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Abstract Gross and Zagier conjectured that the CM values (of certain Hecke
translates) of the automorphic Green function Gs(z1, z2) for the elliptic mod-
ular group at positive integral spectral parameter s are given by logarithms of
algebraic numbers in suitable class fields. We prove a partial average version
of this conjecture, where we sum in the first variable z1 over all CM points of
a fixed discriminant d1 (twisted by a genus character), and allow in the sec-
ond variable the evaluation at individual CM points of discriminant d2. This
result is deduced from more general statements for automorphic Green func-
tions on Shimura varieties associated with the group GSpin(n, 2). We also use
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our approach to prove a Gross–Kohnen–Zagier theorem for higher Heegner
divisors on Kuga–Sato varieties over modular curves.

Mathematics Subject Classification 11G18 · 11G15 · 11F37

1 Introduction

The automorphic Green function for � = SL2(Z), also called the resolvent
kernel function for �, plays an important role in the theory of automorphic
forms, see e.g. [21,25]. It can be defined as the infinite series

Gs(z1, z2) = −2
∑

γ∈�

Qs−1

(
1 + |z1 − γ z2|2

2�(z1)�(γ z2)

)
,

where Qs−1(t) = ∫∞
0 (t + √

t2 − 1 cosh(u))−s du denotes the classical Leg-
endre function of the second kind. The sum converges absolutely for s ∈ C

with �(s) > 1, and z1, z2 in the complex upper half-plane H with z1 /∈ �z2.
Hence Gs is invariant under the action of � in both variables and descends to a
function on (X × X) \ Z(1), where X = �\H and Z(1) denotes the diagonal.
Along Z(1) it has a logarithmic singularity. The differential equation of the
Legendre function implies thatGs is an eigenfunction of the hyperbolic Lapla-
cian in both variables. It has a meromorphic continuation in s to the whole
complex plane and satisfies a functional equation relating the values at s and
1 − s.

1.1 The algebraicity conjecture

Gross and Zagier employed the automorphicGreen function in their celebrated
work on canonical heights of Heegner points on modular curves to compute
archimedian height pairings of Heegner points [23,24]. They also used it to
derive explicit formulas for the norms of singular moduli, that is, for the CM
values of the classical j-invariant. More precisely they computed the norms
of the values of j (z1) − j (z2) at a pair of CM points z1 and z2, by giving a
formula for the prime factorization. The main point of their analytic proof of
this result is that log | j (z1) − j (z2)| is essentially given by the constant term
in the Laurent expansion at s = 1 of Gs(z1, z2).

Gross and Zagier also studied the CM values of the automorphic Green
function at positive integral spectral parameter s = 1 + j for j ∈ Z>0 and
conjectured that these quantities should have striking arithmetic properties,
which resemble those of singular moduli (see Conjecture 4.4 in [24, Chapter
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CM values of higher automorphic Green functions 695

5.4], [23, Chapter 5.1], [43]). To describe their conjecture, let

Gm
s (z1, z2) = Gs(z1, z2) | Tm = −2

∑

γ∈Mat2(Z)
det(γ )=m

Qs−1

(
1 + |z1 − γ z2|2

2�(z1)�(γ z2)

)

(1.1)

be the translate of Gs by the m-th Hecke operator Tm , acting on any of the
two variables. Fix a weakly holomorphic modular form f =∑m c f (m)qm ∈
M !−2 j of weight −2 j for �, and put

G1+ j, f (z1, z2) =
∑

m>0

c f (−m)m jGm
j+1(z1, z2). (1.2)

For a discriminant d < 0 we write Od for the order of discriminant d in the
imaginary quadratic field Q(

√
d), and let Hd be the corresponding ring class

field, which we view as a subfield of the complex numbers C.

Conjecture 1.1 (Gross–Zagier) Assume that c f (m) ∈ Z for all m < 0. Let
z1 be a CM point of discriminant d1, and let z2 be a CM point of discriminant
d2 such that (z1, z2) is not contained in Z j ( f ) = ∑m>0 c f (−m)m j Z(m),
where Z(m) is the m-th Hecke correspondence on X × X.

Then there is an α ∈ Hd1 · Hd2 such that

(d1d2)
j/2G j+1, f (z1, z2) = wd1wd2

4
· log |α|, (1.3)

where wdi = #O×
di
.

Gross, Kohnen, and Zagier proved an average version of the conjecture
which roughly says that the sumof (d1d2) j/2G j+1, f (z1, z2) over all CMpoints
(z1, z2) of discriminants d1 and d2 is equal to log |β| for some β ∈ Q. More-
over, they provided numerical evidence in several cases [24, Chapter V.4],
[23, Chapter V.1]. Mellit proved the conjecture for z2 = i and j = 1 [35].
For a pair of CM points that lie in the same imaginary quadratic field, the
conjecture would follow from the work of Zhang on the higher weight Gross–
Zagier formula [49], provided that a certain height pairing of Heegner cycles
on Kuga–Sato varieties is non-degenerate. Viazovska showed in this case that
(1.3) holds for some α ∈ Q̄ and the full conjecture assuming that d1 = d2 is
prime [43,44]. Recently, Li proved another average version of the conjecture
for odd j [33]. When d1 and d2 are coprime fundamental discriminants, he
showed that the average over the Gal(Q̄/F)-orbit of the CM point (z1, z2) is
given by the logarithm of an algebraic number in F = Q(

√
d1d2).
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696 J. H. Bruinier et al.

In the present paper we prove stronger results, by only averaging over the
CM points z1 of one discriminant d1 and allowing for z2 individual CM points
of discriminant d2. Let Qd1 denote the set of integral binary positive definite
quadratic forms of discriminant d1 < 0. The group � acts onQd1 with finitely
many orbits. For Q ∈ Qd1 we write zQ for the corresponding CM point, i.e.,
the unique root of Q(z, 1) in H, and we let wQ be the order of the stabilizer
�Q . The divisor

C(d1) =
∑

Q∈Qd1/�

2

wQ
· zQ

on X is defined over Q. The Galois group Gal(Hd1/Q) of the ring class field
Hd1 acts on the points in the support of C(d1) by the theory of complex
multiplication.

Theorem 1.2 Let j ∈ Z>0. Let d1 < 0 be a fundamental discriminant, and let
d2 < 0 be a discriminant such that d1d2 is not the square of an integer. If j is
odd, let k = Q(

√
d1,

√
d2) and H = Hd2(

√
d1). If j is even, let k = Q(

√
d2)

and H = Hd2 . If z2 is a CM point of discriminant d2, then there exists an
algebraic number α = α( f, d1, z2) ∈ H and an r ∈ Z>0 such that

(d1d2)
j/2G j+1, f (C(d1), z

σ
2 ) = 1

r
log |ασ |

for every σ ∈ Gal(H/k).

Remark 1.3 If j is even, then r depends only on d2 but not on f, d1, z2. If j
is odd, then r may depend on d1 and d2, but not on f or z2. The two cases
require slightly different proofs, which explains the differences in the results.
We refer to Sect. 7 for details.

In the main text we will actually consider twists of the divisors C(d1) by
genus characters, and corresponding twisted versions of the above theorem
(see Corollary 7.15). As a corollary we obtain the following result.

Corollary 1.4 Let d1 < 0 be a fundamental discriminant and assume that
the class group of Od1 is trivial or has exponent 2. Let z1 be any CM point
of of discriminant d1 and let z2 be any CM point of discriminant d2 < 0
(not necessarily fundamental), where z1 �= z2 if d1 = d2. Then, there is an
α ∈ Hd1 · Hd2 and an r ∈ Z>0 such that

(d1d2)
j/2G j+1, f (z1, z2) = 1

r
log |α|.
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CM values of higher automorphic Green functions 697

Remark 1.5 Chowla [13] showed that there exist only finitely many imaginary
quadratic number fields of discriminant d1 such that the class group ofQ(

√
d1)

has exponent 2. A quick computation using sage [37] shows that out of the
305 imaginary quadratic fields of discriminant |d1| < 1000, a total of 52 have
class number one or exponent 2.

We prove the above results by establishing an explicit formula for such CM
values of automorphic Green functions. To simplify the exposition we assume
in the rest of the introduction that j is even. Our approach is based on the
realization of the modular curve X as an orthogonal Shimura variety and on
the regularized theta correspondence. A key observation is that Gs(C(d1), z2)
can be obtained as the regularized theta lift of a weak Maass form of weight
1/2. The proof of this fact involves a quadratic transformation formula for the
Gauss hypergeometric function, see Proposition 6.2.

Let L be the lattice of integral 2×2 matrices of trace zero equipped with the
quadratic form Q given by the determinant. Let SO(L)+ be the intersection
of the special orthogonal group SO(L) with the connected component of the
identity of SO(LR). We write D for the Grassmanian of oriented negative
definite planes in LR, and fix one connected componentD+. The conjugation
action of SL2(Z) on L induces isomorphisms PSL2(Z) ∼= SO(L)+, and X ∼=
SO(L)+\D+.

Let U ⊂ LQ be a rational negative definite subspace of dimension 2. Then
U together with the appropriate orientation determines a CM point

z+U = UR ∈ D+.

Moreover, we obtain even definite lattices

N = L ∩U, P = L ∩U⊥

of signature (0, 2) and (1, 0), respectively. The binary lattice N can be used to
recover the corresponding CM point on H in classical notation. Both lattices
determine holomorphic vector valued theta functions θN (−1) and θP of weight
1 and 1/2, where N (−1) denotes the positive definite lattice given by N as aZ-
module but equipped with the quadratic form −Q. According to [9, Theorem
3.7] there exists a vector valued harmonic Maass form GN of weight 1 for �

which maps to θN (−1) under the ξ -operator, see Sect. 3.2.
Since θP transforms with the Weil representation ρP of Mp2(Z) on

C[P ′/P], and GN transforms with the Weil representation ρN on C[N ′/N ],
their tensor product θP⊗GN can be viewed as a nonholomorphicmodular form
for Mp2(Z) of weight 3/2 with representation ρP ⊗ ρN

∼= ρP⊕N . More gen-
erally, the l-th Rankin–Cohen bracket [θP ,GN ]l defines a non-holomorphic
modular form of weight 3/2 + 2l with the same representation, see Sect. 3.1.
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698 J. H. Bruinier et al.

Recall that for any fundamental discriminant d < 0 the d-th Zagier lift [16]
can be viewed as a map

Za jd : M !−2 j −→ M !
1
2− j,ρ̄L

,

from weakly holomorphic modular forms of weight −2 j for the group � to
vector valued weakly holomorphic modular forms of weight 1/2 − j trans-
forming with the complex conjugate of the Weil representation of Mp2(Z) on
C[L ′/L], see Sect. 7. The following result is stated (in greater generality) as
Theorem 7.13 in the main text.

Theorem 1.6 Let f ∈ M !−2 j be as before and assume the above notation.
Then

G j+1, f (C(d1), z
+
U ) = −2 j−1 CT

〈
Za jd1( f ), [θP ,G+

N ] j/2
〉
,

where G+
N denotes the holomorphic part of GN . Moreover, CT denotes the

constant term of a q-series, 〈·, ·〉 the standard C-bilinear pairing on the group
ring C[(P ⊕ N )′/(P ⊕ N )], and Za jd1( f ) is viewed as a modular form with
representation ρ̄P⊕N via the intertwining operator of Lemma 3.7.

Note that this formula holds for any possible choice of the harmonic Maass
form GN mapping to θN (−1) under ξ . It is proved in [15,17] (and in greater
generality in the “Appendix” of the present paper) that there are particularly
nice choices, for which the Fourier coefficients of G+

N are given by logarithms
of algebraic numbers in the ring class field Hd2 , where d2 is the discriminant
of the lattice N . By invoking such a nice choice of GN , Theorem 1.2 can be
derived.

We illustrate this result by an explicit example. First note that for j = 2, 4, 6,
it is easily seen that G j+1 = G j+1, f for f = E3− j/2

4 /
, where E4 ∈ M4
is the normalized Eisenstein series of weight 4 and 
 ∈ S12 is the unique
normalized cusp form of weight 12 for �.

First consider the case j = 2, d1 = −4, and d2 = −23. For the CM point
1+i

√
23

2 of discriminant d2 the lattice N is isomorphic to the ring of integers in
Q(

√−23) together with the negative of the norm. Using the Fourier expansion
of Gs(z1, z2), we obtain numerically that

G3

(
i,
1 + i

√
23

2

)
≈ −1.000394556341.

Let G+
N (τ ) = ∑m c(m)φm̄q

m
23 be the holomorphic part of a harmonic Maass

form GN with the property that ξ(GN ) = θN (−1)(τ ), normalized such that
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CM values of higher automorphic Green functions 699

c(m) = 0 for m < −1. Here, φm̄ ∈ C[N ′/N ] only depends on m modulo
23. If m ≡ 0 mod 23, then φm̄ = φ0+N . If m �≡ 0 mod 23, then φm̄ =
φμ+N + φ−μ+N , where μ ∈ N ′/N satisfies Q(μ) ≡ m

23 mod Z. By Theorem
1.6 we obtain the formula

G3

(
i,
1 + i

√
23

2

)
= −25

23
c(7) − 4

23
c(14) + 11

23
c(19) + 20

23
c(22)

+ 1

2
c(23) + 378

23
c(−1).

Now let R−23 ⊂ H−23 be the ring of integers in the Hilbert class field H−23
of Q(

√−23). Let α ≈ 1.324717957244 be the unique real root of x3 − x − 1.
Then α is a generator of H−23 over Q(

√−23) and also a generator of the unit
group of the real subfield Q(α) ⊂ H−23. Using the results on harmonic Maass
forms of weight one of [17] (see Table 1), we obtain the explicit value

G3

(
i,
1 + i

√
23

2

)

= 1

23
log

∣∣∣∣∣α
294 · (α2 − 2α − 1)50 (3α2 − 5α + 1)8

(4α2 − α + 2)40 (α2 − 4α + 3)22 (−3α2 + 2α + 1)23

∣∣∣∣∣ .

The prime factorization of the argument of the logarithm is given in Sect. 8.1.
Its norm is 766 · 11−80 · 19−22 · 23−23. Further note that according to Theorem

1.6, the same form GN appears in the formula for G j+1

(
i, 1+i

√
23

2

)
for all

even j , see Sect. 8.2.

1.2 Higher automorphic Green functions on orthogonal Shimura
varietes

We shall actually consider orthogonal Shimura varieties of arbitrary dimension
in greater generality as we now describe. Let (V, Q) be a quadratic space
over Q of signature (n, 2), and let H = GSpin(V ). We realize the hermitian
symmetric space associated with H as the Grassmannian of negative oriented
planes in VR. For a compact open subgroup K ⊂ H(A f ), we consider the
Shimura variety

XK = H(Q)\(D × H(A f )/K ).

Let L ⊂ V be an even lattice and assume that K stabilizes L̂ and acts trivially
on the discriminant group L ′/L . For μ ∈ L ′/L and positive m ∈ Z + Q(μ),
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700 J. H. Bruinier et al.

there is a special divisor Z(m, μ) on XK . The automorphic Green function
associated with it is defined by

m,μ(z, h, s)

= 2
�(s + n

4 − 1
2 )

�(2s)

×
∑

λ∈h(μ+L)
Q(λ)=m

(
m

Q(λz⊥)

)s+ n
4− 1

2

F

(
s + n

4
− 1

2
, s − n

4
+ 1

2
, 2s; m

Q(λz⊥)

)

for (z, h) ∈ XK \ Z(m, μ) and s ∈ C with �(s) ≥ s0 := n
4 + 1

2 , see Sect. 4
and [8,36]. The sum converges normally and defines a smooth function in this
region with a logarithmic singularity along Z(m, μ). It has a meromorphic
continuation in s to the whole complex plane and is an eigenfunction of the
invariant Laplacian on XK .

In the special case when L is the even unimodular lattice of signature (2, 2),
and K ⊂ H(A f ) is the stabilizer of L̂ , the Shimura variety XK is isomorphic
to X × X andm,0(z, 1, s) is equal to the Hecke translate− 2

�(s)G
m
s (z1, z2) of

the automorphic Green function for SL2(Z) above, see Sect. 6.1 and Theorem
6.1.

The special values of automorphic Green functions at the harmonic point
s = s0 are closely related to logarithms of Borcherds products. The logarithm
of the Petersson metric of any Borcherds product is a linear combination of
the functions m,μ(z, h, s0). This implies in particular that the CM values
of such a linear combination of Green functions are given by logarithms of
algebraic numbers. In view of Conjecture 1.1 it is natural to ask whether the
values of (suitable linear combinations) of automorphic Green functions at
higher spectral parameter s0 + j with j ∈ Z>0 are also given by logarithms
of algebraic numbers. We shall prove this in the present paper for small CM
points.

Let k = 1−n/2 and let f ∈ Hk−2 j,ρ̄L be a harmonic Maass form of weight
k − 2 j for the conjugate Weil representation ρ̄L . Applying the j-fold iterate
raising operator to f we obtain a weakMaass form R j

k−2 j f of weight k. Recall
that the Siegel theta function θL(τ, z, h) associated with L has weight −k. We
consider the regularized theta lift

 j (z, h, f ) = 1

(4π) j

∫ reg

F
〈R j

k−2 j f (τ ), θL(τ, z, h)〉 dμ(τ),

where F denotes the standard fundamental domain for the action of SL2(Z)

on H, and the regularization is done as in [5]. It turns out that  j (z, h, f ) has
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CM values of higher automorphic Green functions 701

a finite value at every point (z, h). It defines a smooth function on the comple-
ment of a certain linear combination of special divisors, which is equal to an
explicit linear combination of the ‘higher’ Green functionsm,μ(z, h, s0+ j),
see Proposition 4.7.

Let U ⊂ V be a negative definite 2-dimensional subspace. Then T =
GSpin(U ) determines a torus in H , which is isomorphic to the multiplicative
group of an imaginary quadratic field, and UR together with the choice of an
orientation determines two points z±U in D. For every h ∈ T (A f ) we obtain a
(small) CM point (z+U , h) in XK . Moreover, there is a CM cycle

Z(U ) = T (Q)\({z±U } × T (A f )/KT ) −→ XK ,

which is defined over Q. As in the signature (1, 2) case above, the subspace
U determines definite lattices N = L ∩U , P = L ∩U⊥ and their associated
theta series.

Theorem 1.7 Let f ∈ M !
k−2 j,ρ̄L

and h ∈ T (A f ). Then

 j (z±U , h, f ) = CT
〈
f, [θP ,G+

N (τ, h)] j
〉
,

where G+
N (τ, h) denotes the holomorphic part of any harmonic Maass form

GN (τ, h) with L1GN (τ, h) = θN (τ, h).

As before, when the coefficients of f with negative index are integral,
we may conclude that  j (z±U , h, f ) = 1

r log |α| for some α ∈ Hd and r ∈
Z>0, where d = −|N ′/N |. Moreover, the Galois action on α is compatible
with the action on (z±U , h) by Shimura reciprocity. Theorem 1.7 (and certain
variants involving other regularized theta liftings) represents one of the main
ingredients of the proof of Theorem1.6. For the average values of higherGreen
functions at small CM cycles we obtain the following result (Theorem 5.4).

Theorem 1.8 Let f ∈ Hk−2 j,ρ̄L . The value of the higher Green function
 j (z, h, f ) at the CM cycle Z(U ) is given by

1

deg(Z(U ))
 j (Z(U ), f ) = CT

(〈 f +, [θP , E+
N ] j 〉
)− L ′ (ξk−2 j ( f ),U, 0

)
.

(1.4)

Here E+
N denotes the holomorphic part of the harmonic Maass form

E ′
N (τ, 0; 1), see (3.14), and L(g,U, s) is a certain convolution L-function

of a cusp form g ∈ S2−k+2 j,ρL and the theta series θP , see Lemma 5.3.

Theorem 1.8 is very similar to one of the main results, Theorem 1.2, of [12].
In loc. cit. it was conjectured that this quantity is the archimedian contribution
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702 J. H. Bruinier et al.

of an arithmetic intersection pairing of a linear combination of arithmetic
special divisors determined by the principal part of f and the CM cycle Z(U )

on an integral model of XK . Here the first quantity on the right hand side is
the negative of the non-archimedean intersection pairing. This conjecture was
proved in [4] formaximal even lattices. It would be very interesting to establish
a similar interpretation of Theorem 1.8. Is it possible to define suitable cycles
on fiber product powers of the Kuga–Satake abelian scheme over the canonical
integral model of XK whose non-archimedian intersection pairing is given by
the first quantity on the right hand side of (1.4)? We show that this question
has an affirmative answer answer when XK is a modular curve in Sect. 6.3,
see in particular Theorem 6.5.

1.3 A higher weight Gross–Kohnen–Zagier theorem

In the special case when V has signature (1, 2) and XK is a modular curve
such ‘higher’ Heegner cycles are defined in [46,49]. We will use Theorem 1.8
to prove a Gross–Kohnen–Zagier theorem in this setting.

Let M be a positive integer and let L be the lattice of signature (1, 2) and
level 4M defined in (6.5). Taking K = GSpin(L̂) ⊂ H(A f ), the Shimura
variety XK is isomorphic to the modular curve �0(M)\H. The special divisor
Z(m, μ) agrees with the Heegner divisor of discriminant D = −4Mm of [23].
Moreover, the small CM cycle Z(U ) agrees with a primitive Heegner divisor.
In particular, when the lattice N has fundamental discriminant D0, then Z(U )

is equal to a Heegner divisor Z(m0, μ0), where D0 = −4Mm0.
Let κ be an odd positive integer. For an elliptic curve E with complex

multiplication by
√
D, let Z(E) denote the divisor�−(E×{0})+D({0}×E)

on E × E , where � is the graph of multiplication by
√
D. Then Z(E)κ−1

defines a cycle of codimension κ − 1 in E2κ−2. By means of this construction
Zhang and Xue defined higher Heegner cycles Zκ(m, μ) on the (2κ −2)-tuple
fiber product of the universal degree M cyclic isogeny of elliptic curves over
the modular curve X0(M), see Sect. 6.3 for details. Zhang used the Arakelov
intersection theory of Gillet and Soulé to define a height pairing of such higher
Heegner cycles, which is a sum of local height pairings for each prime p ≤ ∞.
The archimedian contribution to the global height pairing

〈Zκ(m, μ), Zκ(m0, μ0)〉

is given by the evaluation of a higher Green function at Z(m0, μ0), which can
be computed bymeans of Theorem 1.8. The non-archimedian contribution can
be calculated using results of [12,46]. It turns out to agree with the negative
of the first quantity on the right hand side of (1.4), yielding a formula for the
global height pairing (Theorem 6.5). By invoking a refinement of Borcherds’

123



CM values of higher automorphic Green functions 703

modularity criterion, we obtain the following higher weight Gross–Kohnen–
Zagier theorem (Theorem 6.12 and Corollary 6.13).

Theorem 1.9 Assume the above notation and that D0 is a fixed fundamental
discriminant which is coprime to 2M. The generating series

∑

m,μ
(4Mm,D0)=1

〈Zκ(m, μ), Zκ(m0, μ0)〉 · qmφμ

is the Fourier expansion of a cusp form in Sκ+1/2,ρL (�0(D2
0)).

Note that this result does not depend on any assumption regarding positive
definiteness of the height pairing.We consider the generating serieswhich only
involves the Zκ(m, μ) with 4Mm coprime to D0 in order to avoid improper
intersections of Heegner cycles. It would be interesting to drop this restriction,
which causes the additional level of the generating series.

The structure of this paper is as follows. In Sect. 2 we recall some back-
ground on orthogonal Shimura vareties and Siegel theta functions, and in
Sect. 3 we collect some facts on weak Maass forms, differential operators,
and Rankin–Cohen brackets. Section 4 deals with higher automorphic Green
functions on orthogonal Shimura varieties, and in Sect. 5 the main formulas
for their values at small CM cycles are derived. We also comment on potential
analogues for big CM cycles, see Theorem 5.10. In Sect. 6 we specialize to
signature (2, 2) and prove a refinement of the main result of [43]. We also
specialize to signature (1, 2) and obtain some preliminary results towards
Theorem 1.6. We use this to prove the higher weight Gross–Kohnen–Zagier
theorem. In Sect. 7 we extend the results in the case of signature (1, 2) by
looking at more general theta kernels which involve different Schwartz func-
tions at the archimedian and non-archimedian places. In that way we prove
(a generalization of) Theorem 1.6, from which we deduce Theorem 1.2 and
Corollary 1.4. Section 8 deals with some numerical examples illustrating our
main results. Finally, in the “Appendix” we explain how the main results of
[15,17] on harmonicMaass forms of weight 1 can be extended tomore general
binary lattices.

