, approaching the codf asymptotically for some fixed
y ∈ R andPX–almost all x ∈ Rd (wherePX is the of X inducedmeasure on

(
Rd ,Bd

)
,

i.e., PX (B) = P (X ∈ B) for every B ∈ Bd ), is to use an independent and identically
distributed (i.i.d.) sample (X1,Y1),…, (Xn,Yn) of (X ,Y ) to compute a local averaging
estimate

Fn(y, x) =
n∑

i=1

Wn,i (x) I{Yi≤y} (1)

of the codf. HereWn,i (x) for i = 1, . . . , n are nonnegative weights, which can depend
on the samples X1, . . . , Xn .

A commonly used example for those weights are the weights of the so-called kernel
estimate, which are defined by

Wn,i (x) =
K

(
x−Xi
hn

)

∑n
i=1 K

(
x−Xi
hn

) , (2)

where 0/0 = 0 by definition (cf., e.g., Nadaraya (1964) and Watson (1964)). Here
hn > 0 is the so-called bandwidth and K : Rd → R is a so-called kernel function,
e.g., the so-called naive kernel defined by

K (x) = I{||x ||≤1} for all x ∈ Rd .

For a fixed y ∈ R, the estimate introduced in (1) is a special case of an estimate of
a regression function m(x) = E {Y | X = x} (with the choice of I{Y≤y} as dependent
variable). Thus, all known results on estimates of the regression function do also apply
for the corresponding estimates of the codf.

The regression estimate corresponding to the one of the codf in (1), i.e.,

mn (x) =
n∑

i=1

Wn,i (x) · Yi

has been seminally considered by Stone (1977). In particular, in Theorem 1 Stone gave
necessary and sufficient conditions on the weights, such that the regression estimate
mn is weakly consistent in Lr for every real r ≥ 1, i.e.,

E
{∫

|mn (x) − m (x)|r PX (dx)

}
→ 0 (n → ∞).

123



Estimation of conditional distribution functions from data… 325

These conditions are for example fulfilled by the special choices of the weights of the
partitioning, kernel and nearest-neighbor estimate, for details we refer to Chapters 4,
5 and 6 in Györfi et al. (2002).

Since the work of Stone (1977), several authors also dealt with strongly pointwise
consistency of special regression function estimates for dependent variable Y , which
are almost surely bounded by some constant. In case of the estimation of the codf we
say that the estimate Fn of the codf F is strongly pointwise consistent for some fixed
y ∈ R, if

Fn (y, x) → F (y, x) a.s. for PX–almost every x . (3)

In the context of nonparametric regression, Devroye (1981) showed the strongly
pointwise consistency of the kernel regression estimate, presuming that K is a so-called
window kernel and that the bandwidth hn fulfills some mild asymptotic conditions.
Greblicki et al. (1984) generalized this consistency result to some broader class of
kernels with possibly unbounded support. Stute (1986) also showed a result con-
cerning the uniform pointwise consistency of the kernel estimate of the conditional
distribution function. A proof of the strongly pointwise consistency of the partition-
ing regression estimate can be found in (Györfi et al. 2002, Theorem 25.6.). Györfi
(1981a) and Devroye (1981) independently showed results concerning the strongly
pointwise consistency of the nearest neighbor regression estimates. Devroye (1982)
also gave necessary and sufficient conditions for the strongly pointwise consistency
of the nearest neighbor regression estimates.

In order to obtain consistency results for all distributions (X ,Y ) with E |Y | < ∞
(so-called universal consistency), some authors considered modified versions of the
above mentioned estimates [cf., e.g., Walk (2001), Algoet and Györfi (1999)]. See
also (Györfi et al. 2002, Chapter 25) and the literature cited therein for other estimates
and further results on the strongly universal pointwise consistency.

Rates of convergence in probability for the kernel regression estimate have been
obtained in Krzyzak and Pawlak (1987) and in Györfi (1981b) for the nearest neighbor
regression estimate. Uniform almost sure rates of convergence for regression estimates
have been shown inHärdle et al. (1988) by considering amore general setting of kernel-
type estimators of conditional functionals. Optimal global rates of convergence for
nonparametric regression estimates have been shown by Stone (1982).

Other estimates of the codf have been proposed by Hall et al. (1999), who studied
the rate of convergence of a weighted kernel estimator. Cai (2002) showed asymp-
totic normality of this estimate. Furthermore, Hall and Yao (2005) used a dimension
reduction technique to approximate the codf and study the asymptotic properties.
Preadjusted local averaging estimates of the codf were proposed by Veraverbeke et al.
(2014), who proved results concerning the uniform rate of convergence.

So far, only Liero (1989) and Hansmann et al. (2019) studied a local averaging
regression estimate with generalized weights and formulated conditions for consis-
tency results. Liero (1989) assumed the weights to have the special form

Wn,i (x) = φn,i (x, Xi )∑n
i=1 φn,i (x, Xi )

,
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where φi,n is a Borel-measurable function onRd ×Rd and does therefore only depend
on Xi and formulated conditions that ensure a certain uniformly strong rate of con-
vergence. Hansmann et al. (2019) gave conditions on the above introduced general
weights Wn,i of a local averaging regression estimate which imply the strongly uni-
versally consistency, i.e.

