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Abstract Starting from the three-dimensional theory of linear elasticity, we arrive at the exact plate problem
by the use of Taylor series expansions. Applying the consistent-approximation approach to this problem leads
to hierarchic generic plate theories. Mathematically, these plate theories are systems of partial-differential
equations (PDEs), which contain the coefficients of the series expansions of the displacements (displacement
coefficients) as variables. With the pseudo-reduction method, the PDE systems can be reduced to one main
PDE, which is entirely written in the main variable, and several reduction PDEs, each written in the main
variable and several non-main variables. So, after solving the main PDE, the reduction PDEs can be solved by
insertion of the main variable. As a great disadvantage of the generic plate theories, there are fewer reduction
PDEs than non-main variables so that not all of the latter can be determined independently. Within this paper,
a modular structure of the displacement coefficients is found and proved. Based on it, we define so-called
complete plate theories which enable us to determine all non-main variables independently. Also, a scheme to
assemble N th-order complete plate theories with equations from the generic plate theories is found. As it turns
out, the governing PDEs from the complete plate theories fulfill the local boundary conditions and the local
form of the equilibrium equations a priori. Furthermore, these results are compared with those of the classical
theories and recently published papers on the consistent-approximation approach.

Keywords Linear elasticity ·Consistent-approximation approach · Pseudo-reductionmethod ·Modularity of
displacement coefficients · Complete plate theory · Local boundary conditions · Local form of the equilibrium
equations

1 Introduction

The three-dimensional theory of linear elasticity (short: 3D theory) describes the linear-elastic deformation of a
three-dimensional body under arbitrary volume and surface loads. The correspondingmodeling equations (e.g.,
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kinematic relations) can be derived from basic physical principles [1], thus they are totally accepted within the
applied mechanics community. The disadvantage of the 3D theory is the lack of general closed-form solutions.
For quasi two-dimensional continua (disc and plate problem)we treat, like in the three-dimensional case, partial
differential equations, however, solutions for a variety of problems are available. Because of their attempt to
describe a three-dimensional object in lower dimensions, the related theories are inherently approximative.
For plates and discs, the characteristic thickness dimension h is much smaller than the characteristic in-plane
dimension a. Plates are classically loaded transversely to their midplanes. In contrast, discs are classically
loaded in their midplanes. By assuming at least monoclinic material (with the midplane as symmetry plane),
we can treat both problems individually. Within the present paper, we will assume a homogeneous isotropic
material and a constant thickness and deal only with the plate problem. For the sake of simplicity, we will also
neglect edge-effects and with it all “Reissner-like” variables.1

Although there have been a lot of contributions in the field of plate theories in the last two centuries,
the topic is still subject of ongoing research. This is evidenced by the numerous recent publications [3–
6,12], dealing predominately with complex material models. The most known theories, the Kirchhoff [11], the
Reissner [18], the Mindlin [13] and Reddy’s plate theory [17], are underlying the classical approach, which is
based on kinematic a-priori assumptions (ad-hoc assumptions). These classical theories are limited regarding
the material model, the applied forces and the achievable accuracy. Because with increasing complexity of
the plate theory, it is very difficult to postulate ad-hoc assumptions (e.g., normal hypothesis of the Euler–
Bernoulli beam theory). Systematic approaches, alternatively, are derived from the 3D theory with physical
and mathematical reasoning. They lead to hierarchical theories, which are free from ad-hoc assumptions and
easily extendable towardmore accuracy,more complexmaterial models andmore complex load cases. Because
our aim is to build a sound foundation for plate theories of any load case, material model or accuracy, we further
use the branch of systematic approaches for the derivation of our plate theory.

Following that branch, the first variations of the elastic and dual potential have to vanish. After partial
integration in the two in-plane directions, the virtual displacement and load distributions in the resulting
equations are substituted by their series expansions (e.g., Taylor series) with respect to the thickness coordinate.
Applying further the fundamental lemma of the calculus of variations leads to the two-dimensional equilibrium
equations and Neumann and Dirichlet conditions at the midplane boundary or the quasi-two-dimensional
problem. It has been shown by Schneider et al. [21] that this problem is equivalent to the 3D theory and
plates can be loaded in all directions. The quasi-two-dimensional problem can be represented as a system of
infinitely many partial differential equations (PDEs) with infinitely many coefficients of the series expansions
of the displacement functions (displacement coefficients). For the truncation of this system, we will follow
the consistent-approximation approach (or uniform-approximation approach). With this technique, the PDE
system is truncated in relation to the power of the dimensionless plate parameter c = h/(

√
12 a)which evolves

from the integration of the thickness variable over the thickness. This parameter is used for the truncation
because it essentially describes the energetic size of the individual terms of the PDE system. So, a N th-order
generic plate theory contains all terms multiplied by c2n , n ≤ N , whereas higher-order terms n > N are
neglected (cf. [7,15]).

Following the publications of Kienzler [7] and Schneider et al. [21], we will make use of the pseudo-
reduction method to reduce the PDE system of an N th-order generic plate theory to one main PDE, which is
entirely written in the main variable (displacement coefficient), and several reduction PDEs, each written in
the main variable and several non-main variables. Solving the main PDE yields the main variable. Afterward,
the reduction PDEs can be solved by insertion of the main variable which gives us the non-main variables. But
not all of the latter can be determined independently from each other, since some reduction PDEs eliminate
linear combinations of several non-main variables. Kienzler and Schneider [10] have used these degrees of
freedom (undetermined variables) to fulfill the local Neumann boundary conditions on the upper and lower
face of the plate and the local form of the equilibrium equations (specific local conditions) for the second-order
generic plate theory. In a subsequent paper, Kienzler and Kashtalyan [9] confirmed the resulting displacement
distribution and additionally found the main PDEs for two still undetermined variables by employing an exact
solution of the 3D theory.

Following Kienzler and Schneider [10], we split the displacement coefficients j ui into an infinite series
of displacement-coefficient parts j uni (dcps) of different powers of c2n . As a novelty, we will prove up to the
second-order generic plate theory that the main and reduction PDEs (reduction equations) written in the dcps
remain unchanged over these orders. This unchangeability of the PDEs implies the unchangeability of the dcps

1 Eric Reissner (1913–1996), Engineer, Theory of elasticity.
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Fig. 1 Quasi-two-dimensional continuum

within a specific problem. Because the unchangeability of the dcps implies further a modular structure of the
displacement coefficients, we call this characteristic the modularity of the displacement coefficients. Based
on it, we will assemble PDEs from different orders of the generic plate theories to so-called complete plate
theories. The resulting PDE systems allow now to determine all non-main variables independently. A scheme
to create the complete plate theories for every order is also given.

Since an exact solution of the 3D theory has to fulfill the local boundary conditions and the local form of
the equilibrium equations, a plate theory can be assessed by checking whether or not the reduction equations
satisfy them. As it turns out, the reduction equations of the PDE systems of the complete plate theories indeed
satisfy the specific local conditions within their respective order of approximation. This result is remarkable,
because it is, to the authors best knowledge, the first time the specific local conditions are fulfilled a priori by
plate theories. Reddy, e.g., fulfilled also the local Neumann boundary conditions on the upper and lower face
of the plate in his third-order shear deformation theory but unlike us he used ad hoc assumptions. It should
also be mentioned that we considered all loads of the plate problem in this contribution.

Last but not least, we will compare our results with the outcome of other authors. It will be shown that
the Kirchhoff–Love plate theory [11] is a first-order complete plate theory and the Reissner plate theory
[18] (without edge effects) is a second-order complete plate theory. Also, we compare our results with the
publication of Kienzler and Schneider [10] and the publication of Kienzler and Kashtalyan [9].

