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Abstract In the present work, solutions are recapitulated according to the theory of elasticity for the defor-
mations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-
symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided,
too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to
the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values
at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load
and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and
matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with
the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a
twofold statically indetermined structure. The system is solved and the exact solution of the general spherical
inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion
and matrix is presented.

Keywords Spherical inhomogeneity · Elastic inhomogeneity · Stress analysis · Strain analysis

List of symbols

R Radius of the sphere
A, A′ Pole, meridian of the sphere
B Equator of the sphere
C Surface of the sphere
r , z Coordinates of an axis-symmetrical system r − z
rc, zc Coordinates of a point on the surface of the sphere
tz , tr Stress vector acting on the surface of a cut
ϕ Horizontal angle in circumferential direction
θ Vertical angle
σr , σz , σϕ Stress components in r -, z-, ϕ-direction
τr z Shear stress component
σn, σt Stress components in normal and tangential direction of the transformed coordinates

system

H. Amstutz · M. Vormwald (B)
Department of Civil and Environmental Sciences, Materials Mechanics Group, Technical University of Darmstadt, Franziska-
Braun-Str. 3, 64287 Darmstadt, Germany
E-mail: vormwald@wm.tu-darmstadt.de

H. Amstutz
E-mail: amstutz@wm.tu-darmstadt.de

http://orcid.org/0000-0002-4277-785X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-020-01842-9&domain=pdf


1578 H. Amstutz, M. Vormwald

τnt Shear stress component
σr,i , σz,i , σϕ,i , τr z,i Stress components in the inhomogeneity
εr , εz , εϕ Strain components in r -, z-, ϕ-direction
γr z Shear strain component
εn, εt Strain components in normal and tangential direction
γnt Shear strain component
εr,i , εz,i , εϕ,i Strain components in the inhomogeneity
vr , vz Displacement components in radial and axial direction
vr,c, vzc Displacement components of the sphere surface
vr,B , vz,A Displacements at the equator ©B and the pole ©A
Sz Load stress component in axial direction
Sr Axial-symmetrical load stress component in radial direction
S j Undefined load stress
E , ν Young’s modulus, Poisson’s ratio of the material
Ei, νi Young’s modulus, Poisson’s ratio of the inhomogeneity material
Em, νm Young’s modulus, Poisson’s ratio of the matrix material
φ Ratio Ei/Em of the Young’s moduli
σx,i , εx,i , vx,i Subscript −,i denoting quantities inside the inhomogeneity
σx,m , εx,m , vx,m Subscript −,m denoting quantities in the matrix
σ O
r , ε

O
r , v

O
r Superscript O denoting quantities of the homogeneous body

σ I
r , ε

I
r , v

I
r Superscript I denoting quantities of the body with cave

σ OI
r , εOI

r , vOI
r Superscript OI denoting quantities of the superposed system

σr,i,A, εr,i,A, vz,i,A Subscript −,i,A denoting quantities in the inhomogeneity at the pole ©A
σr,i,B , εr,i,B , vr,i,B Subscript −,i,B denoting quantities in the inhomogeneity at the equator ©B
σr,m,A, εr,m,A, vzmi,A Subscript −,m,A denoting quantities on the interface of the matrix at the pole ©A
σr,m,B , εr,m,B , vr,m,B Subscript −,i,B denoting quantities on the interface of the matrix at the equator ©B
Cp = 3/2(1 − νm)(9 + 5νm)/(7 − 5νm) Stress function
Cq = −3/2(1 − νm)(1 + 5νm)/(7 − 5νm) Stress function
Γ O Displacement variable of the homogeneous body
Γ I Displacement variable of the body with cave
Γ OI Displacement variable of the superposed system Γ O − Γ I

ψ1 = −1 + φ · (1 − Cp)
ψ2 = +νi − φ · (νm + Cq)
ψ3 = −1 + νi + φ · (1 − νm − Cp − Cq)
fS,A, fS,B Load specific factors
σ ∗
r , σ

∗
z Inner stress components between inhomogeneity and matrix

Kr (Sz), Kz(Sz) Inhomogeneity stress factors resulting from axial load Sz
Kr (Sr ), Kz(Sr ) Inhomogeneity stress factors resulting from radial load Sr
Kr+z(Sz) Specific inhomogeneity stress factor

[
Kr (Sz)+ Kz(Sz)

]
/2 of the transformed coordi-

nates system, axial load Sz
Kr−z(Sz) Specific inhomogeneity stress factor

[
Kr (Sz)− Kz(Sz)

]
/2 of the transformed coordi-

nates system, axial load Sz
Kr+z(Sr ) Specific inhomogeneity stress factors

[
Kr (Sr ) + Kz(Sr )

]
/2 of the transformed coor-

dinates system, radial load Sz
Kr−z(Sr ) Specific inhomogeneity stress factors

[
Kr (Sr )−+Kz(Sr )

]
/2 of the transformed coor-

dinates system, radial load Sz
σe Equivalent stress after the maximum shear strain energy criterion
J ′
2 Second invariant of the stress deviator

1 Introduction

Inhomogeneities as inclusions or discontinuities interact with the surrounding structure generating inner
restraints which affect a disturbance of the stress strain field with local stress concentrations. A first step
in avoiding failure of a component consists in determining the stresses by an analysis of the problem. Gener-
ally, the analysis of non-homogeneous stress–strain fields requires the continuum-mechanical solution in the
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frame of the theory of elasticity. Irrespective of the numerical option, such as the finite element method (FEM),
the analytical treatment of mathematically accessible systems is favored as a closed form exact solution given
by a adequate compact formula opens insight in the mechanical connections. Such solutions are particularly
suited for the takeover in handbooks and practical applications.