∫
|mn (x) − m (x)|2 PX (dx) → 0 a.s.

for all distributions (X ,Y )withEY 2 < ∞. To the authors knowledge there is no result
so far, which characterizes necessary and sufficient conditions on the abovementioned
general weights Wn,i , that ensure the strongly pointwise consistency or a certain rate
of convergence in probability of the corresponding local averaging estimate of the
conditional distribution function.

One of the main goals of this paper is to present these two results. A further aspect
investigated in this paper is the consideration of additional errors in the data, which is
motivated by an application in the context of shape optimization with respect to the
fatigue life of a component. A short overview on the method used to asses the fatigue
behaviour will be described in the following section.

1.1 Application in the context of experimental fatigue tests

In order to predict the fatigue life of a certain material, we use data from so-called
strain-controlled fatigue tests, in which a material sample gets repeatedly elongated
by a fixed strain amplitude ε. The repetitions, the so-called number of cycles N , until
the material fails are counted and the corresponding stress amplitude τ is measured.
Repeating this experiment yields data

{(
ε
(m)
1 ,

(
N (m)
1 , τ

(m)
1

))
, . . . ,

(
ε
(m)
lm

,
(
N (m)
lm

, τ
(m)
lm

))}

for each material m. Since the mentioned strain-contolled fatigue tests are very time
consuming, we only have 12 data points for the material of interest, which is not
enough for a nonparametric estimation of the conditional distribution function of the
number of cycles given a certain strain amplitude ε. Thus, we assume the model

N (m) (ε) = μ(m) (ε) + σ (m) (ε) · δ(m) (4)

to hold. In Sect. 3.1. we will describe a suitable method to estimate μ and σ by μ̂ and
σ̂ , respectively, such that we can finally obtain data

δ̂
(m)
i = N (m)

i − μ̂
(m)
i

σ̂
(m)
i

for i = 1, . . . , lm, (5)

Due to the assumption in (4) the conditional distribution function of the number of
cycles given a strain amplitude ε can be determined by a simple linear transformation
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Estimation of conditional distribution functions from data… 327

from the distribution function of δ(m). Since we only have available 4 to 35 of the
above data samples per material to estimate the distribution function of δ(m), we will
use data samples from other materials, that have similar static material properties. To
this end we use an estimate of the conditional distribution function, with the vector of
five statical material properties (Young’s modulus, the yield limit for 0.2% residual
elongation, the tensile strength, the static strength coefficient and the static strain
hardening exponent) as covariate X (m) and the samples δ

(m)
i as dependent variable.

More precisely we apply a nonparametric estimate of the codf to the data

{(
X (m), δ

(m)
1

)
, . . . ,

(
X (m), δ

(m)
lm

)
: m is a material in our database

}

Furthermore the above data points contain errors in the dependent variable since we
only estimated μ(m) and σ (m), which leads to the topic of this paper, where we want
to investigate how additional errors in the dependent variable influence an estimate of
codf and show theoretical results concerning strongly pointwise consistency and rate
of convergence in probability.

1.2 Data with errors

Motivated by the application described in the previous subsection, we generalize our
mathematical setting and assume that we only have available data

(
X1, Ȳ1,n

)
, …,(

Xn, Ȳn,n
)
with errors in the samples of the dependent variable instead of the i.i.d.

data (X1,Y1), …, (Xn,Yn).
In our above mentioned application we do not know anything explicitly on the

errors Ȳi,n − Yi (i = 1, . . . , n). Thus, we are not able to impose a structure on those
errors. In particular, we can not assume that those errors have to be random and in case
that they are random they do not need to be independent or identically distributed and
they do not need to have expectation zero, so estimates for convolution problems (see,
e.g., Meister (2009) and the literature cited therein) are not applicable in the context
of this paper. But we can assume that with increasing number n of total samples we
also get more samples from the strain controlled fatigue tests for each of the materials.
Thus, our estimates μ̂(m) and σ̂ (m) and therefore our data δ̂

(m)
i of (5) get more reliable

for all materials m. Consequently, with increasing n, our errors δ̂
(m)
i − δ

(m)
i get small

for all materials m. Since the δ
(m)
i are the samples of our dependent variable it seems

to be a natural idea in our application to assume that the absolute errors between Yi
and Ȳi,n uniformly converge to zero almost surely, i.e., to assume that

max
i=1,...,n

|Yi − Ȳi,n | → 0 a.s.

In our theoretical results in Section 2 it will turn out that we only have to assume the
weaker condition

ηn (x) =
n∑

i=1

Wn,i (x) · ∣∣Yi − Ȳi,n
∣∣ → 0 a.s. for PX–almost every x . (E1)
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where Wn,i are the weights of the local averaging estimate above.
Note also that our set-up is triangular, which is the necessary in our application

since the estimates μ̂(m) and σ̂ (m) can change with the number of data points n and
can therefore lead in (5) to completely new samples with errors of the random variable
δ(m).

Errors, for which an (average) sum of the (squared) absolute errors tends to zero
(as in (E1)), have been recently considered in the context of nonparametric regression
with randomdesign (cf., Kohler (2006), Fromkorth andKohler (2011)), nonparametric
regression with fixed design (cf., Furer et al. (2013), Furer and Kohler (2015)), (con-
ditional) quantile estimation (cf., Hansmann and Kohler (2017) and Hansmann and
Kohler (2019)), density estimation (cf., Felber et al. (2015)) and distribution estimation
(cf., Bott et al. (2013)).