2 Consistent-approximation approach

Let us assume a homogeneous, cuboid solid Ωx embedded in the three-dimensional Euclidean space. The
boundary of this solid is separated into a Dirichlet part ∂Ωx0 with prescribed displacements u0i (Latin indices
have the range {1, 2, 3}; Greek indices have the range {1, 2}) and a Neumann part ∂ΩxN with applied surface
loads gi . We install a Cartesian coordinate system in the edge of the solid so that it is divided in half by the
(x1, x2)-plane. This midplane is parallel to the upper and lower face of the solid and perpendicular to the
x3-direction. The thickness h of the solid is much smaller than the in-plane dimensions a and b (cf. Fig. 1).
Therefore, we call it quasi two-dimensional continuum.

The surface loads g−
i = gi (x1, x2,− h

2 ) and g+
i = gi (x1, x2,

h
2 ) are applied at the upper and lower faces.

We also allow for volume forces fi in all directions. Since we assume the material of the plate to be linear
elastic and neglect all inertia effects (statics), we have to deal with the potential energy (or elastic potential)

Epot(u) =
∫

Ωx

3∑
i, j,r,s=1

1

2
Ei jrsui | j ur |s dVx

−
∫

Ωx

3∑
i=1

fi ui dVx −
∫

∂ΩxN

3∑
i=1

giui dAx (1)

and its complement, the dual energy (or dual potential)

Edual(σ ) = −
∫

Ωx

3∑
i, j,r,s=1

1

2
Di jrsσi jσrs dVx
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+
∫

∂Ωx0

3∑
i, j=1

σi j n j u0i dAx . (2)

Here, Ei jrs denotes the fourth rank elasticity tensor with constant components and Di jrs is the fourth rank
compliance tensor with constant components. Both potentials can be found, e.g., in [2]. But in contrast, here
we are following [20] by multiplying the dual energy with −1. Thus, the minimization problem of the dual
energy turns into a maximization problem and the extreme values of the potential and dual energy coincide
(cf. [14, (2.5)]). With u = ui , we denote the displacement distribution, σ = σi j is the stress field and n = n j
represents the unit normal vector. For differentiation with respect to xi the abbreviation

∂()

∂xi
= ()|i (3)

is introduced. It should be mentioned that the quantities u0i , gi and fi are sufficiently smooth given data.
Due to the principles ofminimal potential energy andmaximal dual energy, we necessarily have to calculate

the first variations of both and equate them to zero:

δEpot(u; v) != 0, (4)

δEdual(σ ;μ)
!= 0. (5)

With v = vi (virtual displacements) and μ = μi j (virtual stresses), the test functions are defined. If we
integrate these terms by parts in all three coordinate directions and make use of the fundamental lemma of the
calculus of variations, the local form of the equilibrium equations, the local Neumann boundary conditions
and the local Dirichlet boundary conditions are found, cf. [20].

However, we want to derive two-dimensional theories from the 3D theory. The following way is analogous
to the procedure of deriving one-dimensional theories in Schneider and Kienzler [20]:

We first introduce dimensionless2 coordinates by the characteristic in-plane dimension a

ξi = xi
a

, (6)

and abbreviate the differentiation with respect to these dimensionless coordinates by the comma notation

∂()

∂ξi
= a

∂()

∂xi
= a()|i = (),i . (7)

Furthermore, the displacements ui are non-dimensionalized by a, the surface loads gi are non-dimensionalized
by a characteristic stiffness G, which might be chosen as the shear modulus for isotropy, and both potentials
(1) and (2) are non-dimensionalized by G a3. Then, in case of the dimensionless potential energy, we integrate
its first variation by parts only in ξ1- and ξ2-direction, substitute the dimensionless test functions vi/a by their
infinite Taylor series

vi (ξi )

a
=

∞∑
n=0

1

n!
[
1

a

∂nvi

∂τ n3
(ξ1, ξ2, τ3)

]
τ3=0︸ ︷︷ ︸

=: nvi (ξ1,ξ2)

ξn3 , (8)

and make use of the fundamental lemma of the calculus of variations. In that way, we obtain from (4) the
two-dimensional equilibrium equations

∀ i ∈ {1, 2, 3}, n ∈ N0 :
δ nvi : nMi1,1(ui ) + nMi2,2(ui ) − n · n−1Mi3(ui ) = − n pi (9)

and the Neumann conditions at the midplane boundary

0 =
3∑

i=1

∞∑
n=0

{
1PξN ({0, 1})

[∫ b
a

0

nvi
(nMi1(ui ) − nMNi1

)
n1dξ2

]

2 The reason for the nondimensionalization is the line of argumentation for the approximation (cf. [20, Section 3.6]).
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+2PξN ({0, b/a})
[∫ 1

0

nvi
(nMi2(ui ) − nMNi2

)
n2dξ1

]}
. (10)

In case of the dimensionless dual energy, we perform the same steps as for the potential energy but substitute
the dimensionless test functions μi j /G by their infinite Taylor series

μi j (ξi )

G
=

∞∑
n=0

1

n!
[
1

G

∂nμi j

∂τ n3
(ξ1, ξ2, τ3)

]
τ3=0︸ ︷︷ ︸

=: nμi j (ξ1,ξ2)

ξn3 (11)

and insert also the Taylor series of ui /a and u0i a. Starting from (5), we end up with the Dirichlet conditions
at the midplane boundary

0 =
3∑

i=1

∞∑
n=0

{
1Pξ0({0, 1})

[∫ b
a

0

(nu0i − nui
) nMi1(vi )n1dξ2

]

+2Pξ0 ({0, b/a})
[∫ 1

0

(nu0i − nui
) nMi2(vi )n2dξ1

]}
. (12)

With

nMi j :=
∫ h

2a

− h
2a

(σi j

G

)
ξn3 dξ3, (13)

nMNiαnα :=
∫ h

2a

− h
2a

(gi
G

)
ξn3 dξ3 (14)

and

n pi :=
∫ h

2a

− h
2a

(
a fi
G

)
ξn3 dξ3 +

(gi
G

)(
ξ1, ξ2,

h

2a

) (√
3 c

)n

+
(gi
G

) (
ξ1, ξ2, − h

2a

)(
−√

3 c
)n

, (15)

the stress resultants, the given stress resultants at the Neumann boundary PξN (subset of ∂ΩxN in themidplane)
and the load resultants are defined, respectively. The quantities nui and nu0i describe the Taylor coefficients of
the dimensionless displacement distribution and theTaylor coefficients of the given dimensionless displacement
distribution at theDirichlet boundary Pξ0 (subset of ∂Ωx0 in themidplane). The indicator function 1S(M)[F] is
defined as the sumof F over the set ofM which coincideswith the subset S ⊂ M in ξ1-direction and the indicator
function 2S(M)[F] is defined analogously in ξ2-direction. Finally, with c = h/(

√
12 a) the plate parameter is

introduced in (15). The problem in terms of (9), (10) and (12) is the so-called quasi-two-dimensional problem.
It should be mentioned that it is equivalent to the 3D theory [21]. So, until now, we have neither made an
approximation nor we have caused any error.

Equations (9), (10) and (12) are valid for the plate problem as well as for the disc problem. It can be shown
that both problems are decoupled for at least monoclinic material (with the midplane as symmetry plane). In
the following, we assume the material to be isotropic, so we can deal with the isolated plate problem. As a
consequence, the Taylor series expansions of the dimensionless displacements are reduced to

(uα

a

)
= 1uα ξ3 + 3uα ξ33 + 5uα ξ53 + 7uα ξ73 + · · · ,

(u3
a

)
= 0u3 ξ03 + 2u3 ξ23 + 4u3 ξ43 + 6u3 ξ63 + · · · . (16)

For the Taylor series expansions of the dimensionless volume forces, we get an analogous representation
(
a fα
G

)
= 1 f α ξ3 + 3 f α ξ33 + 5 f α ξ53 + 7 f α ξ73 + · · · ,
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(
a f3
G

)
= 0 f 3 ξ03 + 2 f 3 ξ23 + 4 f 3 ξ43 + 6 f 3 ξ63 + · · · . (17)

Note, that the omitted summands of (16) and (17) belong to the disc problem. By splitting g−
i and g+

i into
their symmetrical (S) and antisymmetrical (A) parts, we define the dimensionless surface loads (on the upper
and lower face of the plate) for the plate problem:

gA±
α

G
= ±g+

α − g−
α

2G
= ± ĝ+

α − ĝ−
α

2
,

gS±
3

G
= g+

3 + g−
3

2G
= ĝ+

3 + ĝ−
3

2
. (18)