We thank Ben Howard, Claudia Alfes-Neumann, Yingkun Li and Masao
Tsuzuki for helpful conversations and comments related to this paper. We also
thank the referee for his/her careful reading of our manuscript and for the
insightful comments.

2 Orthogonal Shimura varieties and theta functions

Throughout, we writeA for the ring of adles overQ andA f for the finite adles.
Moreover, we let Ẑ =∏p<∞ Zp be the closure of Z in A f .
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Let (V, Q) be a quadratic space over Q of signature (n, 2). We denote the
symmetric bilinear form associated to Q by (x, y) = Q(x+y)−Q(x)−Q(y).
Let H = GSpin(V ), and realize the corresponding hermitean symmetric space
as the GrassmannianD of two-dimensional negative oriented subspaces of VR.
This space has two connected components, D = D+ � D−, given by the two
possible choices of an orientation. It is isomorphic to the complex manifold

{z ∈ VC : (z, z) = 0 (z, z̄) < 0}/C
×. (2.1)

For a compact open subgroup K ⊂ H(A f ) we consider the quotient

XK = H(Q)\(D × H(A f )/K ).

It is the complex analytic space of a Shimura variety of dimension n, which
has a canonical model over Q.

There are natural families of special cycles which are given by embeddings
of rational quadratic subspaces V ′ ⊂ V of signature (n′, 2) for 0 ≤ n′ ≤ n.
As in [12] we consider these cycles for n′ = 0 and n′ = n − 1. Let U ⊂ V
be a negative definite 2-dimensional subspace. It defines a two point subset
{z±U } ⊂ D given by UR with the two possible choices of the orientation.
The group T = GSpin(U ) is isomorphic to the multiplicative group of an
imaginary quadratic field. It embeds into H acting trivially on U⊥. If we put
KT = K ∩ T (A f ) we obtain the CM cycle

Z(U ) = T (Q)\({z±U } × T (A f )/KT ) −→ XK . (2.2)

Here each point in the cycle is counted with multiplicity 2
wK ,T

, where wK ,T =
#(T (Q) ∩ KT ). The cycle Z(U ) has dimension 0 and is defined over Q.

To define special divisors, we consider a vector x ∈ V with Q(x) > 0, and
let Hx ⊂ H be its stabilizer. The hermitean symmetric space of Hx can be
realized as the analytic divisor

Dx = {z ∈ D : z ⊥ x}

in D. For h ∈ H(A f ) we let Kh,x = Hx (A f ) ∩ hKh−1 be the corresponding
compact open subgroup of Hx (A f ). Then

Hx (Q)\(Dx × Hx (A f )/Kh,x ) → XK , [z, h1] �→ [z, h1h]

gives rise to a divisor Z(h, x) in XK . Given m ∈ Q>0 and a K -invariant
Schwartz function ϕ ∈ S(V (A f )), we define a special divisor Z(m, ϕ) fol-
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lowing [29]: If there exists an x ∈ V (Q) with Q(x) = m, put

Z(m, ϕ) =
∑

h∈Hx (A f )\H(A f )/K

ϕ(h−1x)Z(h, x). (2.3)

If there is no such x , set Z(m, ϕ) = 0.

2.1 Siegel theta functions

Webriefly recall the properties of some Siegel theta functions. Formore details
we refer to [5,12,30].

We write �′ = Mp2(Z) for the metaplectic extension of SL2(Z) given by
the two possible choices of a holomorphic square root onH of the automorphy
factor j (γ, τ ) = cτ + d for γ = ( a b

c d

) ∈ SL2(Z) and τ ∈ H.
Let L ⊂ V be an even lattice and write L ′ for its dual. The discriminant

group L ′/L is a finite abelian group, equipped with a Q/Z-valued quadratic
form. We write SL = C[L ′/L] for the space of complex valued functions on
L ′/L . For μ ∈ L ′/L we denote the characteristic function of μ by φμ, so
that (φμ)μ forms the standard basis of SL . This basis determines a C-bilinear
pairing

〈x, y〉 =
∑

μ∈L ′/L
xμyμ

for x = ∑μ xμφμ and y = ∑μ yμφμ in SL . Recall that there is a Weil
representation ρL of �′ on SL . In terms of the generators S = (

(
0 −1
1 0

)
,
√

τ)

and T = (
(
1 1
0 1

)
, 1) it is given by

ρL(T )(φμ) = e(Q(μ))φμ, (2.4)

ρL(S)(φμ) = e((2 − n)/8)√|L ′/L|
∑

ν∈L ′/L
e(−(μ, ν))φν, (2.5)

see e.g. [5,8,12]. We frequently identify SL with the subspace of Schwartz-
Bruhat functions S(V (A f ))which are translation invariant under L̂ = L⊗Z Ẑ

and supported on L̂ ′. Then the representation ρL can be identified with the
restriction toMp2(Z) of the complex conjugate of the usualWeil representation
ω f on S(V (A f )) with respect to the standard additive character of A/Q.

If z ∈ D and x ∈ V (R) we write xz and xz⊥ for the orthogonal projections
of x to the subspaces z and z⊥ of V (R), respectively. The positive definite
quadratic form x �→ Q(xz⊥) − Q(xz) is called the majorant associated with
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z. For τ = u + iv ∈ H, (z, h) ∈ D × H(A f ), and ϕ ∈ S(V (A f )) we define a
Siegel theta function by

θ(τ, z, h, ϕ) = v
∑

x∈V (Q)

e
(
Q(xz⊥)τ + Q(xz)τ̄

) · ϕ(h−1x). (2.6)

Moreover, we define a SL -valued theta function by

θL(τ, z, h) =
∑

μ∈L ′/L
θ(τ, z, h, φμ)φμ. (2.7)

As a function of τ it transforms as a (non-holomorphic) vector-valuedmodular
form of weight n

2 − 1 with representation ρL for �′. As a function of (z, h) it

descends to XK if K stabilizes L̂ and acts trivially on L̂ ′/L̂ ∼= L ′/L .

3 Differential operators and weak Maass forms

Here we recall some differential operators acting on automorphic forms for �′
and some facts about weak Maass forms.

3.1 Differential operators

Throughout we use τ as a standard variable for functions on the upper com-
plex half plane H. We write τ = u + iv with u ∈ R and v ∈ R>0 for the
decomposition into real and imaginary part. Recall that the Maass raising and
lowering operators on smooth functions on H are defined as the differential
operators

Rk = 2i
∂

∂τ
+ kv−1,

Lk = −2iv2
∂

∂τ̄
.

Occasionally, to lighten the notation, we drop the weight k and simply write
L for the lowering operator, since its definition in fact does not depend on k.
The lowering operator annihilates holomorphic functions. Moreover, if g is a
holomorphic function on H, then

R−k(v
k ḡ) = 0. (3.1)

123



CM values of higher automorphic Green functions 707

For any smooth function f : H → C, k ∈ 1
2Z, and γ ∈ �′ we have

Rk( f |k γ ) = (Rk f ) |k+2 γ,

Lk( f |k γ ) = (Lk f ) |k−2 γ.

The hyperbolic Laplacian in weight k is defined by


k = −v2
(

∂2

∂u2
+ ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
. (3.2)

It commutes with the weight k action of �′ on functions on H. It can be
expressed in terms of Rk and Lk by

− 
k = Lk+2Rk + k = Rk−2Lk . (3.3)

For j ∈ Z≥0 we abbreviate

R j
k = Rk+2( j−1) ◦ · · · ◦ Rk,

L j
k = Lk−2( j−1) ◦ · · · ◦ Lk .

The following lemma is an easy consequence of (3.3).

Lemma 3.1 We have

R j
k−2Lk = Lk+2 j R

j
k + j (k + j − 1)R j−1

k .

If �′′ ⊂ �′ is a congruence subgroup we write Ak(�
′′) for the complex

vector space of smooth functions f : H → C satisfying the transformation
law f |k γ = f for all γ ∈ �′′. If f, g ∈ Ak(�

′′) we define their Petersson
inner product by

( f, g)Pet =
∫

�′′\H

f (τ )g(τ )vk dμ,

provided the integral converges. Here dμ(τ) = du dv
v2

is the usual invariant
volume form. If f ∈ Ak(�

′′) and g ∈ Al(�
′′), we have

Rk+l( f g) = (Rk f )g + f (Rlg). (3.4)
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Moreover, if g ∈ A−k−2(�
′′) we have the identity of invariant differential

forms

(
(Rk f )g + f (R−k−2g)

)
dμ(τ) = R−2( f g) dμ(τ) = −d(v−2 f g d τ̄ ).

(3.5)

In combination with (3.1) this identity implies the following lemma

Lemma 3.2 Let h ∈ Ak−2(�
′′) and assume that h has moderate growth at the

cusps. Then for any holomorphic cusp form g ∈ Sk(�′′) we have

(Rk−2(h), g)Pet = 0.

We will also need Rankin–Cohen brackets on modular forms. Let j ∈ Z≥0.
If f ∈ Ak(�

′′) and g ∈ Al(�
′′) we define the j-th Rankin–Cohen bracket by

[ f, g] j =
j∑

s=0

(−1)s
(
k + j − 1

s

)(
l + j − 1

j − s

)
f ( j−s)g(s), (3.6)

where f (s) := 1
(2π i)s

∂s

∂τ s
f . It is well known that the Rankin–Cohen bracket

can also be expressed in terms of iterated raising operators as

[ f, g] j = 1

(−4π) j

j∑

s=0

(−1)s
(
k + j − 1

s

)(
l + j − 1

j − s

)
(R j−s

k f )(Rs
l g).

(3.7)

The latter identity implies that [ f, g] j belongs to Ak+l+2 j (�
′′).Moreover, (3.6)

implies that the Rankin–Cohen bracket takes (weakly) holomorphic modular
forms to (weakly) holomorphic ones.

Lemma 3.3 Let f1 ∈ Ak(�
′′) and f2 ∈ Al(�

′′). There exists a function h ∈
Ak+l+2 j−2(�

′′) such that

[ f1, f2] j = 1

(4π) j

(
k + l + 2 j − 2

j

)
· f1 · R j

l ( f2) + Rk+l+2 j−2(h).

If f1 and f2 havemoderate growth, then h can also be chosen to havemoderate
growth.

Proof See [43, Proposition 3].
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3.2 Weak Maass forms

As before let L ⊂ V be an even lattice. Recall the Weil representation ρL
of �′ = Mp2(Z) on SL . Let k ∈ 1

2Z. For γ = (g, σ ) ∈ �′ and a function
f : H → SL we define the Petersson slash operator in weight k by

( f |k,ρL γ )(τ ) = σ(τ)−2kρL(γ )−1 f (gτ).

A smooth function f : H → SL is called a weak Maass form of weight k with
representation ρL for the group �′ (c.f. [9, Sect. 3]) if
(1) f |k,ρL γ = f for all γ ∈ �′;
(2) there exists a λ ∈ C such that 
k f = λ f ;
(3) there is a C > 0 such that f (τ ) = O(eCv) as v → ∞ (uniformly in u).

In the special case when λ = 0, the function f is called a harmonic weak
Maass form.1 The differential operator

f (τ ) �→ ξk( f )(τ ) := vk−2Lk f (τ )

defines an antilinear map from harmonic Maass forms of weight k to weakly
holomorphic modular forms of dual weight 2 − k for the dual representation.
Following [9], we denote the holomorphic part of any harmonic Maass form
f by f + and the non-holomorphic part by f −. As in [12] we write Hk,ρL for
the vector space of harmonic Maass forms of weight k (with representation ρL
for �′) whose image under ξk is a cusp form. The larger space of all harmonic
Maass forms of weight k is denoted by H !

k,ρL
.WewriteM !

k,ρL
,Mk,ρL , Sk,ρL for

the subspaces of weakly holomorphic modular forms, holomorphic modular
forms, and cusp forms, respectively. Then we have the chain of inclusions

Sk,ρL ⊂ Mk,ρL ⊂ M !
k,ρL

⊂ Hk,ρL ⊂ H !
k,ρL

,

and the exact sequence

0 M !
k,ρL

Hk,ρL

ξk S2−k,ρ̄L 0.

Important examples of weak Maass forms are given by Poincaré series, see
[8, Chapter 1.3]. Let Mν,μ(z) be the usual M-Whittaker function as defined in
[1], Chapter 13, p. 190. For convenience, for s ∈ C and v ∈ R>0 we put

Ms,k(v) = v−k/2M−k/2,s−1/2(v).

1 To lighten the terminology we will frequently drop the attribute ‘weak’ and simply speak of
harmonic Maass forms.
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The special value at s0 = 1 − k/2 is given by

Ms0,k(v) = ev/2 (�(2 − k) − (1 − k)�(1 − k, v)) .

For any m > 0 the function Ms,k(4πmv)e(−mu) is an eigenfunction of 
k
with eigenvalue (s − k/2)(1 − k/2 − s).

For simplicity we assume here that 2k ≡ − sig(L) = 2−n (mod 4). Then,
for μ ∈ L ′/L and m ∈ Z + Q(μ) with m > 0, the SL -valued function

Ms,k(4πmv)e(−mu)(φμ + φ−μ)

is invariant under the |k,ρ̄L -action of the stabilizer �′∞ ⊂ �′ of the cusp ∞.
We define the Hejhal-Poincaré series of index (m, μ) and weight k by

Fm,μ(τ, s, k) = 1

�(2s)

∑

γ∈�′∞\�′

[Ms,k(4πmv)e(−mu)(φμ + φ−μ)
] |k,ρ̄L γ.

(3.8)

The series converges normally for �(s) > 1 and defines a weak Maass form
of weight k with representation ρ̄L and eigenvalue (s − k/2)(1− k/2− s) for
�′, see e.g. [8, Theorem 1.9] and note that we work here with signature (n, 2)
instead of signature (2, n). If k ≤ 1/2, then the special value Fm,μ(τ, s0, k) at
s0 = 1 − k/2 defines an element of Hk,ρ̄L with Fourier expansion

Fm,μ(τ, s0, k) = e(−mτ)φμ + e(−mτ)φ−μ + O(1),

as v → ∞, see [8, Proposition 1.10]. The next proposition describes the
images of the Hejhal-Poincaré series under the Maass raising operator.

Proposition 3.4 We have that

1

4πm
RkFm,μ(τ, s, k) = (s + k/2)Fm,μ(τ, s, k + 2).

Proof Since Rk commutes with the slash operator, it suffices to show that

1

4πm
RkMs,k(4πmv)e(−mu) = (s + k/2)Ms,k+2(4πmv)e(−mu).

This identity follows from (13.4.10) and (13.1.32) in [1].

Corollary 3.5 For s = s0 + j = 1 − k/2 + j we have that

1

(4πm) j
R j
k−2 j Fm,μ(τ, s0 + j, k − 2 j) = j ! · Fm,μ(τ, s0 + j, k).
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The following lemma on Rankin–Cohen brackets of harmonic Maass forms
will be crucial for us. To lighten the notation we formulate it here for scalar
valued forms with respect to a congruence subgroup �′′ ⊂ �′. An analogue
also holds for vector valued forms.

Proposition 3.6 Let f be a harmonic Maass form of weight k and let g be a
harmonic Maass form of weight l for �′′. For any non-negative integer j we
have

(−4π) j L[ f, g] j =
(
l + j − 1

j

)
(R j

k f )(Lg)+(−1) j
(
k + j − 1

j

)
(L f )(R j

l g).

Proof According to (3.7) we have

(−4π) j L[ f, g] j =
j∑

s=0

(−1)s
(
k+ j−1

s

)(
l + j − 1

j − s

)
(LR j−s

k f )(Rs
l g)

+
j∑

s=0

(−1)s
(
k + j − 1

s

)(
l + j − 1

j − s

)
(R j−s

k f )(LRs
l g).

In the first sum on the right hand side we consider the s = j term separately
and in the second sum the s = 0 term. We obtain

(−4π) j L[ f, g] j (3.9)

=
(
l + j − 1

j

)
(R j

k f )(Lg) + (−1) j
(
k + j − 1

j

)
(L f )(R j

l g)

+
j−1∑

s=0

(−1)s
(
k + j − 1

s

)(
l + j − 1

j − s

)
(LR j−s

k f )(Rs
l g)

+
j∑

s=1

(−1)s
(
k + j − 1

s

)(
l + j − 1

j − s

)
(R j−s

k f )(LRs
l g).

Since f is a harmonic Maass form, Lemma 3.1 and (3.3) imply for s ≤ j − 1
that

LR j−s
k f = −( j − s)(k + j − s − 1)R j−s−1

k f.

Similarly, we have for s ≥ 1 that

LRs
l g = −s(l + s − 1)Rs−1

l g.
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Now a straightforward computation shows that the two sums over s on the
right hand side of (3.9) cancel. This implies the assertion.

Let M ⊂ L be a sublattice of finite index. A vector valued harmonic Maass
form f ∈ Hk,ρL can be naturally viewed as a harmonic form in Hk,ρM . Indeed,
we have the inclusions M ⊂ L ⊂ L ′ ⊂ M ′, and therefore an inclusion

L ′/M ⊂ M ′/M

and a natural map L ′/M → L ′/L , μ �→ μ̄.

Lemma 3.7 There is a natural map

resL/M : Hk,ρL → Hk,ρM , f �→ fM ,

given by

( fM)μ =
{
fμ̄ ifμ ∈ L ′/M,

0 ifμ /∈ L ′/M.

We refer to [12, Lemma 3.1] for a proof of the lemma and for more details
about this construction.

3.3 Binary theta functions

In this subsection we assume that V is a definite quadratic space of signature
(0, 2) and let L ⊂ V be an even lattice. Then the corresponding Grassmannian
consists of the two points z±V given by VR with the two possible choices of
an orientation. The Siegel theta function θL(τ, z, h) defined in (2.7) does not
depend on z, and therefore we often drop this variable from the notation. This
theta function is a non-holomorphic SL -valued modular form of weight −1
with representation ρL . Because of (3.1), we have

R−1θL(τ, h) = 0.

Following [12, Sect. 2] we define an SL -valued Eisenstein series of weight
� by

EL(τ, s; �) =
∑

γ∈�′∞\�′
[v(s+1−�)/2φ0] |�,ρL γ.
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For the Maass operators we have the well known identities

R�EL(τ, s; �) = 1

2
(s + 1 + �)EL(τ, s; � + 2), (3.10)

L�EL(τ, s; �) = 1

2
(s + 1 − �)EL(τ, s; � − 2). (3.11)

The following special case of the Siegel–Weil formula relates the average
of Siegel theta functions over the genus of L and such an Eisenstein series, see
e.g. [30, Theorem 4.1]. We use the Tamagawa measure on SO(V )(A) (such
that vol(SO(V )(Q)\ SO(V )(A)) = 2) and normalize the Haar measure on
the compact group SO(V )(R) to have total mass 1. This determines a Haar
measure dh on SO(V )(A f ) with vol(SO(V )(Q)\ SO(V )(A f )) = 2.

Proposition 3.8 With the above normalization of the Haar measure, we have

∫

SO(V )(Q)\SO(V )(A f )

θL(τ, h) dh = EL(τ, 0; −1).

Using the identities

L1EL(τ, s; 1) = s

2
EL(τ, s; −1), (3.12)

L1E
′
L(τ, 0; 1) = 1

2
EL(τ, 0; −1), (3.13)

which follow from (3.11), we see that the derivative E ′
L(τ, 0; 1) of the inco-

herent Eisenstein series of weight 1 is a preimage under the lowering operator
of the average of binary theta functions on the left hand side of Proposition 3.8.
Moreover, EL(τ ) = E ′

L(τ, 0; 1) is a harmonic Maass form of weight 1 with
representation ρL for �′. We write

E+
L (τ ) =

∑

m,μ

κ(m, μ)qmφμ (3.14)

for its holomorphic part. The Fourier coefficients of E ′
L(τ, 0; 1) are computed

in [31], see also [12, Theorem 2.6]. In particular, up to a common rational
scaling factor, the κ(m, μ) with (m, μ) �= (0, 0) are given by logarithms of
positive rational numbers.

Laterwewill also needharmonicMaass formsofweight 1 that are preimages
under the lowering operator of the individual binary theta functions θL(τ, h),
without taking an average over h. While the existence of preimages follows
from the surjectivity of the ξ -operator [9, Theorem 3.7], it was proved in [17]
and [15] that there are actually preimages with nice arithmetic properties.
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We let D be the discriminant of L and kD = Q(
√
D) ∼= V be the cor-

responding imaginary quadratic field. We write OD ⊂ kD for the order of
discriminant D in kD . Note that H(Q) ∼= k×

D and H(A f ) ∼= A
×
kD, f . There is

a canonical map from class field theory

[ ·, kD] : A
×
kD, f → Gal(kabD /kD),

where kabD denotes the maximal abelian extension of kD . The ring class field
HD ofOD is fixed by [Ô×

D, kD] and if Cl(OD) denotes the class group ofOD ,
we have the canonical isomorphisms (see e.g. [14, Sect. 15.E])

Cl(OD) ∼= k×
D\A

×
kD, f /Ô×

D
∼= Gal(HD/kD). (3.15)

Moreover, K = Ô×
D stabilizes L as above and acts trivially on L ′/L . Hence,

θL(τ, h) defines a function on

XK
∼= {z±V } × Cl(OD). (3.16)

By abusing notation, we will simply write the same symbol h for the element
of H(A f ) and for its class in H(Q)\H(A f )/K ∼= Cl(OD).

In [15] lattices of prime discriminant and in [17] lattices of fundamental
discriminant were considered. The following result generalizes Theorem 4.21
of [17] to arbitrary binary lattices and will be proved in the “Appendix” (see
Theorem 9.4).

Theorem 3.9 For every h ∈ Cl(OD), there is a harmonic Maaß form
GL(τ, h) ∈ H !

1,ρL
with holomorphic part

G+
L (τ, h) =

∑

μ∈L ′/L

∑

m�−∞
c+
L (h,m, μ)e(mτ)φμ

with the following properties:

(1) We have L1(GL(τ, h)) = θL(τ, h).
(2) For all μ ∈ L ′/L and all m ∈ Q with m ≡ Q(μ) mod Z and (m, μ) �=

(0, 0), there is an αL(h,m, μ) ∈ H×
D such that

c+
L (h,m, μ) = −1

r
log |αL(h,m, μ)|, (3.17)

where r ∈ Z>0 only depends on L.
(3) The algebraic numbers αL(h,m, μ) satisfy the Shimura reciprocity law

αL(h,m, μ) = αL(1,m, μ)[h, kD].
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(4) Additionally, there is an αL(h, 0, 0) ∈ H×
D , such that

c+
L (h, 0, 0) = 2

r
log |αL(h, 0, 0)| + κ(0, 0).

4 Automorphic Green functions

In this section we return to the general case that L is an even lattice of signature
(n, 2). Throughout, we assume that the compact open subgroup K ⊂ H(A f )

stabilizes L̂ and acts trivially on L ′/L . Let f : H → SL be a weak Maass
form of weight k = 1 − n/2 with representation ρ̄L for �′. For z ∈ D and
h ∈ H(A f ) we consider the regularized theta integral

(z, h, f ) =
∫ reg

F
〈 f (τ ), θL(τ, z, h)〉 dμ(τ).

Here F denotes the standard fundamental domain for the action of SL2(Z) on
H and dμ(τ) = du dv

v2
. The regularization is done as in [5]. It turns out that

(z, h, f ) has a finite value at every point (z, h). It defines a smooth function
on the complement of a certain cycle in XK (see Proposition 4.1 below), and
it is locally integrable on XK .

Let μ ∈ L ′/L and m ∈ Z + Q(μ) with m > 0. For the Hejhal-Poincare
series of index (m, μ) defined in (3.8), the lift

m,μ(z, h, s) = (z, h, Fm,μ(τ, s, k)) (4.1)

is studied in detail in [8]. It turns out to be an automorphic Green function in
the sense of [36] and is therefore of particular significance.