Since we do not assume anything on the nature of the errors besides that they are
pointwise asymptotically negligible in the sense that (E1) holds, it seems to be a natural
idea to ignore them completely and to try to use the same estimates as in the case that
an independent and identically distributed sample is given.

1.3 Main Results

In Theorem 2.1 we present sufficient conditions on the weights and prove that these
conditions ensure that the estimate F̄n (y, x) applied to data

(
X1, Ȳ1,n

)
, …,

(
Xn, Ȳn,n

)

with errors in the samples of the dependent variable is pointwise consistent in the
sense that it approaches the interval

[
F

(
y−, x

)
, F (y, x)

] =
⎡

⎣ lim
ε→0,
ε>0

F (y − ε, x) , F (y, x)

⎤

⎦

for PX–almost all x asymptotically, presumed that the errors fulfill (E1). As we will
show in Corollary 2.1, these assumptions on the weights are for example fulfilled by
the weights of the kernel estimate.

We also show that two of the three sufficient conditions and a weaker version
of the third condition are also necessary for the above pointwise consistency (see
Theorem 2.2).

We also investigate the rate of convergence of the estimate F̄n and present conditions
on the weights, which ensure for F̄n a pointwise rate of convergence in probability of

rn (x) + √
ηn (x)

(see Theorem 2.3), where rn (x) is some deterministic rate fulfilling for PX–almost
every x ∈ Rd rn (x) → 0 as n → ∞, and where ηn (x) is defined in (E1).

We also present an application to simulated and real data (see Section 3). In the real
data application we use the considered method to estimate the distribution function of
the numbers of cycles until failure in the context of fatiguebehavior of steel under cyclic
loading. This estimate is utilized as the objective in a shape optimization procedure,
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which is embedded in an algorithm-based product development approach to determine
an optimal profile geometry with respect to the fatigue behavior.

1.4 Notation

Throughout this paper the following notation is used: We write Un = OP(Vn) if the
nonnegative random variables Un and Vn satisfy

lim
c→∞ lim sup

n→∞
P{Un > c · Vn} = 0.

The sets of natural positive, natural nonnegative and real numbers are denoted by N,
N0 andR, respectively.Wewrite→P as an abbreviation for convergence in probability
and IA for the indicator function of the set A. We denote the Euclidean Norm on Rd

by ||·||. For z ∈ R and a set A ⊆ R, we define the distance from z to A as

dist (z, A) := inf
a∈A

|z − a| .

Furthermore, we write for the left-sided limit of a function G

G
(
y−) = lim

ε→0,
ε>0

G (y − ε)

1.5 Outline

The outline of the paper is as follows: The main results are formulated in Section 2
and proven in the supplemental material. In Section 3, we present an application to
simulated and real data.

2 Main results

Let

F̄n (y, x) =
n∑

i=1

Wn,i (x) I{Ȳi,n≤y
} (6)

be a local averaging estimate of the codf F (y, x) corresponding to the data with errors(
X1, Ȳ1,n

)
, …,

(
Xn, Ȳn,n

)
.

2.1 Consistency

First of all, we give sufficient conditions on the sequence of weights Wn,i , such that
the estimate F̄n is pointwise consistent for all distributions of (X ,Y ) and all y ∈ R.
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The following result holds, which will be proven in Section S2 in the supplemental
material.

Theorem 2.1 Let (X ,Y ) , (X1,Y1) , (X2,Y2) . . . be i.i.d.Rd ×R-valued random vec-
tors and let Wn,i (x) := Wn,i (x, X1, . . . , Xn)

(
x ∈ Rd

)
be nonnegative weights,

which fulfill

(A1)
∑n

i=1 Wn,i (x) → 1 a.s. for PX -almost every x ∈ Rd ,

(A2) for every Borel-measurable set B ∈ Bd

n∑

i=1

Wn,i (x)
[
I{Xi∈B} − I{x∈B}

] → 0 a.s. for PX -almost every x ∈ Rd ,

(A3) log (n) · ∑n
i=1 Wn,i (x)2 → 0 a.s. for PX -almost every x ∈ Rd .

Furthermore let Ȳ1,n, . . . , Ȳn,n be random variables, which fulfill (E1) and let F̄n be
the local averaging estimate defined in (6) with weights Wn,i . Then F̄n is pointwise
consistent in the sense that for all y ∈ R

dist
(
F̄n (y, x) ,

[
F

(
y−, x

)
, F (y, x)

]) → 0 a.s. for PX–almost every x . (7)

In the following corollary, which will be proven in Section S2 in the supplemental
material, we formulate sufficient conditions for the pointwise strongly consistency of
the kernel estimate of the codf, defined by the weights in (2).