A first solution of a spherical inhomogeneity in an infinite solid has been achieved by Goodier [1] using
harmonic functions which satisfy the equations of equilibrium and kinematics. However, the analysis is per-
formed only for the special cases of a cavity and a rigid inhomogeneity. Edwards [2] succeeded in the analysis
of an prolate spheroidal cave and inhomogeneity considering various stiffness properties in inhomogeneity
and matrix. The general equations of equilibrium and kinematics are solved by a three-function approach
with harmonic functions after Papcovich–Neuber in the formulation of Sadowsky and Sternberg [3] for a total
of five load cases. Edwards first time drew attention to the remarkable fact that under a uniform outer load
stress field the stress and strain state within the spheroidal inhomogeneity is also uniform. In his famous work
Eshelby [4] showed that for an ellipsoidal inhomogeneity subject to a constant eigenstrain the total strain field
within the inhomogeneity is also constant and confirmed Edward’s result. It depends on the Eshelby-tensor of
rank 4 with known components for an isotropic inclusion and matrix. The remarkable result of homogeneity
of the stress and strain states within the inhomogeneity correlates with the deformation of the interface due
to a homogeneous traction; in both inhomogeneity and matrix, the sphere is deformed to a spheroid. The
traction is self-adjusting, so that in particular compatibility at the interface is fulfilled, as described in [5,6]
for the two-dimensional example of the circular and elliptical inhomogeneity. This correlation is also valid for
spherical and ellipsoidal inhomogeneities.

All the cited solutions are derived applying complicated analytical methods which result in difficult and
extended solutions. Unfortunately, their realization is commonly accompanied by a numerical evaluation,
uncomfortable for application in practice. This may be the reason why inclusion and inhomogeneity problems
are widely left unconsidered in handbooks of elasticity as in Roark’s Formulas [7]. Peterson’s Handbook
of Stress Concentration Factors [8] and other catalogues [9–11] offer merely solutions for specific stiffness
relations and loading situations.

The work presented here demonstrates that an exact solution of an infinite solid with a spherical inhomo-
geneity with mismatching elastic constants can be achieved by an engineering procedure based on the notch
stresses of the corresponding cavity system and leading to a sufficiently condensed formula. Exploiting the
known homogeneity of the stress–strain states within the inhomogeneity and the resulting deformation char-
acteristics, it is concluded that there do exist contact stresses between matrix and inhomogeneity depending
on the Young’s moduli and Poisson’s ratios of matrix and inhomogeneity. The task is to formulate an equation
system of the unknown stress components which satisfies the condition of compatible deformations of the
interface between matrix and inhomogeneity. The method already used in [5,6] for a circular and an elliptical
inhomogeneity in plates of plane stress state is here extended to the three-dimensional problem of a spherical
inhomogeneity. The sought stress components in the interface follow from a superposition of the two special
cases

(a) the solid with a (pseudo-)inhomogeneity of equal stiffness Ei = Em and νi = νm and
(b) the solid with a fictitious inhomogeneity of vanishing stiffness Ei = 0 and νi = 0

both under a uniform axial and an axial-symmetric radial loading.
For material strength aspects, the interest is focused on the stress concentrations in a component or the

meso-structure, given by handy formulae or diagrams of the relevant stresses. In the case of inclusion and
inhomogeneity, problems these are regularly found close to the interface between inhomogeneity and matrix.
Therefore, the analysis presented here is for the most restricted to the determination of the stress components
inside the inhomogeneity and at the interface of the matrix. Not before the very end of the paper an example
is shown that the entire stress fields in the matrix can be specified having merely the remote homogeneous
loading stresses and the stresses inside the inhomogeneity at hand, the latter calculated with the formulas
provided here.

2 Infinite body with a perfectly bonded spherical inhomogeneity of equal stiffness under remote
uniform axial load Sz and axial-symmetrical radial load Sr

The analysis of the axial-symmetrical problem is formulated using a cylindrical coordinate system with the
coordinate r for the radial and z for the axial dimension, Fig. 1.
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(a)

(b)

Fig. 1 Axissymmetrical coordinate system: a a r − z-plane, b the equatorial plane z = 0

The surface of a spherical inhomogeneity can be described by the meridians A′ in Fig. 2 with the pole
©A and by the equator ©B .

The three-dimensional stress and strain states are determined by the stress components σr , σz , σϕ , and the
strain components εr , εz , εϕ , Fig. 3.

2.1 Axial loading stress Sz

Now consider an infinite axial-symmetrical bodywith a perfectly bonded spherical inhomogeneity withmatch-
ing material parameters Ei = Em and νi = νm loaded by a uniform remote stress Sz , Fig. 4. This trivial limit
case of the general inhomogeneity problem is identical to the homogeneous structure, subsequently marked
by the superscript O . The load Sz causes a homogeneous stress field in inhomogeneity and surrounding matrix

σ O
z = Sz (1)

σ O
r = σ O

ϕ = τ O
zr = 0 (2)

connected with a homogeneous strain field

εO
z = Sz

Em
(3)

εO
r = εO

ϕ = −νm
Sz
Em

(4)
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Fig. 2 Axonometric projection of a sphere with meridian A′, pole A and equator B

Fig. 3 3D-element on equator B with the stress components σr , σz , σϕ and the strain components εr , εz , εϕ



1582 H. Amstutz, M. Vormwald

(a)

(b)

(c)

Fig. 4 Homogeneous body with a spherical region unloaded (a), loaded and deformed by an axial stress Sz shown in a r − z-plane
(b) and the equatorial plane z = 0 (c)

leading after integration to the displacements of the sphere surface C

vO
z,c(Sz) = zc

Em
Sz (5)

vO
r,c(Sz) = −νmrc

Em
Sz . (6)

Displacements proportional to the radial and axial coordinates as given in Eqs. (5) and (6), Fig. 5, deform the
original sphere to an ellipsoid, to say a shape of geometrical affinity of the original sphere. The correspondence
of uniform strain distribution and ellipsoidal deformation becomes obvious.

