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Abstract
Nonlinear dynamic structural optimization is a real challenge, in particular for problems that require the use of explicit solvers,
e.g., crash. Here, the number of design variables is typically very limited. A way to overcome this drawback is to use linear
auxiliary load cases which are derived from nonlinear dynamic analysis results in order to enable the application of linear static
response optimization. The equivalent static load method (ESLM) provides a well-defined procedure to create such linear
auxiliary load cases. The main idea here is that after the selection of a number of representative time steps, a set of equivalent
static loads (ESLs) is computed for each time step such that the resulting displacement field in the linear static analysis is identical
to the respective field in the nonlinear dynamic analysis. Each set of ESLs defines an auxiliary load case, which is used in the
linear static response optimization. The crucial point is that the finite element (FE)-model for each auxiliary load case describes
the undeformed initial geometry. This can lead to insufficient approximation quality in the linear static system for highly
nonlinear problems. To overcome this drawback, a difference-based extension of the ESL method called DiESL has been
developed for nonlinear dynamic response optimization problems. Here, the FE-model for each auxiliary load case describes
the deformed nonlinear geometry at the respective time, and the corresponding ESLs create only the displacement field leading to
the deformed state of the subsequent ESL time step. Consequently, responses in each linear auxiliary load case (corresponding to
a time step) are computed as the accumulated sum of the previous linear auxiliary load cases. Furthermore, the linear static
response optimization problem consists not only of one but of nT FE-models where nT is the number of selected time steps. Such a
multi-model optimization (MMO) can be solved with commercial FE solvers. It turns out that the DiESL approach leads to a
significant improvement of the nonlinear approximation quality and faster convergence to the optimum when compared to
standard ESLM. This will be demonstrated and discussed based on selected test examples.
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1 Introduction

Linear static response structural optimization is highly
efficient and is therefore embedded in a considerable
number of applications commonly used during the design
process in industry. Many commercial codes are available
in this area, enabling sizing, shape, and topology

optimization in an acceptable amount of time. The time
saving can especially be attributed to the availability of
(semi-) analytical sensitivity analysis enabling the appli-
cation of very efficient gradient-based optimizers. In con-
trast to the well-established optimization based on linear
analysis, the real challenge in optimization is the optimi-
zation of highly nonlinear dynamic systems. A prime ex-
ample is the optimization of crash-related problems in
automotive industry which is also the main objective of
this paper. Furthermore, we restrict ourselves to the use of
commercial crash solvers for the nonlinear dynamic anal-
ysis to ensure that the proposed DiESL (difference-based
equivalent static load) method can be applied to real au-
tomotive crash problems. Worldwide, only explicit
solvers are used in automotive crash analysis. Here, the
most dominating part of the nonlinearities does not result
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from material or geometric nonlinearities but from contact
forces. They may not only change in magnitude but espe-
cially in location from time step to time step. As a con-
sequence, it is very difficult to apply sensitivity analysis
which may be the reason that no commercial code in this
area is able to compute sensitivities enabling gradient-
based optimization for crash. Instead, metamodel-based
methods are often used. Examples for such metamodels
are polynomials, radial basis functions (Powell 1992;
Schaback and Wendland 2001; Schaback 2002), neural
networks (Hornik et al. 1990, 1992; Waszczyszyn 1999),
and kriging models (Matheron 1963; Cressie 1988, 1989,
1990). The drawback of the metamodel-based optimiza-
tion is that the number of design variables is limited and
applications with extremely high number of design vari-
ables such as topology optimization are impossible due to
the large number of required designs that need to be eval-
uated in order to fit the metamodels.

A promising approach to circumvent the missing-
sensitivity-problem of commercial crash solvers is to de-
fine linear auxiliary load cases enabling linear static re-
sponse optimization. This means that the nonlinear dynam-
ic optimization problem is solved by solving a sequence of
linear static response optimization subproblems. The
equivalent static load method (ESLM) provides a proce-
dure to compute such auxiliary load cases. These auxiliary
load cases are created by applying equivalent static loads
(ESLs) to linear statics.

The ESLMhas been successfully applied to various kinds
of optimization like sizing, shape, free sizing, and topology
optimization (Choi and Park 2002; Park et al. 2005; Lee et al.
2013b; Shin et al. 2007; Lee et al. 2007, 2013a; Jeong et al.
2008; Jang et al. 2012; Hong et al. 2010; Kim and Park 2010;
Park 2011; Lee and Park 2015; Karev et al. 2018; Choi et al.
2018; Karev et al. 2019). Nevertheless, the ESLM has some
limitations and disadvantages which are discussed in this
paper. The main issues result from the fact that the ESLs are
always calculated based on the undeformed initial geometry.
The ideapresented in this paper tries toovercome these issues
by using a difference-based approach for calculating the
ESLs. The focus is on solving nonlinear dynamic response
optimization problems which require usage of explicit
solvers.

This paper is structured in the following way: In
Section 2, the ESLM approach is presented. In Section 3,
a difference-based extension for calculating the ESLs
called the DiESL method is introduced in detail. In that
process, a general approach for handling structural re-
sponses is given. Furthermore, the implementation of the
DiESL method is explained. Afterwards, the DiESL ap-
proach is tested and compared to the ESLM for two differ-
ent examples in Section 4. Finally, a conclusion and an
outlook are worked out.

2 The ESLM (equivalent static load method)

The ESLM has been introduced by Choi and Park (Choi and
Park 2002). It provides a well-defined procedure to create
linear auxiliary load cases for nonlinear dynamic response
optimization problems which are used in optimization based
on linear static analysis. The objective function and the con-
straints used in the linear static response optimization and in
the nonlinear dynamic response optimization are identical.
The only difference is that the nonlinear dynamic responses
are approximated by linear static responses. For dynamic re-
sponses such as section forces, velocities, and accelerations,
which are not defined in linear statics, it is necessary to find
proper approximations. For velocity and acceleration, for in-
stance, simple finite forward (Jeong et al. 2010) or central
(Karev et al. 2018; Karev et al. 2019) differences between
adjacent load cases (corresponding to adjacent time steps)
can be used. The advantage of ESLM is that well-developed
commercial software systems such as MSC NASTRAN,
Altair OptiStruct, or VRANDGENESIS can be used for anal-
ysis and optimization and no development of own sensitivity
analysis and optimization algorithm is necessary. In this sense,
ESLM is not an optimization algorithm but a method to trans-
form an optimization problem involving nonlinear and/or dy-
namic responses into one using responses from a set of linear
static subcases.