Corollary 2.1 Let (X ,Y ) , (X1,Y1) , (X2,Y2) . . . be i.i.d.Rd ×R-valued random vec-
tors. Assume that K is the naive kernel and that the bandwidth hn > 0 fulfills

hn → 0 and n · hdn/ log (n) → ∞ (n → ∞) . (8)

Furthermore, let Ȳ1,n, . . . , Ȳn,n be random variables, which fulfill

n∑

i=1

∣∣Yi − Ȳi,n
∣∣ · K

(
x−Xi
hn

)

∑n
i=1 K

(
x−Xi
hn

) → 0 a.s. for PX–almost every x . (9)

Let Wn,i be the weights of the kernel estimate with kernel K and bandwidth hn. Then
the kernel estimate F̄n of the codf as defined in (6) is pointwise consistent in the sense
that for all y ∈ R

dist
(
F̄n (y, x) ,

[
F

(
y−, x

)
, F (y, x)

]) → 0 a.s. for PX–almost every x .

Remark 2.1 Analogous results can be shown for estimates of the codf corresponding to
the partitioning and nearest neighborweights, assuming the conditions fromTheorems
25.6. and 25.17., respectively, in Györfi et al. (2002). Furthermore, Corollary 2.1 can
be extended to amore general class of kernels, which has been considered byGreblicki
et al. (1984).
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In Theorem 2.1, we formulated sufficient conditions on the sequence of weights
that imply the pointwise consistency in the sense of (7). In the following theorem, we
show that at least two of these three conditions and a weaker version of (A3) are also
necessary, if Fn is pointwise consistent in the sense that for all distributions of (X ,Y )

for all y ∈ R (7) holds. As we will see in the following theorem, it is sufficient to
consider an i.i.d. sample (X1,Y1) , (X2,Y2) , . . . without errors.

Theorem 2.2 Assume that Wn,i is a sequence of nonnegative weights such that the
corresponding estimate Fn from (1) is strongly pointwise consistent for all distributions
of (X ,Y ) and all independent and identically as (X ,Y ) distributed random vectors
(X1,Y1) , (X2,Y2) , . . . in the sense that for all y ∈ R (7) holds. Then (A1), (A2) and

(A3*)
n∑

i=1
Wn,i (x)2 →P 0 for PX -almost every x ∈ Rd ,

which is a weaker version of (A3), are fulfilled.

2.2 Rate of convergence

Next, we investigate the rate of convergence. Therefore, we assume that for a fixed
y0 ∈ R and PX–almost all x the codf F (y, x) is locally Hölder continuous in x
with exponent 0 < p ≤ 1, locally uniform in y. More precisely, we assume that for
PX–almost every x there exist finite constants C (x) , κ1 (x) , κ2 (x) > 0 such that

sup
y∈R:|y−y0|≤κ1(x)

|F (y, x) − F (y, z)| ≤ C (x) · ||x − z||p (10)

for all z ∈ Rd with ||z − x || ≤ κ2 (x). In the following result we present conditions
on the weights, which ensure a certain pointwise rate of convergence in probability
for F̄n .

Theorem 2.3 Let (X ,Y ) , (X1,Y1) , (X2,Y2) . . . be i.i.d.Rd ×R-valued random vec-
tors and y0 ∈ R be fixed. Furthermore, let the conditional distribution function F fulfill
the Hölder-assumption of (10) in y0 ∈ R for some 0 < p ≤ 1 and let F (·, x) be con-
tinuous and differentiable at y0 forPX–almost every x. Furthermore, let an (x) , bn (x)
and cn (x) for every x ∈ Rd be real and positive sequences, which tend to zero as
n → ∞ for PX–almost every x ∈ Rd . Let Wn,i (x) := Wn,i (x, X1, . . . , Xn) be
nonnegative weights, which fulfill for PX–almost every x ∈ Rd

(C1)
∣∣∑n

i=1 Wn,i (x) − 1
∣∣ = OP (an (x)) ,

(C2)
∑n

i=1 Wn,i (x) I{||Xi−x ||>bn(x)1/p
} = OP (bn (x)) ,

(C3)
∑n

i=1 Wn,i (x)2 = OP
(
cn (x)2

)

Furthermore let Ȳ1,n, . . . , Ȳn,n be random variables, which fulfill

ηn (x) :=
n∑

i=1

Wn,i (x) · |Yi − Ȳi,n| →P 0 for PX–almost every x (11)
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and let F̄n be the local averaging estimate defined in (6) with weights Wn,i . Then for
PX–almost every x ∈ Rd

∣∣F̄n (y0, x) − F (y0, x)
∣∣ = OP

(
an (x) + bn (x) + cn (x) + √

ηn (x)
)

. (12)

It can be shown that the conditions from 2.3 are fulfilled by the kernel estimate
for some appropriate sequences an, bn and cn , which leads to the following corollary,
which will be proven in Section S2 in the supplemental material.

Corollary 2.2 Let (X ,Y ) , (X1,Y1) , (X2,Y2) . . . be i.i.d.Rd ×R-valued random vec-
tors and let y0 ∈ R be fixed. Assume that the conditional distribution function F fulfills
the assumptions of Theorem 3. Assume furthermore that K is the naive kernel and that
the bandwidth hn > 0 fulfills

hn → 0 and n · hdn → ∞ (n → ∞) . (13)

Furthermore, let Ȳ1,n, . . . , Ȳn,n be random variables, which fulfill

ηn (x) :=
n∑

i=1

|Yi − Ȳi,n| · K
(
x−Xi
hn

)

∑n
i=1 K

(
x−Xi
hn

) →P 0 for PX–almost every x . (14)

Let F̄n be the kernel estimate of the codf with kernel K and bandwidth hn as defined
in (6). Then for PX–almost every x

∣∣F̄n (y0, x) − F (y0, x)
∣∣ = OP

(√
1

n · hdn
+ h p

n + √
ηn (x)

)

. (15)

In particular, the choice of hn = c̃ · ( 1
n

) 1
2p+d leads to

∣∣F̄n (y0, x) − F (y0, x)
∣∣ = OP

((
1

n

) p
2p+d + √

ηn (x)

)

(16)

for PX–almost every x.