With respect to the ellipsoidal distortion, the displacements of the inhomogeneity surface can be defined
by the displacement values at the pole ©A and the equator ©B

vO
z,A(Sz) = R

Em
Sz = vO

z,i,A = vO
z,m,A (7)

vO
r,B(Sz) = −νmR

Em
Sz = vO

r,i,B = vO
r,m,B (8)
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Fig. 5 Homogeneous body with a spherical region under axial loading Sz—affine displacements of the interface in the r− z-plane

2.2 Axial-symmetrical radial loading stress Sr

The axial-symmetrical radial tension load Sr causes stresses

σ O
r = σ O

ϕ = Sr (9)

σ O
z = τ O

rz = 0 (10)

and the homogeneous strains

εO
r = εO

ϕ = 1 − νm

Em
Sr (11)

εO
z = −2νm

Em
Sr . (12)

Integration of the strains generates displacements of the sphere at C , Fig. 6, as describing again ellipsoidal
deformations, Fig. 7, which are adequately defined by

vO
z,c(Sr ) = −2νmzc

Em
Sr (13)

vO
r,c(Sr ) = (1 − νm)rc

Em
Sr (14)

vO
z,A(Sr ) = −2νmR

Em
Sr = vO

z,i,A = vO
z,m,A (15)

vO
r,B(Sr ) = (1 − νm)R

Em
Sr = vO

r,i,B = vO
r,m,B (16)

3 Infinite body with a spherical cave under remote uniform axial load Sz and axial-symmetric radial
load Sr

The body with a spherical cave can be considered here as being a second limit case of the inhomogeneity
problem. This case, in the following denoted by the superscript I , is characterized by a complete loss of
stiffness with Young’s modulus Ei = 0, leading to a zero stress within the fictitious inhomogeneity region,

σ I
z,i = σ I

r,i = τ I
zr,i = 0. (17)

Although stresses have vanished in the inhomogeneity region, a strain field may be defined. The constant
strain components can be obtained from the matrix strains at the cave surface, Fig. 8. At the pole ©A compat-
ibility demands
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(a)

(b)

(c)

Fig. 6 Homogeneous body with a spherical region unloaded (a), loaded and deformed by an radial stress Sr shown in a r−z-plane
(b) and the equatorial plane z = 0 (c)

Fig. 7 Homogeneous body with a spherical region under radial loading Sr affine displacements of the interface in the r − z-plane

ε I
r,i,A = ε I

r,m,A (18)

and at the equator ©B
ε I
z,i,B = ε I

z,m,B (19)

ε I
ϕ,i,B = ε I

ϕ,m,B (20)
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(a)

(b)

Fig. 8 Body with a spherical cave under axial loading Sz—stress states at the cave surface (a) and strain states at the cave surface
and fictitious strains inside the cave (b)

where ε I
z,i,B , ε

I
ϕ,i,B are the fictitious strain components of the inhomogeneity and ε I

z,m,B , ε
I
ϕ,m,B the strains of

the matrix at ©B and the radial components ε I
r,i,A, ε

I
r,m,A at ©A all in tangential direction as shown in Fig. 8.

The strain components ε I
z,m,B , ε

I
ϕ,m,B and ε I

ϕ,m,A are correlated with the tangential stress components by

ε I
z,m,B = 1

Em

(
σ I
z,m,B − νmσ I

ϕ,m,B

)
= ε I

z,i,B (21)

ε I
ϕ,m,B = 1

Em

(
σ I

ϕ,m,B − νmσ I
z,m,B

)
= ε I

ϕ,i,B (22)

ε I
r,m,A = 1

Em
σ I
r,m,A (1 − νm) = ε I

r,i,A (23)

and assuming uniform strain distribution inside the inhomogeneity region

ε I
z,i = ε I

z,i,B (24)

ε I
ϕ,i = ε I

ϕ,i,B (25)

ε I
r,i = ε I

r,i,A (26)

where ε I
r,i has to be identical with ε I

ϕ,i .
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3.1 Axial loading stress Sz

The stressσ I
z,m,B ,σ

I
ϕ,m,B andσ I

r,m,A canbe taken from the solution ofNeuber [12] in 1937 andother publications
[1,8]. For axial loading Sz , the stress components at the pole ©A read

σ I
r,m,A = −3(1 + 5νm)

2(7 − 5νm)
Sz (27)

and at the equator ©B

σ I
z,m,B = 3(9 − 5νm)

2(7 − 5νm)
Sz (28)

σ I
ϕ,m,B = 3(5νm − 1)

2(7 − 5νm)
Sz (29)

Introducing the composed stress factors

σ I
z,m,B − νmσ I

ϕ,m,B = 3

2
(1 − νm)

[
9 + 5νm
7 − 5νm

]
Sz = CpSz (30)

σ I
ϕ,m,B − νmσ I

z,m,B = −3

2
(1 − νm)

