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Abstract
In this note we show that proof-theoretic uniform boundedness or bounded collection
principles which allow one to formalize certain instances of countable Heine–Borel
compactness in proofs using abstract metric structures must be carefully distinguished
from an unrestricted use of countable Heine–Borel compactness.

Keywords Uniform boundedness principle · Bounded collection principle ·
Monotone functional interpretation · Bounded functional interpretation · Proof
mining

Mathematics Subject Classification 03F10 · 03F60 · 47H09

1 Introduction

In [11] we introduced formal theories of classical analysis (formulated in the language
of functionals of finite types) augmented with abstract metric and normed structures X
giving rise to systems Aω[X , d],Aω[X , d,W ] and Aω[X , ‖ · ‖,C],Aω[X , 〈·, ·〉,C]
treating abstract bounded metric spaces (X , d) or bounded W -hyperbolic spaces
(X , d,W ) or bounded convex subsetsC ⊆ X of normed linear or inner product spaces
(X , ‖ · ‖). These structures are added as a kind of atoms using a new base type X for
objects in X rather than stipulating X to be separable and explicitly represented as the
completion of a countable structure. This lack of any separability assumptions makes
it possible to extract uniform bounds which only depend on a bound on the metric
rather than requiring any compactness assumption. In [7], this approach is extended to
unbounded metric structures and unbounded convex subsets of normed spaces using
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an extension of the Howard-Bezem concept of majorizability. General logical bound
extraction metatheorems for such systems based on a monotone functional interpre-
tation have been developed for abstract classes of structures and applied extensively
during the past 15 years to obtain numerous new explicit rates of asymptotic reg-
ularity, metastability and other effective bounds from proofs in nonlinear analysis,
ergodic theory, metric fixed point theory and continuous optimization (see [13] for a
book treatment and—for a more recent survey—[15]). In [1,2], these techniques have
subsequently also been adapted to the so-called bounded functional interpretation (first
introduced without the structures X in [5]) and applied to specific proofs for the first
time in the recent paper [4].
The aforementioned logical uniform bound extraction theorems roughly speaking
allow for the extraction of effective uniform bounds from proofs of ∀x∃n ∈ N A∃-
sentences which only depend via majorants on the (universally quantified) parameters
x . Here A∃ is a purely existential formula where the existence quantifiers may range
over objects of modestly restricted types including N and X . For parameters from
bounded metric structures the bounds only depend on some bound on the metric.
While these results take the form of rules one may ask whether the corresponding ver-
sion formulating them as implicative ‘nonstandard’ axioms is consistent and permitted
to be utilized in formalizing proofs while the extracted bounds are true in all structures
considered (which certainly is not the case for these new axioms themselves). This has
in fact been achieved first in [12], where a so-called uniform boundedness principle
∃-UBX is studied for bounded metric structures X . A special form of this principle
asserts

(∗) ∀x ∈ X ∃n ∈ N A∃(x, n) → ∃n ∈ N∀x ∈ X ∃m ≤ n A∃(x, n),

where A∃(x, n) is a purely existential formula (here the existence quantifiers may even
range over objects of arbitrary types) which may contain also parameters other than
x, n.

In [12] it is shown that the use of ∃-UBX in proofs of a large class of ∀∃-theorems is
tame in the sense that it does not add to the complexity of extractable uniform bounds
which can be verified to be true in all bounded metric structures axiomatized in the
respective theory.
In the context of bounded functional interpretation such uniform boundedness princi-
ples have been studied in rather general form under the name of bounded collection
bCω,X

bd in [1]. Engrácia [1] shows results on bCω,X
bd similar to ours for ∃-UBX by a

proof-theoretic conservation result combined with semantical considerations to obtain
again the truth in all structures at hand.
While [12] (see also [13]) gives a number of general applications of the use of (∗), the
first actual application in a concrete ‘proof mining’ context has recently been made in
[4]. Here the authors show that certain uses of weak sequential compactness can be
replaced by (∗) explaining in terms of uniform boundedness why the unwinding of
a proof using weak sequential compactness (in the context of Hilbert spaces) in [14]
was possible using only primitive recursive functionals without having to resort to
Spector’s schema of bar recursion (needed to interpret weak sequential compactness).
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In the applications known so far, the required logical form of A∃ to be purely existential
is a consequence of the fact that this formula describes an open (in the strong topology)
subset. Based on this heuristic, (∗) is called in [4] a (countable) ‘Heine–Borel covering
principle’ which-formally—can be stated as

CHBC :
{

(∀n ∈ N (�n is open) ∧ ∀x ∈ X ∃n ∈ N (x ∈ �n))