The surface loads gS±
α and gA±

3 belong to the disc problem and will not be treated. Note that, e.g., g+
3 =

gS+
3 + gA+

3 .
If we insert Hooke’s law,3 the kinematic relations and (16) in (13), the formulae (9), (10) and (12) represent

a system of infinitely many PDEs for infinitely many displacement coefficients. Therefore, it cannot be solved
without any approximation. Within the present paper, we will follow the consistent-approximation approach
first introduced by Naghdi [15]. This approach is based on the fact that both the potential energy and the dual
energy4 can be represented as series expansions in powers of c2:

Epot(u) = Ga3
(
(•) + c2(•) + c4(•) + · · · ) , (19)

Edual(σ ) = Ga3
(
(•) + c2(•) + c4(•) + · · · ) . (20)

This is achieved by the insertion of the Taylor series of the dimensionless displacements, volume loads and
surface loads into the dimensionless potentials and subsequent integration in the thickness direction. Here, the
plate parameter c appears quite naturally:

∫ h
2a

− h
2a

ξ k3 dξ3 =
⎧⎨
⎩

1

k + 1

h

a

(√
3c

)k
if k even,

0 if k odd.
(21)

The main idea of the consistent-approximation approach is to keep all summands of the potentials up to
a certain magnitude and neglect all summands of smaller magnitudes. Because they are very small for thin
plates, powers of c2 can estimate thesemagnitudes quitewell. For examplewith h/a = 1/10, it is c2 = 8.33·10−4

and c4 = 6.94 · 10−7. Thus, in an N th-order theory, we consider all terms which are multiplied by c2n , n ≤ N
and omit all terms which are multiplied by c2m , m > N . We will further denote the omitted terms by O(c2m),
following the Big O notation. When we further talk about the magnitude, we refer to the powers of c2. In
contrast, with the order of a plate theory we designate the hierarchic equation systems. For the here introduced
generic plate theories the order of the theory coincides with the highest power of c2. Note that the presented
approximation approach is completely different to the approach associated with the name Vekua,5 because
with the latter the potentials are truncated with regard to the powers of the thickness variable and not the plate
parameter!

So, for the two-dimensional equilibrium equations of the zeroth-order theory, we only have to take the terms
with c0 into account. If we do so, we get the generic PDE system of Table 1. Here, ()′ denotes the derivative
with respect to ξ1, ()• denotes the derivative with respect to ξ2, Δ = ()′′ + ()•• is the two-dimensional Laplace
operator, the (•)-symbol is the place holder for the displacement in the same column and RHS is the shorthand
for right-hand side.

Note that the rows of the equation systems are ordered in dependence of the virtual displacements they
are emerged from (cf. (9)). So, the equation for the first row is the one that is generated by the variation with
respect to the virtual displacement with the smallest left-upper index, here 0v3. Than the equations which
result from the variation with respect to the virtual displacement with the next higher left-upper index follow,
here with respect to 1v1 and 1v2. If, like in this case, the left-upper index is equal, the variation with respect to
the virtual displacement with the smallest right lower index comes first. This ordering schema holds for every
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Table 1 Zeroth-order generic PDE system

0u3 1u1 1u2 RHS

I δ 0v3 Δ(•) (•)′ (•)• 0

II −δ 1v1 (•)′ (•) 0 0

III −δ 1v2 (•)• 0 (•) 0

plate theory in this paper. Furthermore, all terms on the left-hand side of one row have to be summed up to
build an PDE with the RHS.

For the first-order theory, we have to consider, on the other hand, all termswith c0 and c2. The corresponding
generic PDE system is shown in Table 2 with ν as Poisson’s ratio.

Finally, for the second-order theory, we have to consider all terms with c0, c2 and c4. The corresponding
generic PDE system is depicted in “Appendix” in Table 4.

3 Pseudo-reduction method

To reduce the PDE system emerging from an N th-order generic plate theory, we make use of the pseudo-
reduction method. In this method, we have to find a set of main variables, as few as possible, in order to
reduce the PDE system to a few main PDEs, which are entirely written in the main variables, and several
reduction PDEs, each written in the main variables and one non-main variable. Solving the main PDEs yields
the main variables. The reduction PDEs can be solved afterward by insertion of the main variables. This gives
us the non-main variables. So, the advantage of the pseudo-reduction method is that solving the reduction
equations is much easier than solving the initial PDE system. All equations together, reduction PDEs and main
PDEs, have to solve the initial PDE system identically (therefore it is no real reduction). In every step of the
pseudo-reduction method, the consistent-approximation approach is applied so that we omit consequently all
terms with the magnitude c2(N+1).

Because the PDEs are truncated power series in the characteristic plate parameter c, multiplications and
divisions by powers of c2 would change the accuracy of the given equations. For that reason, we have to treat
each product of different powers of the plate parameter with the same displacement coefficient as independent
variable. In consequence, we have more variables than equations and so the PDE system is underdetermined.
To get additional equations, we apply multiplications by powers of the plate parameter c2 to the PDE system.
If we truncate the result again with the consistent-approximation approach, we indeed get valid equations. On
the other hand, divisions by powers of the plate parameter c2 are not allowed because they would lead to PDEs
with displacements from higher-order plate theories (for details, cf. [19]).

As already mentioned in the Introduction, we will neglect edge-effects and therewith all “Reissner-like”
variables in the present publication. These will be dealt with in a forth-coming paper. Therefore, we invariably
can make use of the assumption that differentiations with respect to the dimensionless coordinates ξ1 and ξ2
does not change the magnitude of a function:

f (lu) = O
(
ck

)
⇔ Δ f (lu) = O

(
ck

)
. (22)

So the magnitude of a PDE is not affected by differentiation (cf. [21]).
As the only main variable, we choose the deflection 0u3 because it significantly describes the deformation

of the plate (the influence of the slopes 1u1 and 1u2 is much smaller). Furthermore, in Sect. 7, it will turn out
that this choice is appropriate because the results based on it fulfill the specific local conditions.

With 0u3 as our main variable and by the use of assumption (22), pseudo-reduction of the 0th-order plate
theory (cf. Table 1) yields:

1u1 = − (0u3)′ + O
(
c2

)
, (23)

3 Robert Hooke (1635–1703), Polymath, Theory of elasticity.
4 The series expansion of the dual energy was first applied in [20].
5 Ilja Nestorowitsch Vekua (1907–1977), Mathematician, Partial differential equations.
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1u2 = − (0u3)• + O
(
c2

)
. (24)

If we insert (23) and (24) in equation (I) of Table 1, it is identically satisfied. So, there is no main PDE for
the zeroth-order plate theory. In consequence, the corresponding stress resultants are identically zero, and
therefore the zeroth-order generic plate theory allows only for rigid body motions:

0u3 =β1ξ1 + β2ξ2 + β0 + O
(
c2

)
with β0, βα = const. , (25)

1uα = − βα + O
(
c2

)
. (26)

Note: By the consistent-approximation approach, there normally have to be load resultants on the right-hand
side of the equation system of Table 1. In this case equation, (I) would automatically yield

0 p3 = 0 + O
(
c2

)
. (27)

Thus, all load resultants are of the magnitude c2 and have to be considered for the first time in the first-order
plate theory [8].