[
1 + 5νm
7 − 5νm

]
Sz = Cq Sz (31)

there follows from Eqs. (21) to (23) for the strain components

ε I
z,m,B = ε I

z,i,B = ε I
z,i

= 1

Em

(
σ I
z,m,B − νmσ I

ϕ,m,B

)
= Cp

E
Sz (32)

ε I
ϕ,m,B = ε I

ϕ,i,B = ε I
ϕ,i

= 1

Em

(
σ I

ϕ,m,B − νmσ I
z,m,B

)
= Cq

E
Sz (33)

ε I
r,m,A = ε I

r,i,A = ε I
r,i

= 1

Em
(1 − νm) σ I

r,m,A = Cq

E
Sz (34)

The identity of Eqs. (33) and (34) together with Eqs. (27) and (31) demonstrates the constancy of the strain
field inside the inhomogeneity. This homogeneous strain distribution causes again an ellipsoidal deformation,
Fig. 9, which can be described after integration of Eqs. (32) and (33) by the displacements at the surface c by

v I
z,m,c(Sz) = Cpzc

Em
Sz (35)

and

v I
r,m,c(Sz) = Cqrc

Em
Sz (36)

leading at the pole ©A and the equator ©B , Fig. 10, to

v I
z,m,A(Sz) = RCp

Em
Sz (37)

v I
r,m,B(Sz) = RCq

Em
Sz (38)
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(a)

(b)

(c)

Fig. 9 Body with a spherical cave unloaded (a), loaded and deformed by an axial stress Sz shown in a r − z-plane (b) and the
equatorial plane z = 0 (c)

Fig. 10 Body with a spherical cave under radial loading Sz affine displacements of the cave surface in the r − z-plane
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3.2 Axial-symmetrical radial loading stress Sr

The significant stresses for the axial-symmetrical radial loading case Sr can be realized by superposition of a
biaxial load case with load stresses Sx = Sy = Sr . At the pole ©A this leads to

σ I
r,m,A = 3

2
· 8

7 − 5νm
Sr (39)

At the equator ©B , the following stress components arise

σ I
z,m,B = −3

2
· 2

7 − 5νm
Sr (40)

σ I
ϕ,m,B = 3

2
· 8 − 10νm
7 − 5νm

Sr (41)

In the radial load case, the composed stress factors give

σ I
z,m,B − νmσ I

ϕ,m,B = −3

2
(1 − νm)

[
2 + 10νm
7 − 5νm

]
Sr = 2Cq Sr (42)

σ I
ϕ,m,B − νmσ I

z,m,B = 3

2
(1 − νm)

[
8

7 − 5νm

]
Sr = (Cp + Cq)Sr (43)

The strain states at ©A and ©B are correlated with the stress states according to Eqs. (21)–(23) by

ε I
z,m,B = ε I

z,i,B = ε I
z,i

= 1

Em

(
σ I
z,m,B − νmσ I

ϕ,m,B

)
= 2Cq

E
Sr (44)

ε I
ϕ,m,B = ε I

ϕ,i,B = ε I
ϕ,i

= 1

Em

(
σ I

ϕ,m,B − νmσ I
z,m,B

)
= (Cp + Cq)

E
Sr (45)

ε I
r,m,A = ε I

r,i,A = ε I
r,i

= 1

Em
(1 − νm) σ I

r,m,A = (Cp + Cq)

E
Sr (46)

Integrating Eqs. (44) and (45) delivers the proportional displacements of the ellipsoidal deformation of the
sphere, Fig. 11

v I
z,m,c(Sr ) = 2Cqzc

Em
Sr (47)

v I
r,m,c(Sr ) = (Cp + Cq)rc

Em
Sr (48)

and at the pole ©A and the equator ©B , Fig. 12

v I
z,m,A(Sr ) = 2RCq

Em
Sr (49)

v I
r,m,B(Sr ) = R(Cp + Cq)

Em
Sr (50)
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(a)

(b)

(c)

Fig. 11 Body with a spherical cave unloaded (a), loaded and deformed by a radial stress Sr shown in a r − z-plane (b) and the
equatorial plane z = 0, c axissymmetrical coordinate system r - z

Fig. 12 Body with a spherical cave under radial loading Sr affine displacements of the cave surface in the r − z-plane

4 Load cases stress in the interface between matrix and spherical inhomogeneity

To solve the problem of an elastic solid with an elastic inhomogeneous region of different Young’s modulus
and Poisson’s ratio under remote loading, the method of equivalent eigenstrain may be chosen as in [13]. But
in this work for the sake of mathematical simplicity, a strategy is pursued to get the solution by a superposition
of the solutions of three loading cases:

(A) The solid with cave under outer loading.
(B) The solid with cave under a traction on the cave’s surface. When the reaction of the traction is applied on

the surface of the inhomogeneity, it is under a homogeneous state of stress, σ ∗
z . Therefore, the traction is

t∗z = σ ∗
z · nz where nz is the z-component of the unit normal vector on the sphere’s surface.
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(C) The solid with cave under another traction on the cave’s surface. When the reaction of this traction is
applied on the surface of the inhomogeneity, it is under a homogeneous rotationally symmetric state of
stress, σ ∗

r . Therefore, the traction is t
∗
r = σ ∗

r · nr where nr is the r -component of the unit normal vector on
the sphere’s surface.

The relevant stresses σ ∗
z or σ ∗

r have to be determined from the displacements of all parts of the superposed
system satisfying the condition of compatible deformations while considering the different Young’s moduli
and Poisson’s ratios in matrix and inhomogeneity. The solutions for the special loading cases of the solid with
cave under such tractions on the cave surface as noted in cases (B) and (C) explained in the list above can be
derived in advance. This requires the superposition of the solution of the homogeneous solid and the solid with
cave, both under outer loading but opposed load direction

Γ OI = Γ O − Γ I . (51)

As a result of the sign change in the loading of the two systems, the stress field in some distance of the
interface tends to zero. The stresses in the matrix are concentrated to the neighborhood of the interface.