Remark 2.2 The rate
( 1
n

) p
2p+d +√

ηn (x) can also be achieved by choosing a sufficient
number of the nearest neighbors and special cubic partitions for the weights of the
nearest neighbor and partitioning estimate of the conditional distribution function.

3 Application to simulated and real data

In this section we apply the above described methods to simulated and real data and
estimate the codfs. Therefore we chooseWn,i as kernel weights with naive kernel. The
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bandwidth hn is chosen data-dependent from the set {0.05, 0.1, 0.2, 0.3} by cross-
validation w.r.t. the corresponding regression estimate

m̂ (x) =
n∑

i=1

Wn,i (x) Ȳi,n

[cf. Section 8 in Györfi et al. (2002)]. More precisely, we try to find a ĥ ∈
{0.05, 0.1, 0.2, 0.3} that minimizes

1

n

n∑

j=1

∣∣∣m̂ĥ,− j

(
X j

) − Ȳ j,n

∣∣∣
2
,

where m̂ĥ,− j is the above mentioned regression estimate with kernel weights and

bandwidth ĥ corresponding to all n data points with additional errors in the dependent
variable omitting

(
X j , Ȳ j,n

)
. In order to get an impression regarding the convergence

of our estimates, we firstly consider distributions with known codfs, afterwards we
will apply our estimator to real data in the context of experimental fatigue tests. The
latter estimate is then utilized as the objective in a shape optimization procedure, which
is embedded in an algorithm-based product development approach to determine an
optimal profile geometry with respect to the fatigue behavior.

3.1 Application to simulated data

Motivated by the application in the context of experimental fatigue tests, where we
have 1222 data points (see Sect. 3.2), we will consider sample sizes of n = 500, 1000
and 2000 in order to classify our estimate of the codf. The goodness of our estimate
of the codf will be assessed by the maximum absolute error

errmax := max
i=1,...,I

max
j=1,...,J

∣∣∣F̂n
(
yi , x j

) − F
(
yi , x j

)∣∣∣

on a grid that is determinded by equidistant y1, . . . , yI and x1, . . . , xJ for some fixed
numbers I , J ∈ N . Due to the random number generation in our simulated data, our
estimates of the codf contain randomness, therefore we repeat the codf estimation
100 times with new random numbers and subscript our maximum absolute errors by
an upper index i . We will compare our estimates by considering the average value
1

100

∑100
i=1 err

i
max of the maximum absolute error.

As a first example we choose (X ,Y ) , (X1,Y1) , (X2,Y2) , . . . as independent and
identically distributed random vectors such that X is F-distributed with 5 numerator
and 2 denominator degrees of freedom and Y is normal-distributed with mean X ·
(X − 1) and variance 1. As data with errors we set Ȳi,n = Yi + 100

n . Observe that
we get completely new samples, when n changes. As a comparison to that we also
consider Z̄i,n = Yi + 100

i , where the samples with bigger errors are kept by. The
values x1, . . . , x20 and y1, . . . , y20 for the grid for the maximum absolute error are
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Table 1 Average value of errmax for FY ,n FȲ ,n , FZ̄ ,n in the first example

Size of n 500 1000 2000

Average value of errmax for FY ,n 0.1587 0.1180 0.0989

Average value of errmax for FȲ ,n 0.2168 0.1456 0.1139

Average value of errmax for FZ̄ ,n 0.3821 0.2446 0.1733

Table 2 Average value of errmax for FY ,n FȲ ,n in the second example

Size of n 500 1000 2000

Average value of errmax for FY ,n 0.1741 0.1456 0.1328

Average value of errmax for FȲ ,n 0.2293 0.1734 0.1471

chosen equidistantly on [0, 5] and [−1, 2], respectively. Corollary 2.1 implies for all
y ∈ R that FY ,n (y, x), FȲ ,n (y, x) and FZ̄ ,n (y, x) are pointwise consistent estimates
for

[
F

(
y−, x

)
, F (y, x)

]
for PX–almost all x ∈ R. Due to the considered setting this

interval does in fact only consist of one point that is equal to F (y, x). The mentioned
result of Corollary 2.1 is confirmed by the average values of the maximum absolute
error in Table 1. Due to the fact that the samples with bigger errors are kept by,
the estimator FȲ ,n yields smaller average squared errors than the estimator FZ̄ ,n , in
particular for the small sample sizes n.

As a second example we choose (X ,Y ) , (X1,Y1) , (X2,Y2) , . . . as independent
and identically distributed random vectors such that X is t (5)-distributed and Y is
exponentially distributed with mean

√|X |. As data with errors we choose Ȳi,n = Yi +
Ui,n , whereU1,n, . . . ,Un,n are independent and uniformly on (0, 100/n)-distributed,
which are also independent of (X1,Y1) , . . . , (Xn,Yn). The values x1, . . . , x20 and
y1, . . . , y20 for the grid for the maximum absolute error are chosen equistantly on
[−1, 1] and [0.5, 1]. Again, we can conclude from Corollary 2.1 for all y ∈ R the
pointwise consistency of F̂Ȳ ,n , which is confirmed by the average maximum errors in
Table 2.