4.1 Properties of automorphic Green functions

Let F(a, b, c; z) denote the Gauss hypergeometric function, see e.g. [1, Chap-
ter 15]. Then, according to [8, Theorem 2.14], we have for�(s) > s0 := n

4 + 1
2

and (z, h) ∈ XK \ Z(m, μ) that

m,μ(z, h, s) (4.2)

= 2
�(s + n

4 − 1
2 )

�(2s)

×
∑

λ∈h(μ+L)
Q(λ)=m

(
m

Q(λz⊥)

)s+ n
4− 1

2

F

(
s + n

4
− 1

2
, s − n

4
+ 1

2
, 2s; m

Q(λz⊥)

)
.

123



716 J. H. Bruinier et al.

The sumconverges normally on the above region and defines a smooth function
there. In s it has a meromorphic continuation to the whole complex plane. At
s = s0 it has a simple pole with residue proportional to the degree of Z(m, μ).

Let 
 be the SO(V )(R)-invariant Laplace operator on D induced by the
Casimir element of the Lie algebra of SO(V )(R), normalized as in [8]. Note
that 
 is a negative operator in this normalization, and that it is equal to
−8 times the Laplacian in [36]. According to [8, Theorem 4.6], for (z, h) ∈
XK \ Z(m, μ) and �(s) > s0, the Green function is an eigenfunction of 
,
more precisely


m,μ(z, h, s) = 1

2
(s − s0)(s + s0 − 1)m,μ(z, h, s).

The behavior of m,μ(z, h, s) near the divisor Z(m, μ) is described by the
following proposition.

Proposition 4.1 For any z0 ∈ D there exists a neighborhood U ⊂ D such
that the function

m,μ(z, h, s) − 2

�(2s)

∑

λ∈h(μ+L)∩z⊥0
Q(λ)=m

∫ reg

v>1
Ms,k(4πmv)e−2πmv+4πQ(λz)v

dv

v

is smooth on U. Here the regularized integral is defined as the constant term
at s′ = 0 in the Laurent expansion of the meromorphic continuation in s′ of

∫

v>1
Ms,k(4πmv)e−2πmv+4πQ(λz)vv−s′−1 dv.

We note that the latter integral exists if�(s′) is large and has a meromorphic
continuation in s′ because of the asymptotic expansion of the M-Whittaker
function, see (13.5.1) in [1]. Hence the regularized integral exists and has a
finite value for all s. Moreover, we note that the sum over λ in Proposition 4.1
is finite, since z⊥0 is a positive definite subspace of V (R). In particular we see
that m,μ(z, h, s) has a well defined finite value even on the divisor Z(m, μ).
However, it is not continuous along Z(m, μ). The proof of the proposition can
be given as in [5, Theorem 6.2].

Wemay use the asymptotic behavior of theM-Whittaker function to analyze
the regularized integral further. We have for v > 0 that

Ms,k(v) = e−v/2vs−k/2M(s + k/2, 2s, v) (4.3)

= �(2s)

�(s + k/2)
ev/2(1 + O(v−1))
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CM values of higher automorphic Green functions 717

as v → ∞. We extend the incomplete �-function �(0, t) = ∫∞
1 e−tv dv

v
to a

function onR≥0 by defining it as the regularized integral, that is, as the constant
term of the Laurent expansion at s′ = 0 of the meromorphic continuation of∫∞
1 e−tvv−s′ dv

v
. Hence we have

�̃(0, t) =
{

�(0, t) if t > 0,

0 if t = 0.

Using (4.3), it is easily seen that the function

2

�(2s)

∫ reg

v>1
Ms,k(4πmv)e−2πmv+4πQ(λz)v

dv

v

− 2

�(s + k/2)
�̃(0, −4πQ(λz))

is continuous in z. Taking into account higher terms of the asymptotic expan-
sion, one can also describe the behavior of the derivatives in z.

Corollary 4.2 For any z0 ∈ D there exists a neighborhood U ⊂ D such that
the function

m,μ(z, h, s) − 2

�(s + 1
2 − n

4 )

∑

λ∈h(μ+L)∩z⊥0
Q(λ)=m

�̃(0, −4πQ(λz))

is continuous on U.

Since�(0, t) = − log(t)+�′(1)+o(t) as t → 0, we see thatm,μ(z, h, s)
is locally integrable on XK and defines a current on compactly supported
smooth functions on XK . To describe it, we first fix the normalizations of
invariant measures. Using the projective model (2.1), we see that there is a
tautological hermitean line bundle L over D. Orthogonal modular forms of
weight w can be identified with sections of Lw. The first Chern form

� = −ddc log |(z, z̄)|
ofL is H(R)-invariant and positive.Wefix the corresponding invariant volume
form �n on XK and the volume form �n−1 on any divisor on XK .

Theorem 4.3 As a current on compactly supported smooth functions we have

(

 − 1

2
(s − s0)(s + s0 − 1)

) [
m,μ(z, h, s)

] = − n

2�(s + 1
2 − n

4 )
δZ(m,μ).
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718 J. H. Bruinier et al.

Here δZ(m,μ) denotes the Dirac current given by integration over the divisor
Z(m, μ) with respect to the measure �n−1.

This is essentially [36, Corollary 3.2.1], for the comparison of the normal-
izations of measures see also [11, Theorem 4.7].

Theorem 4.4 If V is anisotropic over Q or �(s) > 3
4n > 3

2 , then
m,μ(z, h, s) belongs to L2(XK ).

Proof This follows from [36, Theorem 5.1.1] by noticing that ρ0 = n
2 and

τ = 2− 2
n in the notation of loc. cit. Moreover, by equality (4.19) of [11], the

function m,μ(z, h, s) is a finite linear combination of the Green functions
G2s−1(x) of [36].

The Green function can be characterized as follows.

Proposition 4.5 Assume that �(s) > 3
4n > 3

2 . Let G(z, h, s) be a smooth
function on XK \ Z(m, μ) which is square integrable and satisfies the current
equation of Theorem 4.3. Then G(z, h, s) = m,μ(z, h, s) on XK \ Z(m, μ).

Proof We consider the function

g(z, h, s) = G(z, h, s) − m,μ(z, h, s).

It satisfies the current equation

(

 − 1

2
(s − s0)(s + s0 − 1)

)
[g(z, h, s)] = 0. (4.4)

Hence, by a standard regularity argument, g extends to a smooth function on
all of XK . By the hypothesis g belongs to L2(XK ). Since 
 is a negative
operator on L2(XK ) and �(s) > s0 = n

4 + 1
2 , the eigenvalue equation (4.4)

implies that g = 0.

Remark 4.6 Similar characterizations of m,μ(z, h, s) can also be obtained
for n ≤ 2 and �(s) > s0 by imposing additional conditions on the growth at
the boundary of XK , see e.g. Sect. 6.1 and [49, Sect. 3.4].

4.2 Positive integral values of the spectral parameter

Recall that k = 1 − n/2 and s0 = n
4 + 1

2 . In the present paper we are mainly
interested in the Green function m,μ(z, h, s) when the spectral parameter s
is specialized to s0 + j for j ∈ Z≥0. These special values can be described
using lifts of harmonicMaass forms.
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CM values of higher automorphic Green functions 719

Proposition 4.7 Let μ ∈ L ′/L and m ∈ Z + Q(μ) with m > 0. For j ∈ Z>0
let Fm,μ(τ, k − 2 j) ∈ Hk−2 j,ρ̄L be the unique harmonic Maass form whose
principal part is given by

Fm,μ(τ, k − 2 j) = e(−mτ)φμ + e(−mτ)φ−μ + O(1)

as v → ∞. Then

m,μ(z, h, s0 + j) = 1

(4πm) j j !
(
z, h, R j

k−2 j Fm,μ(τ, k − 2 j)
)

.

Proof The assertion is an immediate consequence of (4.1) and Corollary 3.5.

5 CM values of higher Green functions

Recall that k = 1 − n/2. Proposition 4.7 suggests to study for any harmonic
Maass form f ∈ Hk−2 j,ρ̄L its ‘higher’ regularized theta lift

 j (z, h, f ) := 1

(4π) j
(z, h, R j

k−2 j f ). (5.1)

Denote the Fourier coefficients of f by c±(m, μ) for μ ∈ L ′/L and m ∈
Z − Q(μ). Then  j (z, h, f ) is a higher Green function for the divisor

Z j ( f ) =
∑

m>0
μ∈L ′/L

c+(−m, μ)m j Z(m, μ) (5.2)

on XK . Here we compute the values of such regularized theta lifts at small
CM cycles.

Let U ⊂ V be a subspace of signature (0, 2) which is defined over Q and
consider the corresponding CM cycle defined in (2.2). For (z, h) ∈ Z(U ) we
want to compute the CM value  j (z, h, f ). Moreover, we are interested in
the average over the cycle Z(U ),

 j (Z(U ), f ) := 2

wK ,T

∑

(z,h)∈supp(Z(U ))

 j (z, h, f ). (5.3)

According to [38, Lemma 2.13], we have

 j (Z(U ), f ) := deg(Z(U ))

2

∫

h∈SO(U )(Q)\SO(U )(A f )

 j (z+U , h, f ) dh (5.4)
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720 J. H. Bruinier et al.

and deg(Z(U )) = 4
vol(KT )

.
The space U determines two definite lattices

N = L ∩U, P = L ∩U⊥.

The direct sum N ⊕ P ⊂ L is a sublattice of finite index. For z = z±U and
h ∈ T (A f ), the Siegel theta function θL(τ, z, h) splits as a product

θL(τ, z±U , h) = θP(τ ) ⊗ θN (τ, z±U , h).

In this case Lemma 3.1 of [12] implies for the C-bilinear pairings on SL and
SN⊕P , that

〈 f, θL〉 = 〈 fP⊕N , θP ⊗ θN 〉,

where fP⊕N is defined by Lemma 3.7. Hence wemay assume in the following
calculation that L = P ⊕ N if we replace f by fP⊕N . For h ∈ T (A f ) the
CM value we are interested in is given by the regularized integral

 j (z±U , h, f ) = 1

(4π) j

∫ reg

F
〈R j

k−2 j f, θP(τ ) ⊗ θN (τ, z±U , h)〉 dμ(τ).

To compute it, we first replace the regularized integral by a limit of truncated
integrals. If S(q) = ∑n∈Z

anqn is a Laurent series in q (or a holomorphic
Fourier series in τ ), we write

CT(S) = a0 (5.5)

for the constant term in the q-expansion.

Lemma 5.1 If we define

A0 = (−1) j CT
(〈( f +)( j)(τ ), θP(τ ) ⊗ φ0+N 〉),

where f + is the holomorphic part of f and g( j) := 1
(2π i) j

∂ j

∂τ j g, we have

 j (z±U , h, f )

= lim
T→∞

[
1

(4π) j

∫

FT

〈R j
k−2 j f (τ ), θP(τ ) ⊗ θN (τ, z±U , h)〉 dμ(τ) − A0 log(T )

]
.
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CM values of higher automorphic Green functions 721

Proof This result is proved in the same way as [12, Lemma 4.5]. In addition
we use the fact that for a polynomial P(v−1) =∑ j

�=0 c�v
−� in v−1 we have

∫ reg

v>1
P(v)

dv

v
= lim

T→∞

(∫ T

v=1
P(v)

dv

v
− c0 log(T )

)
.

Bymeans of (5.4) and the Siegel–Weil formula in Proposition 3.8, we obtain
the following corollary.

Corollary 5.2 We have

 j (Z(U ), f ) = deg Z(U )

2

× lim
T→∞

[
1

(4π) j

∫

FT

〈R j
k−2 j f (τ ), θP(τ ) ⊗ EN (τ, 0; −1)〉dμ(τ)

−2A0 log(T )
]
.

For any g ∈ S1+n/2+2 j,ρL we define an L-function by means of the convo-
lution integral

L(g,U, s) = ([θP(τ ), EN (τ, s; 1)] j , g(τ )
)
Pet. (5.6)

Here the Petersson scalar product is antilinear in the second argument. The
meromorphic continuation of the Eisenstein series EN (τ, s; 1) can be used to
obtain a meromorphic continuation of L(g,U, s) to the whole complex plane.
At s = 0, the center of symmetry, L(g,U, s) vanishes because the Eisenstein
series EN (τ, s; 1) is incoherent.
Lemma 5.3 Let g ∈ S1+n/2+2 j,ρL and denote by g = ∑m,μ b(m, μ)qmφμ

the Fourier expansion. Write θP =∑m,μ r(m, μ)qmφμ. Then L(g,U, s) can
also be expressed as

L(g,U, s) = 1

(4π) j

(
2 j−k

j

)
�( s2+1+ j)

�( s2 + 1)
· (θP ⊗ EN (τ, s; 1 + 2 j), g

)
Pet.

Morerover, it has the Dirichlet series representation

L(g,U, s) = 1

(4π) j

(
2 j − k

j

)
�( s2 + 1 + j)

�( s2 + 1)

�( s2 + n
2 + j)

(4π)
s
2+ n

2+ j

×
∑

μ∈P ′/P
m>0

r(m, μ)b(m, μ)m− s
2− n

2− j .
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Proof We rewrite the Petersson scalar product (5.6) using Lemmas 3.3 and
3.2. We obtain

L(g,U, s) = 1

(4π) j

(
2 j − k

j

)(
θP ⊗ (R j

1 EN (τ, s; 1)), g)Pet.

According to (3.10) we have

R j
� EN (τ, s; 1) = �( s2 + 1 + j)

�( s2 + 1)
EN (τ, s; 1 + 2 j),

and therefore

L(g,U, s) = 1

(4π) j

(
2 j − k

j

)
�( s2 + 1 + j)

�( s2 + 1)

(
θP ⊗ EN (τ, s; 1 + 2 j), g

)
Pet.

(5.7)

The latter scalar product can be computed by means of the usual unfolding
argument. We obtain

(
θP ⊗ EN (τ, s; 1 + 2 j), g

)
Pet

=
∫

�′∞\H

〈θP ⊗ v
s
2− jφ0+N , g〉v1+ n

2+2 j dμ(τ)

=
∑

μ∈P ′/P
m>0

r(m, μ)b(m, μ)

∫ ∞

0
e−4πmvv

s
2+ n

2+ j−1 dv

=
∑

μ∈P ′/P
m>0

r(m, μ)b(m, μ)(4πm)−
s
2− n

2− j�
( s
2

+ n

2
+ j
)

.

Inserting this into (5.7), we obtain the claimed Dirichlet series representation.

Theorem 5.4 Let f ∈ Hk−2 j,ρ̄L . The value of the higher Green function
 j (z, h, f ) at the CM cycle Z(U ) is given by

1

deg(Z(U ))
 j (Z(U ), f ) = CT

(〈 f +, [θP , E+
N ] j 〉
)− L ′ (ξk−2 j ( f ),U, 0

)
.

Here E+
N denotes the holomorphic part of the harmonic Maass form

E ′
N (τ, 0; 1), see (3.14). The Rankin–Cohen bracket is taken for the weights

(1, 1).
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CM values of higher automorphic Green functions 723

Proof According to Corollary 5.2 we have

 j (Z(U ), f ) = deg Z(U )

2

× lim
T→∞

[
1

(4π) j

∫

FT

〈R j
k−2 j f (τ ), θP(τ ) ⊗ EN (τ, 0; −1)〉dμ(τ)

−2A0 log(T )
]
.

We use the ‘self-adjointness’ of the raising operator (which is a consequence
of (3.5) and Stokes’ theorem) to rewrite this as

 j (Z(U ), f ) = deg Z(U )

2
(5.8)

× lim
T→∞

[
1

(−4π) j

∫

FT

〈 f (τ ), R j
−k(θP(τ ) ⊗ EN (τ, 0; −1))〉dμ(τ)

−2A0 log(T )
]
.

Here the vanishing of the boundary terms in the limit T → ∞ fol-
lows from Lemma 4.2 of [8] by inserting the Fourier expansions. Since
R−1EN (τ, 0; −1) = 0 and because of (3.13), we have

R j
−k (θP(τ ) ⊗ EN (τ, 0; −1)) =

(
R j
1−kθP(τ )

)
⊗ EN (τ, 0; −1)

= 2
(
R j
1−kθP(τ )

)
⊗ (L1E

′
N (τ, 0; 1)) .

By Proposition 3.6, we find

R j
−k (θP(τ ) ⊗ EN (τ, 0; −1)) = 2(−4π) j L[θP(τ ), E ′

N (τ, 0; 1)] j . (5.9)

Hence, we obtain for the integral

IT ( f ) := 1

(−4π) j

∫

FT

〈 f (τ ), R j
−k(θP(τ ) ⊗ EN (τ, 0; −1))〉 dμ(τ) (5.10)
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724 J. H. Bruinier et al.

that

IT ( f ) = 2
∫

FT

〈 f, L[θP , E ′
N (·, 0; 1)] j 〉 dμ(τ)

= 2
∫

FT

L〈 f, [θP , E ′
N (·, 0; 1)] j 〉 dμ(τ)

− 2
∫

FT

〈(L f ), [θP , E ′
N (·, 0; 1)] j 〉 dμ(τ).

The second summand on the right hand side can be interpreted as the Petersson
scalar product of [θP , E ′

N (·, 0; 1)] j and the cusp form ξk−2 j ( f ). The first
summand can be computed by means of Stokes’ theorem. We get

∫

FT

L〈 f, [θP , E ′
N (·, 0; 1)] j 〉 dμ(τ) = −

∫

FT

d
(〈 f, [θP , E ′

N (·, 0; 1)] j 〉 dτ
)

= −
∫

∂FT

〈 f, [θP , E ′
N (·, 0; 1)] j 〉 dτ

=
∫ iT+1

τ=iT
〈 f, [θP , E ′

N (·, 0; 1)] j 〉 dτ.

Consequently,

lim
T→∞
[
IT ( f ) − 2A0 log(T )

]

= 2 lim
T→∞

[∫ iT+1

τ=iT
〈 f, [θP , E ′

N (·, 0; 1)] j 〉 dτ − A0 log(T )

]

− 2 · ([θP , E ′
N (·, 0; 1)] j , ξk−2 j ( f )

)
Pet.

As in the proof of [12, Theorem 4.7] we find that the first term on the right
hand side is equal to

2 CT
(〈 f +, [θP , E+

N ] j 〉
)
.

Putting this into (5.8) and inserting (5.6), we obtain

 j (Z(U ), f ) = deg(Z(U ))
(
CT
(〈 f +, [θP , E+

N ] j 〉
)− L ′(ξk−2 j ( f ),U, 0)

)
.

This concludes the proof of the theorem.

In the same way one proves the following result for the values at individual
CM points.
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Theorem 5.5 Let f ∈ M !
k−2 j,ρ̄L

and h ∈ T (A f ). Then we have

 j (z±U , h, f ) = CT
(〈 f, [θP ,G+

N (τ, h)] j 〉
)
.

Here, G+
N (τ, h) denotes holomorphic part of any harmonic Maass form

GN (τ, h) ∈ H !
1,ρN

satisfying L1GN (τ, h) = θN (τ, h).

By taking the particulary nice preimages GN (τ, h) from Theorem 3.9, we
obtain the following algebraicity statement. We use the same notation as in
Theorem 3.9, in particular, D < 0 denotes the discriminant of N , kD =
Q(

√
D), and we write HD for the ring class field of the order OD ⊂ kD of

discriminant D.

Corollary 5.6 Assume that f ∈ M !
k−2 j,ρ̄L

has integral Fourier coefficients

and that Z j ( f ) is disjoint from Z(U ). For every h ∈ Cl(OD) there is an
αU, f (h) ∈ H×

D such that:

(1) We have

A j ·  j (z±U , h, f ) = −1

r
· log |αU, f (h)|,

where A ∈ Z>0 is the least common multiple of the levels of the lattices P
and N, and r ∈ Z>0 is a constant that only depends on L and D (but not
on f , h or j).

(2) The algebraic numbers αU, f (h) satisfy the Shimura reciprocity law

αU, f (h) = αU, f (1)
[h, kD].

Proof Recall that we assume that L = P⊕N holds. According to [34, Lemma
2.6], the group GSpin(L̂) is the maximal subgroup of H(A f ) that preserves L
and acts trivially on L ′/L . Hence f is GSpin(L̂)-invariant and we can assume
that K = GSpin(L̂). We now show that KT

∼= Ô×
D . Consider the embedding

ι : T ↪→ H , where T acts trivially on U⊥. Since GSpin(N̂ ) = Ô×
D , we have

ι(Ô×
D) ⊂ KT . However, by the maximality of GSpin(N̂ ), the other inclusion

follows as well. Now the assertion follows from Theorem 3.9.

5.1 General CM cycles

Let d ∈ Z≥0, and let F be a totally real number field of degree d + 1 with
real embeddings σ0, . . . , σd . Let (W, QF ) be a quadratic space over F of
dimension 2 with signature (0, 2) at the place σ0 and signature (2, 0) at the
placesσ1, . . . , σd . LetWQ = ResF/Q W = (W, QQ)be the spaceW viewed as
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726 J. H. Bruinier et al.

aQ-vector space with theQ-valued quadratic form QQ(w) = trF/Q(QF (w)).
Then WQ is a quadratic space over Q of signature (2d, 2). In this subsection
we assume that there is an isometric embedding i : (WQ, QQ) → (V, Q),
which we fix throughout. This gives an orthogonal decomposition

V ∼= V0 ⊕ WQ.

Let T ⊂ H be the inverse image under the natural map of the subgroup
ResF/Q SO(W ) of SO(WQ). Then T is a torus in H , fitting into the commu-
tative diagramm

1 Gm T ResF/Q SO(W ) 1

1 Gm H SO(V ) 1.

The even Clifford algebra C0
F (W ) of W is a CM field E over F . It is easily

checked that T (Q) ∼= E×/F1, where F1 denotes the group of norm 1 elements
in F .

The subspaceWσ0 = W ⊗F,σ0 R ⊂ VR is a negative 2-plane. Together with
the choice of an orientation it determines two points z±σ0 in D. The image of
natural map

T (Q)\{z±σ0} × T (A f )/KT −→ XK ,

where KT = T (A f ) ∩ K , determines a CM cycle Z(W, σ0) of dimension 0,
which is defined over σ0(F). Its Galois conjugate σiσ

−1
0 (Z(W, σ0)) is defined

over σi (F) for 0 ≤ i ≤ d. It is equal to a certain Hecke translate of the CM
cycle Z(Wi , σi ), whereW0 = W , and (Wi , QF,i ) is the quadratic space over F
such that (Wi,v, Qi ) ∼= (Wv, QF ) for all primes (finite and infinite) v �= σ0, σi ,
and Wi,σ0 is positive definite and Wi,σi is negative definite. Notice that there
is an isometry of quadratic spaces WQ

∼= Wi,Q over Q. The specific Hecke
translate is given in [10, Sect. 2] and is related to the choices of isomorphisms
WQ

∼= Wi,Q andW f
∼= Wi, f . We refer to [10] for details. Hence the CM cycle

Z(W ) =
d∑

i=0

Z(Wi , σi ) (5.11)

is defined over Q. We remark that different i’s might give the same Galois
conjugate, in such a case Z(W ) is a multiple of the formal sum of the Galois
conjugates of Z(W, σ0). When F = Q, Z(W ) is a small CM cycle as defined
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before. When V0 = 0, i.e., V ∼= WQ, it is a big CM cycle studied in [10]. The
general case is studied by Peng Yu in his thesis [47].

Let N = L ∩ WQ and P = L ∩ V0, and let θP(τ ) be the Siegel-theta
function of weight n

2 − d associated to P . Associated to N ⊂ WQ = W , there
are d+1 coherent Hilbert Eisenstein series EN (τ , s; 1(i)) of weight 1(i) over
F (0 ≤ i ≤ d) and one incoherent Hilbert Eisenstein series EN (τ , s; 1) of
weight 1 = (1, . . . , 1). Here 1(i) is obtained from 1 by replacing the i-th entry
1 by −1 as in [10, Sect. 5]. These Eisenstein series are related by the identity

L1,i E
′
N (τ , 0; 1) = 1

2
EN (τ , 0; 1(i)). (5.12)

Here L1,i is the Maass lowering operator with respect to the variable τi . In
particular, if we denote by H → H

d+1, τ �→ τ
 = (τ, . . . , τ ) the diagonal
embedding, we have

L1E
′
N (τ
, 0; 1) = 1

2

∑

i

EN (τ
, 0; 1(i)).