The procedure for computing the ESLs of the auxiliary
load cases is now the following: In the first step, the user
defines a set of nT time steps ti, i = 1, …, nT, to capture the
behavior of the nonlinear problem with sufficient accuracy.
The basic idea is now to calculate loads f iESL which yield the
same displacement vector ui in linear statics as those obtained
for the selected time steps ti in the nonlinear dynamic analysis
uNL(ti) (Park 2011). Thus, the loads received are equivalent in
the sense that they lead to same displacement fields.

In Fig. 1, the process of the ESLM is illustrated for a non-
linear dynamic problem. The process starts in the analysis
domain with a nonlinear dynamic analysis from which the
displacement vectors uNL(ti) for nT user-selected time steps ti

are obtained. The equivalent static loads f iESL are then calcu-
lated by multiplying the stiffness matrixK(x) by the displace-
ments fields

K xð ÞuNL t ið Þ ¼ f iESL; i ¼ 1;…; nT: ð1Þ

This leads to a set of ESLs and a corresponding linear
auxiliary load case for each time step ti. Based on these nT
load cases, linear static response optimization is performed in
the design domain afterwards. All load cases are based on the
same FE model (i.e., with the same initial geometry) and thus
have the same stiffness matrix K(x). Hence, the optimization
can be performed with a single optimization deck containing
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nT subcases. After the optimization step (inner loop), nonlin-
ear analysis has to be applied again with the updated design
variables. In the following, the outer loop iterations are called
cycles to distinguish them from the iterations of the inner loop
in the linear static response subproblem.

Note that the displacement fields of the nonlinear and the
linear analysis are identical only at the beginning of the opti-
mization in the inner loop. At the end of the inner loop, the
linear and the nonlinear dynamic responses no longer match
perfectly because the linear auxiliary load cases are only an
approximation of the nonlinear behavior of the system. If the
difference is too high, the process is iterated (outer loop) until
the difference is small enough and additional termination
criteria (Shin et al. 2007; Jeong et al. 2010; Kim and Park
2010; Park 2011) are fulfilled. Furthermore, it can be expected
that the difference between the linear and nonlinear dynamic
responses increases with the length of the inner loop optimi-
zation path. If this difference is too high, the update in the
outer loop may result in huge changes in the search directions
and convergence is slowed down or even not guaranteed any-
more. For this reason, commercial ESLM codes, such as
VRAND ESLDYNA, limit the number of iterations and offer
the application of move limits to restrict the length of the inner
loop optimization path in each cycle.

ESLM has been successfully applied to different types of
optimization and analyses (Park 2011) such as

& linear dynamic response optimization

M xð Þ ::
uþ Cu̇þK xð Þu ¼ f tð Þ ð2Þ

& structural optimization for multi-body dynamic systems
& structural optimization for flexible multi-body dynamic

systems
& nonlinear static response optimization

KNL x; uNL
� �

uNL ¼ f ð3Þ

& nonlinear dynamic response optimization

M xð Þ ::
u
NL þ C xð Þu̇NL þKNL x; uð ÞuNL ¼ f tð Þ ð4Þ

The most challenging application is the optimization
of crash problems in the field of nonlinear dynamic
response optimization, which is the focus of this publi-
cation. The original crash optimization problem can be
stated as

min f x; uNL x; tð Þ� � ð5aÞ
s:t: g j x; u

NL x; tð Þ� �
≤0; j ¼ 1;…;m ð5bÞ

xL≤x≤xU; x∈ℝn ð5cÞ

Here, f(x) is the objective function, m the number of con-
straints gj, and xL and xU are the lower and upper bounds of
the design variable x, respectively. The displacement vector
uNL is the solution of

M xð Þ ::
u
NL tð Þ þ C xð Þu̇NL tð Þ þKNL x; uNL tð Þ� �

uNL tð Þ ¼ f ð5dÞ

Fig. 1 Optimization process of
ESLM and DiESL methods for a
nonlinear dynamic problem (note
that equations and symbols refer
to ESLM and are different for
DiESL)
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For crash problems, the external forces f are typically zero
(except for gravity) but the internal forces fint = −KNLuNL

may change in magnitude and location very fast from time
step to time step due to contact. Commercial codes are avail-
able for crash analysis such as LSTC LS-DYNA, ESI Pam-
Crash, or Altair RADIOSS. They use an explicit time integra-
tion scheme and a penalty formulation for contacts. This
means that the contacts are modeled by springs and a very
time-consuming task in a crash code is the computation of
contact areas and resulting contact forces. It results in an
adding and removing of contact spring elements for closing
or opening contacts, respectively. Of course, such codes can
handle complicated nonlinear material models and geometric
nonlinearities as well. Nevertheless, the most important or
dominating nonlinearities result from the contacts.

The ESLM solves the following optimization problem:

min f x; u xð Þð Þ ð6aÞ

s:t: g j x; u xð Þð Þ≤0; j ¼ 1;…;m ð6bÞ
xL≤x≤xU; x∈ℝn ð6cÞ
where u is the solution of

K xð Þui ¼ f iESL; i ¼ 1;…; nT; ð6dÞ

the equivalent static loads f iESL for load case i are computed as

f iESL¼K xð ÞuNL ti
� �

; i ¼ 1;…; nT ð6eÞ

and uNL(ti) is the solution of

M xð Þ ::
u
NL tð Þ þ C xð Þu̇NL tð Þ þKNL x; uNL tð Þ� �

uNL tð Þ
¼ f tð Þ ð6fÞ

for the selected time steps ti.
It was stated in Park and Kang 2003 that the Karush-Kuhn-