→ ∃n ∈ N∀x ∈ X ∃m ≤ n (x ∈ �m),

where x ∈ �n is a formula (with x, n among its free variables) of the formal system
at hand (in [4], CHBC is not discussed as a formal principle but merely as an informal
way of thinking about bounded collection and uniform boundedness since an instance
of CHBC indeed becomes a consequence of the former principles if the open sets can
be represented in the syntactic form required which is the case in the situation studied
in [4]).
In this paper we show that despite of this useful heuristic, the uniform bounded prin-
ciple ∃-UBX needs to be strictly distinguished from general countable Heine–Borel
compactness as it can be shown to not imply the latter for certain definable (in the
respective system) sequences of (even provably) open subsets �n . The issue here
is that x ∈ �n in general cannot be written as a formula having the required logic
form (e.g. being purely existential in the case of ∃-UBX ). In fact, we establish this by
showing that the respective instance of CHBC does indeed prove ∀∃-theorems of the
form permitted in the aforementioned ∃-UBX -elimination theorems which are not true
in general in the class of metric structures considered (not even in general bounded
closed and convex subsets of l2). So these uniform bound extraction theorems which
hold for ∃-UBX are false if ∃-UBX is replaced by CHBC and ∃-UBX is rather to be
considered as a logical compactness principle (than as a principle stating some form
of compactness of X ).
In [4], X is a bounded closed convex subset of a Hilbert space as this is the context
of the particular application studied. In our paper we choose the setting of bounded
W-hyperbolic spaces (which are metric generalizations of bounded convex subsets of
normed linear spaces) as this makes the principles particularly easy to state since we
do not have to axiomatize the ambient unbounded normed space (which, nevertheless,
is not a problem and has been done already in [11]). Our actual counterexample,
however, is indeed a bounded convex subset of a normed space which can also be
adapted to get a counterexample in the Hilbert space case.

2 Main result

We work in the framework of so-called (W-)hyperbolic spaces which are a metric
generalization of convex subsets of normed linear spaces:

Definition 1 ([11]) (X , d,W ) is called a hyperbolic space if (X , d) is a metric space
and W : X × X × [0, 1] → X a function satisfying

(i) ∀x, y, z ∈ X∀λ ∈ [0, 1](d(z,W (x, y, λ)) ≤ (1 − λ)d(z, x) + λd(z, y)
)
,

(ii) ∀x, y ∈ X∀λ1, λ2 ∈ [0, 1](d(W (x, y, λ1),W (x, y, λ2)) = |λ1 −λ2| ·d(x, y)
)
,
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(iii) ∀x, y ∈ X∀λ ∈ [0, 1](W (x, y, λ) = W (y, x, 1 − λ)
)
,

(iv) ∀x, y, z, w ∈ X , λ ∈ [0, 1](
d(W (x, z, λ),W (y, w, λ)) ≤ (1 − λ)d(x, y) + λd(z, w)

)
.

For a discussion of this notion and its relation to various other related notions in the
literature, see [11].
W (x, y, λ) should be viewed of as a generalized concept of a convex combination and
we use the notation (1 − λ)x ⊕ λy to denote W (x, y, λ).

As a special case of [12](Theorem 3.5.2) (see also [13](Theorem 17.101) we have

Theorem 2 ([12]) Let

A :≡ ∀k ∈ N∀g ∈ N
N ∀x0 ∈ X ∀T : X → X ∃n ∈ N A∃

be a sentence of L(Aω[X , d,W ]), where A∃ is an ∃-formula. From a proof

Aω[X , d,W ] + ∃-UBX � A

one can extract a (bar-recursively) computable functional � : NN × N
2 → N such

that

∀k ∈ N∀g ∈ N
N ∀x0 ∈ X ∀T : X → X ∃n ≤ �(g, k, b) A∃

holds in any b-bounded hyperbolic space (X , d,W ).

Let (X , d,W ) be a bounded (W-)hyperbolic space and T : X → X be a nonexpansive
mapping. For x0 ∈ X wedefine theKrasnoselski iteration of T with starting point x0 by

xn+1 := 1

2
xn ⊕ 1

2
T xn .

As has been shown in [8] (generalizing a result from [9] from the linear to the geodesic
setting) one has (as a special case of a muchmore general result) asymptotic regularity
in the sense that lim

n→∞ d(xn, T xn) = 0.

Using a logic-based approach (‘proof mining’) and the fact that this convergence
proof can be formalized in Aω[X , d,W ], an explicit rate of convergence �(k, b)
(depending only on the error 2−k and a bound b ≥ diam(X)) has been extracted from
the convergence proof in [17]. In this note we only need that

(1) Aω[X , d,W ] � T : X → X nonexpansive → lim
n→∞ d(xn, T xn) = 0.

The sequence (xn) is easily shown to be Féjer monotone w.r.t. the fixed point set F(T )

of T , i.e.