The same argument as in Corollary 5.2 (see also [47] or [10]) leads to the
following proposition.

Proposition 5.7 Let the notation be as above, and let f ∈ Hk−2 j,ρ̄L . Then the
CM value of the higher Green function  j (z, h, f ) is given by

 j (Z(W ), f )

= deg Z(W, σ0)

2(4π) j

∫ reg

F

〈
R j
k−2 j f, θP ⊗

∑

i

EN (τ
, 0; 1(i))〉 dμ(τ)

= deg Z(W, σ0)

(−4π) j

∫ reg

F

〈
f, R j

−k(θP ⊗ L1E
′
N (τ
, 0; 1))

〉
dμ(τ).

In order to derive an explicit formula for this CM value analogous to The-
orem 5.4, we need to find an explicit modular form G on H (smooth and with
possible ‘poles’ at cusps) such that

L2−k+2 j (G) = R j
−k

(
θP ⊗ L1E

′
N (τ
, 0; 1)) . (5.13)

In the case of small CM cyles, that is, for d = 0 we could use (5.9) for this
purpose.

There is one further case, in which we can determine a function G, this
is the case when d = 1 and V0 = 0, which we assume for the rest of this
subsection. These conditions imply that F is real quadratic, V = ResF/Q(W )
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has signature (2, 2), L = N , and k = 0. The function G is obtained using
a Cohen operator on Hilbert modular forms, which is a slight variant of the
Rankin–Cohen bracket considered in Sect. 3.1. Let g : H

2 → C be a smooth
Hilbert modular form of weight (k1, k2) for some congruence subgroup of
SL2(F). Define the j-th Cohen operator as

C j (g)(τ ) = 1

(2π i) j

j∑

s=0

(−1)s
(
k1 + j − 1

s

)
(5.14)

×
(
k2 + j − 1

j − s

)(
∂ j−s

∂τ
j−s
1

∂s

∂τ s2
g

)
(τ, τ ).

Then C j (g) is a smooth function onHwhich is modular in weight k1+k2+2 j
for some congruence subgroup. The following result generalizes Proposition
3.6.

Proposition 5.8 Let g be a smoothHilbert modular form of weight (k1, k2) for
the real quadratic field F. Assume that, as a function of the first variable, g is
annihilated by 
k1 , and, as a function of the second variable, g is annihilated
by 
k2 . Then for any non-negative integer j we have

(−4π) j L(C j (g)) =
(
k2 + j − 1

j

)
(R j

k1,1
Lk2,2g)(τ, τ )

+(−1) j
(
k1 + j − 1

j

)
(Lk1,1R

j
k2,2

g)(τ, τ ).

Applying this for g = E ′
N (τ1, τ2, 0, 1) we find:

Corollary 5.9 Assume that d = 1 and V = ResF/Q(W ) as above. Then

(−4π) j L2+2 jC j (E
′
N (·, 0, 1))

= R j
0

[(
L1,2E

′
N (·, 0; 1))(τ
) + (−1) j

(
L1,1E

′
N (·, 0; 1))(τ
)

]
.

Hence the function C j (E ′
N (·, 0, 1)) on the left hand side has essentially the

property that is required in (5.13) for the functionG, except for the sign (−1) j

which appears in addition on the right hand side. However, this sign can be
fixed by slightly redefining the CM cycle by putting

Z j (W ) = Z(W1, σ1) + (−1) j Z(W0, σ0). (5.15)

Now the analogue of Theorem 5.4 in this case is as follows.
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Theorem 5.10 Assume that d = 1 and V = ResF/Q(W ) as above. For f ∈
H−2 j,ρ̄L we have

1

deg(Z(W, σ0))
 j (Z j (W ), f )

= CT
(〈 f +, C j (E+

L )〉)− (C j (E
′
L(·, 0; 1)), ξ−2 j ( f )

)
Pet.

Here E+
L denotes the ‘holomorphic part’ of E ′

L(τ , 0; 1) (see [10, Proposition
4.6]), that is, the part of the Fourier expansion which is indexed by totally
positive ν ∈ F together with the holomorphic contribution of the constant
term. The Cohen operator is taken with respect to the parallel weight (1, 1).

We omit the proof since it is analogous to the one of Theorem 5.4 with
Proposition 3.6 replaced by Corollary 5.9.

The second term on the right hand side is the central derivative of the
Rankin–Selberg type integral

L(g,W, s) = (C j (EL(·, s; 1)), g)Pet.

for a cusp form g ∈ S2−2 j,ρL , similarly as in [23, Sect. III]. When f is weakly
holomorphic, this contribution vanishes, and Theorem 5.10 gives an explicit
formula for the value of the higher Green function j (z, h, f ) at the CM cycle
Z j (W ). Using the explicit formulas for the coefficients of E ′

L of we see that

d j/2
F  j (Z j (W ), f ) = C · logα (5.16)

for a constant C ∈ Q only depending on L and a positive rational number α

whose prime factorization can be determined explicitly. Here dF denotes the
discriminant of F .

It would be very interesting to generalize this result to general d ≥ 0. The
crucial point would be to obtain an analogue of Corollary 5.9 or some other
variant of (5.13). While there are Cohen operators for higher degree Hilbert
modular forms (see e.g. [32]) there does not seem to be a direct analogue of
Corollary 5.9.

6 The Gross–Zagier conjecture and higher Heegner cycles

Here we consider examples of our main results for n = 1, 2. These can be
used to prove certain cases of an algebraicity conjecture of Gross and Zagier
and a higher weight version of the Gross–Kohnen–Zagier theorem.
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6.1 The resolvent kernel

Let V = Mat2(Q)with the quadratic form Q(X) = det(X) of signature (2, 2).
The corresponding bilinear form is (X, Y ) = tr(XY ∗), where

(
a b
c d

)∗
=
(

d −b
−c a

)

denotes the adjugate matrix. We consider the even unimodular lattice L =
Mat2(Z) in V . In this case

H ∼= {(g1, g2) ∈ GL2 ×GL2 : det(g1) = det(g2)},

and the natural map H → SO(V ) is given by (g1, g2).X = g1Xg
−1
2 . The

space H × H can be identified with the Hermitian space D+ by the map

z = (z1, z2) �→ R�X (z) + R�X (z),

where

X (z) =
(
z1 −z1z2
1 −z2

)
∈ LC. (6.1)

Under this identification, the action of H(R) on D becomes the natural
action by fractional linear transformations. We fix the compact open subgroup
K = GSpin(L̂) ⊂ H(A f ). Then the corresponding Shimura variety XK is
isomorphic to X (1)2, where X (1) = SL2(Z)\H. If λ = ( a b

c d

) ∈ L , then

(λ, X (z)) = cz1z2 + dz1 − az2 − b,

(X (z), X (z)) = −4y1y2,

(λz, λz) = 2
|(λ, X (z))|2
(X (z), X (z))

= −|cz1z2 + dz1 − az2 − b|2
2y1y2

.

The automorphic Green function (4.2) can be interpreted as a function on
H × H. Using the fact that

Qs−1(t) = �(s)2

2�(2s)

(
2

1 + t

)s
F(s, s, 2s; 2

1 + t
), (6.2)
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where Qs−1(t) = ∫∞
0 (t+√

t2 − 1 cosh(u))−s du denotes the Legendre func-
tion, we obtain

m(z, s) = 2
�(s)

�(2s)

∑

λ∈L
Q(λ)=m

(
m

Q(λz⊥)

)s
F

(
s, s, 2s; m

Q(λz⊥)

)

= 4

�(s)

∑

λ∈L
Q(λ)=m

Qs−1

(
1 − 2Q(λz)

m

)
.

Herewe have dropped the subscriptμ from the notation inm,μ(z, h, s), since
L is unimodular, and the argument h ∈ H(A f ), since we have evaluated at
h = 1. With the above formula for (λz, λz) we get

m(z, s) = 4

�(s)

∑

γ=
(
a b
c d

)
∈L

det(γ )=m

Qs−1

(
1 + |cz1z2 + dz1 − az2 − b|2

2my1y2

)

= 4

�(s)

∑

γ∈L
det(γ )=m

Qs−1

(
1 + |z1 − γ z2|2

2m�(z1)�(γ z2)

)
.

Hence m(z, s) = − 2
�(s)G

m
s (z1, z2), where Gm

s (z1, z2) denotes the Green
function defined the introduction in (1.1). In particular, for m = 1 we obtain
the resolvent kernelGs = G1

s for the hyperbolic Laplacian. It has the following
properties, see [24, Chapter 2.2], [25].
(i) Gs is smooth on (X (1) × X (1)) \ Z(1), where Z(1) denotes the diagonal;

(ii) It satisfies 
iGs = s(1 − s)Gs , where 
i = −y2i

(
∂2

∂x2i
+ ∂2

∂y2i

)
is the

hyperbolic Laplacian in the variable zi for i = 1, 2;
(iii) We have Gs(z1, z2) = ez2 log |z1 − z2|2 + O(1) as z1 → z2, where ez2

denotes the order of the stabilizer of z2 in PSL2(Z);
(iv) Gs(z1, z2) = O(y1−s

1 ) as y1 → ∞ for fixed z2.
When�(s) > 1, these properties characterizeGs uniquely, see [49, Sect. 3.4].
Here, property (iv) replaces the integrability condition in the analogous result
Proposition 4.5.

Let j ∈ Z>0. For m > 0, let fm ∈ H−2 j,ρ̄L be the unique harmonic Maass
formwhose Fourier expansion starts with fm = q−m +O(1) as v → ∞. Then
according to (5.1) and Proposition 4.7 we have

 j (z, fm) = 1

(4π) j
(z, R j

−2 j fm) = −m jGm
1+ j (z1, z2). (6.3)
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It is easy to see that the two-dimensional, positive definite subspaces of V (Q)

are in one-to-one correspondence to pairs (z1, z2) of CM points lying in the
same imaginary quadratic field.

Consequently, Theorems 5.4 and 5.5 lead to formulas and algebraicity state-
ments for CM values of the Green functions G1+ j, f (z1, z2) defined in (1.2),
when evaluated at two different CMpoints z1 and z2, such thatQ(z1) = Q(z2).
In particular, Corollary 5.6 implies the following strengthening of a result due
to Viazovska [43, Theorem 7].

Theorem 6.1 Let z1, z2 ∈ X (1) be different CM points corresponding to
CM orders of discriminant D1 = t21D0 and D2 = t22D0 in the same
imaginary quadratic field Q(

√
D0). Moreover, let j > 0 and suppose that

f ∈ M !−2 j has integral Fourier coefficients. Then there is an α ∈ H×
D , where

D = lcm(t1, t2)2D0, such that

|D| jG1+ j, f (z
σ
1 , zσ2 ) = −1

r
log |ασ |

for every σ ∈ Gal(HD/Q(
√
D0)), and where r ∈ Z>0 only depends on D,

not on j or f .

6.2 Modular curves

While Theorem 6.1 gives the algebraicity of the values of higher Green func-
tions at a pair of CMpoints for the sameCMfield, we now consider evaluations
at pairs of CM points for different CMfields.We obtain new results in this case
by applying Theorems 5.4 and 5.5 for a suitable quadratic space of signature
(1, 2). Our argument also relies on a quadratic transformation formula for the
Gauss hypergeometric function.

Fix a positive integer M . Here we let

V = Mat02(Q) = {X ∈ Mat2(Q) : tr(X) = 0}

with the quadratic form Q(X) = M det(X) of signature (1, 2). The cor-
responding bilinear form is (X, Y ) = M tr(XY ∗). In this case H ∼= GL2
with the Clifford norm corresponding to the determinant, and the natural map
H → SO(V ) is given by g.X = gXg−1. The upper half plane H can be
identified with the hermitean spaceD+ by the map z �→ R�X (z) + R�X (z),
where

X (z) =
(
z −z2

1 −z

)
∈ LC. (6.4)
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Let L be the lattice

L =
{(

b −a/M
c −b

)
: a, b, c ∈ Z

}
(6.5)

in V . The dual lattice is given by

L ′ =
{(

b/2M −a/M
c −b/2M

)
: a, b, c ∈ Z

}
. (6.6)

We frequently identifyZ/2MZwith L ′/L via r �→ μr = diag(r/2M, −r/2M).
Here the quadratic formon L ′/L is identifiedwith the quadratic form x �→ −x2

on Z/2MZ. The level of L is 4M . We fix the compact open subgroup
K = GSpin(L̂) ⊂ H(A f ). Then the complex space of the corresponding
Shimura variety XK is isomorphic to the modular curve �0(M)\H.

Let m ∈ Q>0 and let μr ∈ L ′/L such that Q(μr ) ≡ m (mod 1). Then
D := −4Mm ∈ Z is a negative discriminant satisfying D ≡ r2 (mod 4M),
and we have

Z(m, μr ) = PD,r + PD,−r ,

where PD,r is the Heegner divisor defined in [23]. If λ =
(
b/2M −a/M

c −b/2M

)
∈ L ′

with Q(λ) = m, we denote the associated CM point by

zλ = b

2Mc
+

√
b2 − 4Mac

2M |c| ∈ H.

Using a similar calculation as in Sect. 6.1, we obtain

√
Q(λz⊥)

m
= |a − b�(z) + c|z|2|

2
√
Mmy

= 1 + |z − zλ|2
2y�(zλ)

. (6.7)

The automorphic Green function (4.2) can be interpreted as the function on H

given by

m,μ(z, s) = 2
�(s − 1

4)

�(2s)

∑

λ∈μ+L
Q(λ)=m

(
m

Q(λz⊥)

)s− 1
4

(6.8)

× F

(
s − 1

4
, s + 1

4
, 2s; m

Q(λz⊥)

)
.

Here we have dropped the argument h ∈ H(A f ), since we evaluated at h = 1.
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Proposition 6.2 Assume the above notation, and let GM,s(z1, z2) =
G1

M,s(z1, z2) denote the Green function for �0(M) as in [24, Chapter 2.2].
Then

m,μ(z, s) = − 2

�(s + 1
4)
GM,2s− 1

2
(z, Z(m, μ)).

Proof We employ the quadratic transformation formula for the Gauss hyper-
geometric function

F(a, a + 1

2
, c; w) =

(
1

1 + √
w

)2a
F

(
2a, c − 1

2
, 2c − 1; 2

√
w

1 + √
w

)
,

see [1, (15.2.20)], to deduce

(
m

Q(λz⊥)

)s− 1
4

F

(
s − 1

4
, s + 1

4
, 2s; m

Q(λz⊥)

)

=
( √

m√
Q(λz⊥) + √

m

)2s− 1
2

F

(
2s − 1

2
, 2s − 1

2
, 4s − 1; 2

√
m√

Q(λz⊥) + √
m

)
.

Applying (6.2) and (6.7) to the right hand side we get

(
m

Q(λz⊥)

)s− 1
4

F

(
s − 1

4
, s + 1

4
, 2s; m

Q(λz⊥)

)
(6.9)

= 2
3
2−2s�(4s − 1)

�(2s − 1
2 )

2
Q2s− 3

2

(√
Q(λz⊥)

m

)

= 2
3
2−2s�(4s − 1)

�(2s − 1
2 )

2
Q2s− 3

2

(
1 + |z − zλ|2

2y�(zλ)

)
.

Inserting this into (6.8), we obtain
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m,μ(z, s) = 2
5
2−2s �(s − 1

4)

�(2s)

�(4s − 1)

�(2s − 1
2 )

2

∑

λ∈μ+L
Q(λ)=m

Q2s− 3
2

(
1 + |z − zλ|2

2y�(zλ)

)

= 4

�(s + 1
4)

∑

λ∈(μ+L)/�0(M)
Q(λ)=m

∑

γ∈�0(M)/�0(M)λ

Q2s− 3
2

(
1 + |z − γ zλ|2

2y�(γ zλ)

)

= − 2

�(s + 1
4)
GM,2s− 1

2
(z, Z(m, μ)).

This concludes the proof of the proposition.

To state Theorem 5.4 in the present case, we first interpret the L-function
L(g,U, s) following [12, Sect. 7.2]. Let x0 ∈ L ′ be primitive and assume that
m0 = Q(x0) > 0. We let μ0 = x0 + L ∈ L ′/L . Throughout we assume
that D0 = −4Mm0 is a fundamental discriminant. We consider the CM cycle
Z(U ) associated with the negative definite subspaceU = V ∩ x⊥

0 . The corre-
sponding negative definite lattice N = L ∩U has determinant |D0|. Since D0
is fundamental, we have Z(U ) = Z(m0, μ0).

Let S−
2+4 j (�0(M)) denote the subspace of cusp forms in S2+4 j (�0(M))

which are invariant under the Fricke involution. Recall that there is a Shimura
lifting map Shm0,μ0 : S3/2+2 j,ρL → S2+4 j (�0(M)) which is given in terms of
Fourier series by

g =
∑

μ

∑

m>0

b(m, μ)qmφμ �→ Shm0,μ0(g) (6.10)

=
∞∑

n=1

∑

d|n
d2 j
(
D0

d

)
b

(
m0

n2

d2
, μ0

n

d

)
qn,

see [23, Sect. II.3]. Ifwe denote the Fourier coefficients of Shm0,μ0(g) by B(n),
thenwemay rewrite the formula for the image as the identity of Dirichlet series

L
(
Shm0,μ0(g), s

) =
∑

n>0

B(n)n−s = L(χD0, s − 2 j) ·
∑

n>0

b
(
m0n

2, μ0n
)
n−s .

(6.11)

The maps Shm0,μ0 are Hecke-equivariant and there is a linear combination
of them which determines an isomorphism of the subspaces of newforms
of S3/2+2 j,ρL and S−

2+4 j (�0(M)), see [41]. If g ∈ S3/2+2 j,ρL is a newform
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that corresponds to the normalized newform G ∈ S−
2+4 j (�0(M)) under the

Shimura correspondence, then

L
(
Shm0,μ0(g), s

) = b (m0, μ0) · L(G, s). (6.12)

Lemma 6.3 Let m0, μ0, D0, U be as above. If g ∈ S3/2+2 j,ρL has real coef-
ficients b(m, μ), then

L(g,U, s) = C(s, j) · (4πm0)
− s

2− 1
2− j L(χD0, s + 1)−1

×L
(
Shm0,μ0(g), s + 1 + 2 j

)
,

where

C(s, j) = 21−s�(s + 1 + 2 j)�(2 j + 1
2 )

(4π) j�(2 j + 1)�( s2 + 1)
.

In particular,

L ′(g,U, 0) = 22−4 jπ−3/2−2 j�(2 j + 1/2)

m j
0 deg(Z(U ))

b(m0, μ0)L
′(G, 1 + 2 j),

if g ∈ S3/2+2 j,ρL and G ∈ S2+4 j (�0(M)) are further related by (6.12).

Proof According to Lemma 5.3 we have

L(g,U, s) = 1

(4π) j

(
2 j − k

j

)
�( s2 + 1 + j)

�( s2 + 1)

�( s2 + 1
2 + j)

(4π)
s
2+ 1

2+ j

×
∑

μ∈P ′/P
m>0

r(m, μ)b(m, μ)m− s
2− 1

2− j ,

where we view g as a modular formwith representation ρP⊕N via Lemma 3.7.
Using (6.11) and the fact that b(Q(λ), λ) = 0 for λ ∈ P ′ unless λ ∈ P ′ ∩L ′ =
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Zx0, we obtain

∑

μ∈P ′/P
m>0

r(m, μ)b(m, μ)m− s
2− n

2− j

= 2
∞∑

l=1

b(Q(lx0), lx0)Q(lx0)
− s

2− 1
2− j

= 2m
− s

2− 1
2− j

0

∞∑

l=1

b(l2m0, lμ0)l
−s−1−2 j

= 2m
− s

2− 1
2− j

0 L(χD0, s + 1)−1L(Shm0,μ0(g), s + 1 + 2 j).

This implies the claimed formula with

C(s, j) = 2

(
2 j − k

j

)
�( s2 + 1 + j)�( s2 + 1

2 + j)

(4π) j�( s2 + 1)
.

Simplifying this gamma factor we obtain the first formula. For the derivative,
we use (6.12) and the fact that

deg(Z(U )) = 2
√|D0|

π
L(χD0, 1),

see [12, Lemma 6.3], to deduce the assertion.

Combining Theorem 5.4 and Lemma 6.3, we obtain the following result.

Theorem 6.4 Let f ∈ H1/2−2 j,ρ̄L and use the above notation. The value of
the higher Green function  j (z, f ) at the CM cycle Z(U ) is given by

1

deg(Z(U ))
 j (Z(U ), f )

= CT
(〈 f +, [θP , E+

N ] j 〉
)

− C(0, j)

(4πm0)
1
2+ j L(χD0, 1)

L ′(Shm0,μ0(ξ1/2−2 j f ), 1 + 2 j
)
.

Here E+
N denotes the holomorphic part of the harmonic Maass form

E ′
N (τ, 0; 1), see (3.14).
Let j ∈ Z>0 and let fm,μ ∈ H1/2−2 j,ρ̄L be the unique harmonicMaass form,

whose Fourier expansion starts with q−m(φμ +φ−μ)+O(1) as v → ∞. Then
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according to Propositions 4.7 and 6.2 we have

 j (z, fm,μ) = 1

(4π) j
(z, R j

1/2−2 j fm,μ) = −2m jGM,1+2 j (z, Z(m, μ)).

(6.13)

Hence Theorems 6.4 and 5.5 can be applied to obtain algebraicity results for
CM values of the higher Green function on the right hand side. We will come
back to this topic and some refinements in Sect. 7.

6.3 A Gross–Kohnen–Zagier theorem for higher weight Heegner cycles

Here we employ Theorem 6.4 together with some results of [46,49], to prove
a Gross–Kohnen–Zagier theorem for Heegner cycles on Kuga–Sato varieties
over modular curves, see Theorem 6.12.

We begin by recalling some basic facts on Kuga–Sato varieties and their
CM cycles following Zhang [46,49]. Let κ > 1 be an integer, and let D < 0 be
a discriminant. For an elliptic curve E with complex multiplication by

√
D, let

Z(E) denote the divisor class on E× E of �− (E×{0})+D({0}× E), where
� is the graph of multiplication with

√
D. Then Z(E)κ−1 defines a cycle of

codimension κ − 1 in E2κ−2. Denote by Sκ(E) the cycle

c
∑

σ∈P2κ−2

sgn(σ ) σ ∗(Z(E)κ−1),

where P2κ−2 denotes the symmetric groupof 2κ−2 letterswhich acts on E2κ−2

by permuting the factors, and c is a real number such that the self-intersection
of Sκ(E) on each fiber is (−1)κ−1.

When M is a product of two relatively prime integers bigger than 2, it can
be shown that the universal elliptic curve over the non-cuspidal locus of the
modular curve X (M) (over Z) with full level M can be extended uniquely to
a regular semi-stable elliptic curve E(M) over the whole X (M). The Kuga–
Sato variety Y = Yκ(M) is defined to be a certain canonical resolution of the
(2κ − 2)-tuple fiber product of E(M) over X (M), see [49, Sect. 2]. If y is a
CM point on X (M), the CM-cycle Sκ(y) over y is defined to be Sκ(Ey) in Y .

For a general integer M ≥ 1, we choose a positive integer M ′ such that
M |M ′ and M ′ is the product of two co-prime integers bigger than 2. Let
π : X (M ′) → X0(M) be the natural projection. If x is a CM point on X0(M),
then π∗(x) = w(x)

2

∑
i xi with π(xi ) = x and w(x) = |Aut(x)|. The CM-

cycle Sκ(x) over x is defined to be
∑

i Sκ(xi )/
√
degπ .