Tucker (KKT) conditions of the linear static subproblem and
the original dynamic problem are identical if the ESLM sat-
isfies specific termination criteria. Stolpe 2014 showed that
the proof is incomplete and not correct. According to Stolpe,
the most critical point is that the displacement sensitivities of
the original problem and the subproblem are not necessarily
identical. Therefore, Stolpe supposes an alternative algorithm
where these sensitivities are identical by definition. However,
the supposed algorithm requires the computation of sensitivi-
ties of the original dynamic problem and is therefore not ap-
plicable to optimization of crash problems. Furthermore,
Stolpe et al. 2018 presented an example illustrating that
ESLM may fail to find the optimal design of the dynamic
response optimization problem. Nevertheless, the topic is still
under discussion because Park and Lee claimed in their latest
publication (Park and Lee 2019) that Stolpe’s correction had
now been taken into account and that the ESLM solution is a

KKT point if additional mathematical aspects are added. This
discussion history demonstrates how difficult it is sometimes
to prove convergence and optimality criteria for methods
based on an engineering approach such as ESLM. The same
holds for the DiESL approach presented in the next chapter
and future will show if it is possible to prove if this method
really guarantees to find the optimum of the original dynamic
problem.

3 The DiESL (difference-based equivalent
static loads) method

As mentioned above, ESLM is not really an optimization al-
gorithm but a method to compute linear static auxiliary load
cases to approximate nonlinear dynamic responses. The inten-
tion of DiESL is to improve this approximation quality as well
as the resulting approximation quality of the sensitivities. It
can be expected that the better the approximation quality, the
higher the convergence speed of the optimization. It is
intended to improve the ESLM by improving the approxima-
tion of the sensitivities.

To explain the idea of DiESL, we assume that a nonlinear
dynamic FE analysis has been carried out. We now study the
nonlinear spatial path of an arbitrary FEM node where its
location at time t = 0 corresponds to the initial undeformed
structure and the coordinate at t = ti to the deformed structure
at this time step (see Fig. 2, left). The main drawback of
ESLM is that it always starts from the initial undeformed
structure. This means that we always obtain a linear “path”
from the location at t = 0 to the location at t = ti if we want to
compute the ESLs for displacement uNL(ti) in linear static path
(Fig. 2, middle). This “path” is in general completely different
from the nonlinear path, causing the following issues:

& The ESLs in the linear static subproblem are completely
different to the nodal forces in the original nonlinear dy-
namic problem. Typically, the ESLs are significantly
higher.

& The strains in the linear static subproblem and the nonlin-
ear dynamic problem are completely different.

& The stresses in the linear static subproblem and the non-
linear dynamic problem are completely different.

& The sensitivities in the linear static subproblem and the
nonlinear dynamic problem may be completely different
and may not even match in sign.

The idea of the difference-based equivalent static loads
(DiESL) is now to improve the approximation quality of the
subproblem by following the nonlinear displacement path.
Here, the displacements of each node j at time step ti used
for computing the ESLs are not referring to the initial
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coordinates rj(t = 0), but to the coordinates of the deformed
geometry rj(t

i − 1) at the previous time step ti − 1 (Fig. 2, right).
As a consequence, the DiESL approach requires nT FE
models, one for each time step ti, i = 0, …, nT − 1 (note: t0

corresponds to the first FE model with undeformed geometry
at t = 0). In the following, we call each of these FE models at
time step ti the “ith linear submodel” (LSMi). An additional
consequence is that the approximation of a nonlinear displace-
ment at time ti is no longer given by the displacement of load
case i but as a sum of incremental displacements of different
LSMis. Each LSMi is created by modifying the coordinates of
each node without changing the topology of the FE mesh.

The node coordinates of an LSMi are collected in the vector

rT ti
� � ¼ rT1 ti

� �
; rT2 ti

� �
;…; rTnN ti

� �� �
ð7Þ

which contains the coordinates rj(t
i) of all nN nodes.

Accordingly, r(t0) describes the coordinates of all nodes of
the undeformed model. Furthermore, the vector

uNL tð ÞT ¼ uNL1 tð ÞT ; uNL2 tð ÞT ;…; uNLnN tð ÞT
� �

ð8Þ

contains the nonlinear displacements of all nN nodes at the
time t. The coordinates of a linear submodel LSMi describing
the deformed geometry at time ti can therefore be calculated
by

r ti
� � ¼ r t0

� �þ uNL ti
� �

: ð9Þ

Note that we used the ESLM displacement “path” to com-
pute the coordinates of the deformed geometry in (9).
Generally, this can also be done by summing up the incremen-
tal displacements ΔuNL(ti) (see Fig. 2, right) but this is more
complicated and leads to the same result.

To determine the incremental equivalent static loads

Δ f iDiESL in the linear submodel LSMi, the corresponding stiff-
ness matrixKi =K(x, r(ti)), which depends on the design var-
iables x and the nodal coordinates r(ti) of LSMi, has to be
multiplied by the vector of the incremental nonlinear displace-
ments ΔuNL(ti)

KiΔuNL ti
� � ¼ Δ f iDiESL: ð10Þ

The incremental nonlinear displacements leading from r(ti)
to r(ti + 1) are calculated by

ΔuNL ti
� � ¼ uNL tiþ1

� �
−uNL ti

� � ð11Þ

which is illustrated in Fig. 3 for an arbitrary node. Using the
incremental equivalent static loads Δ f iDiESL, gradient-based
linear static response optimization can now be performed sim-
ilar as described before for the ESLM as illustrated in Fig. 1.
But in contrast to the ESLM, which requires only a single FE
model representing the undeformed structure of the underly-
ing initial model, now nT FE models have to be considered in
one optimization run. Consequently, multi-model optimiza-
tion (MMO) has to be applied where more than one FE model
can be taken into account simultaneously in one linear static
response optimization run. Here, the FE equation of linear
statics

KiΔui ¼ Δ f iDiESL ð12Þ

is solved for each LSMi, which yields the incremental linear

displacements ΔuiT ¼ Δui1
T
;Δui2

T
;…;ΔuinN

T
� �

.