As a third example we choose (X ,Y ) , (X1,Y1) , (X2,Y2) , . . . as independent and
identically distributed random vectors with a discrete covariate X which is uniformly
distributedon {1, 2, 3, 4, 5}. ThedependendvariableY is chosen asχ2-distributedwith
X degrees of freedom. As data with errors we set Ȳi,n = Yi +εi,n where ε1,n, . . . , εn,n

are independent and normal-distributed with mean and variance 100/n and also inde-
pendent of (X1,Y1) , . . . , (Xn,Yn). As the covariate is discrete in this setting and the
distance between the discrete values is one, the set {0.5, 1, 2} is used for the choice
of the bandwidth. A choice of ĥ = 0.5 would for example mean that for x = j only
samples of Y will be used in the estimate for which the corresponding samples of the
covariate are equal to j . In this example the x-values for the grid for the maximum
absolute error can be chosen as x j = j for j = 1, 2, 3, 4, 5. The values for y1, . . . , y20
will be chosen equidistantly on [0.5, 5]. Again, we can conclude from Corollary 2.1
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Table 3 Average value of errmax for FY ,n FȲ ,n in the third example

Size of n 500 1000 2000

Average value of errmax for FY ,n 0.1082 0.0771 0.0528

Average value of errmax for FȲ ,n 0.1812 0.1060 0.0639

for all y ∈ R the pointwise consistency of F̂Ȳ ,n , which is confirmed by the average
maximum errors in Table 3.

3.2 Application to real data

In the following, we provide an application of the methods above in the context of
shape optimization of steel profiles with respect to the fatigue behavior under cyclic
loading.

From a practical point of view the robustness against cyclic loading is one of the
major aspects to guarantee a long product lifetime, which results in an increased
sustainability. Usually, the design process of such a profile geometry takes a lot of
time and (human) resources, with no guarantee of the resulting profile geometry to
be optimal. The new method described in this paper automates this process, which
reduces the development effort and leads to a provable optimal profile design. For
further details on the algorithm-based development process we refer to Roos et al.
(2016) and Groche et al. (2017).

Our focus in the subsequent steps lies on the optimization of an integral sheet metal
profile (made of the material HC 480 LA) with respect to the fatigue behavior. In
particular we study a three-chambered profile, which is continuously produced in an
integral way and can for example be used to separate oil, water and power supply.
The used manufacturing technology is developed within the Collaborative Research
Center 666 (CRC 666) at the Technische Universität Darmstadt. One main aspect of
this technology is to produce those integral structures out of one part by linear flow
and bend splitting. On the one hand this production technique requires less joining
operations involving, for example, stress concentration or the action of heat and on the
other hand the linear flow splitting leads to a ultrafine-grained microstructure (UFG)
at the upper side of the steel flanges (cf., e.g., Bohn et al. (2008)). Both points yield
significant advantages concerning the material properties, which can be utilized to
produce lightweight structures with an improved fatigue life. Due to the significantly
changed material properties in comparison to the material in as-received state, we
model the linear flow split and bent parts of the structure as a different material.

In order to assess the fatigue behavior, we use data of experimental fatigue tests, in
which a material sample gets repeatedly elongated by a fixed strain amplitude ε. The
repetitions, the so called number of cycles N , until the material fails are counted and
the corresponding stress amplitude τ is measured. Based on this data we estimate the
conditional distribution function of the number of cycles N (m) until failure given a
fixed strain amplitude ε for both of two considered materialsm (as-received and linear
flow split state). This estimation will be described in Section 3.1 in detail. Finally,
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both estimates of the codf are evaluated at Nmin = 50, 000 in order to determine the
approximate probability of a failure before Nmin number of cycles for a fixed strain
amplitude ε, which will be used as the objective of the optimization. Details on the
shape optimization can be found in Sect. 3.2.

3.2.1 Estimation of the conditional distribution function

For the estimation of the codf we use a database that contains for each materialm data
{(

ε
(m)
1 ,

(
N (m)
1 , τ

(m)
1

))
, . . . ,

(
ε
(m)
lm

,
(
N (m)
lm

, τ
(m)
lm

))}
,

which was obtained by the above mentioned experimental fatigue tests and consists
of the strain amplitude ε

(m)
i the corresponding number of cycles N (m)

i until failure

and the stress amplitude τ
(m)
i . For each material m we have available a number of

experimental fatigue tests lm in a range from 4 to 35. Aggregated over all 132 studied
materials the database includes 1222 of the above data points in total, i.e., we have

132∑

m=1

lm = 1222.