Let X0(M) and Y be the generic fibers of X0(M) and Y . For a CM point
x ∈ X0(M), let x̄ be its Zariski closure inX0(M). It is proved in [49] that Sκ(x̄)
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CM values of higher automorphic Green functions 739

has zero intersection with any cycle of dimension κ in Y which is supported in
the special fibers. Moreover, the class of Sκ(x) in H2κ−2(Y (C), C) vanishes,
which implies that there is a Green current gκ(x) on Y (C), unique up to the
image of ∂ and ∂̄ , such that

1

π i
∂∂̄ gκ(x) = δSκ (x),

where the current on the right hand side is theDirac current given by integration
over Sκ(x), and

∫
gκ(x)η = 0

for any ∂∂̄-closed form η on Y (C). The arithmetic CM-cycle Ŝκ(x) over x , in
the sense of Gillet and Soulé [22], is the arithmetic codimension κ cycle on Y
defined by

Ŝκ(x) = (Sκ(x̄), gκ(x)). (6.14)

Now let x and y be two different CM points on X0(M). Then the height
pairing of the CM cycles Sκ(x) and Sκ(y) on Y is defined as the arithmetic
intersection

〈Sκ(x), Sκ(y)〉 := (−1)κ(Ŝκ(x) · Ŝκ(y))GS. (6.15)

According to [49, Sect. 3.2], it decomposes into local contributions

〈Sκ(x), Sκ(y)〉 = 〈Sκ(x), Sκ(y)〉 f in + 〈Sκ(x), Sκ(y)〉∞,

with

〈Sκ(x), Sκ(y)〉 f in =
∑

p<∞
〈Sκ(x), Sκ(y)〉p = (−1)κ

∑

p<∞
(Sκ(x̄) · Sκ(ȳ))p,

(6.16)

〈Sκ(x), Sκ(y)〉∞ = 1

2
GM,κ (x, y). (6.17)

Here the last identity is [49, Proposition 3.4.1], and GM,κ (x, y) is the higher
Green function defined in [24, Eq. (2.10)]. Let U and m0 be as in Sect. 6.2.
Following [46], we define higher Heegner divisors for X0(M) as

Zκ(U ) = m
κ−1
2

0

∑

x∈Z(U )

Sκ(x),
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and

Zκ(m, μ) = m
κ−1
2
∑

x∈Z(m,μ)

Sκ(x).

It is our goal to compute the height pairing of these divisors in the case of
proper intersection.

Assume that D0 = −4Mm0 is fundamental and coprime to 2M (in par-
ticular Zκ(U ) = Zκ(m0, μ0)). Let m1 ∈ Q>0 and let μ1 ∈ L ′/L such that
Q(μ1) ≡ m1 (mod 1). Then D1 := −4Mm1 ∈ Z is a negative discriminant
which we assume to be coprime to D0.

Theorem 6.5 Let the notation be as above and assume that κ = 1+2 j > 1 is
an odd integer. Let fm1,μ1 ∈ H3/2−κ,ρ̄L be the unique harmonic Maass form,
whose Fourier expansion starts with q−m1(φμ1 + φ−μ1) + O(1).

(1) One has

〈Zκ(m1, μ1), Zκ(U )〉 f in = deg(Z(U ))

4
m

κ−1
2

0 · CT
(
〈 f +

m1,μ1
, [θP , E+

N ] κ−1
2

〉
)

.

(2) The global height pairing is given by

〈Zκ(m1, μ1), Zκ(U )〉 =
√
M�(κ − 1/2)

(4π)κ−1π3/2 L ′(Shm0,μ0(ξ3/2−κ fm1,μ1), κ
)
.

Proof By (6.17), (6.13), and Theorem 6.4, we have

〈Zκ(m1, μ1), Zκ(U )〉∞

= (m0m1)
κ−1
2

2
GM,κ (Z(U ), Z(m1, μ1))

= −m
κ−1
2

0

4


κ−1
2 (Z(U ), fm1,μ1)

= −m
κ−1
2

0
deg Z(U )

4

(
CT
(
〈 f +

m1,μ1
, [θP , E+

N ] κ−1
2

〉
)

− C(0, κ−1
2 )

(4πm0)
κ
2 L(χD0, 1)

L ′(Shm0,μ0(ξ3/2−κ fm1,μ1), κ
))

.

Using Propositions 6.7, 6.9 and Lemma 6.8 below, we find that

〈Zκ(m1, μ1), Zκ(U )〉 f in = m
κ−1
2

0
deg Z(U )

4
· CT
(
〈 f +

m1,μ1
, [θP , E+

N ] κ−1
2

〉
)

.
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Hence, we obtain for the global height pairing:

〈Zκ(m1, μ1), Zκ(U )〉

= m
κ−1
2

0

deg(Z(U ))C(0, κ−1
2 )

4(4πm0)
κ
2 L(χD0, 1)

L ′(Shm0,μ0(ξ3/2−κ fm1,μ1), κ
)
.

Moreover, a simple calculation shows that

deg Z(U ) = 2
√|D0|

π
L(χD0, 1),

C(0, κ−1
2 ) = 2(4π)−

κ−1
2 �(κ − 1/2).

Inserting these expressions, we obtain the asserted formula.

Corollary 6.6 Let the notation be as above and assume that κ = 1+ 2 j > 1
is an odd integer. Let f ∈ H3/2−κ,ρ̄L with Fourier coefficients c±(m, μ) and
define

Zκ( f ) =
∑

m>0
μ∈L ′/L

c+(−m, μ)Zκ(m, μ).

If c+(−m, μ) = 0 for all m > 0 with (4Mm, D0) �= 1, then

〈Zκ( f ), Zκ(U )〉 = 2
√
M�(κ − 1/2)

(4π)κ−1π3/2 L ′(Shm0,μ0(ξ3/2−κ f ), κ
)
.

Proof Since Zκ( fm1,μ1) = 2Zκ(m1, μ1), the corollary directly follows from
Theorem 6.5 by linearity.

We now provide the three auxiliary results that were used in the proof of
Theorem 6.5.

Proposition 6.7 Let the notation be as above and assume that κ = 1+2 j > 1
is odd. As in (3.14) let κ(m, μ) denote the (m, μ)-th Fourier coefficient of
E+
N (τ ). Then the (m1, μ1)-th Fourier coefficient of [θP , E+

N ] j is equal to

CT
(〈 f +

m1,μ1
, [θP , E+

N ] j 〉
)

= 2m j
1

∑

n≡r0r1 (2M)

n2≤D0D1

κ

(
D0D1 − n2

4M |D0| ,
2̃n√
D0

)
β j

(
n√
D0D1

)
,
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742 J. H. Bruinier et al.

where κ(m, μ) denotes the (m, μ)-th Fourier coefficient of E+
N (τ ) as in (3.14).

Moreover, 2̃ is an integer with 2 · 2̃ ≡ 1 (mod D0), and

β j (x) =
j∑

s=0

(
j − 1

2
s

)(
j
s

)
x2 j−2s(x2 − 1)s .

Proof Let a(n, ν) be the (n, ν)-th Fourier coefficient of the weight 1/2 theta
series θP(τ ). By definition, we have

[θP , E+
N ] j =

∑

n1,n2
ν1,ν2

a(n1, ν1)κ(n2, ν2)

×
j∑

s=0

(−1)s
(
j − 1

2
s

)(
j
s

)
n j−s
1 ns2q

n1+n2φν1φν2 .

Now the same argument as in the proof of [12, Lemma 7.13] shows that the
(m1, μ1)-th coefficient of [θP , E+

N ] j is equal to

∑

n1+n2=m1
ν1+ν2≡μ1 (mod L)

a(n1, ν1)κ(n2, ν2)
j∑

s=0

(−1)s
(
j − 1

2
s

)(
j
s

)
n j−s
1 ns2

=
∑

n≡r0r1 (2M)

n2≤D0D1

κ(
D0D1 − n2

4M |D0| ,
2̃n√
D0

)

(
1

4M |D0|
) j

×
j∑

s=0

(
j − 1

2
s

)(
j
s

)
n2 j−2s(n2 − D0D1)

s

= m j
1

∑

n≡r0r1 (2M)

n2≤D0D1

κ(
D0D1 − n2

4M |D0| ,
2̃n√
D0

)β j (
n√
D0D1

).

The (m1, −μ1)-th coefficient gives the same contribution.

Lemma 6.8 Let

Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n = 1

2n

[ n2 ]∑

k=0

(−1)k
(
2n − 2k

n

)(
n
k

)
xn−2k
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be the n-th Legrendre polynomial. Then

β j (x) = P2 j (x).

Proof Since P2 j satisfies the differential equation

(1 − x)2P ′′ − 2x P ′ + 2 j (2 j + 1)P = 0,

P2 j (x) is the unique polynomial

j∑

m=0

a2mx
2m

satisfying the recursion formula

a2m+2

a2m
= −(2 j − 2m)(2 j + 2m + 1)

(2m + 2)(m + 1)
, a0 = (−1) j

1

22 j

(
2 j

j

)
. (6.18)

A simple calculation shows that we can write

β j (x) =
j∑

m=0

b2mx
2m,

with b2m = (−1) j−m∑ j
s= j−m x (m)

s , and

x (m)
s = 1

22s

(
2 j

2 j − 2s

)(
2s
s

)(
s

j − m

)

= 1

22s
(2 j)!

(2 j − 2s)!s!(s − j + m)!( j − m)! .

Clearly, b0 = (−1) j 1
22 j
(2 j
j

)
. To show that b2m satisfies the recusion formula

(6.18), notice that

x (m)
s

x (m)
s+1

= 4(s + 1)(s + 1 − j + m)

(2 j − 2s)(2 j − 2s − 1)
,

x (m+1)
s

x (m)
s

= j − m

s + 1 − j + m
,

x (m+1)
s−1

x (m)
s

= 4s( j − m)

(2 j − 2s + 2)(2 j − 2s + 1)
.
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With these formulas, we can split

x (m+1)
s = x (m+1)

s,+ + x (m+1)
s,− ,

x (m+1)
s,+ = 4( j − m)(s + 1)

(2m + 2)(2m + 1)
x (m)
s+1, j − m − 1 ≤ s ≤ j − 1, x (m+1)

j,+ = 0,

x (m+1)
s,− = (2 j − 2m)(2 j + 2m − 2s + 1)

(2m + 2)(2m + 1)
x (m)
s ,

j − m ≤ s ≤ j, x (m)
j−m−1,− = 0.

Now it is straightforward to verify the following identities for j −m ≤ s ≤ j :

x (m+1)
s−1,+ + x (m+1)

s,− = (2 j − 2m)(2 j + 2m + 1)

(2m + 2)(m + 1)
x (m)
s .

Notice that the right hand side is independent of s. Adding them together, we
see that b2m satisfies the recursion formula (6.18). This proves that β j (x) =
P2 j (x).

We thank Ruixiang Zhang for showing one of us (T.Y.) the proof of the
above lemma.

Proposition 6.9 Let the notation be as before. In particular, assume that D0
is fundamental and (D0, 2MD1) = 1. Then

〈Zκ(m1, μ1), Zκ(U )〉 f in
= (m0m1)

κ−1
2
deg(Z(U ))

2

×
∑

n≡r0r1 (2M)

n2≤D0D1

Pκ−1

(
n√
D0D1

)
κ

(
D0D1 − n2

4M |D0| ,
2̃n√
D0

)
.

To prove this proposition, we need some preparations. Recall that D =
−4Mm is a negative discriminant and μ = μr = diag( r

2M , − r
2M ) where

D ≡ r2 (mod 4M). The ideal n = [M, r+√
D

2 ] in the quadratic order OD
of discriminant D has index M . It is invertible if the conductor of OD is
coprime to M . Following [12, Sect. 7.3], letZ(m, μ) be the moduli stack over
Z assigning to a scheme S overZ the groupoid of pairs (π : E → E ′, ι)where
(i) π : E → E ′ is a cyclic isogeny of elliptic curves over S of degree M ,
(ii) ι : OD ↪→ End(π) is an OD-action on π such that ι(n) ker π = 0.

Then in the complex fiber we have Z(m, μ)C = Z(m, μ) = PD,r + PD,−r
where PD,r is the Heegner divisor defined in [23, (1) and (2) on page 542].
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Lemma 6.10 Let c be the conductor of the order OD and put M ′ = (M, c).
Let Z̄(m, μ) be the Zariski closure of Z(m, μ) in X0(M). Then we have

Z(m, μ) ∼= Z̄(m, μ)

as stacks over Z[1/M ′].
We thank Ben Howard for communicating the following proof to us.

Proof We begin by showing thatZ(m, μ) defines a Cartier divisor onX0(M).
This can be checked étale locally. Fix a geometric point z → Z(m, μ) of
characteristic p, and let

Ôet
X0(M),z → Ôet

Z(m,μ),z (6.19)

be the canonical morphism of completed local rings. This morphism is surjec-
tive, and we need to show that the kernel is a principal ideal.

We first assume that p is coprime to c so that the order OD is maximal at
p. The completed local ring Ôet

Z(m,μ),z classifies deformations of the elliptic
curve Ez corresponding to z together with its OD-action. By the Serre-Tate
theorem, these are the same as deformations of the p-divisible group Ez[p∞]
together with its action of the maximal Zp-orderOD ⊗ Zp. The classification
of such deformations is a special case of [26, Theorem2.1.3]. If p is unramified
in Q(

√
D) it implies that Ôet

Z(m,μ),z is isomorphic to the Witt ring W of F̄p. If

p is ramified in Q(
√
D) it implies that

Ôet
Z(m,μ),z

∼= W ⊗Z OD.

Hence in both cases Ôet
Z(m,μ),z is a discrete valuation ring and (6.19) is a

surjective morphism of regular local rings of dimensions 2 and 1. This implies
that the kernel is principal, see e.g. Lemma 10.105.4 of [42].

Now assume that p is not coprime to c, andwrite c = c′ pt with c′ coprime to
p and t ∈ Z>0. The hypothesis of the lemma implies p � M . By the Serre-Tate
theorem, R = Ôet

X0(M),z classifies deformations of the isomorphism

πz : Ez[p∞] → E ′
z[p∞].

This is equivalent to deformations of Ez[p∞] alone, and so R ∼= W [[T ]]
(noncanonically) where W is the Witt ring of F̄p. The quotient

R/I = Ôet
Z(m,μ),z

classifies those deformations of Ez[p∞] for which the action of OD also
deforms.
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If p is split inQ(
√
D) then Ez is ordinary. For any complete localW -algebra

A, the Serre-Tate coordinates establish a bijection between the lifts of Ez[p∞]
and the elements of 1 + mA, where mA ⊂ A is the maximal ideal. Under this
bijection, the lifts of Ez[p∞] with itsOD ⊗ Zp-action correspond to the roots
of unity μpt ⊂ 1 + mA. It follows that I is the principal ideal generated by

(T + 1)p
t − 1.

Now suppose p is nonsplit in Q(
√
D) so that Ez is supersingular. In this

case, according to [45, Proposition 5.1], the deformation locus inside R of any
non-scalar endomorphism of Ez is a Cartier divisor. In particular, I ⊂ R is a
principal ideal.

Finally, we note that the Cartier divisor Z(m, μ) cannot have any vertical
components, because over any field there are only finitely many isomorphism
classes of elliptic curves with complex multiplication byOD . Hence Z(m, μ)

has to agree with Z̄(m, μ).

Assume from now on that D = D0 = −4Mm0 is fundamental and
(D0, 2M) = 1. Moreover, recall that D0 ≡ r20 (mod 4M). As in [12, Sect. 6],
let C be themoduli stack overZ assigning to a scheme S overZ the groupoid of
pairs (E, ι)where E is an elliptic curve over S and ι : OD ↪→ EndS(E) =: OE
is a homomorphism such that the main involution on OE gives complex con-
jugation onOD . According to [12, Lemma 7.10], we have an isomorphism of
stacks

j : C ∼= Z(m, μ), (E, ι) �→ (π : E → En = E/E[ι(n)], ι). (6.20)

Moreover, this map gives rise to a closed immersion (assumingM > 1without
loss of generality)

j : C −→ X0(M). (6.21)

Now let D1 be a discriminant which is coprime to D0 as before. Throughout,

wewriteni = [M,
ri+

√
Di

2 ] for the ideal inODi of indexM corresponding to Di
and ri . It is then easy to see that j∗Z(m1, μ1) = Z(m0, μ0)×X0(M)Z(m1, μ1)

is the intersection of Z(m0, μ0) and Z(m1, μ1). It represents triples (E, ι, φ)

where (E, ι) ∈ C and

φ : OD1 → OE,n0 = End(E → En0) (6.22)

such that φ(n1)E[n0] = 0. The intersection is a stack of dimension zero which
is supported in finitelymany closed fibers.Moreover, Lemma 6.10 implies that

j∗Z(m1, μ1) ∼= Z̄(m0, μ0) ×X0(M) Z̄(m1, μ1). (6.23)
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Indeed, it suffices to check this in the fiber above p for every prime p. If p � M
it is an immediate consequence of the lemma. On the other hand, if p | M
then p is split in Q(

√
D0), and hence both sides of (6.23) vanish. Indeed, the

points (E, ι) ∈ C(F̄p) are given by ordinary elliptic curves, which do not admit
additional complex multiplication by OD1 .

To describe the intersection further, we recall the special cycles Z(m, a, μ)

in C defined in [12, Sect. 6] (see also [28, Sect. 2.4]), where a is an ideal of
OD0 with quadratic form Q(x) = −x x̄/N(a), μ ∈ 1√

D0
a/a, and Q(μ) ≡ m

(mod 1). It assigns to every scheme S the groupoid of triples (E, ι, β) where

(i) (E, ι) ∈ C(S) and
(ii) β ∈ L(E, ι) 1√

D0
a such that N(β) = m N(a) and μ + β ∈ OEa.

Here

L(E, ι) = {x ∈ OE : ι(α)x = xι(ᾱ), α ∈ OD0}
is the lattice of special endomorphisms of (E, ι).

Lemma 6.11 Let the notation and assumption be as above. Then there is an
isomorphism

j∗Z(m1, μ1) ∼=
⊔

n≡r0r1 (2M)

n2≤D0D1

Z
(
D0D1 − n2

4M |D0| , n0,
n + r1

√
D0

2
√
D0

)
,

(E, ι, φ) �→ (E, ι, β)

with

2n = φ(
√
D1)ι(
√
D0) + ι(

√
D0)φ(

√
D1)

and

β = φ

(
r1 + √

D1

2

)
− n + r1

√
D0

2
√
D0

.

Proof The lemma is proved in [12, Lemma 7.12] on F̄p-points, the proof goes
through in general. Tracing back the proof, we obtain the stated formula for
2n.

Proof of Proposition 6.9 Since D0 is fundamental and coprime to M we
have Zκ(U ) = Zκ(m0, μ0). To compute the local contribution at p to
〈Sκ(x1), Sκ(x0)〉 f in , let xi ∈ Z(mi , μi ) and denote by x̄i the Zariski clo-
sure of xi in X0(M). Let (E, ι, φ) ∈ j∗Z(m1, μ1)(F̄p) correspond to the
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intersection of the divisors x̄1 and x̄0 in the fiber above p and put for con-
venience n = n((E, ι, φ)) = (φ(

√
D1)ι(

√
D0) + ι(

√
D0)φ(

√
D1)
)
/2. Then

OE,n0 contains the Clifford order S[D0,2n,D1] defined in [23, Chapter I.3]. By
means of [46, Proposition 3.1] we obtain

〈Sκ(x1), Sκ(x0)〉p = (−1)κ(Sκ(x̄1) · Sκ(x̄0))p (6.24)

= −Pκ−1

(
n√
D0D1

)
(x̄1 · x̄0)p.

Using the identification (6.23) together with (6.24), we find

(m0m1)
1−κ
2 〈Zκ(m1, μ1), Zκ(m0, μ0)〉 f in

= −
∑

p<∞

∑

x∈ j∗Z(m1,μ1)(F̄p)

Pκ−1

(
n(x)√
D0D1

)
i p(x)

|Aut(x)| log p,

where i p(x) = i p( j∗Z(m1, μ1), x) is the length of the local ring of
j∗Z(m1, μ1) at x . By virtue of Lemma 6.11 and [12, Theorem 6.4], we obtain

(m0m1)
1−κ
2 〈Zκ(m1, μ1), Zκ(U )〉 f in

= −
∑

n≡r0r1 (2M)

n2≤D0D1

Pκ−1

(
n√
D0D1

)
· d̂eg
(
Z
(
D0D1−n2

4M |D0| , n0,
n+r1

√
D0

2
√
D0

))

= deg(Z(U ))

2

∑

n≡r0r1 (2M)

n2≤D0D1

Pκ−1

(
n√
D0D1

)
· κ

(
D0D1−n2

4M |D0| ,
n+r1

√
D0

2
√
D0

)
.

Since n+r1
√
D0

2
√
D0

≡ 2̃n√
D0

(mod OD0), we have proved the proposition.

As before, let κ = 1+2 j > 1 be an odd integer.We consider the generating
series

Aκ(τ,U ) =
∑

m,μ

〈Zκ(m, μ), Zκ(U )〉 · qmφμ. (6.25)

In analogy with the Gross–Kohnen–Zagier theorem [23] it is expected that
Aκ(τ,U ) is a cusp form in Sκ+1/2,ρL , or equivalently a cuspidal Jacobi form of
weight κ+1 and indexM for the full Jacobi group.Note that the height pairings
〈Zκ(m, μ), Zκ(U )〉 may involve improper intersections of higher Heegner
cycles on Kuga–Sato varieties when (4Mm, D0) �= 1, a technical problem
which we do not consider in the present paper. Here we prove the following
version of the Gross–Kohnen–Zagier theorem.
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Theorem 6.12 Assume the above notation. In particular, let D0 be a fun-
damental discriminant which is coprime to 2M. There is a cusp form g =∑

m,μ b(m, μ)qmφμ in Sκ+1/2,ρL whose Fourier coefficients b(m, μ) satisfy

b(m, μ) = 〈Zκ(m, μ), Zκ(U )〉
for all μ ∈ L ′/L and m ∈ Q(μ) + Z with (4Mm, D0) = 1.

Proof The theorem is a direct consequence of Corollary 6.6 and themodularity
criterion in Proposition 6.16 below.

By means of Lemma 6.14 below, we obtain the following consequence.

Corollary 6.13 The generating series

Ãκ(τ,U ) =
∑

m,μ
(4Mm,D0)=1

〈Zκ(m, μ), Zκ(U )〉 · qmφμ (6.26)

belongs to Sκ+1/2,ρL (�0(D2
0)).

Lemma 6.14 Let g = ∑m,μ b(m, μ)qmφμ ∈ Sκ+1/2,ρL , and let R ∈ Z>0.
Then

g̃ =
∑

m,μ
(4Mm,R)=1

b(m, μ)qmφμ

belongs to Sκ+1/2,ρL (�0(R2)).

Proof Using the isomorphism between Sκ+1/2,ρL and Jacobi forms of weight
κ + 1 and index M , the assertion follows from [39, Lemma 2.4].

We now turn to the modularity criterion required for the proof of Theorem
6.12. We start with the following lemma.

Lemma 6.15 Let g = ∑m,μ b(m, μ)qmφμ ∈ Sκ+1/2,ρL , and let D0 be a
discriminant which is coprime to M. If b(m, μ) = 0 for all μ ∈ L ′/L and
m ∈ Q(μ) + Z with (4Mm, D0) = 1, then g = 0.

Proof This can be proved in the same way as [39, Proposition 3.1].

Let D0 be a discriminant which is coprime to M . We call a harmonic Maass
form f ∈ H3/2−κ,ρ̄L with Fourier coefficients c±(m, μ) admissible for D0 if
c+(−m, μ) = 0 for all m > 0 with (4Mm, D0) �= 1.

It is a consequence of Lemma 6.15 that for every g ∈ Sκ+1/2,ρL there exists
an f ∈ H3/2−κ,ρ̄L which is admissible for D0 such that ξ( f ) = g.
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Proposition 6.16 Let D0 be a discriminant which is coprime to M. Let

h =
∑

μ∈L ′/L

∑

m∈Q(μ)+Z

m>0

a(m, μ)qmφμ

be a C[L ′/L]-valued formal q-series satisfying a(m, μ) = a(m, −μ) for all
(m, μ). If

CT(〈 f, h〉) = 0

for every f ∈ M !
3/2−κ,ρ̄L

which is admissible for D0, then there is a g =∑
m,μ b(m, μ)qmφμ in Sκ+1/2,ρL whose Fourier coefficients b(m, μ) satisfy

b(m, μ) = a(m, μ)

for all μ ∈ L ′/L and m ∈ Q(μ) + Z with (4Mm, D0) = 1.