Figure 4 illustrates the benefits of the DiESL approach
based on the example of a three-point bending load case.
ELSM can only capture the bending behavior of the beam
but not the tensile stress that occurs in the deformed states.
The reason is that ESLM always starts from the undeformed
structure; hence, the stiffness matrixK is assembled from only
bending contributions for all beam elements. There are no
tensile stiffness contributions which appear only after defor-
mation. In contrast, DiESL captures the tensile stiffness con-
tributions because it is based on deformed structures as illus-
trated on the right side of Fig. 4. Here, the dotted and the solid
lines show the deformed shape at t = ti − 1 and t = ti, respective-
ly. The displacements ΔuNL(ti − 1) describe the gap between
the dotted and the solid line, and it is obvious that the smaller
ΔuNL(ti − 1), the more accurately the nonlinearities should be
captured. Furthermore, it is expected that the nonlinear strains
can be determined by linear theory with sufficient accuracy if

Fig. 2 Displacement path of an arbitrary node during the deformation of a
structure (left) and the corresponding displacement uNL(ti) (middle) and

ΔuNL(ti) (right) used for the computation of the ESLs and DiESLs at time
step ti, respectively
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one chooses the difference between time step ti and ti − 1 ade-
quately small. Note that the linear strains of each LSM can be
considered as “true strains” because they are based on de-
formed geometries. In addition, the DiESL approach can also
capture the dependencies of the stiffness matrix on the dis-
placements, because each stiffness matrix Ki is now based on
the deformed structure at time step ti.

Summarizing, the DiESL approach solves the following
optimization problem:

min f x;Δu0 xð Þ;…;ΔunT−1 xð Þ� � ð13aÞ
s:t: g j x;Δu0 xð Þ;…;ΔunT−1 xð Þ� �

≤0; j ¼ 1;…;m ð13bÞ
xL≤x≤xU; x∈ℝn ð13cÞ
where Δui is the solution of

Ki xð ÞΔui ¼ Δ f iDiESL; i ¼ 0;…; nT−1 ð13dÞ

in LSMi, the equivalent static loads Δ f iESL are computed as

Δ f iDiESL¼Ki xð Þ uNL tiþ1
� �

−uNL ti
� �� �

; i ¼ 0;…; nT−1 ð13eÞ

and uNL(ti) is the solution of

M xð Þ ::
u
NL tð Þ þ C xð Þu̇NL tð Þ þKNL x;uNL tð Þ� �

uNL tð Þ
¼ f tð Þ ð13f Þ

for the selected time steps ti.
In the following, it is described inmore detail how different

kinds of structural responses are handled in the DiESL
approach.

3.1 Computation of displacements

During optimization of all LSMs using MMO, each LSM
analysis yields incremental displacements. The total linear
displacement of a node at time ti is used as an approximation
of the respective nonlinear displacement ui ≈ uNL(ti). It can be
computed recursively as

ui ¼ ui−1 þΔui−1 ð14Þ
whereΔui − 1 is the solution of (12) for LSMi − 1. Accordingly,
the accumulated displacements can be calculated as

ui ¼ u0 þ ∑i−1
j¼0Δu j: ð15Þ

In general, u0 = 0 applies. This accumulation is processed
by the MMO, which handles all LSMs and accumulates their
solutions Δui.

3.2 Computation of strains and stresses

Strains and stresses can be accumulated in a similar way as the
displacements. The procedure is shown in the following for
strains. A strain component εi in LSMi is calculated as

εi ¼ εi−1 þ αi−1Δεi−1: ð16Þ

Here, the scaling factor α is introduced to obtain a better
description of nonlinearities such as geometric nonlinearity
and plastic material behavior. The factor is calculated as

αi−1 ¼ εNL tið Þ−εNL ti−1ð Þ
Δbεi−1 ð17Þ

whereΔbεi−1 in (17) is the linear static strain value in LSMi − 1

computed at the beginning of the linear static optimization
(i.e., iteration 0) in each cycle. The nonlinear true strains
εNL(ti) and εNL(ti − 1) are obtained from the nonlinear analysis.
The accumulated strain can be calculated as

εi ¼ ε0 þ ∑i−1
j¼0α

jΔε j ð18Þ

where in general ε0 = 0 applies. Note that the linear static
strain εi is also a true strain, at least in good approximation,

Fig. 3 Relationship between absolute and incremental displacements

Fig. 4 Different states of deformation in three-point bending illustrating the benefits of the DiESL approach
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because it is computed based on the respective deformed ge-
ometries in each LSM. Hence, the correction factor α for
strains is not necessary if the time difference between adjacent
LSMs is small enough. This is not necessarily true for stresses
in the plastic area because the effective plastic yield stress
tangent modulus differs strongly from the linear Young’s
modulus.

3.3 Computation of velocities and accelerations

Generally, velocities and accelerations can be computed in
good approximation as finite differences of displacements be-
tween adjacent time steps if the time step in between is suffi-
ciently small. In DiESL, this is simplified because the solution
Δui of LSMi is already a difference. Consequently, the veloc-

ity u̇
i
at time step ti can simply be computed as forward dif-

ference by

u̇
i ¼ Δui

Δti
ð19Þ

where Δti is the time difference between LSMi and LSMi + 1.
Hence, the acceleration can be calculated as

::
ui ¼ u̇

i
−u̇

i−1

Δt
i;i−1 ; Δt

i;i−1
¼ Δti þΔti−1

2
: ð20Þ

3.4 Implementation

In a first step, a Python code of the ESLM (Spohner 2018;
Triller 2019) had been developed. In a second step, this code
was extended to handle both ESL and DiESL methods. It uses
the commercial solver LSTC LS-DYNA (LSTC 2015) for
nonlinear dynamic analysis and OptiStruct (HyperWorks A
2012) for the computation of the ESLs and for the linear static
response optimization. Furthermore, the same termination
criteria were used for both methods ESLM and DiESL. The
first criterion is that the design has to be feasible. Since the
linear static subproblem only provides estimations for the ac-
tual problem, the convergence check has to be performed after
the nonlinear dynamic analysis. However, the responses of the
linear static analysis often differ from those of the nonlinear
dynamic analysis. In some cases, to avoid unnecessary cycles
with little changing design variables, a small constraint viola-
tion may be tolerated. Hence, the implemented first conver-
gence criterion is that the maximum normalized constraint
violation gmax has to be smaller than a specified limit δ:

gmax≤δ ð21Þ

The second criterion is that the relative change of the ob-
jective function between two subsequent cycles k − 1 and k
has to be smaller than a given value ϵ:

f x kð Þ� �
− f x k−1ð Þ� ��� ��

f x kð Þð Þj j ≤ϵ ð22Þ

The values δ = 0.01 and ϵ = 0.01 have been used for both
test problems.