By applying the pseudo-reduction method to the first-order generic plate theory, we obtain from the equa-
tions (V) and (VI) (cf. Table 2):

c21u1 = −c2
(0u3)′ + O

(
c4

)
, (28)

c21u2 = −c2
(0u3)• + O

(
c4

)
. (29)

With (28) and (29) we get from (IV):

c22u3 = ν

2(1 − ν)
c2Δ0u3 + O

(
c4

)
. (30)

The remaining three equations from Table 2 contain the four independent non-main variables 1u1, 1u2,
c23u1, c23u2 and the two main variables 0u3 and c20u3. To establish in this underdetermined system a main
PDE, we use the linear combination: (I) − (II)′ − (III)•. So, contrary to the principle of the pseudo-reduction
method, the emerging reduction PDEs have several non-main variables. Following that rule, we can eliminate
five variables (which are expressed in two sets of linear combinations) and obtain

2

1 − ν
c2ΔΔ 0u3 =a

h

(
0 p3 + (1 p1)′ + (1 p2)•) + O

(
c4

)

⇔ KΔΔ 0u3 =a3
(
0P3 + (1P1

)′ + (1P2
)•) + O

(
c4

)
, (31)

which is the classical Kirchhoff–Love plate-differential equation (with additional loads in x1 and x2 direction).
Here, we made use of the dimensionalized load resultants

n Pi = G n pi (32)

and the plate stiffness

K = 2
Ghc2a2

1 − ν
= Eh3

12
(
1 − ν2

) (33)

with E as Young’s modulus and G as shear modulus (characteristic stiffness). As it turns out, the first-order
generic plate theory coincides with the classical plate theory of Kirchhoff. In [8], it has been shown that also
the boundary conditions of the classical theory (involving Kirchhoff’s ersatz-shear forces) are recovered. Note
that multiplications of the equations from Table 2 with c2 lead only to the results (28) and (29) and thus are
unnecessary.

Applying the pseudo-reduction method to the second-order plate theory proceeds analogously to the appli-
cation for the first-order theory (cf. Table 4). So, for reasons of shortness, we omit the procedure for the
second-order theory and refer to [8, Section 4.4] where it can be found in detail. There it turns out that the
second-order generic plate theory coincides with the classical plate theory of Reissner.

So, the results of the generic plate theories are in accordance with the classical theories. But, as a great
disadvantage, not all non-main variables in the first- and second-order generic plate theory can be reduced
independently from each other (cf. linear combination above or [8, (47)]).
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4 Modularity of the displacement coefficients

In their treatise [10], Kienzler and Schneider observed that the reduction equations contain only even powers
of the plate parameter c (cf. (23), (24), (28) and (29)). So, they suggested to represent these coefficients in
power series of c2 themselves. We adopt this idea and split the displacement coefficients into the following
infinite sum

j ui = j u0i + j u2i + j u4i + j u6i + · · · . (34)

Here, j ui is any displacement coefficient and we call the corresponding summands displacement coefficient
parts (dcp). The magnitude of the dcps is given by the right-upper index. For example, the dcp j u2i is of the
magnitude c2, whereas j u4i is of c

4.
With reference to (34), we can recognize that the reduction equations will change if we change the order of

the plate theory. The reason for this is that we have to consider additional dcps if we increase the order of the
plate theory. For example, in the zeroth-order theory, 1u1 contains the dcp 1u01, and in the first-order theory, it
contains the sum of 1u01 and

1u21. Therefore, the reduction equations cannot remain unchanged among different
orders.

Driven by this observation, we want to know if the reduction equations written in the dcps will change,
too. So, we take at first a look at the first-order generic plate theory (cf. Table 2). Splitting the displacement
coefficients with (34) and truncating the result with an error of O(c4) yields

I : Δ
(0u03 + 0u23

) + (1u01 + 1u21
)′ + (1u02 + 1u22

)• + c2Δ 2u03 + 3c2
(3u01)′

+ 3c2
(3u02)• O

(
c4

)
= −a

h
0 p03,

I I : · · ·
...

. . . (35)

It should be mentioned that we have also split the load resultants with respect to their magnitude into so-called
load resultant parts (lrp)

n pi = n p0i + n p2i + n p4i + n p6i + · · · . (36)

One can easily comprehend this partition by observing equation (15) and (21). In contrast to the dcps, the right-
upper index has to be added by two to show the magnitude of the lrps (cf. (27)). E.g., 0 p03 has the magnitude
c0+2 = c2 and 4 p43 has the magnitude c4+2 = c6. Note that many lrps vanish because of their definition (15).
For the lrps of the load resultant 2 p3, for example, the least possible magnitude is c4 (because of the surface
loads) and so 2 p03 is zero. To solve the PDE system (35), trivially both sides of the equations have to be equal.
In detail, this implies that only terms of the same magnitude can be compared. Comparing terms of different
magnitudes, however, yields to conflicts because, e.g., in

0u03 = k · 1u21 with k ∈ R (37)

0u03 has per definition the magnitude c0 and therefore cannot contain 1u21 of c2 (and also vice versa). As a
consequence, the PDE system (35) has to be separated into two PDE systems–one for c0 and one for c2–
which have to be satisfied independently. If we truncate the system now with an error of O(c2), which means
neglecting all terms of c2, we get:

I : Δ
(0u03) + (1u01)′ + (1u02)• O

(
c2

)
= 0,

I I : · · ·
...

. . . (38)

This system exactly corresponds to the system of Table 1 and because of that the dcps of both cases have to
be equal. Next, we have to prove if the neglected terms which contain the zeroth-order dcps lead to conflicts.
These terms are in the first-order theory c2 1u01 and c

2 1u02 from (V) and (VI). According to Sect. 3, c2 1u1 and
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c2 1u2 are determined by (28) and (29), and therefore there is no conflict in the first-order equation system. So,
we only have to prove that (28) and (29) coincide with the results of the zeroth-order dcps 1u01 and

1u02. This
proof is made below (cf. (44) and (45)) and thus the unchangeability of the zeroth-order reduction equations,
written in the dcps, among the zeroth- and first-order theory has been proved. Note, that this unchangeability
implies further that also the dcps are unchangeable within a specific problem (because than the PDEs are
solved). So, for shortness, we will call it in the following only the unchangeability of the dcps.

To show the systematic of our proof, we now take a look at the second-order generic plate theory (cf.
Table 4). Inserting the splits (34) and (36) and truncating the result with an error of O(c6) yields to

I : Δ
(0u03 + 0u23 + 0u43

) + (1u01 + 1u21 + 1u41
)′ + (1u02 + 1u22 + 1u42

)•

+ c2Δ
(2u03 + 2u23

) + 3c2
(3u01 + 3u21

)′ + 3c2
(3u02 + 3u22

)•

+ 9

5
c4Δ 4u03 + 9c4

(
5u01

)′ + 9c4
(
5u02

)• O
(
c6

)
= −a

h
0 p23,

I I : · · ·
...

. . . (39)

Here, for the reasons given above, the PDE system has to be separated into three PDE systems–for c0, c2 and
c4–which have to be satisfied independently. If we truncate (39) with an error of O(c2), the system (38) is
recovered. So, the zeroth-order dcps from (39) have to be equal to the coefficients of the zeroth-order generic
plate theory, too. If we instead truncate (39) with an error of O(c4), the system (35) is recovered. Thus, the
first-order dcps from (39) have to be equal to the first-order dcps from (35) and, with the same line of reasoning
like from above, the zeroth-order dcps fulfill the reduction equations c2 1u1 and c2 1u2 (cf. (44) and (45)). Until
now, we again showed that the zeroth-order dcps are unchangeable among the zeroth- and first-order theory.
To proof that both the zeroth- and first-order dcps are unchangeable among the zeroth-, first- and second-order
theory, they must not lead to conflicts in the reduction equations of the second-order theory. Here, like at the
end of Sect. 3, we refer to the results of [8, Section 4.4]. We checked all of those reduction equations with the
zeroth- and first-order dcps (an example is treated in (46)) and as a consequence, we proved the unchangeability
of the zeroth- and first-order dcps up to the second-order theory.

The exemplary and systematic proofs of the generic plate theories up to the second order lead us to assume
strongly that all dcps are unchangeable over all orders of plate theories. Because this unchangeability of the
dcps implies a modular structure of the displacement coefficients, we call this characteristic the modularity of
the displacement coefficients (short: modularity). Furthermore, we assume that the modularity is also valid for
all one- and two-dimensional theories (e.g., the beam theory) and even for general anisotropy, provided they
are all based on the consistent-approximation approach and therefore have the same structure. This additional
assumption is based on the fact that we also proved (not shown here) the unchangeability of the zeroth- and
first-order dcps up to the second-order theory for the rod and beam theory.