4.1 Axial loading stress Sz

The superposition according to Eq. (51) is performed here for the displacements of the inner surface at the
pole ©A and the equator ©B inserting Eqs. (7), (8), (37) and (38) results in

vOI
z,m,A(Sz) = R

Em
Sz − RCp

Em
Sz = R(1 − Cp)

Em
Sz (52)

vOI
r,m,B(Sz) = − Rνm

Em
Sz − RCq

Em
Sz = − R(νm + Cq)

Em
Sz (53)

In the following derivations of Sect. 5, the load case shown in Fig. 13c is treated as an independent load,
case B in above list. The stresses Sz appearing in Eqs. (52) and (53) are therefore renamed to σ ∗

z .

vOI
z,m,A(σ ∗

z ) = R(1 − Cp)

Em
σ ∗
z (54)

vOI
r,m,B(σ ∗

z ) = − R(νm + Cq)

Em
σ ∗
z . (55)

Unnecessary to mention that the superposition according to Fig. (13) and Eq. (51) can be performed for
any stress-, strain-, or displacement-field variable. The stress fields of the loading cases according to Fig. 13a,
b are available in analytic form, see e.g., [12], and so are the fields for the load case according to Fig. 13c.
Nevertheless, it is sufficient here to restrict to the two values of Eqs. (54) and (55).

4.2 Axial-symmetrical radial loading stress Sr

In strict analogy, see Fig. 14, the superposition of the axial-symmetrical load case Sr after Eq. (51) produces
the displacements of the interface with Eqs. (15), (16), (49) and (50) as

vOI
z,m,A(Sr ) = −2Rνm

Em
Sr − 2RCq

Em
Sr = −2R(νm + Cq)

Em
Sr (56)

vOI
r,m,B(Sr ) = (1 − νm)R

Em
Sr − R(Cp + Cq)

Em
Sr = R(1 − νm − Cp − Cq)

Em
Sr (57)

and after renaming Sr to σ ∗
r

vOI
z,m,A(σ ∗

r ) = −2R(νm + Cq)

Em
σ ∗
r (58)

vOI
r,m,B(σ ∗

r ) = R(1 − νm − Cp − Cq)

Em
σ ∗
r (59)
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(a)

(b)

(c)

Fig. 13 Scheme to the superposition according to Eq. (51) for axial loading a homogeneous body, b body with cave, c body with
cave under inner and inhomogeneity under outer stress tz = Sz · nz

5 Infinite solid with a spherical inhomogeneity under axial load Sz and axial-symmetrical radial load
Sr

The correlation between deformation kinematics and stress-strain-states in an infinite solid with a spherical
inhomogeneity offer an opportunity for the analysis of the general problem with non-matching stiffness of
matrix and inhomogeneity. For this purpose, the system is separated fictitiously into three parts, Fig. 15,

(a) the solid with spherical cave under an outer uniform load S j ,
(b) the spherical inhomogeneity under tractions on its surface causing constant stresses σ ∗

z , σ
∗
r inside, and

(c) the solid with spherical cave where the same tractions re-act on the cave surface.

Compatible displacements of the interface between matrix and inhomogeneity are provided by an appro-
priate choice of the inner stress components σ ∗

z and σ ∗
r , considering the different material properties in inho-

mogeneity and matrix.
In respect of the general geometrical affinity in the ellipsoidal deformations, the condition of compatibility

(according to the method of compatible deformations of a twofold statically indetermined system) may be
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(a)

(b)

(c)

Fig. 14 Scheme to the superposition according to Eq. (51) for radial loading a homogeneous body, b body with cave, c body
with cave under inner and inhomogeneity under outer stress tr = Sr · nr

formulated on the basis of an equation system referring to the displacements at the pole ©A and at the equator
©B , Fig. 15. In general form, the conditions are given by

©A − vO
z,i,A(σ ∗

z , σ ∗
r ) + vOI

z,m,A(σ ∗
z , σ ∗

r ) + v I
z,m,A(S j ) = 0 (60)

©B − vO
r,i,B(σ ∗

z , σ ∗
r ) + vOI

r,m,B(σ ∗
z , σ ∗

r ) + v I
r,m,B(S j ) = 0 (61)

where v I
z,m,A(S j ) and v I

r,m,B(S j ) are the displacements of the cave surface under the outer axial load Sz or Sr .
These displacements have to be compensated by the displacements of the inhomogeneity under the unknown
inner stress σ ∗

z and σ ∗
r after Eqs. (7), (8), (15) and (16)

vO
z,i,A(σ ∗

z , σ ∗
r ) = R

Ei
σ ∗
z − 2νi R

Ei
σ ∗
r (62)

vO
r,i,B(σ ∗

z , σ ∗
r ) = −νi R

Ei
σ ∗
z + (1 − νi)R

Ei
σ ∗
r (63)

and the displacements of the inner stress on the cave surface of the solid regarding Eqs. (54), (55), (58) and
(59)

vOI
z,m,A(σ ∗

z , σ ∗
r ) = R(1 − Cp)

Em
σ ∗
z − 2R(νm + Cq)

Em
σ ∗
r (64)

vOI
r,m,B(σ ∗

z , σ ∗
r ) = − R(νm + Cq)

Em
σ ∗
z + R(1 − νm − Cp − Cq)