Since the experimental fatigue tests for obtaining one of the above data points are
very time consuming, there are only 12 and 8 data points available for the considered
material HC 480 LA in as-received and linear flow split state, respectively, which is
not enough for a nonparametric estimation of the conditional distribution function.
In order to nevertheless estimate the codf of the number of cycles until failure, we
assume the model

N (m) (ε) = μ(m) (ε) + σ (m) (ε) · δ(m)

to hold, where μ(m) (ε) is the expected number of cycles until failure, σ (m) (ε) is the
standard deviation for each material m and strain amplitude ε; δ(m) is an error term
that has expectation 0 and variance 1 for each materialm. We estimate the conditional
distribution function of δ(m) as well as μ(m) (ε) and σ (m) (ε), so that we can obtain an
estimate of the codf of N (m) by a simple linear transformation. For this purpose we
use a similar approach as in Bott and Kohler (2017):

In order to obtain an estimate μ̂(m) (ε) of the expected number of cycles μ(m) (ε),
we apply a standard-method from the literature[(cf. Williams et al. (2003))], which

uses the measured data of material m to estimate the coefficients p =
(
σ

′
f , ε

′
f , b, c

)

of the strain life curve according to Coffin-Morrow-Manson(cf. Manson (1965))by
linear regression and estimate μ(m) (ε) from the corresponding strain life curve.

The estimation of the standard deviation σ (m) (ε) is more complicated, since we
need to apply a nonparametric estimator to the squared deviations

Y (m)
i =

(
N (m)
i − μ̂

(m)
i

)2
(i = 1, . . . , lm)
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for each material m, which usually needs more samples. So we augmented our data
points per material m by 100 artificial ones as in Furer and Kohler (2015):

At first, we interpolate the squared deviations Y (k)
i for each material k 
= m on

a grid of 100 equidistant strain amplitudes ε. In order to generate an artificial data
point at a fixed grid point, we also use interpolated values from materials, that are
similar to thematerialm, assuming that similarmaterials yield similar fatigue behavior.
Observe that we use the whole database consisting of 132 materials in order to obtain
more interpolated values and to improve the statistical power of our estimation. The
similarity is measured using 5 static material properties, namely Young’s modulus,
the yield limit for 0.2% residual elongation, the tensile strength, the static strength
coefficient and the static strain hardening exponent. In order to ensure that we only use
interpolated values from those materials that have similar static material properties,
we apply the Nadaraya-Watson kernel regression estimates with the static material
properties as covariate and the interpolated data as dependent variable. In this way
we obtain 100 artificial data points (one at each grid point) per material m. Finally,
the estimation of the standard deviation σ (m) (ε) is done by weighting the Nadaraya-
Watson kernel regression estimates applied to the real and the artificial data of the
squared deviations as dependent variable and the corresponding ε-values as covariate.

Thus, we finally determine the data samples

δ̂
(m)
i = N (m)

i − μ̂
(m)
i

σ̂
(m)
i

for i = 1, . . . , lm

of the random variables δ(m) for each material m. Notice that these samples contain
errors because we only estimated μ(m) (ε) and σ (m) (ε). Since only 12 and 8 of the
above data samples for the two material states of HC 480 LA are available, we also
use data samples from other materials of the database, that have similar static material
properties (with the same justification as above), in order to estimate the codf of δ(m).

This consideration of similar materials in the estimation of the conditional distribu-
tion function is done by using the kernel estimate of the codf with the static material
properties as covariate Xi and the data samples of δ(m) for all 122 materials m as
the dependent variable. The bandwidth h of the kernel weights is determined by a
crossvalidation of the corresponding regression estimate as described in the beginning
of this section.

As described in Sect. 1.2 it can be assumed that (E1) holds for the errors δ̂
(m)
i −δ

(m)
i .

Thus, evaluating thementioned estimate of the codf at the staticmaterial properties x =
X (m) of somematerialm leads to an estimate Ĝδ(m) of the codf of δ(m) (see Theorem2.2
for a theoretical justification). However, this estimate Ĝδ(m) can be transformed to an
estimate F̂ (m) of the codf of N (m) given a strain amplitude ε by

F̂N (m) (y, ε) = Ĝδ(m)

(
y − μ̂(m) (ε)

σ̂ (m) (ε)

)

. (17)
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Fig. 1 Estimated conditional distribution function F̂N (m) (Nmin , ε) for Nmin = 50, 000 for the material
HC 480 LA in as received and linear flow split state

This estimate of the conditional distribution function is evaluated at y =
Nmin =50,000 numbers of cycles to obtain an approximate probability of a failure
before Nmin number of cycles for a fixed strain amplitude ε. In Fig. 1, we illustrated
this estimated probability F̂N (m) (Nmin, ε) for the considered material HC 480 LA in
as-received and linear flow split state and ε ∈ [0%, 1%]. Here the strain amplitude ε

is given proportional to the length of the material sample used in the experiments. As
expected, F̂N (m) (Nmin, ε) is increasing in ε.

Since we also needed the derivative of F̂N (m) (Nmin, ε) w.r.t. ε, we interpolated the
function F̂N (m) (Nmin, ε)by apiece-wise cubic smoothing spline, using 200 equidistant
data points of ε and corresponding function values.