With the modularity of the displacement coefficients, the results of Sect. 3 are accessible to a new inter-
pretation. If we, e.g., apply the split (34) to the results (23) and (24), we get

1u01
O

(
c2

)
= − (0u03)′

, (40)

1u02
O

(
c2

)
= − (0u03)•

. (41)

So, the dcps of u1 and u2 with the biggest magnitude have already been calculated and are fixed for all orders
N . Applying the modularity to eqs. (28) and (29) yields

c2
(1u01) O

(
c4

)
= − c2

(0u03)′
, (42)

c2
(1u02) O

(
c4

)
= − c2

(0u03)•
(43)

and this opens, despite all similarities to (28) and (29), a different perspective. Take, for example, eq. (28).
Here, 1u1 contains 1u01 as well as

1u21 and
0u3 contains 0u03 as well as

0u23. So it would be wrong to conclude

that 1u1 = − (
0u3

)′
because eq. (28) can only give information about the dcps of c0. In contrast, in eq. (42),

there are on both sides only dcps of magnitude c0 and they can be compared. Note that by using the modularity,
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multiplications or divisions by powers of c2 are allowed. But if we do so, we have to increase or decrease the
error O(c2(N+1)). For eqs. (42) and (43), we consequently calculate

c2
(1u01 + 1u21 + · · · ) = −c2

(0u03 + 0u23 + · · · )′

⇒ c2
(1u01) O

(
c4

)
= −c2

(0u03)′

⇔ 1u01
O

(
c2

)
= − (0u03)′

, (44)

c2
(1u02 + 1u22 + · · · ) = −c2

(0u03 + 0u23 + · · · )•

⇒ c2
(1u02) O

(
c4

)
= −c2

(0u03)•

⇔ 1u02
O

(
c2

)
= − (0u03)•

. (45)

So, we finally end up with the same result as in (40) and (41), which is reasonable because of the modularity.
Note that the multiplications and divisions by powers of c2 are only equivalence transformations for dcps.

In addition to the results of Sect. 3, we exemplarily want to treat a second-order reduction equation with
the modularity. Here, we choose equation (63) from [8, Section 4.4]. By identifying w and ψα with 0u3 and
1uα and adopting the modularity, we get

c2
(0u3),α

+ c2 1uα + 3c4 3uα

O
(
c6

)
= − 1

2
c4

4 + ν

1 − ν
Δ

(0u3),α

⇒ c2
(0u03 + 0u23

)
,α

+ c2
(1u0α + 1u2α

) + 3c4 3u0α
O

(
c6

)
= − 1

2
c4

4 + ν

1 − ν
Δ

(0u03),α
. (46)

This result can be separated into two equations for different orders. In equation one, we treat all terms with
the magnitude c2:

c2
(0u03),α

+ c2 1u0α = 0

⇔ c2 1u0α = −c2
(0u03),α

. (47)

With equation (47) the results (44) and (45) are recovered and therefore there is no conflict. In equation two,
we treat all terms with the magnitude c4. Under consideration of (49), (50), (52) and (53) and by neglecting
all forces in x1 and x2 direction (simplification of [8]), we arrive at

c2
(0u23),α

+ c2 1u2α + 3c4 3u0α = −1

2
c4

4 + ν

1 − ν
Δ

(0u03),α

⇔ 0 = 0
√

. (48)

Thus, it is proved that the reduction equation (46) is fulfilled by the zeroth- and first-order dcps.

5 Complete plate theories

With themodularity, we are now able to eliminate the disadvantage that not all non-main variables in the generic
plate theories can be determined independently. For this purpose, we recall the generic PDE systems of the
zeroth- and first-order plate theory and make use of the modularity. In the zeroth-order generic PDE system
there are three dcps to determine: 0u03,

1u01 and
1u02. The second and third equations in Table 1 yield the two

reduction equations (40) and (41). So, the dcps 1u01 and
1u02 can each be determined with only dependence on

the main variable 0u03. Because of the linear dependence between the three zeroth-order equations (cf. Sect. 3),
there is no main PDE in this order. Therefore, we add the main variable to the loads on the RHS of the zeroth-
order equation system and treat it initially like given data. Thus, we end up with a simple-underdetermined
PDE system.

In the first-order generic PDE system there are seven unknown dcps. At first, 0u03 from the zeroth-order
theory appears through the terms c2 1u01, c

2 1u02 and c2 0u03 (cf. Table 2, II, III and IV). The other six dcps
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Fig. 2 Scheme for complete plate theories

are: 0u23,
1u21,

1u22,
2u03,

3u01 and
3u02. Like in the zeroth-order theory, we add 0u23 to the loads on the RHS of

the PDE system. For the six unknown dcps on the left-hand side, we need six linear independent equations.
But the generic PDE system of Table 2 provides only four linear independent equations, because the last
two equations are equivalent to the second and third from the zeroth-order PDE system (cf. (44) and (45)).
The missing equations can be obtained from the second-order generic plate theory. There, the fifth and sixth
equation contain only dcps of the first order (cf. Table 4). So, we just have to increase the error of the last two
equations of Table 2 to O(c6) to obtain six linear independent equations for the first-order theory. But, because
of 0u23 on the RHS, the resulting system is again a simple-underdetermined PDE system.

We call a plate theory complete, if we are able to determine all dcps in only dependence of themain variable
(according to the principle of the pseudo-reduction method). By applying the pseudo-reduction method to the
first-order simple underdetermined PDE system, we will show in Sect. 6 that there are only two reduction
equations (for 1u21 and

1u22) depending on
0u23. So, the main PDE is entirely written in the main variable 0u03. As

shown in Sect. 6, the main PDE of the second-order simple underdetermined PDE system (for construction cf.
Fig. 2) is also entirelywritten in themain variable 0u23. Thus, the supernumerary variable of the first-order simple
underdetermined PDE system can be determined by treating the next-higher-order simple underdetermined
PDE system. Therefore, we can finally call the simple first-order underdetermined PDE system a first-order
complete plate theory.6 In the following, we assume that the supernumerary variable can always be calculated
in the next higher-order simple underdetermined PDE system. So, all simple underdetermined PDE systems
which are built like in Fig. 2 are complete plate theories. Calculations of complete plate theories to the order
of ten have confirmed that assumption.

So, we have already received a zeroth- and first-order complete plate theories. To get an N th-order complete
plate theory, we have to use the scheme in Fig. 2. This scheme shows how to build a complete plate theory by
using different magnitudes.

At first, we ignore the colors and the dashed line: Every row in the scheme illustrates the instruction to
build the complete plate theory of exactly one specific order. We start with the zeroth order and end with the
fourth order. The vertical dots indicate that the next orders are built with the same systematic. On the axis
below, we can see the total number of equations of one order. So, the zeroth-order theory has all in all three
equations, the first-order theory has six equations and so on. Furthermore, we use the ordering scheme from
the end of Sect. 2. Thus, we now know not only how many equations we need in one specific order but also
which equations to choose.