Em
σ ∗
r (65)
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Fig. 15 Superposition scheme after Eqs. (62) and (63) to derive the inner stress σ ∗
z and σ ∗

r ensuring compatible deformations
between matrix and inhomogeneity

Inserting all quantities in Eqs. (60) and (61) leads to an equation system for the determination of the
two inner unknown stress components σ ∗

z and σ ∗
r in dependence of the load stress Sz or Sr and the material

parameters Ei and νi of the inhomogeneity and Em and νm of the matrix, respectively

©A − R

Ei

(
σ ∗
z − 2νiσ

∗
r

)
+ R

Em

[
(1 − Cp) σ ∗

z − 2(νm + Cq ) σ ∗
r

]
+ R

Em

fS,A S j = 0 , (66)

©B R

Ei

[
νi σ

∗
z − (1 − νi) σ ∗

r

]
− R

Em

[
(νm + Cq ) σ ∗

z − (1 − νm − Cp − Cq ) σ ∗
r

]
+ R

Em

fS,B S j = 0 (67)

where fS,A and fS,B are load case depending factors.
Division by R and multiplication by Ei after introducing of the quantity φ = Ei/Em and performing a

couple of algebraic re-arrangements the equation system is re-written as

©A −
[
1 − φ(1 − Cp)

]
σ ∗
z +

[
2νi − 2φ(νm + Cq)

]
σ ∗
r + φ fS,A S j = 0 (68)

©B
[
νi − φ(νm + Cq)

]
σ ∗
z −

[
1 − νi − φ(1 − νm − Cp − Cq)

]
σ ∗
r + φ fS,B S j = 0

(69)

Introducing the expressions

ψ1 = −1 − φ

[
13 − 2νm − 15ν2m

2(7 − 5νm)

]
= −1 + φ(1 − Cp) (70)

ψ2 = νi − φ

[
3 − 2νm − 5ν2m
2(7 − 5νm)

]
= νi − φ · (νm + Cq) (71)

ψ3 = −1 + νi − φ

[
5 − 5ν2m
7 − 5νm

]
= −1 + νi + φ · (1 − νm − Cp − Cq) (72)
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reduces the equation system to

©A ψ1 σ ∗
z + 2ψ2 σ ∗

r + φ fS,A S j = 0
(73)

©B ψ2 σ ∗
z + ψ3 σ ∗

r + φ fS,B S j = 0 (74)

5.1 Solution of the axial loading case Sz

The load factors of this load case are

fS,A = Cp = 3

2
(1 − νm)

[
9 + 5νm
7 − 5νm

]
(75)

fS,B = Cq = −3

2
(1 − νm)

[
1 + 5νm
7 − 5νm

]
(76)

After completion the equation system reads

©A ψ1 σ ∗
z + 2ψ2 σ ∗

r + φ Cp Sz = 0
(77)

©B ψ2 σ ∗
z + ψ3 σ ∗

r + φ Cq Sz = 0 (78)

The solution of the equations yields

σ ∗
z =

φ
[
2ψ2Cq − ψ3Cp

]

ψ1ψ3 − 2ψ2
2

Sz (79)

σ ∗
r =

φ
[
ψ2Cp − ψ1Cq

]

ψ1ψ3 − 2ψ2
2

Sz (80)

or expressed in a handbook-compatible formulation

σ ∗
z = Kz(Sz) · Sz = K z

z · Sz (81)

σ ∗
r = Kr (Sz) · Sz = K z

r · Sz (82)

with

K z
z =

φ
[
2ψ2Cq − ψ3Cp

]

ψ1ψ3 − 2ψ2
2

(83)

K z
r =

φ
[
ψ2Cp − ψ1Cq

]

ψ1ψ3 − 2ψ2
2

(84)

Plots of Kz and Kr are shown in the diagrams in Figs. 16 and 17. Besides the reference curve with
νi = νm = 0.3 two other curves with extreme Poisson’s ratio combinations of νi = 0.5 and νm = 0.1 or
νi = 0.1 and νm = 0.5 are given, showing the bandwidth of theoretical values. The solution was confirmed
by a series of numerical calculations by the finite element method, the results of the latter are indicated with
symbols in Figs. 16 and 17 .
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Fig. 16 Diagram of Kz-values for axial loading Sz

Fig. 17 Diagram of Kr -values for axial loading Sz

5.2 Solution of the axial-symmetrical radial loading case Sr

In this load case, the load factors become

fS,A = 2Cq = 3(1 − νm)
9 + 5νm
7 − 5νm

(85)

fS,B = Cp + Cq = 3
1 − νm

7 − 5νm
, (86)

and after inserting in Eqs. (73) and (74), the equation system arises

©A ψ1 σ ∗
z + 2ψ2 σ ∗

r + 2 φ Cq Sr = 0 (87)

©B ψ2 σ ∗
z + ψ3 σ ∗

r + φ (Cp + Cq) Sr = 0 (88)
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Fig. 18 Diagram of Kz-values for radial loading Sr

From these equations, the sought-after stress components σ ∗
z and σ ∗

r result in

σ ∗
z =

φ
[
2ψ2(Cp + Cq) − 2ψ3Cq

]

ψ1ψ3 − 2ψ2
2

Sr (89)

σ ∗
r =

φ
[
2ψ2Cq − ψ1(Cp + Cq)

]

ψ1ψ3 − 2ψ2
2

Sr (90)

or formulated in K -values

σ ∗
z = Kz(Sr ) · Sr = Kr

z · Sr (91)

σ ∗
r = Kr (Sr ) · Sr = Kr

r · Sr (92)

with

Kr
z =

φ
[
2ψ2(Cp + Cq) − 2ψ3Cq

]

ψ1ψ3 − 2ψ2
2

(93)

Kr
r =

φ
[
2ψ2Cq − ψ1(Cp + Cq)

]

ψ1ψ3 − 2ψ2
2

(94)

Graphs of Kz(Sr ) and Kr (Sr ) are given in Figs. 18 and 19. Again curves of extreme Poisson’s ratios show
the variety of theoretically possible values in comparison with usual Poisson’s ratios for steel as νi = 0.3 and
νm = 0.3.