(2) Aω[X , d,W ] � T : X → X nonexpansive →
∀p ∈ F(T )∀n ∈ N (d(xn+1, p) ≤ d(xn, p)) .
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We can now prove our main result:

Theorem 3 Aω[X , d,W ]+CHBC proves a sentence A of the form considered in The-
orem 2 such that A does not hold in general in bounded hyperbolic spaces (not even
bounded closed convex subsets of a Hilbert space).

Proof Trivially one has (taking p := x)

Aω[X , d,W ] � ∀k ∈ N∀T : X → X ∀x ∈ X(∀n ∈ N
(
d(x, T x) ≤ 2−n) → ∃p ∈ F(T )

(
d(p, x) < 2−k))

and so by (classical) logic

Aω[X , d,W ] � ∀k ∈ N∀T : X → X ∀x ∈ X ∃n ∈ N(
d(x, T x) ≤ 2−n → ∃p ∈ F(T )

(
d(p, x) < 2−k))

If T is nonexpansive then (provably in Aω[X , d,W ]) for all k, n

Un :=
{
y ∈ X : d(y, T y) ≤ 2−n → ∃p ∈ F(T )

(
d(p, y) < 2−k)}

is an open set: let x ∈ Un .

Case 1: for some p ∈ F(T ) one has that d(p, x) < 2−k . Let ε > 0 be so small that
d(p, x) + ε < 2−k . Then each y in the open ball Bε(x) with center x and radius ε

satisfies

d(p, y) < d(p, x) + ε < 2−k

and so belongs to Un .

Case 2: not Case 1. Then d(x, T x) > 2−n . Let ε > 0 be so small that d(x, T x)−2ε >

2−n . If y ∈ Bε(x), then d(y, T y) > d(x, T x) − 2ε > 2−n and so y ∈ Un .

So in either case we found an ε-ball around x ∈ Un which belongs to Un .

By CHBC we can now infer (using the monotonicity of the formula in n)

Aω[X , d,W ] + CHBC �
∀T : X → X

(
T n.e. → ∀k ∈ N ∃nk ∈ N∀x ∈ X(

d(x, T x) ≤ 2−nk → ∃p ∈ F(T )
(
d(p, x) < 2−k))).

Here ‘n.e.’ abbreviates ‘nonexpansive’. Nowwe can reason as in the proof of Theorem
4.1 in [18] to show that (xn) (for any x0 ∈ X ) is a Cauchy sequence: let k ∈ N. By (1)
above let N ∈ N be so large that d(xN , T xN ) ≤ 2−nk . Then there exists a p ∈ F(T )

with d(p, xN ) < 2−k and so by (2)

∀n ≥ N
(
d(xn, p) ≤ d(xN , p) < 2−k).
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Thus

∀n,m ≥ N
(
d(xn, xm) < 2−k+1

)
.

In particular, we can prove the metastable version (see [19]) of the Cauchy property
(which—noneffectively—implies back the Cauchy property)

Aω[X , d,W ] + CHBC �
∀T : X → X ∀x0 ∈ X ∀k ∈ N∀g ∈ N

N
(
T n.e. → ∃n ∈ N

(
d(xn, xn+g(n)) < 2−k

))

Modulo prenexing ‘
(
T n.e. → ∃n ∈ N (d(xn, xn+g(n)) < 2−k)

)
’ (since ‘T n.e’ is a

∀-formula) this sentence has the logical form of a sentence A as stated in the theorem
but in general it fails to hold in bounded hyperbolic spaces (even in bounded closed
convex subsets of l2) as we show now: first take X to be the bounded, closed and
convex subset

B+
c0 := {(xn) ∈ c0 : 0 ≤ xn ≤ 1, all n} ⊂ c0

c0 (of all sequences in R which converge to 0 with the sup-norm) and take as T one
of the well-known fixed point-free nonexpansive selfmappings : B+

c0 → B+
c0 , e.g. take

T (xn) := (1, x1, x2, . . .) (see [10], Example 2.1 on p.36.).
Clearly, B+

c0 is a complete hyperbolic space (X , d,W ) with d induced by the norm
andW (x, y, λ) := (1− λ)x + λy. If A would hold in this structure, then (xn) defined
in terms of such a T would be Cauchy and hence convergent. By the continuity of T
and (1) the limit had to be a fixed point of T , contradiction. To get a counterexample
in the Hilbert space case, we can use a construction from [6] who produce a bounded
closed and convex subset C ⊂ l2 and a nonexpansive selfmapping T : C → C and a
point x0 ∈ C such that the Krasnoselski iteration (xn) of T starting with x0 does not
converge strongly (although here, by the Browder-Göhde-Kirk fixed point theorem,
T clearly does have a fixed point). ��
Corollary 4 Theorem 2 does not hold if ∃-UBX is replaced by CHBC. In particular,
Aω[X , d,W ] + ∃-UBX does not prove CHBC.