3.2.2 Fatigue Strength Shape Optimization

The former presented estimate of the failure probability F̂N (m) (Nmin, ·) is in the fol-
lowing applied to the shape optimization of a multichambered profile. Our aim is to
find the optimal geometry for a specific load scenario and a given starting geometry
under certain design constraints, to reachminimal failure probability, as defined above.
In order to calculate the failure probability of every point of the profile, we model the
physical behavior of the considered geometry under applied loads at each point. For
this purpose we describe the mechanical system in terms of the linear elasticity equa-
tions, for further details on the elasticity equations we refer to the supplement material
Section S1. For numerical treatment of the elasticity equations are discretized in the
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sense of isogeometric analysis. Thus, the discretized linear elasticity equations are
denoted by

Ah(u)yh = bh(u).

The discretization by methods of the isogeometric approach is explained in detail in
the supplement material.

3.2.3 Shape Optimization

In this section we briefly describe the shape optimization problem governed by the
linear elasticity problem as defined in the supplement material Section S1. The finite
dimensional shape optimization problem can be written as

min Jh(u, yh)

s.t. u ∈ Uad, Ah(u)yh = bh(u).

The design variables are denoted by u ∈ Rn , where n ∈ N is the dimension of the
design space. By yh ∈ Rñ the displacement is described, which is determined by
the linear elasticity equations Ah(u)yh = bh(u). The number of the control points of
the isogeometric mesh is denoted by ñ ∈ N. An introduction to shape optimization
is given in Haslinger and Mäkinen (2003). Since the elasticity problem has a unique
solution, we define a Lipschitz continuous solution operator u �→ yh(u) such that the
reduced form of the objective function can be written as

jh(u) := Jh(u, yh(u)).

The corresponding shape gradient gh(u) can be efficiently determined by the adjoint
approach as described in Hinze et al. (2009). The reduced shape optimization is stated
as

min jh(u)

s.t. u ∈ Uad.

Here the set of admissible designs Uad ⊂ Rn is defined by design constraints, for
example angle or length restrictions.

In this work we use the accumulated failure probability as objective function

jh(u) :=
∑

i∈{1,...,ñ}
F̂N (m) (Nmin, ε̄([yh(u)]i ), u),

as defined above, see (17), with Nmin = 50, 000 fixed, where the sum is calculated
over all control points (coefficients of the basis functions in yh above). If we define the
failure of the whole profile by the failure of one of its parts, the accumulated failure
probability over all parts is a (discretized) upper bound on the failure probability of
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Fig. 2 Applied load scenario.
For simplicity the bending radii
are neglected in this draft. The
right side of the profile is
clamped at the bottom and the
top. A uniform surface load
q1 ∈ R3, with ‖q1‖ = 70N , is
applied with 45◦ to the surface
at the upper left part and a load
q2 ∈ R3, with ‖q2‖ = 70N , is
applied with 45◦ to the lower
left side of the profile. The load
scenario is constant in the third
dimension

q1

q2

the whole profile and thus a reasonable objective function. It can be shown, that the
objective function is nonconvex with respect to the design. The main principal strain ε̄

can be determined by calculating the maximal eigenvalue with respect to the absolute
value of the linearized strain tensor ε, by Cardano’s formula.

The optimization is done using a sequential quadratic programming method (SQP)
[see, e.g., Nocedal and Wright (2006)].

3.2.4 Numerical Result

We apply the above described methods to perform a shape optimization of a three-
chambered profile with respect to fatigue strength. Therefore, we assume a static load
scenario, as shown in Fig. 2. The profile is clamped at the boundary on the right-hand
side. Additionally, there are surface loads applied at the upper and lower left of the
geometry. The loads act on the surface at an angle of 45◦.

The geometry is modeled as a tricubic NURBS solid, with 25,920 degrees of free-
dom and 1350 elements. The outer dimensions are 50 cm × 50 cm × 2 cm. To reduce
the need of numerous additional constraints, we applied a parametrization with only
twelve degrees of freedom. For this purpose, we subdivide the profile into four parts
and determine the barycentric coordinates of each control point.

As constraints, we consider an upper bound on the total volume, and we fix the
volume of the Neumann and Dirichlet boundaries. For technical reasons, we also add
a minimal bound for the volume of each element to circumvent negative element vol-
umes. After 58 iterations with 375 function evaluations, the SQP method found the
solution depict in Fig. 3. The accumulated failure probability could be reduced about
almost 53.58%. The used SQP method is the standard MATLAB R2018a implemen-
tation. Additionally, we compare the result to the optimization with respect to the
compliance

jh(u) := (yh(u))�
(
M�

h fh + M�
h qh

)
,

where fh and qh are the discretized volume force and surface load acting on the
geometry, respectively, and M�

h and M�
h are the mass matrices of the interior � and
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Fig. 3 Starting solution (left) compared to the optimal geometries with respect to the accumulated failure
probability (middle) and the compliance (right). The color represents the von Mises stress in MPa. The
displacement is neglected. The accumulated failure probabilities of the optimal solutions could be reduced
about 53.58% (middle) or 37.82% (right), respectively

boundary� of the considered geometry, respectively. In this case the compliance could
be reduced about 58.34% after 29 iterations and 106 function evaluations. The optimal
solution is visualized in Fig. 3. The accumulated failure probability of this geometry
is reduced about 37.82% compared to the starting solution. We see that in general the
optimization of the accumulated failure probability can not be replaced by the classical
compliance optimization. All the calculations are performed on an Intel Core i7-4790
CPU with 3.60 GHz and 16 GB RAM. The used software was Mathworks MATLAB
R2018a running in single thread mode.
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