6 Transformation of the stress state in the inhomogeneity to the stress state at the interface layer of the
matrix

As inhomogeneity and matrix have different elastic material parameters, the knowledge of the inhomogeneity
stress state alone is not sufficient to asses the failure of the component. The highest stress concentrations in
the matrix are located at the interface between inhomogeneity and matrix. To include the assessment of the
matrix, it seems sufficient to transform the stresses of the inhomogeneity to the stresses at the matrix layer of
the interface.
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Fig. 19 Diagram of Kr -values for radial loading Sr

Fig. 20 Transformation of the inhomogeneity stress state to the stress components of the matrix at the interface layer

The stress state of the inhomogeneity can be transferred to the adjacent layer of the matrix, Fig. 20, by
the transition conditions of the stress components in normal and tangential direction considering actio-reactio
principle and compatibility of deformations. The normal and tangential direction of a given point of the
surface C is determined by a vertical angle θ . Because of the axis-symmetrical system, the stress component
in circumferential direction is

σϕ,i = σr,i = const. (95)

inside the inhomogeneity. The inhomogeneity stresses σn,i , σt,i and τnt,i are correlated with the components
σz,i and σr,i by the known transformation relations

σn,i = σr,i + σz,i

2
+ σr,i − σz,i

2
cos(2θ) (96)
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σt,i = σr,i + σz,i

2
− σr,i − σz,i

2
cos(2θ) (97)

τnt,i = −σr,i − σz,i

2
sin(2θ) (98)

or expressed by factors K j
z and K j

r of the relevant load case j

σn,i =
[
K j
r + K j

z

2
+ K j

r − K j
z

2
cos(2θ)

]

S j (99)

σt,i =
[
K j
r + K j

z

2
− K j

r − K j
z

2
cos(2θ)

]

S j (100)

τnt,i = −
[
K j
r − K j

z

2
sin(2θ)

]

S j (101)

A more direct calculation of the sum Kr + Kz and difference Kr − Kz can be chosen by special K -factors
Kr+z and Kr−z . In the axial loading case, Sz

Kr+z(Sz) = K z
r + K z

z

2
=

φ
[
(ψ2 − ψ3)Cp − (ψ1 − 2ψ2)Cq

]

2(ψ1ψ3 − 2ψ2
2 )

(102)

Kr−z(Sz) = K z
r − K z

z

2
=

φ
[
(ψ2 + ψ3Cp − (ψ1 + 2ψ2)Cq

]

2(ψ1ψ3 − 2ψ2
2 )

(103)

for the axialsymmetrical loading Sr by

Kr+z(Sr ) = Kr
r + Kr

z

2
=

φ
[
2(ψ2 − ψ3)Cq − (ψ1 − 2ψ2)(Cp + Cq)

]

2(ψ1ψ3 − 2ψ2
2 )

(104)

Kr−z(Sr ) = Kr
r − Kr

z

2
=

φ
[
(2(ψ2 + ψ3)Cq − (ψ1 + 2ψ2)(Cp + Cq)

]

2(ψ1ψ3 − 2ψ2
2 )

(105)

Now, the stress components on the i surface inside the inhomogeneity become

σn,i = [
Kr+z(S j ) + Kr−z(S j )cos(2θ)

]
S j (106)

σt,i = [
Kr+z(S j ) − Kr−z(S j )cos(2θ)

]
S j (107)

τnt,i = − [
Kr−z(S j )sin(2θ)

]
S j (108)

To the stress components on the matrix side of the interface, actio-reactio principle implies

σn,m,c = σn,i (109)

τnt,m,c = τnt,i , (110)

while for both of the other stress components, it has to be noticed

σt,m,c �= σt,i (111)

σϕ,m,c �= σϕ,i (112)

Compatible deformations postulate

εt,m,c = εt,i (113)

εϕ,m,c = εϕ,i (114)

whereas the strain component in normal direction changes

εn,m,c �= εn,i . (115)
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Fig. 21 Comparison of analytically calculated notch stresses σt,m,c for θ = 0 with numerically obtained as well as literature [14]
values, normalized by the applied load Sz

Using Eqs. (95)–(97), (99) and (100), the missing stress components can be determined by the stress–strain
equations

εt,i = 1

Ei

[
σt,i − νi(σn,i + σϕ,i )

]
(116)

εt,m,c = 1

Em

[
σt,m,c − νm(σn,m,c + σϕ,m,c)

]
(117)

εϕ,i = 1

Ei

[
σϕ,i − νi(σn,i + σt,i )

]
(118)

εϕ,m,c = 1

Em

[
σϕ,m,c − νm(σn,m,c + σti,m,c)

]
. (119)

As εt,m,c = εt,i and εϕ,m,c = εϕ,i , the relations can be used for the following equation system

σt,m,c − νmσϕ,m,c = Em

Ei

[
σt,i − νi(σn,i + σϕ,i )

]
+ νmσn,m,c (120)

σϕ,m,c − νmσt,m,c = Em

Ei

[
σϕ,i − νi(σn,i + σt,i )