Proof For μ ∈ L ′/L and m ∈ Q(μ) + Z positive, we define coefficients
b(m, μ) as follows: If (4Mm, D0) �= 1 we consider the harmonic Maass form
fm,μ = q−m(φμ + φ−μ) + O(1) in H3/2−κ,ρ̄L . Choose an f ′

m,μ ∈ H3/2−κ,ρ̄L

which is admissible for D0 such that

ξ( f ′
m,μ) = ξ( fm,μ). (6.27)

If (4Mm, D0) = 1, then fm,μ is already admissible for D0. In this case we
simply put f ′

m,μ = fm,μ. In both cases we define

b(m, μ) = 1

2
CT(〈 f ′,+

m,μ, h〉),

where f ′,+
m,μ denotes the holomorphic part of f ′

m,μ. Note that we have
b(m, μ) = a(m, μ) when (4Mm, D0) = 1.

Now the generating series

g =
∑

μ∈L ′/L

∑

m∈Q(μ)+Z

m>0

b(m, μ)qmφμ
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satisfies CT(〈 f, g〉) = 0 for every f ∈ M !
3/2−κ,ρ̄L

. In fact, to see this we denote
the Fourier coefficients of f by c(n, ν) and write

f = 1

2

∑

μ∈L ′/L
m>0

c(−m, μ) fm,μ

= 1

2

∑

μ∈L ′/L
m>0

c(−m, μ) f ′
m,μ + 1

2

∑

μ∈L ′/L
m>0

c(−m, μ)( fm,μ − f ′
m,μ).

The second sum on the right hand side is weakly holomorphic because of
(6.27). Hence the first sum also has to be weakly holomorphic. Since the first
sum is in addition admissible for D0, we find by the hypothesis that

CT(〈 f, g〉) = 1

2

∑

μ∈L ′/L
m>0

c(−m, μ)CT(〈 f +
m,μ − f ′,+

m,μ, g〉).

Because the f ′
m,μ are admissible for D0, we have

CT(〈 f ′,+
m,μ, g〉) = CT(〈 f ′,+

m,μ, h〉) = 2b(m, μ) = CT(〈 f +
m,μ, g〉).

Consequently, CT(〈 f, g〉) = 0. Therefore Borcherds’ modularity criterion [6,
Theorem 3.1] implies that g ∈ Sκ+1/2,ρL .

7 Partial averages

In this section, we will use the higher automorphic Green functions for
SO(1, 2) to evaluate certain partial averages of the resolvent kernel for SL2(Z)

at positive integral spectral parameter as considered in Sect. 6.1. To this end
we employ and generalize and Theorems 5.5 and 6.4 of Sect. 6.2. Throughout
this section, we let V , L , and K be as in Sect. 6.2 but we restrict to level 1 for
simplicity. Thus, XK is isomorphic to the modular curve SL2(Z)\H.

The general idea of this section is to fix a fundamental discriminant d1 and
to consider the partial average

G j+1, f (C(d1), z2),

where we use the same notation as in the Introduction. We shall prove that at
any CM point z2 of discriminant d2 the CM value G j+1, f (C(d1), z2) is equal

to (d1d2)
j−1
2 log |α| for some α ∈ Q̄ (see Corollary 7.15 below). This result

proves Conjecture 1.1 in the case when the class group of Q(d1) is trivial.
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7.1 Twisted special divisors

To obtain a stronger result, and to make this approach work at all for odd j as
well, we also consider twisted partial averages, which we will now define.

Definition 7.1 Let 
 ∈ Z be a fundamental discriminant, p be a prime, and
λ ∈ V (Qp). If p � 
, we letχ
,p ∈ S(V (Qp)) be the characteristic function of

L ′
p := L ′ ⊗Z Zp. If p | 
, we put χ
,p(λ) = 0 unless λ =

(
b/2 −a
c −b/2

)
∈ L ′

p

with 4Q(λ) ∈ 
Zp. In the latter case, we let

χ
,p(λ) :=

⎧
⎪⎨

⎪⎩

(n, 
)p, if gcd(a, b, c, 
) = 1and [a, b, c]
represents n with gcd(
, n) = 1,

0, otherwise.

Here, (a, b)p denotes the p-adic Hilbert symbol. Finally, for λ = (λp)p ∈
V (A f ), we put

χ
(λ) =
∏

p<∞
χ
,p(λp).

The following lemma is a local variant of [23, I.2, Proposition 1] and we
leave the (completely analogous) proof to the reader.

Lemma 7.2 The function χ
,p is well-defined. Moreover, for p | 
 and λ =(
b/2 −a
c −b/2

)
∈ L ′

p with 4Q(λ) ∈ 
Zp, we have the following explicit formula:

χ
,p(λ) =

⎧
⎪⎨

⎪⎩

(a, 
)p if p � a,

(c, 
)p if p � c,

0 otherwise.

Using this formula it is easy to see that for λ ∈ L ′, we have χ
(λ) = 0 if

 � b2 − 4ac.

χ
(λ)=

⎧
⎪⎨

⎪⎩

(


n

)
if gcd(a, b, c, 
)=1 and [a, b, c]
represents n with gcd(
, n)=1

0 otherwise.

Moreover, when 
 | b2 − 4ac and gcd(a, b, c, 
) = 1, we obtain that

χ
(λ) =
(

n

)
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for any n with gcd(
, n) = 1 represented by [a, b, c]. This shows that on
L , our definition of χ
 agrees with the (generalized) genus character as in
[7,23]. In the following lemma, we write h · λ = hλh−1 for the action of
h ∈ GSpin ∼= GL2 on λ ∈ V .

Lemma 7.3 For h ∈ GSpin(L p) ∼= GL2(Zp) and λ ∈ L ′
p, we have

χ
,p(h · λ) = (det(h), 
)p · χ
,p(λ).

Proof Let S = ( 0 1−1 0

)
and put L̃ = LS. For λ ∈ L ′

p, we write and λ̃ = λS.

Then λ̃ is symmetric and Q(λ̃) = Q(λ). The group GL2(Zp) acts on L̃ via
h · λ̃ = hλ̃ht for h ∈ GL2(Zp). Moreover, we have

h · λ̃ = (det h) h̃ · λ.

It is clear that n is represented by the quadratic form associated to λ̃ (i.e.,
[a, b, c]) if and only if n is repesented by the form associated to h · λ̃ for any
h ∈ GL2(Zp).

This implies the statement of the lemma.

Definition 7.4 For λ =
(
b/2 −a
c −b/2

)
∈ L ′ with Q(λ) > 0, we write λ > 0 if

(
λ,

(
0 0
1 0

))
> 0.

This is the case if and only if the corresponding binary quadratic form [a, b, c]
is positive definite.

We let

K
 := {h ∈ K | (det(h), 
)A f = 1}.

ByLemma7.3, the functionχ
 : V (A f ) → {±1} is K
-invariant. For
 �= 1,
we have K
 �= K = GSpin(L̂), and then K
 has index 2 in K . Now assume
that 
 �= 1. Since H(A f ) = H(Q)+K , the Shimura variety XK
 then has
two connected components which are both isomorphic to XK

∼= SL2(Z)\H.
To describe this isomorphism, let �1 = K
 ∩ H(Q)+ = SL2(Z), choose

ξ ∈ K such that ξ /∈ K
 and put �ξ = (ξK
ξ−1)∩ H(Q)+ = SL2(Z). Then
(det(ξ), 
)A f = −1 and

H(A f ) = H(Q)+K
 � H(Q)+ξK
.
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We obtain an isomorphism

�1\D+ � �ξ\D+ → XK
 = H(Q)\(D × H(A f )/K
),

�1z �→ H(Q)(z, 1)K
 and �ξ z �→ H(Q)(z, ξ)K
.
For h ∈ H(A f ), we denote by c(λ, h) the “connected” cycle [29] corre-

sponding to λ on the component corresponding to the class of h. That is, we
obtain the cycle (which is really just a weighted point in our case) c(λ, h) as
the image of

�h,λ\D+
λ → �h\D+, �h,λz → �hz

where �h,λ ⊂ �h is the stabilizer of λ in �h andD+
λ is the unique point inD+,

such that (D+
λ , λ) = 0. Each point in the image is weighted by 2/|�h,λ|. We

keep the same notation for 
 = 1, where XK
 = XK has only one connected
component.

Definition 7.5 We define the following twisted divisors on XK
 (cf. also [7]).
Let r ∈ Z with 
 ≡ r2 mod 4 and let μ ∈ L ′/L with sgn(
)Q(μ) ≡
m mod Z. Define

Z
(m, h) :=
∑

λ∈V (Q) mod �h
Q(λ)=|
|m

λ>0

χ
(h−1λ)φrμ(h−1λ)c(λ, h). (7.1)

Note that since we restricted to the level one case, μ ∈ L ′/L is uniquely
determined by the condition sgn(
)Q(μ) ≡ m mod Z and therefore we
dropped μ from the notation. Also note that by definition, the cycle Z
(m, h)

is supported on the connected component corresponding to the class of h in
H(Q)\H(A f )/K
.

Remark 7.6 For 
 = 1, we have Z1(m, h) = C(D) = PD,s , where D =
−4m, s2 ≡ D mod 4 and PD,s is the Heegner divisor defined in [23].

7.2 Twisted Siegel and Millson theta functions

For the partial averages in the case of odd j , we also need the Millson theta
function. For

λ =
(
b/2 −a
c −b/2

)
∈ V (R)
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and z ∈ H � H̄ ∼= D we let

pz(λ) = −2− 1
2 (λ, X1(z)) = −1

2y
(c|z|2 − bx + a), (7.2)

where

X1(z) := 1√
2y

(−x x2 + y2

−1 x

)

is a normalized (i.e., (X1(z), X1(z)) = 1) generator of the positive line X (z)⊥,
and X (z) is defined in (6.4). Now suppose thatM is an even lattice of signature
(1, 2), and fix an isometric embedding σ : M ⊗ R → V (R). Then we define

θM
M (τ, z, h)

= v
∑

μ∈M ′/M

∑

λ∈V (Q)

pz(σ (λ))φμ(h−1λ)e
(
Q(λz⊥)τ + Q(λz)τ̄

)
φμ,

(7.3)

for τ ∈ H, z ∈ D, and h ∈ H(A f ). The Millson theta function has weight 1/2
in τ and transforms with the representation ρM .

For the twisted partial averages, we also need twisted variants of the Siegel
and the Millson theta functions. Let r ∈ Z with 
 ≡ r2 (mod 4). If M is any
lattice with quadratic form Q, we writeM
 for the rescaled latticeM
 = 
M
with the quadratic form Q
 = Q

|
| . Note that we have M ′

 = M ′ and thus

M ′

/M
 = M ′/
M . Following [2], we let

ψ
 : SL → SL
, φμ �→
∑

δ∈L ′/
L
Q
(δ)≡sgn(
)Q(μ) (Z)

δ≡rμ (L)

χ
(δ)φδ. (7.4)

If 
 > 0, this map is an intertwining operator for the Weil representation ρL
on SL and ρL
 on SL
 . If 
 < 0, it intertwines ρ̄L on SL and ρL
 on SL
 (see
[2, Proposition 3.2] and [7, Proposition 4.2]).

The twisted Siegel theta function for the lattice L is defined as

θL ,
(τ, z, h) :=
∑

μ∈L ′/L
〈θL
(τ, z, h), ψ
(φμ)〉φμ.

By the intertwining property of ψ
, it transforms as a vector valued modular
form of weight −1/2 in τ for the Weil representation ρL if 
 > 0 and for ρ̄L
if 
 < 0. Explicitly, we have
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θL ,
(τ, z, h) = v
∑

μ∈L ′/L

∑

λ∈V (Q)
Q
(λ)≡sgn(
)Q(μ) (Z)

χ
(h−1λ)φrμ(h−1λ)

×e

(
Q(λz⊥)

|
| τ + Q(λz)

|
| τ̄

)
φμ.

By Lemma 7.3 it is easy to see that h �→ θL ,
(τ, z, h) is invariant under K
.
To define the twisted Millson theta function, we embed (L
, Q
) isomet-

rically into V (R) via σ(λ) = 1√|
|λ and let θM
L


(τ, z) be as in (7.3). We then
define the twisted Millson theta function as

θM
L ,
(τ, z, h) =

∑

μ∈L ′/L
〈θM

L

(τ, z, h), ψ
(φμ)〉φμ.

It transforms of weight 1/2 with ρ̄L if 
 < 0 and with ρL if 
 > 0 and is also
K
-invariant.

Remark 7.7 Note that in our level 1 case, the function θL ,
 vanishes if
 < 0.
Similarly, θM

L ,
 = 0 if 
 > 0. For higher level, this is not the case. Moreover,
note that for 
 = 1, the map ψ
 is the identity on L ′/L .

A straightforward calculation shows that the theta lift against any of the
twisted theta functions can in fact be obtained by twisting the input function
using ψ
, which simplifies many calculations.

Lemma 7.8 For any v ∈ C[L ′/L], we have
〈v, θL ,
(τ, z, h)〉 = 〈ψ
(v), θL
(τ, z, h)〉.

The analogous formula holds with θL ,
 replaced by θM
L ,
 and θL
 replaced

by θM
L


.

7.3 Twisted theta lifts

Let j be an even positive integer, and let
 > 0 be a fundamental discriminant.
For f ∈ H1/2− j,ρ̄L we consider the twisted theta lift

̃
j

(z, h, f ) := 1

(4π) j/2

∫ reg

F
〈R j/2

1/2− j f (τ ), θL ,
(τ, z, h)〉 dμ(τ). (7.5)

Let fm ∈ H1/2− j,ρ̄L be the unique harmonicMaass formwhose Fourier expan-
sion starts with fm = qmφμ + O(1) as v → ∞. We now identify the theta lift
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with a twisted partial average of the higher Green function. Fix h ∈ H(A f ).
We then identify the connected component �h\D+ of XK
 with SL2(Z)\H.
The divisor Z
(m, h) is supported on this component and corresponds to the
divisor (det(h), 
)A f Z
(m) on SL2(Z)\H, where

Z
(m) =
∑

λ∈L ′ mod SL2(Z)
Q(λ)=m|
|

λ>0

2

w(λ)
zλ, (7.6)

zλ ∈ H is the CM point corresponding to λ, and w(λ) is the order of the
stabilizer of λ in SL2(Z). We denote by G1+ j (Z
(m, h), z) the function on
SL2(Z)\H defined by

G1+ j (Z
(m, h), z) = (det(h), 
)A f G1+ j (Z
(m), z).

We can evaluate this function at points (z, h) that lie on the connected com-
ponent corresponding to h as follows: write h = γ h0k with γ ∈ H(Q), k ∈
K
, such that γ −1z ∈ D+ ∼= H and h0 = 1 or h0 = ξ and put

G1+ j (Z
(m, h), (z, h)) = G1+ j (Z
(m, h), γ −1z)

= (det(h), 
)A f G1+ j (Z
(m), γ −1z).

Using Lemma 7.3, it is straightforward to check that the analogous identity
to (6.13) holds:

̃
j

(z, h, fm) = −2m j/2G1+ j (Z
(m, h), (z, h)), (7.7)

where the additional factor 2 is a result of the condition λ > 0 in the definition
of the twisted divisor (7.1). See also the analogous proof of Theorem 7.9 below
which takes the twist into account.

We now turn to the case of odd positive j . For a negative fundamental dis-
criminant 
 < 0 and a weak Maass form of weight −1/2 with representation
ρL we may consider the regularized theta lift

M

 (z, h, f ) =

∫ reg

F
〈 f (τ ), θM

L ,
(τ, z, h)〉 dμ(τ). (7.8)

For μ ∈ L ′/L and m ∈ Z − Q(μ) with m > 0, let Fm,μ(τ, s, −1/2) be the
Hejhal Poincaré series of weight −1/2 defined in (3.8) but with ρ̄L replaced
by ρL . We put

M

,m(z, h, s) = M


 (z, h, Fm,μ(τ, s, −1/2)). (7.9)

123



758 J. H. Bruinier et al.

By the usual argument it can be shown that the regularized theta integral is
well defined and smooth outside the special divisor Z
(m, 1) + Z
(m, ξ).
The following result gives an explicit formula for it analogous to Proposition
6.2.

Theorem 7.9 For z ∈ H ∼= D+, we have

M

,m(z, h, s) = − 16

√
m

�(s − 1/4)

×
∑

λ∈V (Q)
Q(λ)=m|
|

λ>0

φrμ(h−1λ)χ
(h−1λ)Q2s− 3
2

(
1 + |z − zλ|2

2y�(zλ)

)

= 8
√
m

�(s − 1/4)
G2s− 1

2
(Z
(m, h), (z, h)).

Proof Inserting the definition of the Poincaré series,we obtain by the unfolding
argument

M

,m(z, h, s)

= 1

�(2s)

∫ reg

�′∞\H

〈
Ms,− 1

2
(4πmv)e(−mu)(φμ + φ−μ), θM

L ,
(τ, z, h)
〉
dμ(τ)

= 2

�(2s)
√|
|

∑

λ∈V (Q)
Q(λ)=m|
|

χ
(h−1λ)φrμ(h−1λ)pz(λ)

×
∫ ∞

0
Ms,− 1

2
(4πmv) exp

(
−2π

Q(λz⊥)

|
| v + 2π
Q(λz)

|
| v

)
dv

v
,

wherewe also used pz(−λ) = −pz(λ) andχ
(−λ) = −χ
(λ) (since
 < 0).
To compute the latter integral, which is a Laplace transform, we use [20,

p.215 (11)] and obtain

∫ ∞

0
Ms,− 1

2
(4πmv) exp

(
−2π

Q(λz⊥)

|
| v + 2π
Q(λz)

|
| v

)
dv

v

= (4πm)
1
4

∫ ∞

0
M 1

4 ,s− 1
2
(4πmv) exp

(
−2πmv + 4π

Q(λz)

|
| v

)
v−3/4 dv

= (4πm)s+
1
4�

(
s + 1

4

)(
4πm − 4π

Q(λz)

|
|
)−s− 1

4

× F

(
s + 1

4
, s − 1

4
, 2s; 4πm|
|

4πm|
| − 4πQ(λz)

)
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= �

(
s + 1

4

)(
m|
|
Q(λz⊥)

)s+ 1
4

F

(
s + 1

4
, s − 1

4
, 2s; m|
|

Q(λz⊥)

)
.

Inserting this, we find

M

,m(z, h, s) = 2�(s + 1

4)√|
|�(2s)

∑

λ∈V (Q)
Q(λ)=m|
|

χ
(h−1λ)φrμ(h−1λ)pz(λ)

×
(

m|
|
Q(λz⊥)

)s+ 1
4

F

(
s + 1

4
, s − 1

4
, 2s; m|
|

Q(λz⊥)

)
.

Moreover, using 2
√
Q(λz⊥) = |pz(λ)|, we obtain

M

,m(z, h, s) = 4

√
m�(s + 1

4)

�(2s)

∑

λ∈V (Q)
Q(λ)=m|
|

χ
(h−1λ)φrμ(h−1λ)

× pz(λ)

|pz(λ)|
(

m|
|
Q(λz⊥)

)s− 1
4

F

(
s + 1

4
, s − 1

4
, 2s; m|
|

Q(λz⊥)

)
.

Using (6.9), we obtain

M

,m(z, h, s) = 8

√
m

�(s − 1/4)

×
∑

λ∈V (Q)
Q(λ)=m|
|

χ
(h−1λ)φrμ(h−1λ)
pz(λ)

|pz(λ)|Q2s− 3
2

(
1 + |z − zλ|2

2y�(zλ)

)
.

Note that pz(λ)
|pz(λ)| is constant on D+, and it is in fact equal to −1 if λ > 0 and

equal to 1 if λ < 0. Using χ
(−λ) = −χ
(λ) again, we finally obtain

M

,m(z, h, s) = − 16

√
m

�(s − 1/4)

×
∑

λ∈V (Q)
Q(λ)=m|
|

λ>0

χ
(h−1λ)φrμ(h−1λ)Q2s− 3
2

(
1 + |z − zλ|2

2y�(zλ)

)

= 8
√
m

�(s − 1/4)
G2s− 1

2
(Z
(m, h), (z, h)).
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This concludes the proof of the theorem.

In particular, at the harmonic point s = 5/4 (note that the input form has
weight −1/2), we get

M

,m(z, h, 5/4) = 8

√
mG2(Z
(m, h), (z, h)).

Let fm ∈ H1/2− j,ρL be the unique harmonicMaass formwhose Fourier expan-
sion starts with fm = qmφμ + O(1) as v → ∞. Then the analogue of (6.13)
for odd j states

1

(4π)
j−1
2

M

 (z, h, R

j−1
2

1/2− j fm) = m
j−1
2 �

(
j + 1

2

)
M


,m

(
z, h,

5

4
+ j − 1

2

)

(7.10)

= 4m
j
2G1+ j (Z
(m, h), (z, h)).

Completing the definiton of ̃
j

(z, h, fm) in (7.5) we define the twisted theta

lift of f ∈ H1/2− j for odd j as

̃
j

(z, h, f ) := 1

(4π)
j−1
2

M

 (z, h, R

j−1
2

1/2− j f ). (7.11)

The following theorem is a combination of a result of Duke and Jenkins [16]
(where the maps Za jd are called Zagier lifts) and the generalization (using a
theta lift called the Millson lift) to harmonic Maass forms by Alfes-Neumann
and Schwagenscheidt [3, Theorem 1.1]. To state the result, put

ρ̃L =
{

ρL if j is odd,

ρ̄L if j is even.
(7.12)

Theorem 7.10 Let j ∈ Z>0 and let d be a fundamental discriminant with
(−1) j d < 0. There is a linear map Za jd : H−2 j → H1

2− j,ρ̃L
, such that

Za jd( f ) is the unique harmonic Maass form in H1
2− j,ρ̃L

with principal part

(not including the constant term) given by

|d|− j/2
∑

m>0

c+
f (−m)

∑

n|m

(
d

n

)
n jq

−|d|m2

4n2 φ dm2

n2
. (7.13)

Here, for any x ∈ Z we write φx = φ(x mod 2). Furthermore,

(1) If f is weakly holomorphic, then so is Za jd( f ).
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(2) More precisely, Za jd( f ) is weakly holomorphic if and only if
L(ξ−2 j ( f ), χd , j + 1) = 0.

(3) Finally, if f ∈ H−2 j with L(ξ−2 j ( f ), χd , j+1) = 0 and the coefficients of
the principal part of f + are all contained inZ, then all Fourier coefficients
of |d| j/2Za jd( f ) are contained in Z.

Proof First of all, we note that both, [3, Theorem 1.1] and [16, Theorem 1]
are stated for scalar-valued modular forms. Using the isomorphism

H1
2− j,ρ̃L

→ H+
1
2− j

(�0(4)), f0(τ )φ0 + f1(τ )φ1 �→ f0(4τ) + f1(4τ),

we obtain the translation of their results to our vector-valued setting.
ByTheorem 1.1 in [3], the definition of Za jd then agreeswith the dthMillson

theta lift, up to the normalizing factor |d|− j/2. Restricted to weakly holomor-
phic forms, it agrees with the dth Zagier lift defined by Duke and Jenkins.
Therefore, (1) follows from [16] and the generalization (2) follows from [3].

The third item follows a bit indirectly from [16]: If L(ξ−2 j ( f ), χd , j +
1) = 0, then |d| j/2Za jd( f ) is weakly holomorphic by (2) and has only integral
Fourier coefficients in its principal part.

Write −2 j = 12� + k′, where � ∈ Z and k′ ∈ {0, 4, 6, 8, 10, 14} are
uniquely determined. Let A = 2� if � is even and A = 2� − (−1) j if � is
odd. In Sect. 2 of [16], a basis { fm | m ≥ −A, (−1) j−1m ≡ 0, 1 mod 4} for
M !

1/2− j is constructed, where each basis element fm has a Fourier expansion
of the form

fm(τ ) = q−m
4 φm +

∑

n>A
(−1) j n≡0,1 mod 4

a(m, n)qn/4φn

and it is shown that a(m, n) ∈ Z for all m and n.
Since the principal part of |d| j/2Za jd( f ) contains only integer coefficients,

it must be an integral linear combination of the fm , and thus all Fourier coef-
ficients are integral.