For every row or rather every order the equations of the corresponding PDE system are divided in blocks of
different magnitudes. These blocks are each depicted in a separate rectangular. In addition to the total number
of equations, the axis below indicates also the total number of equations for every block and the sequence of
the equations in the PDE system to be formed. So, for the first-order complete theory the first four equations
(I–IV) have the magnitude c2 and the next two equations (V–VI) are of c4 (this structure agrees with the result

6 For the disk and the rod problem, there is no supernumerary variable. So, they are complete theories without taking higher-
order theories into account.
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Table 3 First-order complete plate theory

0u03
1u21

1u22
2u03

3u01
3u02 RHS

I δ 0v3 0 (•)′ (•)• c2Δ (•) 3c2 (•)′ 3c2 (•)• −a

h
0 p03 − Δ 0u23

II −δ 1v1
2(1 − v)

1 − 2v
c2 (Δ(•))′ (•) 0

1 − 6ν

1 − 2ν
c2 (•)′ 3c2 (•) 0

a

h
1 p01 − (

0u23
)′

III −δ 1v2
2(1 − v)

1 − 2v
c2 (Δ(•))• 0 (•)

1 − 6ν

1 − 2ν
c2 (•)• 0 3c2 (•)

a

h
1 p02 − (

0u23
)•

IV δ 2v3
4ν

1 − 2ν
c2Δ (•) 0 0 −8

1 − ν

1 − 2ν
c2 (•) 0 0 0

V −δ 3v1
18

5

(1 − v)

(1 − 2v)
c4 (Δ(•))′ 3c2 (•) 0

9

5

3 − 10ν

1 − 2ν
c4 (•)′

81

5
c4 (•) 0 3c2

a

h
1 p01 − 3c2

(
0u23

)′

VI −δ 3v2
18

5

(1 − v)

(1 − 2v)
c4 (Δ(•))• 0 3c2 (•)

9

5

3 − 10ν

1 − 2ν
c4 (•)• 0

81

5
c4 (•) 3c2

a

h
1 p02 − 3c2

(
0u23

)•

from above). For the second-order complete plate theory the first four equations have the magnitude c4, the
next three are of c6 and the last two are of c8.

To explain the systematic structure of the further orders we now have to take the colors into account. Both
colors, orange and green, indicate the seclusion of a block. If a block is orange, then it is not secluded and gets
an extra equation in the next higher-order theory. Instead a green block has the maximum amount of equations.
This amount will not change in any higher-order theory. For the next theories (third, fourth, …), we always
get three new equations, respectively. Two of them are found in the addition of one orange block (the last
two equations) and one equation is added to the last block of the lower-order theory which therefore becomes
secluded (green).

Furthermore, by increasing the order of a theory (e.g., first to second order) the magnitude of every block
changes in a systematic way: The magnitude of every first block increases by two (c2N ) while increasing the
order N of the theory. All other blocks of the same order N increase by two in sequence of their occurrence
on the axis. So, the last block has always the magnitude c4N . Note, if we omit the first equation, the green
block always contains three equations and the orange block always contains two equations. For visualization
we have marked this observation in Fig. 2 with a dashed line.

With the found scheme of Fig. 2, we get for the first- and second-order complete plate theories the PDE
systems of Tables 3 and 5 (in “Appendix”), respectively. In these systems, all equations have only the mag-
nitude which is given in the scheme. So, in contrast to the generic PDE systems, we do not deal with lower-
approximated equations. We omit, e.g., the equations V and VI of Table 2 in the first-order complete plate
theory. Note that the omitted equations are fulfilled identically by lower-order dcps. To get to the systems
of Tables 3 and 5, we inserted the already calculated lower-order dcps (e.g., 1u01 in equation II of Table 2),
made use of the lrps (cf. (36)) and put every summand which contains none of the 3(N + 1) unknowns to the
right-hand side of the PDE system.

So, with the results of this Section we can determine all non-main variables independently from each other
and thus have eliminated the disadvantage of the generic plate theories. In addition, the pseudo-reduction
method now can be applied like solving an ordinary linear equation system (e.g., with Cramer’s Rule) and this
is much easier than the procedure described in [19].

6 Results and comparison with other authors

As basis for the comparison with other authors and for the next Section, we first reduce the PDE systems of
the complete plate theories. The results of the zeroth-order complete plate theory are the equations (40) and
(41). For the first-order PDE system in Table 3, we achieve the reduction equations

1u21 = a

h
1 p01 − (0u23)′ − 3

1 − ν
c2

(
Δ 0u03

)′
, (49)
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1u22 = a

h
1 p02 − (0u23)• − 3

1 − ν
c2

(
Δ 0u03

)•
, (50)

2u03 = ν

2(1 − ν)
Δ 0u03, (51)

3u01 = 2 − ν

6(1 − ν)

(
Δ 0u03

)′
, (52)

3u02 = 2 − ν

6(1 − ν)

(
Δ 0u03

)•
(53)

and the main PDE

KΔΔ 0u03 = a3
(
0P0

3 + (1P0
1

)′ + (1P0
2

)•)
. (54)

Omitting the loads in x1- and x2-direction, this equation is again the classical Kirchhoff–Love plate-differential
equation (cf. (31)) and the quantities n Pk

i are the dimensionalized lrps. Finally, for the second-order PDE system
of Table 5, we get

1u41 =3

2

a

h
1 p21 − (0u43)′ − 3

1 − ν
c2

(
Δ 0u23

)′ − 35

192

ν

1 − ν

1

c2
a

h

(4 p43)′

+ 45

32

ν

1 − ν

a

h

(2 p23)′ − 3

64

(80 + 23ν)

1 − ν
c2

a

h

(0 p03)′

− 3

4

1

(1 − ν)
c2

a

h

((1 p01)′′ + (1 p02)′•)
, (55)

1u42 =3

2

a

h
1 p22 − (0u43)• − 3

1 − ν
c2

(
Δ 0u23

)• − 35

192

ν

1 − ν

1

c2
a

h

(4 p43)•

+ 45

32

ν

1 − ν

a

h

(2 p23)• − 3

64

(80 + 23ν)

1 − ν
c2

a

h

(0 p03)•

− 3

4

1

(1 − ν)
c2

a

h

((1 p01)′• + (1 p02)••)
, (56)

2u23 = ν

2(1 − ν)
Δ 0u23 − 3

64

(7 − 30ν)

1 − ν

a

h
0 p03 − 35

192

(1 − 2ν)

1 − ν

1

c4
a

h
4 p43

+ 25

32

(1 − 2ν)

1 − ν

1

c2
a

h
2 p23 + 1

8

1

(1 − ν)

a

h

((1 p01)′ + (1 p02)•)
, (57)

3u21 = (2 − ν)

6(1 − ν)

(
Δ 0u23

)′ + 35

576

1

1 − ν

1

c4
a

h

(4 p43)′ − 25

96

1

1 − ν

1

c2
a

h

(2 p23)′

− 1

6

1

c2
a

h
1 p21 + 1

64

(39 − 16ν)

1 − ν

a

h

(0 p03)′

+ 1

24

(3 − 2ν)

(1 − ν)

a

h

((1 p01)′′ + (1 p02)′•)
, (58)

3u22 = (2 − ν)

6(1 − ν)

(
Δ 0u23

)• + 35

576

1

1 − ν

1

c4
a

h

(4 p43)• − 25

96

1

1 − ν

1

c2
a

h

(2 p23)•

− 1

6

1

c2
a

h
1 p22 + 1

64

(39 − 16ν)

1 − ν

a

h

(0 p03)•

+ 1

24

(3 − 2ν)

(1 − ν)

a

h

((1 p01)′• + (1 p02)••)
, (59)

4u03 = 175

3456

(1 − 2ν)

1 − ν

1

c6
a

h
4 p43 − 35

192

(1 − 2ν)

1 − ν

1

c4
a

h
2 p23 + (27 − 70ν + 8ν2)

384(1 − ν)

1

c2
a

h
0 p03

− 1

48
(1 + ν)

1

c2
a

h

((1 p01)′ + (1 p02)•)
, (60)

5u01 = − 35

3456

1

1 − ν

1

c6
a

h

(4 p43)′ + 7

192

1

1 − ν

1

c4
a

h

(2 p23)′
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− (59 − 32ν + 8ν2)

1920(1 − ν)

1

c2
a

h

(0 p03)′ − 1

240
(3 − ν)

1

c2
a

h

((1 p01)′′ + (1 p02)′•)
, (61)

5u02 = − 35

3456

1

1 − ν

1

c6
a

h

(4 p43)• + 7

192

1

1 − ν

1

c4
a

h

(2 p23)•

− (59 − 32ν + 8ν2)

1920(1 − ν)

1

c2
a

h

(0 p03)• − 1

240
(3 − ν)

1

c2
a

h

((1 p01)′• + (1 p02)••)
. (62)