Remark 5 Theorem 2 also holds if one adds new constants cρ (of suitably restricted
type ρ which includes the type X(X)) to the language together with universal axioms
(again with some type restrictions) implying that c is majorized by some closed term
ofL(Aω)∪{b0X },where bX is the constant used to express the boundedness of X . This
e.g. applies to adding a constant T X(X) to the language together with the axiom stating
that T is nonexpansive. In this theory (with e.g. fixing x0 as 0X ), it is then provable
that Un is open for all n (and k). So even for provably open sequences of open sets
which are explicitly definable in the language of our theory, CHBC in general cannot
be inferred from ∃-UBX .

Instead of using Aω[X , d,W ] one can also use the framework Aω[X , 〈·, ·〉,C] from
[11] which axiomatizes C as a bounded convex subset of an abstract inner product
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space X and formulate (the required special form of) ∃-UBX as

∀x ∈ C ∃n A∃(x, n) → ∃n ∈ N∀x ∈ C ∃m ≤ n A∃(x,m).

Theorem 2 can easily adapted to this context in which one can prove a-fortiori that
‖xn − T xn‖ → 0 for Krasnoselski iterations of nonexpansive mappings T : C → C .

Since the counterexample at the end of the proof of Theorem 3 lives in the context of
bounded convex subsets of the Hilbert space l2 it follows as in the previous Corollary
that:

Corollary 6 Aω[X , 〈·, ·〉,C] + ∃-UBX does not prove CHBC.

Let us discuss the counterexample constructed in the proof of Theorem 3 a bit further.
What

(+) ∀k ∈ N ∃nk ∈ N∀x ∈ X
(
d(x, T x) ≤ 2−nk → ∃p ∈ F(T )

(
d(p, x) < 2−k

))

expresses is that T is metrically regular w.r.t. F(T ) in the sense of [18], where any
function �(k) providing nk as a function of k is called a ‘modulus of regularity’ of T
w.r.t. F(T ) (in [18] we use for convenience the more common ε/δ-formulation of this
fact). Our argument based on countable Heine–Borel compactness given above is used
in [18] to show the (noneffective) existence of a modulus of regularity whenever X is
(boundedly) compact. In [16], we analyzed the situation from the perspective of both
reverse mathematics and computability theory and showed that if X is represented as a
complete totally bounded space then arithmetical comprehension (ACA0) is sufficient
and necessary to prove the existence of � while the version (+) without the existence
of a modulus function can be proved by (and is equivalent to) the weak König’s
lemma WKL. However, in our formal systems X is treated as an abstract space and
not represented as a completion of a countable (pseudo-)metric space and although
CHBC is known to imply full Heine–Borel compactness of metric spaces and hence
total boundedness this is not a fact we can already use when formalizing CHBC. This
is why—in order to bring

d(x, T x) ≤ 2−n → ∃p ∈ F(T )
(
d(p, x) < 2−k

)

into the syntactic form required in∃-UBX—wewouldhave to add e.g. a comprehension
functional � : X × N → N in x ∈ X such that

�(x, k) = 0 ↔ ∃p ∈ F(T )
(
d(p, x) < 2−k

)
.

With the inessential change of using ‘≤’ instead of ‘<’, we could use ∃-UBX

to rewrite ‘∃p ∈ F(T ) (d(p, x) ≤ 2−k)’ equivalently as ‘∀m ∈ N ∃p ∈
X

(
d(p, x) ≤ 2−k ∧ d(p, T p) ≤ 2−m

)
’. Alternatively, a more local comprehension

functional � : X → N

�(p) = 0 ↔ p ∈ F(T )

123



1002 U. Kohlenbach

would also be sufficient. In either case, one would need a comprehension over points x
or p in X using a formula which contains a universal quantifier over natural numbers
(hidden in p ∈ F(T ) resp. present as ∀m ∈ N) which is not available in our formal
system. In the situation studied in [16] we could, relying on the representation of
X being totally bounded, replace the dependence on x by that of indices ∈ N of
suitable elements from an ε-net to make the comprehension a comprehension over
numbers (which—by subsequent arguments—is even an arithmetical comprehension
over natural numbers).
The results in this note carry over mutatis mutandis to the bounded collection principle
bCω,X

bd from [1,2] showing that this principle does not implyCHBCover the framework

PAω,X
� used in the bounded functional interpretation.

Final comment: as a reaction to our note, Fernando Ferreira communicated to us
a different example showing that in formal systems of infinite dimensional Hilbert
spaces, CHBC actually can be shown to be inconsistent [3].
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