Theorem 7.11 Let j ∈ Z≥0. Let d1 and 
 be fundamental discriminants with
(−1) j d1 < 0 and (−1) j
 > 0, and put m1 = |d1|/4. For f ∈ H−2 j we have

G j+1, f (Z
(m1, h), (z, h)) = −2 j−1 ̃
j



(
z, h,Za jd1( f )

)
.
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Proof By (7.13) together with (7.7) for even j and (7.10) for odd j , we obtain
that

̃
j



(
z, h,Za jd1( f )

)
= −21− j

∑

m>0

c+
f (−m)m j

×
∑

n|m

(
d1
n

)
G j+1

(
Z


(
m1m2

n2
, h

)
, (z, h)

)
.

Weneed to compare the sumon the right-hand sidewithG j+1, f (Z
(m1), (z, h)),
which is by definition equal to

∑

m>0

c+
f (−m)m jG j+1(Z
(m1, h) | Tm, (z, h)).

According to [23, p. 508], we have

Z
(m1, h) | Tm =
∑

n|m

(
d1
n

)
Z


(
m1m2

n2
, h

)
. (7.14)

and this finishes the proof.

7.4 CM values

From here on, fix a (not necessarily fundamental) discriminant d2 < 0 and
r2 ∈ {0, 1} such that d2 ≡ r22 (mod 4), and put

x2 :=
(

r2
2 1

d2−r22
4 − r2

2

)
∈ L ′

and m2 = Q(x2) = −d2/4. We letU = V ∩ x⊥
2 and consider the correspond-

ing CM cycle Z(U ) on XK
 defined in (2.2).
Note that we have U ∼= Q(

√
d2) and both CM points (z+U , 1) and (z+U , ξ)

correspond to the point

−r2 + √
d2

2

on each connected component of XK
 if identifiedwith SL2(Z)\H. As in Sect.
5, we have the two lattices P = L ∩U⊥ and N = L ∩U . Explicitly, they are
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given by

N = Z

(
1 0

−r2 −1

)
⊕ Z

(
0 1

r22−d2
4 0

)
, P = Z

2

2 − r2
x2,

which implies that P ′ = Z
2−r2|d2| x2. Hence, the discriminant group P ′/P is

cyclic of order 2|d2| if r2 = 1 and of order |d2|/2 if r2 = 0. The lattice N
has discriminant d2 and is described below in Lemma 7.12, which is a special
case of Lemma 7.1 in [12].

Lemma 7.12 LetOd2 ⊂ Q(
√
d2) be the order of discriminant d2 in Q(

√
d2).

ThenOd2 = Z ⊕ Z
r2+√

d2
2 and this defines a 2-dimensional lattice of discrim-

inant d2 with the quadratic form Q(z) = −N
Q(

√
d2)/Q

(z). The map

f : (Od2, Q)→(N , Q), x + y
r2 + √

d2
2

�→ x

(
1 0

−r2 −1

)
+ y

(
0 −1

d2−r22
4 0

)

is an isometry. Both lattices are equivalent to the negative definite integral

binary quadratic form [−1, −r2,
d2−r22

4 ].
Recall that we put T = GSpin(U ) and KT = K ∩ T (A f ). We have KT

∼=
Ô×

d2
, where Od2 ⊂ kd2 = Q(

√
d2) is the order of discriminant d2 in kd2 and

Ôd2 = Od2 ⊗Z Ẑ. This can either be seen as in Corollary 5.6 or alternatively
verified using the embedding given in Lemma 7.12. Consequently, the cycle
Z(U )K on XK is in bijection to two copies of the ring class group Cl(Od2),
see Sect. 3.3.

We are now able to obtain a formula for the twisted partial averages at CM
points. At the point zU , we obtain two definite lattices N
 = 
L ∩ U and
P
 = 
L ∩U⊥, both equipped with the quadratic form Q

|
| .

Theorem 7.13 Let (z+U , h) ∈ Z(U )beaCMpoint and letGN
(τ, h) ∈ H1,ρN


such that L1(GN
(τ, h)) = θN
(τ, h).
(1) If j ∈ Z>0 is even,

G j+1, f (Z
(m1, h), (z+U , h))

= −2 j−1 CT
(
〈ψ
(Za jd1( f ))P
⊕N
, [θP
(τ),G+

N

(τ, h)] j

2
〉
)

,

(2) and if j ∈ Z>0 is odd, we have

G j+1, f (Z
(m1, h), (z+U , h))

= −2 j−1 CT
(
〈ψ
(Za jd1( f ))P
⊕N
, [θ̃P
(τ),G+

N

(τ, h)] j−1

2
〉
)

,
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where θ̃P
(τ) is the weight 3/2 theta function

θ̃P
(τ) = 1√|
|
∑

μ∈P ′/
P

∑

λ∈
P+μ

pz+U
(λ)e

(
Q(λ)

|
| τ

)
φμ ∈ M3/2,ρP


.

Remark 7.14 Note that in both cases, the right-hand side in Theorem 7.13 is
well-defined even if (z±U , h) is contained in any of the divisors Z
(m1, h) | Tm
for m > 0 with c f (−m) �= 0. These are in fact the values of the (non-
continuous) extension of the higher Green function to the divisor obtained
from realizing it as a regularized theta lift in Theorem 7.11.

Proof of Theorem 7.13 The proof is analogous to Theorem 5.4. First suppose
that j is even. By virtue of Theorem 7.11, (7.5), and Lemma 7.8, we obtain

G j+1, f (Z
(m1), (z
+
U , h))

= −2 j−1 ̃
j



(
z+U , h,Za jd1( f )

)

= − 2 j−1

(4π)
j
2




(
z+U , h, R

j
2
1/2− jZa

j
d1

( f )

)

= − 2 j−1

(4π)
j
2

∫ reg

F
〈R

j
2
1/2− jZa

j
d1

( f )(τ ), θL ,
(τ, z, h)〉 dμ(τ)

= − 2 j−1

(4π)
j
2

∫ reg

F
〈ψ
(R

j
2
1/2− jZa

j
d1

( f )(τ )), θL
(τ, z, h)〉 dμ(τ).

From here, the proof continues parallel to the one of Theorem 5.4. For odd j ,
we can perform the analogous calculation using the definition in (7.11) and
the splitting of the Millson theta function

θM
P
⊕N


(τ, z+U , h) = θ̃P
(τ) ⊗ θN
(τ, h).

Corollary 7.15 Let j ∈ Z≥0. Let d1 and
 be fundamental discriminants with
(−1) j d1 < 0 and (−1) j
 > 0, and assume that d1d2
 is not a square of an
integer. Put m1 = |d1|/4, and let f ∈ H−2 j with integral principal part and
such that L(ξ−2 j ( f ), χd1, j + 1) = 0. Then we have for any (z+U , h) ∈ Z(U )

that the value |d1d2
| j/2G j+1, f (Z
(m1, h), (z+U , h)) can be expressed as a
finite integral linear combination of Fourier coefficients of G+

N

. In particular,

|d1d2
| j/2G j+1, f (Z
(m1, h), (z+U , h)) = −1

t
log |αU, f,
(h)|,
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where αU, f,
(h) ∈ Hd2(
√


)× and t ∈ Z>0 only depends on d2 and 
.
Moreover, we have

αU, f,
(h) = αU, f,
(1)[h,kd2 ].

Note that even when d1d2
 is a square, the statement of the corollary
remains valid if (z+U , h) is not contained in any of the Hecke translates
Z
(m1, h) | Tm for m > 0 with c+

f (−m) �= 0. For the proof of Corollary
7.15, we need the following Lemma.

Lemma 7.16 Let

KT,
 = {h ∈ KT | (det(h), 
)A f = 1}.

Using the identification T (A f ) ∼= A
×
kd2 , f as before, KT,
 is identified with

{h ∈ Ô×
d2

| (N(h), 
)A f = 1}

and its fixed field under the Artin map is Hd2(
√


).

Proof of Corollary 7.15 By Theorem 7.10 (3), all Fourier coefficients of
|d1| j/2Za jd1( f ) are integral.

TheFourier coefficients of theRankin–Cohenbrackets [θP
(τ),G+
N


(τ, h)] j/2
and

√|d2
|[θ̃P
(τ),G+
N


(τ, h)]( j−1)/2 can be expressed as rational linear

combinations of the Fourier coefficients of G+
N


(τ, h). The denominator of
the rational numbers appearing in this linear combination can be bounded by

(4|d2
|) j/2 when j is even and by (4|d2
|) j−1
2 ·2when j is odd (the additional

factor 2 is obtained from pz(λ) if r2 = 1). In any case, taking into account the
factor 2 j−1 in Theorem 7.13, and the factor |d1d2
| j/2 in the statement of the
corollary, we are left with a factor of 2 in the denominator.

This remaining 2 in the denominator is also cancelled which can be seen as
follows: If we write the constant term on the right-hand side of Theorem 7.13
as a sum of the form

∑

μ∈(P
⊕N
)′/(P
⊕N
)

∑

m

a(m, μ)b(−m, μ),

where a(m, μ) are the Fourier coefficients ofψ
(Za jd1( f ))P
⊕N
 and b(m, μ)

the Fourier coefficients of [θP
(τ),G+
N


(τ, h)] j
2
or [θ̃P
(τ),G+

N

(τ, h)] j−1

2
,
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then we can rewrite this sum as
∑

μ∈(P
⊕N
)′/(P
⊕N
)/{±1}

∑

m

(a(m, μ)b(−m, μ) + a(m, −μ)b(m, −μ)),

and since a(m, μ)b(−m, μ)+a(m, −μ)b(m, −μ) = 2a(m, μ)b(−m, μ), we
obtain another factor of 2.

Collecting all factors, we obtain that |d1d2
| j/2G j+1, f ((z
±
U , h), Z
(m1))

is equal to an integral linear combination of the Fourier coefficients
c+
N


(h,m, μ) of G+
N


(τ, h). By Theorem 3.9, we have

c+
N


(h,m, μ) = − 1

t ′
log |αN
(h,m, μ)|

for all (m, μ) �= (0, 0) and with αN
(h,m, μ) ∈ H×
d2
2 and n ∈ Z>0. More-

over, t ′ only depends on N
 which means it only depends on d2 and 
. Thus,
we obtain that

|d1d2
| j/2G j+1, f (Z
(m1, h), (z±U , h)) = − 1

t ′
log |α̃(h)|

with α̃(h) ∈ H×
d2
2 . However, the left-hand side is invariant under the h �→ h′h

for h′ ∈ KT,
 and the field Hd2(
√


) is fixed by these elements according to
Lemma 7.16. By virtue of the Shimura reciprocity law [Theorem 3.9, (3)] and
the invariance under KT,
, we obtain

|α̃(h)[h′, kD]| = |α̃(hh′)| = |α̃(h)|
for all h′ ∈ KT,
. Moreover, we have Ô×

d2
2 ⊂ KT,
 ⊂ KT = Ô×
d2
. This

implies that for all σ ∈ Gal(Hd2
2/Hd2(
√


)), there is a root of unity ζσ such
that

σ(α̃(h))

α̃(h)
= ζσ .

Therefore, the constant term of theminimal polynomial of α̃(h) over Hd2(
√


)

is equal to α̃(h)mζ wherem is the degree of α̃(h) over Hd2(
√


) and ζ is some
root of unity. Note that m is bounded by the degree [Hd2
2 : Hd2] and thus
only depends on d2 and 
. By putting αU, f,
(h) := α̃(h)mζ , and t = t ′m, we
obtain the statement of the corollary.

We finish this section by rewriting the CM cycle Z(U ) in classical terms
and give a proof of Conjecture 1.1 when one of the class groups has exponent
2.
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Lemma 7.17 The image of Z(U )K on XK
∼= SL2(Z)\H is given as follows.

Let Q0
d2

be the set of primitive integral binary quadratic forms [a, b, c] of
discriminant d2. For each such Q = [a, b, c] we denote by zQ the unique root
of az2+bz+c = 0 inH. For simplicity, we also denote its image in SL2(Z)\H

by zQ. We have

Z(U )K = 4

wd2

∑

Q∈SL2(Z)\Q0
d2

zQ,

where wd2 denotes the number of roots of unity contained in Od2 .

Corollary 7.18 Let D′ < 0 be a fundamental discriminant and assume that
the class group ofOD′ is trivial or has exponent 2. Let f ∈ M !−2 j with integral
principal part and let z ∈ H be any CM point of discriminant D < 0 (not
necessarily fundamental) and z′ ∈ H be any CM point of discriminant D′,
where z �= z′ if D = D′. Then, there is an α f (z) ∈ (HD · HD′)× such that

|DD′| j/2G j+1, f (z, z
′) = −1

t
log |α f (z)|,

where t ∈ Z>0 only depends on D and D′ (but not on f or j).

Proof For the proof, we work with one of the connected components of XK


and identify it with SL2(Z)\H. Thus, we can work with the divisors Z
(m1)

defined in (7.6). For each decomposition of D′ into D′ = d1
 with d1 and 


fundamental discriminants and (−1) j d1 < 0 as well as (−1) j
 > 0, we have
shown in Corollary 7.15 that for any z of discriminant D, we have

|DD′| j/2G j+1, f (Z
(m1), z) = − 1

t

log |α
(z)|,

where α
(z) ∈ HD(
√


)× and t
 ∈ Z>0.
We let C be the class group of OD′ . For any fundamental discriminant


 | D′, we let d1 = D′/
 and and m1 = |d1|/4. The splitting D′ = 
 d1
determines a genus character χ
 : C → {±1}. The twisted CM cycle Z
(m1)

is equal to

Z
(m1) =
∑

[a]∈C
χ
([a])z[a],

where we write z[a] for the CM point corresponding to a on SL2(Z)\H.
Since C has exponent 1 or 2 by assumption, its order is exactly 2s−1, where

s is the number of prime divisors of D′ and every class group character can be
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obtained as a genus character. Note that there are exactly s splittings D′ = 

̃

where 
 and 
̃ are both fundamental discriminants and (−1) j
 > 0 since
D′ < 0. We denote the fundamental discriminants satisfying these criteria by

1, . . . , 
s . Note that {χ
1, . . . , χ
s } is a full set of representatives of the
class group characters of kD′ . Hence, the individual value corresponding to an
ideal class [a] can be obtained as

G j+1, f (z[a], z) = 1

hD′

s∑

i=1

χ
i ([a])G j+1, f (Z
(m1), z)

= − 1

hD′

s∑

i=1

χ
i ([a])
1

t
i

log |α
i (z)|

= −1

t
log |α(z)|,

where t = hD′ · lcm{t
i } and

α(z) =
s∏

i=1

α
i (z)
t

t
i
χ
i ([a])

is contained in HD(
√


1, . . . ,
√


s). Since the class group of kD′ has exponent
2, we have HD′ = kD′(

√

1, . . . ,

√

s) and the claim follows.

8 Numerical examples

Herewe provide some numerical examples to illustrate the results of Sect. 7. In
particular we demonstrate how our main results in Sect. 7 and the “Appendix”
can be implemented to obtain explicit formulas for the algebraic numbers
determining the CM values of higher Green functions.

8.1 Example 1

We start with an example for j = 2, which is a bit simpler than j = 1 since
we can work with 
 = 1.

Note that for k = j + 1 = 3, we have that S2k = S6 = {0}. Therefore, the
algebraicity conjecture concerns the individual values of G3 at pairs of CM
points in this case. The function G3(z1, z2) is obtained as the higher theta lift
̃1( f, z), where f ∈ M !−4 is the uniqueweakly holomorphicmodular form for
the full modular group whose Fourier expansion starts with f = q−1 + O(1).
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It is explicitly given by

f = E8(τ )/
(τ),

where E8(τ ) ∈ M8 is the normalized Eisenstein series of weight 8 for SL2(Z)

and 
(τ) ∈ S12 is the discriminant function.
For our first explicit example, we let d1 = −4, d2 = −23, and 
 = 1.

Since the class group of Q(
√−1) is trivial, the CM-cyle Z(1/4) only contains

one point, represented by i ∈ H and counted with multiplicity 1/2. Using the
usual isomorphism M !

1/2,ρL
∼= M !,+

1/2(�0(4)), we can identify the Zagier lift

Za2−4( f ) of f with the form

4Za2−4( f ) = q−4 − 126 − 1248q − 263832q4 − 666664q5 + O(q6),

which can be constructed in a similar fashion as the weight 1/2 forms in [48];
see also [16].

We consider the case d2 = −23. In the notation of the previous section, we
have r = 1 and

x2 :=
( 1

2 1
−6 −1

2

)
∈ L ′.

The CM cycle Z(U ) for U = V (Q) ∩ x⊥
2 then consists of the three points

z1 = (z±U , 1) = −1 + i
√
23

2
, z2/3 = ±1 + i

√
23

4
.

The discriminant group P ′/P is isomorphic to Z/46Z with quadratic form
x2/92 and, according to Lemma 7.12, the lattice N is isomorphic to the ring
of integers O−23 ⊂ k−23 = Q(

√−23) with quadratic form given by the
negative of the norm form. Numerical approximations for the CM values can
be obtained by using the Fourier expansion of G3, for instance

G3(i, z1) ≈ −1.000394556341.

Note that, given m /∈ Z, there are exactly two cosets ±μm , such that m ≡
Q(μm). If m ∈ Z, then μ = 0 is the only possibility. We now let G+

N (τ ) =∑
m c(m)qmφm be the holomorphic part of a harmonic Maass form GN ∈

H1,ρN with the property that L1(GN (τ )) = θN (τ, 1). To lighten the notation,
we drop the index of the component μ and simply write c(m) for c(m, μ)

and φm = φμm + φ−μm for m /∈ Z and φm = φ0 for m ∈ Z. We require the
additionally that c(m) = 0 for m < −1/23, which can be satisfied because
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the space S1,ρ̄N is one-dimensional and spanned by a cusp form whose Fourier
expansion starts with q1/23. These conditions then characterize GN uniquely,
since M1,ρN = {0}.

Theorem 7.13 now gives the formula

1

2
G3(i, z1) = −25

46
c(7/23) − 4

46
c(14/23) + 11

46
c(19/23)

+ 20

46
c(22/23) + 1

4
c(23/23) + 378

46
c(−1/23).

The coefficients ofG+
N can be obtained as follows.We let h23 be the normalized

Hauptmodul for �+
0 (23), the extenson of �0(23) by the Fricke involution. Its

Fourier expansions starts with

h23(τ ) = q−1 + 2 + 4q + 7q2 + 13q3 + 19q4 + 33q5 + O(q6).

It is shown in [17, Sect. 6] that the algebraic numbers α(1,m, μ) =: α(m)

occuring in Theorem 3.9 can all be obtained as certain rational expressions in
the CM value

α := −h23

(
−23 + i

√
23

46

)
≈ 1.324717957244.

By CM theory, this value is contained in the Hilbert class field H−23 of k−23.
In fact, α is the unique real root of X3 − X − 1 and a fundamental unit of
H−23. The expressions for the relevant α(m) are given in the second column
of Table 1. Note that the Hilbert class field H−23 has class number one, so
its ring of integers R−23 is a unique facorization domain. In the third column
we list the corresponding prime valuations (see Theorem 1.3 of [17]) using
the following convention. If p is a rational prime which is non-split in k−23,
then there is a unique prime ideal (πp) of H−23 above p that divides α(p/23).
If the valuation of α(p/23) at (πp) is equal to ν and the element α(m) is of
the form xν for some x ∈ R−23, we choose πp = x . For instance, we put
π7 = α2 + α − 2. In our example this does not work for m = 23. In this case,
we can take the prime element π23 = 1√−23

(−9α2 + 2α + 6
) ∈ R−23. Then

α(23)/π4
23 is a unit. Finally, we then let π ′

p, π
′′
p be the two Galois conjugates

of π
(1)
p over k−23, so that (p) = (πp)(π

′
p)(π

′′
p) in H−23. For instance, for

m = 14, the entry (π ′
7, 2), (π

′′
7 , 2) in the third column means that the principal

ideal (α(14)) factors as (α(14)) = (π ′
7)

2(π ′′
7 )2.
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Table 1 Coefficients of G+
N (τ )

23m α(m) primes, valuations c(m) = − log |α(m)| (12 digits)

7 (α2 + α − 2)2 (π7, 2) −0.153173096659

11 (2α2 − α)2 (π11, 2) −1.563265867556

14 (α2 − 2α + 3)2 (π ′
7, 2), (π

′′
7 , 2) −1.489050606868

19 (3α2 + α)2 (π19, 2) −3.770909708871

22 (3α2 + 7α + 6)2 (π ′
11, 2), (π

′′
11, 2) −6.04452042127

23 (8α2 + 12α + 7)2 (π23, 4) −7.218353704778

−1 α−2 0.562399148646

Taking the units into account, we obtain the precise value

G3(i, z1) = − 1

23
log

∣∣∣∣∣α
−294 · (π ′

11π
′′
11)

40 π22
19 π46

23

π50
7 (π ′

7π
′′
7 )8

∣∣∣∣∣ .

Note that the algebraic number in the logarithm is in fact contained in the real
subfield Q(α) ⊂ H−23 and thus has degree 3 over Q (this is visible in Table
1).

Moreover, it follows that we obtain G3(i, z2) = G3(i, z3) by applying any
Galois automorphism σ ∈ Gal(H−23/k−23) of order 3 to the numbers α(m)

in Table 1. Note that the two possible choices for σ lead to complex conju-
gate algebraic numbers and thus log |α(m)σ | is independent of this choice.
Numerically, we have G3(i, z2) = G3(i, z3) ≈ −3.854054384748. Finally,
we obtain the factorization for the average value

G3(i, z1) + G3(i, z2) + G3(i, z3)

= − 1
23 log

(
118019222323

766

)
≈ −8.708503325837,

which alternatively follows directly from Theorem 5.4.

8.2 Example 2

One of the interesting features of the CM value formula is that the same
harmonic Maass form GN occurs for all j . To illustrate this, consider the same
CM points for d1 = −4 and d2 = −23 but now take j = 4 and j = 6. For
these values, we still have S2+2 j (SL2(Z)) = {0}. Theorem 7.13 shows that
the Fourier coefficients of the same function G+

N occur. In the case j = 4, the
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772 J. H. Bruinier et al.

numerical value is approximately

G5(i, z1) ≈ −0.0869366459199.

By Theorem 7.13, we obtain

1

2
G5(i, z1) = 493

4232
c(7/23) + 447

1058
c(14/23) + 613

4232
c(19/23)

− 233

1058
c(22/23) − 3

16
c(23/23) − 5775

2116
c(−1/23),

which gives a precise value of

G5(i, z1) = − 1

4 · 232 log
∣∣∣∣∣α

−15594 · π986
7 (π ′

7π
′′
7 )3576 π1226

19

(π ′
11π

′′
11)

1864 π3174
23

∣∣∣∣∣ .

In the case j = 6, we get an approximate value of

G7(i, z1) ≈ −0.0101643901834.

And Theorem 7.13 yields

1

2
G7(i, z1) = − 80659

194672
c(7/23) + 2578

24334
c(14/23) + 60209

194672
c(19/23)

− 1538

24334
c(22/23) − 5

32
c(23/23) − 42273

97336
c(−1/23),

which gives a similar precise algebraic formula as above.

8.3 Example 3

In this section we give an explicit example for j = 1. We obtain an explicit,
finite and algebraic expression for the value

1

3
G2

(
1 + √−3

2
,
1 + √−7

2

)
= G2(Z−3(1/4), zx2),

where the CM point zx2 of discriminant −7 corresponds to the vector

x2 =
( 1

2 1
−2 −1

2

)
∈ L ′.

The parameters for this example are d1 = 1, d2 = −7, 
 = −3.
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Numerically, we have

1

3
G2

(
1 + √−3

2
,
1 + √−7

2

)
≈ −2.928818048619.

The uniqueweakly holomorphicmodular form f ofweight−2with a principal
part starting with q−1 that corresponds to G2(z1, z2) is given by

f (τ ) = E10(τ )/
(τ),

where E10(τ ) ∈ M10 is the normalized Eisenstein series of weight 10 for
SL2(Z) and
(τ) is the discriminant function. Its Zagier lift Za11( f ) for d1 = 1

can be identified with a scalar-valued form in M !,+
−1/2(�0(4)) given by

q−1 + 10 − 64q3 + 108q4 − 513q7 + 808q8

−2752q11 + 4016q12 − 11775q15 + O(q16).

The lattice P is spanned by 2x2 and P ′ by x2/7. According to Theorem
7.13, we have

1

3
G2

(
1 + √−3

2
,
1 + √−7

2

)

= 1

2
CT
(
〈ψ−3(Za

1
1( f ))P−3⊕N−3, θ̃P−3(τ ) ⊗ G+

N−3
(τ )〉
)

.