And the second-order main PDE results in

KΔΔ 0u23 =a3
(
0P2

3 + (1P2
1

)′ + (1P2
2

)• + ν

2(1 − ν)
Δ 2P2

3

− 1

10

(4 + ν)

(1 − ν)
c2

(
6Δ 0P0

3 + (
Δ 1P0

1

)′ + (
Δ 1P0

2

)•))
. (63)

In Reissner’s theory only normal surface traction on the upper and lower face of the plate is considered. So, if
we want to compare his theory with the second-order complete plate theory, we have to omit the surface loads
in x1- and x2-direction and all volume loads. If we do so, we get from (63) to:

KΔΔ 0u23 =a3
(

− 6

10

(4 + ν)

(1 − ν)
c2 Δ 0P0

3 + ν

2(1 − ν)
Δ 2P2

3

)

⇔ KΔΔ 0u23 =a3
c2

10(1 − ν)

(
5ν

1

c2
Δ 2P2

3 − 6(4 + ν)Δ 0P0
3

)
. (64)

To further simplify (64) and compare it with Reissner’s theory, we have to look at the dependencies between
the load resultants. Based on (15), we find with (17) and (18)

0 p03 = h

a
0 f 3 + (

ĝ+
3 + ĝ−

3

)
, 2 p23 = c2

h

a
0 f 3 + 3c2

(
ĝ+
3 + ĝ−

3

)
,

4 p43 = 9

5
c4

h

a
0 f 3 + 9c4

(
ĝ+
3 + ĝ−

3

)
,

0 p23 = c2
h

a
2 f 3,

1 p01 = √
3c

(
ĝ+
1 − ĝ−

1

)
, 1 p21 = c2

h

a
1 f 1,

1 p02 = √
3c

(
ĝ+
2 − ĝ−

2

)
, 1 p22 = c2

h

a
1 f 2, (65)

which in the case of negligible volume forces leads to the relations:

2 p23 =3c2 0 p03,
4 p43 =9c4 0 p03. (66)

These definitions and relations are also valid for the dimensionalized lrps and thus, we can simplify equation
(64) to

KΔΔ 0u23 = − a3
(

3

10

(8 − 3ν)

(1 − ν)
c2 Δ 0P0

3

)
. (67)

Until now, we cannot compare this result with Reissner’s theory because in his approach, the main PDE is
expressed by an energetic mean of the transverse displacement 0u3. In our complete plate theory, we can get
that energetic mean from the Dirichlet conditions at the midplane boundary (12). But the derivation is very
elaborate and thus will be the subject of a forthcoming paper. Here, we refer to Kienzler and Schneider [10]
and obtain from their work

Kw = 0u3 + 3

10

ν

1 − ν
c2Δ 0u3 (68)
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for the energetic mean of the transverse displacement Kw. By applying the modularity to (68) the first and
second-order parts of Kw

Kw0 = 0u03, (69)

Kw2 = 0u23 + 3

10

ν

1 − ν
c2Δ 0u03 (70)

are found. If we rearrange equation (70) and insert it into (67), we obtain

KΔΔ

(
Kw2 − 3

10

ν

1 − ν
c2Δ 0u03

)
= − a3

(
3

10

(8 − 3ν)

(1 − ν)
c2 Δ 0P0

3

)

⇔ KΔΔ Kw2 = − a3
(

3

10

(8 − 3ν)

(1 − ν)
c2 Δ 0P0

3

)

+ 3

10

ν

1 − ν
c2KΔΔΔ 0u03. (71)

The second term on the right side can be further simplified by Kirchhoff’s equation (54). But, like Reissner,
we first have to neglect all surface loads in x1- and x2-direction and all volume loads. Thus, we obtain from
(54)

KΔΔ 0u03 = a3 0P0
3. (72)

Finally, by applying the Laplace operator to this equation and inserting it into (71), we arrive at

KΔΔ Kw2 = − a3
(
6

5

(2 − ν)

(1 − ν)
c2 Δ 0P0

3

)
. (73)

Like the second-order generic plate theory, Reissner’s plate theory contains both the second- and first-order
main PDE. The reason for that is because in a N th-order generic plate theory we consider all terms which are
multiplied by c2n , n ≤ N , whereas in a N th-order complete plate theory we only take terms of the magnitude
c2N into account. Therefore, we have to add equation (72) to (73) in order to compare it with Reissner’s theory.
So, by substitution of 0u03 with

Kw0 (cf. (69)), we finally achieve

KΔΔ
(
Kw0 + Kw2

)
= a3

(
0P0

3 − 6

5

(2 − ν)

(1 − ν)
c2 Δ 0P0

3

)
+ O

(
c6

)

⇒ KΔΔ Kw = a3
(
0P0

3 − 6

5

(2 − ν)

(1 − ν)
c2 Δ 0P0

3

)
+ O

(
c6

)
. (74)

This result in fact corresponds to the classical Reissner plate theory and thus also to the second-order generic
plate theory (cf. Sect. 3). But it does not coincide with Mindlin’s plate theory (cf. [10]). At this point, we
would like to emphasize that Reissner’s and Mindlin’s theories are similar but not identical. Differences are
elaborated in [16,22].

The results of the complete plate theories of the zeroth up to the second order also coincide with the results
of Kienzler and Schneider [10] after a change of variables from the transverse displacement of the middle
surface 0u3 to its energetically averaged main variable Kw. This coincidence is obviously reasonable because
Kienzler and Schneider showed in their paper that their results also fulfill the specific local conditions (cf.
Sect. 7). The only relevant difference, besides the omitting of loads in x1- and x2-direction and volume-loads, is
the modularity of Kw. Like mentioned before, this variable emerges when evaluating the Dirichlet conditions
at the midplane boundary (12).With it, we obtain the most compact representation of an N th-order complete or
generic plate theory. Moreover, by rewriting the complete plate theories as functions of Kw, we can investigate
hidden patterns between theories of different orders. This will also be treated in an upcoming paper. Anyway,
the averaged main variable is the only one that was not split in [10], while we here applied the modularity
consequently to every variable. This leads us to different results of the dcps which, however, can be transformed
into one another.

Due to the accordance between the complete plate theories and the results of Kienzler and Schneider, the
comparison with other theories (e.g., Reddy’s theory) can be taken from their paper (cf. [10, Section 6]). So,
we see that so far all results of the complete plate theories coincide with the classical theories of Kirchhoff
and Reissner and there is no contradiction with the generic plate theories.
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7 Fulfillment of the specific local conditions

Now, we prove whether the reduction equations of the complete plate theories fulfill also the specific local
conditions. Because we only treat the plate problem within this paper, we have to apply the symmetric and
antisymmetric parts of the surface loads according to (18) for the local Neumann boundary conditions on the
upper and lower face of the plate. With nTu = (0, 0,−1) and nTl = (0, 0, 1) as the unit normal vectors of the
upper and lower face of the plate (aT is the transposition of a ), the following six local Neumann boundary
conditions are found:

σ33 | h
2a

= gS+
3 , σ33 |− h

2a
= −gS−

3 ,

σ31 | h
2a

= gA+
1 , σ31 |− h

2a
= −gA−

1 ,

σ32 | h
2a

= gA+
2 , σ32 |− h

2a
= −gA−

2 .

Due toHooke’s law, the kinematic relations and the displacements (16), the stress σ33 only contains the variable
ξ3 with odd powers. On the other hand, the stresses σ31 and σ32 are entirely written with even powers of ξ3.
Consequently, the relations

σ33 | h
2a

= − σ33 |− h
2a

,

σ31 | h
2a

=σ31 |− h
2a

,

σ32 | h
2a

=σ32 |− h
2a

(75)

are observed. According to (18), the surface loads are axisymmetric in x3-direction and point-symmetric in x1-
and x2-direction. So, with these symmetries and the relations (75), the six local Neumann boundary conditions
on the upper and lower face of the plate can be reduced to the following three:

1) σ33 | h
2a

= gS+
3 ,

2) σ31 | h
2a

= gA+
1 ,

3) σ32 | h
2a

= gA+
2 .