]
+ νmσn,m,c. (121)

The solution leads to

σt,m,c = 1

1 − ν2m

[
Em

Ei

[
σt,i − νi(σϕ,i + σn,i )

]
+ νm

Em

Ei

[
σϕ,i − νi(σt,i + σn,i )

]
+ νm(1 + νm)σn,m,c

]

(122)

σϕ,m,c = 1

1 − ν2m

[
Em

Ei

[
σϕ,i − νi(σt,i + σn,i )

]
+ νm

Em

Ei

[
σt,i − νi(σϕ,i + σn,i )

]
+ νm(1 + νm)σn,m,c

]

(123)

The stress component σt,m,c of Eq. (122), normalized by the applied load Sz , allows for θ = 0 a comparison
with Mura’s results given in curve plots, page 191 in [14]. In Fig. 21, the course of Eq. (122) in dependency
of φ = Ei/Em is compared with the results of Mura as well as with some values from finite element analyses.
The results described by Eq. (122) are identical to Mura’s results within the accuracy of his graphics. This is
not too surprising as both approaches deliver exact solutions.
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Fig. 22 Stress functions σ̄t , σ̄ϕ in tangential and perimeter direction and according to the maximum distortion strain energy
criterion σ̄e for axial loading Sz

A material-specific failure theory will require to derive an appropriate equivalent stress. For example, the
maximum distortion strain energy criterion is described by the equivalent stress σe according to von Mises

σe =
√
1

2

[
(σn − σt )2 + (σt − σϕ)2 + (σϕ − σn)2 + 6τ 2nt

]
=

√
3 · J ′

2 (124)

where J ′
2 is the second invariant of the stress deviator.

The calculated stress components are plotted in the diagrams of Fig. 22 for axial loading by Sz and of
Fig. 23 for axis-symmetrical radial loading Sr both in their dependence of the vertical angle θ . The left-side
diagrams apply to soft inhomogeneities with φ = Ei/Em = 0.5, the right-side ones to hard inhomogeneities
with φ = Ei/Em = 2.0. In each chart the graphs of a stress component of the inhomogeneities (solid line)
is confronted that at the interface of the matrix (dashed line) demonstrating the deviations as a result of the
differing Youngs moduli of inhomogeneities and matrix.

The equivalent stress σe shown in the bottom diagrams might be chosen for an evaluation of the material’s
strength capacity. Soft inhomogeneities with φ = Ei/Em < 1 move the stress peaks of σe to the matrix side,
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Fig. 23 Stress functions σ̄t , σ̄ϕ in tangential and perimeter direction and according to the maximum distortion strain energy
criterion σ̄e for radial loading Sr

while hard inhomogeneities φ = Ei/Em > 1 have an attractive effect with higher stress levels relieving the
matrix. But absolute statements require the knowledge of and the comparison with the strength limits of both
material constituents and the interface itself.

It is remarkable that the equivalent stress of the inhomogeneities in Fig. 22 for the load case Sz is identical
to that of Fig. 23 for the load case Sr . The background of this equivalence is that the stress state caused by a
single load Sx (generating an equivalent stress as by Sz) remains unchanged by a superposition of a second
load Sy , whereas the stress components change.

Non-local failure hypotheses not only require information for stress or strain values at the critical location,
e.g., at the interface for matrix failure, on which the focus has been placed so far. Only by applying such non-
local hypotheses can, for example, the fatigue strength of materials and components be described realistically,
see e.g., [15,16]. As mentioned in Sect. 4.1, all field variables are available in analytical form, provided the
input, σ ∗

z and σ ∗
r , is known. Only a more or less virtuoso superposition of Neuber’s solution equations [12]

for the spherical cavities becomes necessary. Figure 24 shows the curves for the stress component σz(r), for
θ = 0, normalized by the applied load Sz , for various Φ-values. The dot-in-circle markers � indicate that
FE calculations have been performed. The graphs of the results of the converged numerical solution cannot
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Fig. 24 Curves of normalized stress component σ̄z(r), for θ = 0, for various Φ-values under axial loading Sz

be distinguished from the graph of the analytical solution, independent of any reasonable resolution of the
graphics.

7 Conclusions

Up to now, the known solutions for a spherical inhomogeneity in an infinite solid have found little attention
in practical failure assessments because of their disregard in the handbooks for engineering design. This lack
may be attributed to the complicated mathematical methods of derivation and the incommodious depiction
of the solutions. The exact solution can, however, also be presented in a more engineering oriented way of
analysis considering the special deformation characteristics of the spherical inhomogeneity problem. The
method used is based only on the special solution for a spherical cave from Neuber’s solution [12] for the
axial-symmetrical deep ellipsoidal inner notch published 1937. Theoretically at that time, the precondition to
solve the corresponding inhomogeneity problem was given.

As soon as the analytical solution for a remote homogenous loading with Sz is known, the solutions for Sx -
or Sy-loading can be obtained by simple permutation of indexes. The three solutions can further be superposed
to provide the solution for an arbitrary remote homogeneous principal stress loading case. Any given remote
homogeneous loading situation can be transformed to a principal stress loading case. After solving the latter,
back-transformation of the field variables into the coordinate system of the given stress components provides
the solution for this case, too. In this sense, the presented solution is comprehensive.

The present result is a compact formula including three simple influence factors depending on Young’s
moduli and Poisson’s ratioswhich describes the stress state in the inhomogeneity in formof stress concentration
factors. The stress state at the interface of the matrix can also be expressed in terms of concentration factors.
It is expected that the clearly structured derivation supports the publication in handbooks and the application
in practice.
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