For the limitation of the length of the optimization path
in the inner loop, in the current implementation of the
ESL and DiESL method, the same strategy is used as in
the commercial code ESLDYNA (VRAND 2012) based
on two parameter sets. The first set controls the move
limits of the current cycle k:

bxU; kð Þ
i ¼ min xUi ; x

k−1ð Þ
i þ D x k−1ð Þ

i

��� ���� �

bxL; kð Þ
i ¼ max xLi ; x

k−1ð Þ
i −D x k−1ð Þ

i

��� ���� �
;D∈ 0; 1½ �

ð23Þ

Parameter D controls the size of the current move limits in
cycle k by means of two parameters Dini and βred. The param-
eter Dini corresponds to the initial value of D in (23). The
reduction factor βred ∈ (0, 1] is used to control how D changes
from cycle to cycle (outer loop)

D 1ð Þ ¼ Dini; k ¼ 1
D kð Þ ¼ D 1ð Þβk−1

red ; k > 1:
ð24Þ

In this publication, the parameter set Dini = 0.2 and βred =
0.9 has been used in all test problems. The other parameter set
controls the number of iterations (inner loop) by the parame-
ters maxiterini and maxiter defining the maximum number of
iterations per cycle in the first and in subsequent cycles (outer
loop), respectively. For all examples shown below, the param-
eter setmaxiterini ¼ maxiter ¼ 2 has been used. This means that
each cycle contains 2 iterations.

Very often, the FE mesh topologies in the nonlinear dy-
namic and the linear model are not identical. In such a case, all
the coordinates and responses are mapped from the nonlinear
dynamic to the linear static mesh before applying the formulas
described above. In the test problems below, this was not
necessary because the mesh topologies in the LS-DYNA
and the OptiStruct model were identical.

Due to the fact that DiESL does not start from a single
undeformed initial model but from deformed structures re-
lated to the different LSMs, it may happen that the linear
static response optimization terminates with an error dur-
ing the calculation of the ESLs due to excessively de-
formed elements and thus poor element quality. In order
to realize a robust application of DiESL, an automatic re-
pair mechanism for the mesh of the affected LSMs has
been developed by deleting the failed elements. Note that
such failed elements typically do not appear in all but only
in a few LSMs at very early cycles only. For this reason,
the deleted elements of the previous cycle are added back
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at the beginning of each cycle and it is checked again if
there are failed elements. Furthermore, it should be noted
that in all applications in this paper, failed elements ap-
peared only in the early cycles at 3 of the 20 DOE
(Design of Experiments) points described in chapter 4.2.
Here, some initial thicknesses were very low leading to
huge deformations and thus distorted elements.

The overall flow scheme explained before is implemented
as follows:

Step 1: Set initial design variables and parameters (k = 0,
x(k = 0), δ, ϵ, Dini, βred; maxiterini , maxiter)

Step 2: Perform nonlinear dynamic analysis with xk

Step 3: If k > 0, check criteria of convergence for ti: if (21)
and (22) are satisfied then terminate the process.

Step 4: If the mesh of the model used for nonlinear dynamic
analysis and linear static response optimization is not

identical, map nonlinear displacements to linear stat-
ic mesh.

Step 5: Calculate the incremental displacements ΔuNL(ti)
and the node coordinates rT(ti) of all LSMs for all
selected time steps ti

Step 6: Check the element quality of each LSM FE mesh. If
check was not successful, delete failed elements in
respective LSM and repeat Step 6 for the remaining
mesh.

Step 7: Calculate the incremental equivalent static loads
Δ f iDiESL

Step 8: Update the move limits D according to (24)
Step 9: Solve the linear static response optimization problem

with the incremental equivalent static loads Δ f iDiESL
Step 10: Update the design variables in the nonlinear model,

set k = k + 1, and go to Step 2

Fig. 6 Quarter FE model (bottom view in z-direction) of the three-point bending test used for linear and nonlinear analysis and three representative
elements 1, 2, and 3

Fig. 5 Three-point bending test setup
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Note that the scheme of the ESL algorithm is similar: Δ
f iDiESL is replaced by f iESL above, and Steps 5 and 6 can be
omitted.

4 Test problems

Two test problems for comparison of the two methods ESLM
and DiESL are presented in this chapter. The first test problem
is a simple 1-dimensional academic example with only one
design variable for which the optimum can be determined
graphically or by applying bisection. It has the advantage that
the optimal solution can be computed easily in advance and
that there are no local minima. Therefore, it is an ideal test
example to compare the convergence speed of ESLM and
DiESL without distorting influences such as becoming
trapped in a local minimum. Furthermore, it is well suited
for the approximation capability of structural responses such
as strains. The second test problem is a more practical example
because a simplified model for a crash side impact problem
with 7 design variables is used. Both test problems represent
sizing optimization problems in which the mass of the struc-
ture is to be minimized, while the intrusion of an impactor is
constrained. A contact formulation for the contact between
impactor and structure is used in the LS-DYNA and the

OptiStruct model for both test problems. Consequently, the
displacement of the impactor is used as response for the con-
straint in each example. For both test problems the averaged
run times per cycle are given in tables 3 and 4 in the appendix

For the second test problem, we compare both ESLM and
DiESL results with the result of the commercial code LSTC
LS-OPT (LSTC 2015). LS-OPT uses the Successive
Response Surface Method (SRSM) (Roux et al. 1998;
Stander and Craig 2002) which is a metamodel-based ap-
proach. It starts with a DOE in the current subdomain, which
is the whole design space at the beginning of the optimization.
After computing all responses of interest at the sample points,
the metamodels are created in the current subdomain for both
objective function and constraints, and then, the optimization
problem based on the metamodels is solved. The optimized
point becomes the center of the new subdomain (panning).
Additionally, the size of the subdomain is reduced
(zooming) during the iterations. This procedure is repeated
until termination criteria are fulfilled. We used the recom-
mended default settings in LS-OPT, which are DOE creation
with 50% oversampling and D-optimal samples (Roux et al.
1998) and a linear regression as metamodel.