Together with the three equilibrium equations in the local form

4) (σ11),1 + (σ21),2 + (σ31),3 = − f1a,

5) (σ12),1 + (σ22),2 + (σ32),3 = − f2a,

6) (σ13),1 + (σ23),2 + (σ33),3 = − f3a,

there are overall six conditions to prove. It can be shown that the results of the complete plate theories up
to the second order fulfill these six conditions a priori. To our best knowledge, this is the first time that the
specific local conditions are fulfilled a priori by plate theories. Reddy [17], e.g., made ad-hoc assumptions
(e.g., σ33 = 0) and determined the resulting displacement coefficients partially by the local Neumann boundary
conditions on the upper and lower face of the plate. And Kienzler and Schneider [10] determined free dcps by
the specific local conditions. The displacement coefficients or dcps of both fulfill the specific local conditions
if then only a posteriori.

Exemplary, we take the last equilibrium Eq. 6) and apply Hooke’s law, the kinematic relations, (16), (17)
and the modularity to it. In this way, we get:

(σ13),1 + (σ23),2 + (σ33),3 = − f3a

⇒ G
[ (0u03 + 0u23 + 0u43

)′′ + (2u03 + 2u23
)′′

ξ23 + (4u03)′′
ξ43 + (1u01 + 1u21 + 1u41

)′

+ 3
(3u01 + 3u21

)′
ξ23 + 5

(
5u01

)′
ξ43 + (0u03 + 0u23 + 0u43

)••

+ (2u03 + 2u23
)••

ξ23 + (4u03)••
ξ43 + (1u02 + 1u22 + 1u42

)•

+ 3
(3u02 + 3u22

)•
ξ23 + 5

(
5u02

)•
ξ43 + 2(1 − ν)

1 − 2ν

(
2

(2u03 + 2u23
) + 12 4u03 ξ23

)
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+ 2ν

1 − 2ν

( (1u01 + 1u21 + 1u41
)′ + 3

(3u01 + 3u21
)′

ξ23 + 5
(
5u01

)′
ξ43

+ (1u02 + 1u22 + 1u42
)• + 3

(3u02 + 3u22
)•

ξ23 + 5
(
5u02

)•
ξ43

)]

= −G
(0 f 3 + 2 f 3 ξ23 + 4 f 3 ξ43

)
.

The comparison of the terms with the variable ξ03 and the magnitude c0 leads under consideration of (40), (41)
and (51) to:

(0u03)′′ + (1u01)′ + (0u03)•• + (1u02)• + 4(1 − ν)

1 − 2ν
2u03

+ 2ν

1 − 2ν

((1u01)′ + (1u02)•) = 0

⇔ 0 = 0
√

.

The comparison of the terms with the variable ξ03 and the magnitude c2 leads under consideration of (32), (33),
(49), (50), (54), (57) and (65) to:

(0u23)′′ + (1u21)′ + (0u23)•• + (1u22)• + 4(1 − ν)

1 − 2ν
2u23

+ 2ν

1 − 2ν

((1u21)′ + (1u22)•) = − 0 f 3

⇔ 0 = 0
√

.

Finally, the comparison of the terms with the variable ξ23 and the magnitude c0 leads under consideration of
(32), (33), (51), (52), (53), (54), (60) and (65) to:

(2u03)′′ + 3
(3u01)′ + (2u03)•• + 3

(3u02)• + 24(1 − ν)

1 − 2ν
4u03

+ 2ν

1 − 2ν

(
3
(3u01)′ + 3

(3u02)•) = 0

⇔ 0 = 0
√

.

All other combinations of cn and ξ k3 cannot be checked within the framework of a second-order complete plate
theory because they require higher-order dcps.

It has been proved in [20] that generic plate theories are N th-order series expansions of the exact solution
of the 3D theory. Kienzler and Kashtalyan [9] confirmed this result by a particular example for which a closed-
form solution of the 3D theory is available. It is thus obvious that the reduction equations of the complete
plate theories satisfy the specific local conditions up to their respective order of approximation. So, our result
is reasonable.

After determination of additional dcps through the specific local conditions, the two coefficients 0u43 and
0u63 still remain undetermined in [10]. The above mentioned paper [9] of Kienzler and Kashtalyan solved that
problem by employing an exact solution of the three dimensional theory of linear elasticity for a special case
of plate support and loading. This exact solution is developed into a Taylor series and then compared with
the displacement ansatz of Kienzler and Schneider (cf. [10, (57)]) under the same loading and supporting
conditions term by term. The comparison gives the reduction PDEs of 0u43 and

0u63. As it turns out, the third
and fourth-order complete plate theories lead to the same outcome for both reduction PDEs but in a more
systematic way.

8 Conclusion

By partial integration only in ξ1- and ξ2-direction, substitution of the test functions by its Taylor series and
applying the fundamental lemma of the calculus of variations, we obtain from the first variations of the dimen-
sionless potential energy and its dimensionless complement the quasi two-dimensional problem. This problem
contains the two-dimensional equilibrium equations, the Neumann conditions at the midplane boundary and
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the Dirichlet conditions at the midplane boundary. By assuming the material to be isotropic, we are able to treat
the plate problem independently from the disc problem. In the quasi-two-dimensional problem, the geometric
constant c = h/

(√
12a

)
emerges in even powers. Because of its fast decaying behavior, we use it to approxi-

mate the quasi-two-dimensional problem. With this so-called consistent-approximation approach, we achieve
a N th-order generic plate theory by containing all terms with the magnitude c2m, m ≤ N and omitting all
terms with the magnitude c2n, n > N . Thus, we obtain PDE systems with 3(N + 1) equations and as many
unknown displacement coefficients. To reduce these PDE systems we apply the pseudo-reduction method. As
a result, the main PDE, which is the only one that needs to be solved, and a set of reduction PDEs, that express
the non-main variables in terms of the main variable, are obtained.

The zeroth- and first-order generic plate theories are calculated and it is shown that themain PDE of the first
order coincides with the classical Kirchhoff–Love plate theory. But, as a great disadvantage, not all non-main
variables in the first- and second-order generic plate theory can be determined independently. By adopting
a split of the displacement coefficients, introduced by Kienzler and Schneider [10], it is proved up to the
second-order generic plate theory that the zeroth- and first-order main and reduction PDEs written in the dcps
remain unchanged.Moreover, we assume that this unchangeability is a characteristic of any-order generic plate
theories and call it modularity of the displacement coefficients.We presume thismodularity also for all one- and
two-dimensional generic theories (e.g., the beam theory) and even for general anisotropy. As justification for
our assumption, we use the systematics of our proof and analogous proofs for the generic rod and beam theories.

Applied to the zeroth-, first- and second-order generic plate theories, the modularity shows that partially
the same reduction PDEs appear in different orders. We identify this outcome as reason why not all non-main
variables can be determined independently from each other. We solve this problem by putting equations from
different orders of the generic plate theories together to so-called complete plate theories. For example, the
first-order complete plate theory receives its first four equations from the first-order generic plate theory and
the last two equations from the second-order generic plate theory. These theories are called complete because
all dcps can be determined in only dependence of the main variable. By searching for complete plate theories
of second and third order, a scheme to set up a complete plate theory of any order is found. A proof that the
complete plate theories, gained by that scheme, always lead to systems, where every dcp can be determined
in only dependence of the main variable, is subject of ongoing research.

The results of the zeroth-, first- and second-order complete plate theories are inserted in the local form
of the equilibrium equations and the local Neumann boundary conditions on the upper and lower face of the
plate. It is shown that they fulfill a priori the specific local conditions in the framework of the approximation
under consideration.

By comparing the results of the complete plate theories with other authors, it is shown that they coincide
with the classical theories of Kirchhoff and Reissner and the results of Kienzler and Schneider [10]. For the
latter, the specific local conditions were also fulfilled, however, a posteriori.

Last but not least, by calculating the third- and fourth-order complete plate theories, we easily achieve the
PDEs for 0u43 and 0u63. These two dcps, which could not be calculated in [10], were previously elaborately
determined in Kienzler and Kashtalyan [9].
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