The lattice N−3 is isomorphic to the order O−63 in k−7 = Q(
√−7) of

discriminant −63. We take the basis (1, 31+√−7
2 ) of O−63, which has the

Gram matrix
(−2 −3

−3 −36

)
.

The dual of O−63 is given by the fractional ideal generated by 1
3
√−7

. The
discriminant group is isomorphic to Z/21Z×Z/3Z. We write c(m, μ) for the
(m, μ)-th Fourier coefficient of the holomorphic part of GN−3(τ ) for simplicity
and we write μ = (a, b) with a ∈ Z/21Z and b ∈ Z/3Z. Then a little
calculation, which we carried out using sage , shows that we have explicitly

G2

(
1 + √−3

2
,
1 + √−7

2

)
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774 J. H. Bruinier et al.

= 3√
21

(
− 25c

(−1

21
, (1, 0)

)
+ 25c

(−1

21
, (1, 1)

)

− 25c

(−1

21
, (8, 0)

)
+ 5c

(−1

21
, (8, 2)

)

+ c

(
5

21
, (4, 0)

)
− c

(
5

21
, (4, 1)

)

+ c

(
5

21
, (10, 0)

)
− c

(
5

21
, (10, 1)

))
.

We implemented the algorithmoutlined in the “Appendix” insage to compute
these coefficients numerically.

We remark that the computations are much harder than the previous exam-
ples for several reasons: (1) the algorithm in the “Appendix” is computationally
more expensive because the twist results in much larger discriminant groups.
(2) The coefficients are obtained as CM values of meromorphic modular func-
tions on �0(63), which has genus 5. In our first example, we used the fact that
the corresponding modular forms are rational functions on �+

0 (23)\H, which
has genus 0, to obtain all CM values in terms of just one CM value of the
hauptmodul of �+

0 (23).
Each of the coefficients c(m, μ) is of the form −1

3 log |α(m, μ)| with
α(m, μ) an algebraic integer contained in the ring class field H−63 of O−63.
We can use this information to determine α(m, μ) exactly from the numeri-
cal computations. We have H−63 = Q(α1), where the minimal polynomial
of α1 is given by x8 + x6 − 3x4 + x2 + 1. We write R−63 for the ring
of integers in H−63. We fix the embedding of H−63 into C, such that
α1 ≈ −0.9735614833 − 0.22842512587i . The field H−63 has a total of 4
pairs of complex-conjugate embeddings. Hence, the rank of the unit group is
3 and is generated by α1, α2 and α3, where

α2 = 1

2
α7
1 + 1

2
α5
1 − α3

1 + 1

2
a2 + a + 1

2
≈ 0.562638276594 − 0.324839360448i

has minimal polynomial x8 − 3x7 + 4x6 − 3x5 + 3x4 − 3x3 + 4x2 − 3x + 1,
and

α3 = 1

2
α6
1 + 1

2
α4
1 − 1

2
α3
1 − 3

2
α2
1 + 1

2
≈ −0.0626382765944 + 0.541186043336i

with minimal polynomial x8 − x7 + 2x6 − x5 − 5x4 + x3 + 2x2 + x + 1.
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Table 2 Coefficients of G+
N−3

(τ )

21m μ α(m, μ) c(m, μ) = − 1
3 log |α(m, μ)| (12 digits)

−1 (1, 0) α−4
1 α2

2α2
3 0.692410519993

−1 (1, 1) α−6
1 0

−1 (8, 0) α−4
1 α−4

2 α2
3 −0.170144107668

−1 (8, 2) 1 0

5 (4, 0) π6
1α−4

1 α8
2α

2
3 0.255860917422

5 (4, 1) π6
2α−12

1 −0.582934829024

5 (10, 0) π6
3α−4

1 α−10
2 α2

3 −1.786600671916

5 (10, 1) π6
4 −0.582934829024

Note that only m = −1/21 and m = 5/21 occur. This suggests that only
primes above 5 should occur in the factorization of the CM value, which is
indeed the case. The prime 5 is inert inQ(

√−7) and splits completely in R−63
into 5R−63 = p1p2p3p4, where

p1 = (π1), with π1 = −α7
1 + 1

2
α6
1 − α5

1 + α4
1 + 3α3

1 − α2
1 − 1

2
α1,

p2 = (π2), with π2 = α5
1 + α3

1 − 2α1,

p3 = (π3), with π3 = 1

2
α7
1 + 1

2
α5
1 − 1

2
α4
1 − 3

2
α3
1 − α2

1 − 1

2
α1 + 1, and

p4 = (π4), with π4 = −α7
1 − α5

1 + 1

2
α4
1 + 5

2
α3
1 + 1

2
α2
1 − 1

2
α1 − 1

2
.

The values for the algebraic numbers α(m, μ), are recorded in Table 2. Here,
we wrote down exactly what we obtained by implementing the method of
the “Appendix”, even if |α(m, μ)| = 1, which yields a vanishing Fourier
coefficient.

Summarizing, we obtain the following expression for the value of the higher
Green function

G2

(
1 + √−3

2
,
1 + √−7

2

)
= − 3√

21
log

∣∣∣∣∣
α18
1 α16

2 π2
1π2

3

α32
3 π2

2π2
4

∣∣∣∣∣ .

As predicted, we can check that the algebraic number in the logarithm is
contained in Q(

√
21). With a little computation, we obtain the surprisingly

simple expression
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G2

(
1 + √−3

2
,
1 + √−7

2

)
= − 3√

21
log

∣∣∣∣∣
(32 + 7

√
21)4

25

∣∣∣∣∣ .
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9 Appendix: Preimages of theta functions

Following the strategy of [17] with a few modifications, we will now give a
proof of Theorem 3.9. In contrast to [17], we will not consider the prime ideal
factorizations of the algebraic numbers, which allows for some simplifications.
In this regard, the results of [17] are stronger than Theorem 3.9. However,
Theorem 3.9 is much more general as it does not put any restriction on N ,
whereas in [17] the assumption was that the discriminant of N is an odd
fundamental discriminant.

9.1 Weakly holomorphic modular forms

In this section, we basically follow [17, Sect. 4.3] to define a convenient basis
of the space of weakly holomorphic modular forms. The setup for this section
is more general than for the rest of the “Appendix”. For simplicity, we make
the following assumptions: we let (N , Q) be any even lattice of even signature
and let k ∈ Z such that 2k ≡ sgn(N ) mod 4.

First consider the space of holomorphic modular forms Mk,ρN (Q) with
rational coefficients and its dual Mk,ρN (Q)∨. Let (m1, μ1), . . . , (mr , μr ) ∈
Q≥0 × N ′/N such that the linear maps α1, . . . , αr ∈ Mk,ρN (Q)∨ defined by

αi : Mk,ρN (Q) → Q, f �→ c f (mi , μi )

form a basis of Mk,ρN (Q)∨. We fix these indices once and for all and let
G1, . . . ,Gr ∈ Mk,ρN (Q) be the dual basis, i.e., Gi satisfies cGi (m j , μ j ) =
δi, j .

In the same way, we fix indices (m̃1, μ̃1), . . . , (m̃s, μ̃s) ∈ Q≥0 × N ′/N for
the space M2−k,ρ̄N (Q) such that the linear maps

βi : M2−k,ρ̄N (Q) → Q, f �→ c f (m̃i , μ̃i )
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form a basis of M2−k,ρ̄N (Q)∨. As before, we let F1, . . . , Fs ∈ M2−k,ρ̄N (Q)

be the dual basis.
Now we define special bases for the spaces M !

k,ρN
(Q) and M !

2−k,ρ̄N
(Q).

For M !
2−k,ρ̄N

(Q), we define a basis { fm,μ} as follows. First, for (m, μ) =
(−m̃i , ±μ̃i ) with i ∈ {1, . . . , s} we let f−m̃i ,±μ̃i = Fi . Then, for (m, μ) ∈
Q>0×N ′/N withm ≡ Q(μ) mod Z and (m, μ) �= (mi , ±μi ) for all i , we let
fm,μ ∈ M !

2−k,ρ̄N
(Q) be the unique weakly holomorphic modular form such

that

fm,μ(τ ) = 1

2
q−m(φμ + φ−μ) − 1

2

r∑

i=1

cGi (m, μ)q−mi (φμi + φ−μi ) (9.1)

+
∑

ν∈N ′/N

∑

n≥0

am,μ(n, ν)qn(φμ + φ−μ)

with

am,μ(m̃1, ±μ̃1) = . . . = am,μ(m̃s, ±μ̃s) = 0. (9.2)

It is clear that the forms f−m̃1,μ̃1, . . . , f−m̃s ,μ̃s together with

{ fm,μ | m ∈ Q>0, μ ∈ (N ′/N )/{±1},m ≡ Q(μ) mod Z}

form a basis of M !
2−k,ρ̄N

(Q).

For M !
k,ρN

(Q), we define a basis {gm,μ} in the same way: If (m, μ) =
(−mi , ±μi ) then i ∈ {1, . . . , r} we let g−mi ,±μi = Gi . Then, for m ∈ Q>0
and μ ∈ N ′/N with m ≡ −Q(μ) mod Z, we let gm,μ be the unique weakly
holomorphic modular form in M !

k,ρN
(Q) with

gm,μ(τ ) = 1

2
q−m(φμ + φ−μ) − 1

2

s∑

i=1

cFi (m, μ)q−m̃i (φμ̃i + φ−μ̃i ) (9.3)

+
∑

ν∈N ′/N

∑

n≥0

bm,μ(n, ν)qn(φμ + φ−μ)

satisfying

bm,μ(m1, ±μ1) = . . . = bm,μ(mr , ±μr ) = 0. (9.4)

We obtain a basis of M !
k,ρN

(Q) consisting of g−m1,μ1, . . . , g−mr ,μr and

{gm,μ | m ∈ Q>0, μ ∈ (N ′/N )/{±1},m ≡ −Q(μ) mod Z}.
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Lemma 9.1 The conditions above characterize the forms fm,μ ∈ M !
2−k,ρ̄N

(Q)

and gm,μ ∈ M !
k,ρN

(Q) uniquely. They satisfy the duality relation

am,μ(n, ν) = −bn,ν(m, μ) (9.5)

for all m, n ∈ Q and μ, ν ∈ N ′/N with m ≡ Q(μ) mod Z and n ≡
−Q(ν) mod Z.

Proof Existence follows from the second exact sequence in Corollary 3.8 of
[9] and uniqueness is clear. Using (9.1)–(9.4), it is easy to see that

CT(〈 fm,μ, gn,ν〉) = am,μ(n, ν) + bn,ν(m, μ).

Note that 〈 fm,μ, gn,ν〉 ∈ M !
2, which implies that its constant term vanishes.

The relation (9.5) and the fact that weakly holomorphic modular forms with
rational Fourier coefficients have bounded denominators implies the following
lemma.

Lemma 9.2 For every n0 ∈ Q there is an A ∈ Z>0, only depending on N, k,
and n0, such that for all n ≤ n0, and all ν,m, μ, we have A · am,μ(n, ν) ∈ Z

and A · bn,ν(m, μ) ∈ Z.

In the following, we assume that N has signature (0, q) with q even.
Then θN (τ, h) = vq/2θN (−1)(τ, h) has weight −q/2 and the theta function
θN (−1)(τ, h) ∈ Mq/2,ρ̄N is a holomorphic modular form. We dropped the vari-
able z since the space U = N ⊗ Q is definite and the symmetric domain only
consists of the two points z±U , yielding the same function. Let k := 2−q/2.We
will then simply write N (h, f ) for the regularized theta lift of f ∈ M !

2−k,ρ̄N

against θN . We will assume that (m̃1, μ̃1) = (0, 0) for convenience, which we
can do because θN (−1) ∈ M2−k,ρ̄N has a non-vanishing constant term of index
(0, 0). In particular, am,μ(0, 0) = 0 for (m, μ) �= (0, 0) by (9.2).

Write T = GSpin(U ) and let KT ⊂ T (A f ) be a suitable compact open
such that h �→ θN (τ, h) defines a function on Z(U ) = T (Q)\T (A f )/KT .

Lemma 9.3 For every h ∈ Z(U ), there is a unique harmonic Maass form
GN (τ, h) ∈ H !

k,ρN
with Lk(GN (τ, h)) = θN (τ, h) and holomorphic part

G+
N (τ, h) =

∑

μ∈N ′/N

∑

m�−∞
c+
N (h,m, μ)qmφμ

satisfying the following properties:

(1) For m ≤ 0, we have c+
N (h,m, μ) = 0 unless (m, μ) = (−m̃i , ±μ̃i ) for

some i ∈ {1, . . . , s}.
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(2) We have c+
N (h,mi , ±μi ) = 0 for i = 1, . . . , r .

(3) For every m ∈ Q and μ ∈ N ′/N with Q(μ) ≡ m mod Z, we have

N (h, fm,μ) = c+
N (h,m, μ).

Proof Arguing as in Proposition 2.12 of [18], there is a G̃ ∈ H !
k with

Lk(G̃(τ )) = θN (τ, h) satisfying (1).
To ensure that G̃ satisfies (2), we can subtract suitable multiples of the Gi

from G̃ without changing the image under the lowering operator.
Now letGN (τ, h) be a harmonicMaass formwith Lk(GN (τ, h)) = θN (τ, h)

satisfying (1) and (2). Note that these conditions uniquely characterize
GN (τ, h). By Theorem 5.5 we have for m = −m̃i and μ = μ̃i that

N (h, f−m̃i ,μ̃i ) = CT
(〈 f−m̃i ,μ̃i , GN (τ, h)〉) = c+

N (h, −m̃i , μ̃i ). (9.6)

Here,wehaveused c+
N (h, −m̃i , μ̃i ) = c+

N (h, −m̃i , −μ̃i ) anda−m̃i ,μ̃i (m̃i , ±μ̃i ) =
1/2. Similarly, for m > 0 and μ ∈ N ′/N with (m, μ) �= (mi , ±μi ), we get

N (h, fm,μ) = CT
(〈 fm,μ, GN (τ, h)〉)

= c+
N (h,m, μ) −

r∑

i=1

c+
N (h,mi , μi )cGi (m, μ)

+
∑

n≤0
ν∈N ′/N

c+
N (h, n, ν)am,μ(−n, ν)

= c+
N (h,m, μ) −

r∑

i=1

c+
N (h,mi , μi )cGi (m, μ)

+ 2
s∑

i=1

c+
N (h, −m̃i , μ̃i )am,μ(m̃i , μ̃i ),

wherewe have used (1) in the second line. By condition (2), the first sum on the
right-hand side vanishes. Finally, by (9.2), the second sum on the right-hand
side vanishes as well and this finishes the proof.

9.2 Special preimages of binary theta functions

In this section we restrict to the case q = 2, i.e., N has signature (0, 2) and
k = 1. LetU = N⊗Q be the corresponding rational quadratic space andwrite
θN (τ, h) for the Siegel theta function attached to N . We put T := GSpin(U ).
As in Sect. 3.3, we let D be the discriminant of N , and write OD ⊂ kD =
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Q(
√
D) ∼= U for the order of discriminant D in kD . For convenience of the

reader, we recall the statement of Theorem 3.9, which we will now prove.

Theorem 9.4 For every h ∈ T (A f ), there is a harmonic Maass form
GN (τ, h) ∈ H !

1,ρN
, only depending on the class of h in Cl(OD), with holomor-

phic part

G+
N (τ, h) =

∑

μ∈N ′/N

∑

m�−∞
c+
N (h,m, μ)e(mτ)φμ

satisfying the following properties:

(1) We have L1(GN (τ, h)) = θN (τ, h).
(2) Let μ ∈ L ′/L and m ∈ Q with m ≡ Q(μ) mod Z and (m, μ) �= (0, 0).

There is an algebraic number α(h,m, μ) ∈ H×
D such that

c+
N (h,m, μ) = −1

r
log |αN (h,m, μ)|, (9.7)

for some r ∈ Z>0 only depending on N.
(3) For all h ∈ T (A f ), we have

αN (h,m, μ) = αN (1,m, μ)[h, kD]. (9.8)

(4) Additionally, there is an αN (h, 0, 0) ∈ H×
D , such that

c+
N (h, 0, 0) = 2

r
log |αN (h, 0, 0)| + κ(0, 0).

For the proof, we consider the lattice L := P ⊕ N of signature (1, 2), where
P = Z with the quadratic form x2. We put V = L ⊗ Q and let D be the
asociated symmetric domain. We let H = GSpin(V ) and K = GSpin(L̂),
so that the theta lift L(z, h, f ) of any f ∈ M !

1/2,ρ̄L
defines a meromorphic

modular form on XK . We view Z(U ) as a CM cylce on XK as in Sect. 2. For
m ∈ Q and μ ∈ N ′/N with m ≡ Q(μ) mod Z, we let fm,μ ∈ M !

1,ρ̄N
(Q) be

as in the previous section.

Remark 9.5 We remark that all of the following arguments can easily be
adopted to work with any lattice L of signature (1, 2) such that we have a
primitive isometry N ↪→ L . In [17] we used the lattice for �0(|D|) for odd
squarefree D to obtain more precise information about the algebraic numbers
appearing in Theorem 9.4 (for instance integrality and the prime factorization),
and for computational purposes it can also be useful to tweak the choice of
L . For the purposes of proving the statements of Theorem 9.4, however, our
simple choice suffices.
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Proposition 9.6 Let m ∈ Q and μ ∈ N ′/N such that Q(μ) ≡ m mod Z.
There is a weakly holomorphic modular form Fm,μ ∈ M !

1/2,ρ̄L
(Q) such that

cFm,μ(0, 0) = 0 and satisfying

12N (h, fm,μ) = L(z±U , h,Fm,μ).

Moreover, for every n0 ∈ Q there is a constant B ∈ Z>0 such that for all
n ≤ n0 and all m, μ, we have B · cFm,μ(n, ν) ∈ Z.

Proof We follow the argument given in Theorem 6.6 of [44] and Sect. 4.2 of
[17] (here the special case for A = 1 in [17] is sufficient). For any integer k,
the space M !

k−1/2,ρ̄P
is isomorphic to the space of J !

k,1 of weakly holomorphic
Jacobi forms of weight k and index 1 via the theta expansion of Jacobi forms
[19].

We let φ̃−2,1 ∈ J !−2,1
∼= M !

−5/2,ρ̄P
and φ̃0,1 ∈ J !

0,1
∼= M !−1/2,ρ̄P

be the
two generators of the ring of weak Jacobi forms of even weight over M∗,
the ring of holomorphic modular forms for SL2(Z) as in [19, Theorem 9.3].
These two forms correspond to vector valued weakly holomorphic modular
forms ψ−2,1 ∈ M !

−5/2,ρ̄P
and ψ0,1 ∈ M !−1/2,ρ̄P

. For any weak Jacobi form

φ(τ, z) ∈ Jweakk,n , the specialization φ(τ, 0) is a holomorphic modular form of
weight k for SL2(Z). Hence,

〈ψ−2,1, θP〉 = φ̃−2,1(τ, 0) = 0

and 〈ψ0,1, θP〉 = φ̃0,1(τ, 0) is a constant. By inspection of the Fourier expan-
sion of φ̃0,1 it is easily seen that

〈ψ0,1, θP〉 = φ̃0,1(τ, 0) = 12.

Using the identification ρ̄L
∼= ρ̄P ⊗ ρ̄N , we view ψ0,1 ⊗ fm,μ as an element

of M !
1/2,ρ̄L

. Thus, we obtain the relation of theta lifts

12N (h, fm,μ) = L(z±U , h, ψ0,1 ⊗ fm,μ).

The constant term of index (0, 0) of ψ0,1 ⊗ fm,μ might be non-zero. In that
case, let a ∈ Z>0 beminimal such that the Fourier coefficient of index (a, 0) of
ψ−2,1⊗ θN (−1) is non-zero and let g ∈ M !

2 be the unique weakly holomorphic
modular form of weight 2 with principal part equal to q−a . Note that the
constant term of g necessarily vanishes and that the φ0-component ofψ−2,1 ⊗
θN (−1) does not have any non-zero Fourier coefficients of negative index.
Hence, gψ−2,1 ⊗ θN (−1) has a non-zero and integral constant term of index
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(0, 0). Using 〈ψ−2,1, θP〉 = 0, we obtain

L(z±U , h, gψ−2,1 ⊗ θN (−1)) = 0,

and thus we can define Fm,μ = ψ0,1 ⊗ fm,μ − x · gψ−2,1 ⊗ θN (−1) with a
suitable constant x ∈ Q

×.
Finally, to obtain the bound, note that ψ0,1 has integral Fourier coefficients

and a principal part equal to q−1/4φ1/2+Z. Let A be the bound in Lemma 9.2
such that Aam,μ(n, ν) ∈ Z for all n ≤ n0 + 1/4. Then Aψ0,1 ⊗ fm,μ has
integral Fourier coefficients, up to qn0 .

The Fourier coefficient c0 of index (0, 0) of gψ−2,1 ⊗ θN (−1) is an integer
since θN (−1), g, and ψ−2,1 have integral Fourier coefficients. Thus, c0x ∈ Z.
Consequently, the denominators of the Fourier coefficients ofFm,μ, up to qn0 ,
are bounded by B = lcm(A, c0).

According to [5, Theorem 13.3], there is a meromorphic modular form
�L(z, h,Fm,μ) of weight 0 (and some multiplier system of finite order), such
that

L(z, h,Fm,μ) = −4 log |�L(z, h,Fm,μ)|, (9.9)

with div(�L(z, h,Fm,μ)) = Z(Fm,μ) =∑ν∈N ′/N
∑

n<0 cFm,μ(n, ν)Z(n, ν).
The identity (9.9) holds on the complement of

⋃

n<0
ν∈L ′/L

cFm,μ (n,ν)�=0

Z(n, ν). (9.10)

Corollary 9.7 There is a constant A0 ∈ Z>0, only depending on N, such that
for all m and μ, the Borcherds product �L(z, h, A0Fm,μ) defines a meromor-
phic function on XK which is defined over Q.

Proof We use n0 = 1 in Proposition 9.6 to obtain a bound B on the denomi-
nator of the Fourier coefficients of Fm,μ, up to q1.

By [27, Theorem A], there is a constant A0 with B | A0 such that
�L(z, h, A0Fm,μ) is defined over Q. An inspection of the proof of [27, The-
orem A] shows that A0 can be chosen indepently of m and μ.

Proof of Theorem 9.4 We let GN be defined as in Lemma 9.3. Then (1) is
clear. To prove (2), let (m, μ) �= (0, 0). We use that L(z±U , h,Fm,μ) is the
logarithm of a CM value of a Borcherds product and then invoke CM theory
and Shimura reciprocity.
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It is not hard to see (cf. Proposition 4.18 of [17]) that c fm,μ(0, 0) = 0
implies that the Borcherds product�L(z, h,Fm,μ) is always defined and non-
zero at the CM point (z±U , h), even if (z±U , h) is contained in one of the divisors
Z(n, ν) appearing in (9.10). Using Corollary 4.2, it is straightforward to check
that (9.9) then still holds up to the logarithm of a non-zero rational number.
Hence,

L(z±U , h,Fm,μ) = −4 log |�L(z±U , h,Fm,μ)| − log |t |,

where t ∈ Q
× is equal to 1 if (z±U , h) is not contained in (9.10).

We let A0 be the constant in Corollary 9.7. Then �L(z±U , h, A0Fm,μ) is
defined over Q and hence, we infer that the algebraic number

αN (h,m, μ) := t A0 · �L(z±U , h, A0Fm,μ)4

is contained in the ring class field HD , since (z±U , h) is defined over HD . The
relation in (2) now follows by Proposition 9.6 and Lemma 9.3.

Item (3) then follows from Shimura reciprocity [40, Theorem 6.31], i.e.,

αN (h,m, μ) = t A0 · �L(z±U , h, A0Fm,μ)4

= t A0 · (�L(z±U , 1, A0Fm,μ)4)[h,kD] = αN (1,m, μ)[h,kD].

Finally, note that ξ1(GN (τ ) − E ′
N (τ, 0, 1)) is a cusp form. By considering the

pairing with the holorphic Eisenstein series 1
2vEN (τ, 0 − 1), (4) follows from

[9, Proposition 3.5].
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