4.1 Three-point bending test

As shown in Fig. 5, a rigid cylindrical impactor with diame-
ter = 100 mm,massimpactor = 1.256 kg and initial speed vz = −
7.5 m/s strikes a rectangular sheet metal plate (length =
300 mm, width = 25.47 mm, thickness = x1, Youngs’s modu-
lus E = 210 GPa, density ρ = 7850 kg/m3, LS-DYNA element
type = fully integrated shells) which has fixed translational
degrees of freedom in x- and z-direction on both ends.
Bilinear plastic material (tangent modulus = 0.6 GPa, yield
stress = 0.25 GPa) is assigned to the sheet metal. The impactor
is constrained to motion in z-direction only. Both impactor
and plate are subjected to gravitation g = 9.81 m/s2.

The FE model used for modeling is shown in Fig. 6. In
order to reduce the computational costs of the model, only a

Fig. 8 Objective function and maximum relative constraint violation over cumulated iterations (left) and convergence criteria over cycles (right) using
ESL

Fig. 7 Intrusion d(x1) over time for the initial design and optimal design
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quarter of the whole model is used by applying symmetry
conditions. Both linear and nonlinear dynamic analyses are
based on the same mesh, and contact between impactor and
plate is defined in both models. The plate’s elements are col-
ored by the value of the normal strains in global x-direction as
obtained from the nonlinear dynamic simulation at time t =
12.5 ms for the initial configuration. The majority of the plate
shows a relatively homogeneous tensile strain distribution and
the superimposed bending strains on the left where the plate
wraps around the rigid impactor. Three elements near the lon-
gitudinal symmetry line were chosen as representative ele-
ments for detailed strain analysis: (1) plate center near the
impactor, (3) near the clamping (but not too close), and (2)
in between.

The objective of the optimization problem is to minimize
the mass of the sheet metal while the intrusion d of the impac-
tor must not exceed 45 mm. The thickness of the sheet metal
x1 ∈ [0.85 mm, 2 mm] is the only design variable.
Consequently, the optimization problem reads as

suchthat
min mass x1ð Þ
d x1ð Þ≤45 mm

0:85 mm≤x1≤2 mm

For the selection of ESL times, the following consideration

had beenmade: For the initial value x 0ð Þ
1 ¼ 0:85 mm, the max-

imum intrusion d x 0ð Þ
1

� �
≈60 mm, as illustrated in Fig. 7, oc-

curs at time t ≈ 12.5 ms. Hence, the design is infeasible. This
means that the optimizer will increase the stiffness to become
feasible. Increasing stiffness will cause the maximum deflec-
tion to move to smaller times. Therefore, the last ESL time can
be set to 12.5 ms to ensure that the maximal intrusions are
captured. In order to resolve the maximum intrusion and to
capture the nonlinear displacement path (Fig. 2, left) properly,
ten uniformly distributed ESL time steps from 1.25 to 12.5 ms
have been used for ESLM and DiESL. This results in ten
auxiliary load cases in ESLM and ten LSMs with one load
case each in DiESL.

The optimization histories of the ESL and DiESL method
are shown in Figs. 8 and 9, respectively. The objective func-
tion and the normalized maximum constraint violation are
plotted in the left diagrams as a function of cumulated itera-
tions. For example, this means for the selected values of ma
xiterini ¼ maxiter ¼ 2 that the cumulated iteration 4 is the sec-
ond iteration in the linear static response optimization in cycle
2 and the cumulated iteration 5 is the first iteration in the linear

Fig. 10 Normal strains in the x-direction of three representative elements over time (α = 1, x1 = 0.85 mm) for the lower element surface before the linear
static optimization

Fig. 9 Objective function and maximum relative constraint violation over cumulated iterations (left) and convergence criteria over cycles (right) using
DiESL
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static response optimization in cycle 3. Blue circles show the
values of each linear static response optimization iteration
whereas red circles mark values obtained from nonlinear anal-
yses of each cycle. The constraint violation decreases during
optimization iterations until the allowed level of constraint
violation is reached (1% in this example). Typically, the ap-
proximation error in the linear model can be seen at the be-
ginning of each cycle (after every 2 iterations in our example,
i.e., after iteration 2, 4, 6, …) after recalculation of the re-
sponses by the nonlinear solver. The approximation error re-
sults in an increase of the maximum constraint violation at all
even iteration numbers in the history diagram. In this case,
there is no jump in the objective function, because mass can
be calculated exactly in the subproblem for sizing optimiza-
tion. The right diagrams plot the relative change of objective
function and maximum constraint violation in the design do-
main over cycles together with the respective termination
criteria ϵ and δ. We used cycles here and not cumulated iter-
ations because these criteria are only tested once per cycle. It
turns out that both methods find the optimum, but it can be
seen that DiESL satisfies the termination criteria within fewer
cycles than ESLM.

Figures 10 and 11 examine the normal strains in the x-
direction in the three representative elements (see Fig. 6). In
Fig. 10, each subfigure shows the strains from the nonlinear
dynamic analysis as well as from the DiESL and ESL ap-
proach at the beginning of the linear static response optimiza-
tion. The order of legend entries reflects the chronological

order of execution: first, the nonlinear dynamic analysis is
executed. Then, the linear static analysis at the beginning of
the optimization takes place (after having computed the
ESLs). This means, the linear models merely reproduce the
nonlinear results because no optimization has taken place yet.
The first subplot shows the strains for the central element 1.
Both ESLM and DiESL give excellent agreement with the
nonlinear dynamic analysis. However, for elements 2 and 3,
the ESLM strains no longer match with those from the non-
linear dynamic analysis, whereas the DiESL approach still
provides a reasonable approximation. Note that the DiESL
strains are not scaled according to Section 3.1 (i.e., αj in
(18) is set to a constant value 1) because scaled strains have
to match exactly those of the nonlinear dynamic analysis by
definition (i.e., at the beginning of the linear static response
optimization). It is evident from Fig. 10 that for elements 2
and 3 the ESLM entirely fails to approximate the correct
strains, in most cases, even the sign is reversed. The DiESL
method is not highly accurate, either, but it approximates the
strains much better than ESLM.

Figure 11 examines the strains at the end of a linear static
response optimization (i.e., after maxiter = 2 iterations). The
nonlinear dynamic results are computed with the updated de-
sign. Again, the order of legend entries reflects the chronolog-
ical order of execution. Similar to the previous findings, the
strains of the DiESL method provide a good approximation
for those of the nonlinear dynamic analysis. The scaling ap-
proach improves the accuracy, so that the strains of elements 2

Fig. 12 FE model of the pole
impact and labeling of design
variables (left). Deformed FE
model at state of maximum

intrusion for initial thickness x 0ð Þ
i¼ 0:8 mm (right)

Fig. 11 Normal strains in the x-direction based on the DiESL approach of three representative elements over time ( x1 = 0.103 mm) for the lower element
surface after linear static optimization (2 iterations)
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and 3 still match well with those from the nonlinear dynamic
analysis. However, this is not the case for element 1. The
reason may be that the poor displacement field approximation
in iteration 2 (as seen from maximum constraint violation in
iteration 2 in Fig. 9 left diagram) does affect the strains of
element 1 primarily due to its position in the impact zone of
the impactor. In fact, the intrusion of the impactor is
underestimated and therefore the strains are as well.

4.2 Pole impact

Figure 12 shows a rigid pole with initial speed vy = − 8 m/s
colliding with a frame structure. The translational degrees of
freedom of the pole in x- and z-direction as well as all its
rotations are locked. The structure is clamped along the distant
edge in all 6 degrees of freedom using single-point constraints
(SPC). The frame structure is made of steel (Youngs’s modu-
lus E = 210 GPa, density ρ = 7850 kg/mm3, LS-DYNA ele-
ment type = Belytschko-Lin-Tsay shell elements, number of
nodes = 12,813), and bilinear plastic material behavior is ap-
plied (tangent modulus = 0.6 GPa, yield stress = 0.25 GPa).
The simulation end time is 100 ms. This captures the pole’s
maximum intrusion and part of its rebound. Consequently, the
last ESL time step is selected as 100 ms.

As shown in Fig. 12, the design of the FE model is speci-
fied by seven different design variables each corresponding to
a single sheet metal thickness (except x1 representing all 12
facets of both crossbars and x7 representing both end caps of
rocker profile). As before, the same mesh is used for both
linear and nonlinear analysis to avoid result mapping and a
contact is defined between the frame structure and the pole.
The objective is to minimize the mass of the frame structure
while constraining the maximum intrusion of the pole in y-
direction d(x). Mathematically, the problem is given as

such that
min mass xð Þ
d xð Þ≤200 mm

0:5 mm≤xi≤3 mm; i ¼ 1;…; 7

In order to capture the maximum intrusion of the pole prop-
erly, 20 uniformly distributed ESL time steps from 5 to 100 ms
have been used for bothmethods. The time incrementΔt = 5ms
is considered to be adequately small to neglect the error due to
the time shift of the maximum intrusion d(x). This results in 20
auxiliary load cases in ESL and 20 LSMs in DiESL.

In Figs. 13 and 14, the optimization history for an initial

thickness of x 0ð Þ
i ¼ 0:8 mm; i = 1, …, 7 is shown. As before,

DiESL satisfies the termination criteria within fewer cycles than

Fig. 13 Objective function and maximum relative constraint violation over cumulated iterations (left) and convergence criteria over cycles (right) using
ESLM. Note that the best design (green circle) is not obtained at the end of iterations

Fig. 14 Objective function and maximum relative constraint violation over cumulated iterations (left) and convergence criteria over cycles (right) using
DiESL
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ESLM. In Table 1, the resulting design variables are presented
as well as the corresponding mass(x∗) and the number of non-
linear dynamic analyses required. Additionally, the optimiza-
tion result obtained by LS-OPT is given. It is remarkable that
the best point for ESLM did not occur at the end of iterations.
This means that ESLM converged to a point which is obviously
not the nonlinear optimum. Obviously, the best point is found
by accident and the convergence behavior is forced by the
continuous reduction of the move limits only. In order to con-
firm whether the solution found by ESLM is an optimum of the
nonlinear problem, an LS-OPT optimization run was executed
using the ESLM solution as an initial design. It turned out that
LS-OPT converged to a very different optimum. This shows
that ESLM in this case was not capable of finding the actual
optimum of the nonlinear problem. In contrast, DiESL and LS-
OPT yield a similar design, which is significantly lighter than
the one obtained from ESLM (note that due to their equal size
and relative positionwith respect to the impactor, panels 4 and 5
have a similar effect on both mass and intrusion). This confirms
that DiESL really found a nonlinear optimum in a good approx-
imation. But it is also obvious that there is a big difference in the
number of nonlinear dynamic analyses for DiESL and LS-OPT
because the number of nonlinear dynamic analyses required by
LS-OPT is more than 10 times as high as that required for
DiESL. Note that the number of nonlinear analyses in LS-
OPT scales with the number of design variables in each itera-
tion due to the DOE. In contrast, only one nonlinear analysis
per cycle is required in DiESL.

It is remarkable that five of seven design variables are at
their bounds in the DiESL optimum, which is not the case for
ESLM. In particular, the design variables x*4 and x*6 differ
considerably. ESLM produces a more bending resistant de-
sign by increasing x*6, the thickness of the panel in contact with
the pole. This can be attributed to the fact that every ESLM
auxiliary load case refers to the undeformed initial structure
and therefore is loaded with pure bending. No tensile loading
occurs in panel 6 in any ESLM subcase. ESLM therefore
increases the panel’s thickness to compensate the missing

tensile contribution. In contrast, the DiESL auxiliary load
cases take the tensile contributions into account because the
stiffness matrix is assembled using the deformed geometry.
Consequently, DiESL leads to a similar result as LS-Opt.

The results shown so far indicate that DiESL leads to better
results with less computational effort compared to ESLM be-
cause the optimized mass mass*DiESL ¼ 15:50 kg is signifi-

cantly smaller than mass*ESL ¼ 18:75 kg. However, it is well
known that the optimization’s course varies depending on the
selected initial values of the design variables. In order to eval-
uate DiESL independently from the selected initial values, a
multi-start optimization study was conducted: A DOE was
created to generate 20 configurations of uniformly distributed
design variables (space-filling design) used as initial values.
The DOE was created as a Strength Two Orthogonal Array.
These 20 configurations are optimized using ESLM, DiESL,
and LS-OPT. Table 2 shows the average results over all con-
figurations for both methods. The average results confirm the
previous findings: the DiESL method performs significantly
better than the ESLM both in terms of number of nonlinear
dynamic analyses and in terms of the objective improvement.

5 Conclusions and outlook

In this paper, a difference-based extension of the ESLM is
presented, which is called DiESL. Both methods are com-
pared on the basis of two representative sizing optimization
examples by minimizing mass with a displacement constraint
on an impactor.

As expected, both methods produce the same optimal de-
sign for the three-point bending example. For DiESL, the
results show a faster convergence to the optimum as well as
a significant increase of the approximation quality for the true
strains. This enables implementing a strain-based criterion of
material failure in nonlinear dynamic response optimization
for crash load cases.

Table 2 Multi-start results
averaged for ESLM, DiESL, and
LS-OPT (metamodel-based
approach)

Method Average number of nonlinear dynamic analyses Average mass∗/kg

ESL 28.2 18.60

DiESL

LS-OPT

13.35

127.1

15.67

15.79

Table 1 Optimization results using ESLM, DiESL, and LS-OPT (metamodel based approach)

Method x*1 /mm x*2 /mm x*3 /mm x*4 /mm x*5 /mm x*6 /mm x*7 /mm mass(x∗)/kg Nonlinear dynamic analyses

ESL 0.513 0.707 0.5 1.172 2.703 2.95 0.511 18.75 33

DiESL 0.5 0.5 0.5 2.9 2.68 0.5 0.5 15.50 12

LS-OPT 0.5 0.5 0.5 2.63 3.0 0.5 0.69 15.50 131

The difference-based equivalent static load method: an improvement of the ESL method’s nonlinear... 2717



The second example is a pole with an initial velocity
impacting a frame structure. The thicknesses of seven differ-
ent parts are optimized. Here, DiESL reduces the number of
nonlinear dynamic analyses required for convergence signifi-
cantly. At the same time, DiESL leads to a considerably ligh-
ter design than the ESLM. The ESLM results in a more bend-
ing resistant design whereas DiESL produces a more tensile
resistant one. To rule out that this result depends on the initial
values of the design variables, a DOE-based multi-start opti-
mization was executed in which the initial values of the design
variables were varied. The results reconfirmed the previously
determined observations. Additionally, the optimal design ob-
tained with the DiESL method was confirmed to be an opti-
mum of the nonlinear dynamic problem by solving the opti-
mization using LS-OPT utilizing a metamodel-based ap-
proach. Furthermore, it was shown that the solution deter-
mined with ESLM is not an optimum of the nonlinear dynam-
ic problem. However, the number of nonlinear dynamic anal-
yses required when using the metamodel is about 10 times as
high as that required for DiESL.

A critical point in DiESL is that due to excessively deformed
elements and thus poor element quality in intermediate linear
FE models, the linear solver was terminated with an error dur-
ing the calculation of the ESL forces. In order to realize a robust
application of DiESL, a solution has to be developed to auto-
matically repair the mesh of the LSMs if such poor element
quality occurs. This could, for example, be realized by deleting
failed elements, splitting warped quad-elements into tria-ele-
ments, or by remeshing critical areas. The deletion approach
has been successfully implemented and applied.

Summarizing, the test examples confirm the expectation
that DiESL enables a significant increase in approximation
quality of displacements and strains from nonlinear dynam-
ic problems while simultaneously providing faster conver-
gence. An extension of the methodology to other structural
responses such as stresses and forces seems promising and
would open up the way for other types of constraints.
Additionally, the adaption of Young’s modulus in the
LSMs on element level addressing local plasticity should
lead to a better stiffness representation and thus more real-
istic stresses. Furthermore, for optimization problems like
those considered in this paper—where the maximum of a
response is needed—the implementation of an automatic
and adaptive selection of the ESL times at the beginning
of each inner loop can help to make sure that the constrained
response is well captured. The upper value of the ESL-time
range can then be chosen as the time of the maximum of the
response of interest plus a defined fraction (e.g., 10%). If
there is more than one response needed then the maximum
value of all is chosen. The optimal ESL time increments can
be computed by minimizing the difference between the po-
lygonal line of the DiESL approximation and the real re-
sponse curve.

When using the ESLM, the optimization’s convergence
depends significantly on the chosen move limits. If the move
limits are too big, the convergence is not guaranteed anymore.
In case of DiESL, the approximation quality seems to be suf-
ficiently accurate to justify larger move limits and therefore a
reconsideration of the chosen move limit strategy.

Compared to a metamodel-based approach, the number of
nonlinear dynamic analyses required is remarkably lower to
optimize such nonlinear dynamic problems. Furthermore, the
number of nonlinear dynamic analyses required for DiESL is
not directly dependent on the number of design variables.
Therefore, DiESL may enable topology optimization for non-
linear dynamic problems such as crash tests.
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Appendix

Table 3 Runtimes per cycle for the three-point bending example for
nonlinear dynamic analysis and linear static response optimization on the
following platform: 48 CPU: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10
GHz, CPU speed 2100 MHz, 49,368 MB RAM, 130,468 MB swap

Process Elapsed Time/s Cores applied

Nonlinear dynamic analysis 7.2 8

Linear static response optimization ESL 4.0 2

DiESL 4.1 20

Table 4 Runtimes per cycle for side-impact example for nonlinear
dynamic analysis and linear static response optimization on the
following platform: 48 CPU: Intel(R) Xeon(R) Silver 4116 CPU @
2.10 GHz, CPU speed 2100 MHz, 49,368 MB RAM, 130,468 MB swap

Process Elapsed Time/s Cores applied

Nonlinear dynamic analysis 146.5 8

Linear static response optimization ESL 24.8 2

DiESL 40.0 40
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