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Abstract. In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the
incompressible case. For a mixture, incompressibility is defined as the independence of average volume
on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the
velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the
species, the pressure remains connected to the densities by algebraic formula. By means of a change of
variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity
and incompressibility constraints affecting the density, and prove two type of results: the local-in-time
well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data
sufficiently close to a smooth equilibrium solution.

1. Multicomponent diffusion in an incompressible fluid

In this paper, we study the well-posedness analysis in classes of strong solutions of
class-one models1 of mass transport in isothermal, incompressible multicomponent
fluids. This investigation is a direct continuationof results obtained recently concerning
the compressible case in [5], and the weak solvability of the incompressible model in
[14]. Performing the incompressible limit (the low-Mach number limit) in models for
fluid mixtures and for multicomponent fluids is desirable both from the practical and
the theoretical viewpoint. On the one hand, fluid mixtures occurring in applications
are often incompressible, and the limit passage reduces the stiffness of the models by
eliminating the parameter which is practically infinite. On the other hand, the low-
Mach number limit leads to a type of incompressibility condition which has not yet
been studied in the context of mathematical analysis for fluid dynamical equations.
We are interested in the second type of issue, that is, the theoretical issues of unique

solvability and continuous dependence in classes of strong solutions for the underlying
PDEs. The model class for multicomponent transport in fluids here under study is
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the one proposed in [2], also applied to mixtures with charged constituents in [12,
13]. Concerning the fundamentals of thermodynamics for fluid mixtures, the reader
is referred to these papers, or to the book [16]. The model for Mach-number zero
(incompressibility constraint) is based on I. Müller’s definition of incompressibility
as invariance of the volume under pressure variations [17,25].More directly, we follow
the recent example of [12] (formal limit), and the more general road map proposed in
the Section 16 of [2]. In [3] we propose a derivation of the incompressible limit starting
from a few postulates of mathematical nature about the structure of the Helmholtz free
energy. Similar concepts have been exposed and discussed in a few research papers
like [10,19,24]. Incompressible mixtures are also conceptualised in the book [27].
The corner stone of these works is that incompressibility for a multicomponent system
means the invariance of average volume under pressure variations. For a fluid mixture
of N ≥ 2 chemical species A1, . . . ,AN , it assumes the form of a volume constraint

N∑

i=1

ρi V̄i = 1, (1)

where V̄1, . . . , V̄N > 0 are partial specific volumes of the molecules at reference
temperature and pressure. The relation generalises the assumption of a constant mass
density considered in other analytical investigations, a. o. [6,8,18,22]. In the present
paper we are interested only in the general case that at least two indices exist such
that V̄i1 �= V̄i2 or, in vectorial notation, that V̄ �= λ 1N for all λ ∈ R, where V̄ =
(V̄1, V̄2, . . . , V̄N ) and 1N = (1, 1, . . . , 1) ∈ R

N .

Bulk. The convective and diffusive mass transport of these species and the momen-
tum balance are described by the partial differential equations

∂tρi + div(ρi v + J i ) = ri for i = 1, . . . , N , (2)

∂t (� v) + div(� v ⊗ v − S(∇v)) + ∇ p =
N∑

i=1

ρi b
i (x, t). (3)

The physical system is assumed isothermal with absolute temperature θ > 0. The
partial mass densities of the species are denoted ρ1, . . . , ρN . Throughout the paper
we shall use the abbreviation � := ∑N

i=1 ρi for the total mass density. The barycentric
velocity of the fluid is called v and the thermodynamic pressure p. In theNavier–Stokes
equations, S(∇v) denotes the viscous stress tensor, which we assume for simplicity
of Newtonian form. The vector fields b1, . . . , bN are the external body forces. The
diffusions fluxes J 1, . . . , J N , that are defined to be the non-convective part of the
mass fluxes, must satisfy by definition the necessary side-condition

∑N
i=1 J

i = 0. A
thermodynamic consistent Fick–Onsager closure respecting this constraint is assumed.
This approach is described in great generality among others by [2,13] following older
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ideas by [9,23]. The diffusions fluxes J 1, . . . , J N obey

J i = −
N∑

j=1

Mi, j (ρ1, . . . , ρN ) (∇μ j − b j ) for i = 1, . . . , N . (4)

The Onsager matrix M(ρ1, . . . , ρN ) is a symmetric, positive semi-definite N × N
matrix for every (ρ1, . . . , ρN ) ∈ R

N+ . In all known linear closure approaches, this
matrix satisfies

N∑

i=1

Mi, j (ρ1, . . . , ρN ) = 0 for all (ρ1, . . . , ρN ) ∈ R
N+ . (5)

One possibility to compute the special form of M is for instance to invert theMaxwell-
Stefan balance equations. For the mathematical treatment of this algebraic system, the
reader can consult [1,16,18,20,22]. OrM is constructed directly in the form PT M0 P ,
where M0 is a given matrix of full rank, and P is a projector guaranteeing that (5) is
valid. The paper [4] establishes equivalence relations between the Fick–Onsager and
the Maxwell-Stefan constitutive approaches, proposing moreover a novel unifying
approach to close the diffusion model.
The quantities μ1, . . . , μN are the chemical potentials from which the thermody-

namic driving forces for the diffusion phenomena are inferred. For an incompressible
system, they are related to the mass densities ρ1, . . . , ρN and to the pressure via

μi = V̄i p + ∂ρi k(θ, ρ1, . . . , ρN ). (6)

Here the function k denotes the positively homogeneous part of the free energy. It
can be characterised as k = �ψ0, where ψ0 is the specific free energy at reference
pressure p0. We refer to the second section of the paper [3] for general representation
results for the free energy function from available data. A particular, but typical choice
discussed among others in [2] is

k(θ, ρ) =
N∑

i=1

μref
i ρi + kB θ

N∑

i=1

ni ln yi , (7)

where ni := ρi/mi are the number densitieswith themolecularmassesm1, . . . ,mN >

0, yi = ni/
∑N

j=1 n j are the number fractions, and μref
i are reference values of

the chemical potentials. For the mathematical theory in this paper, more general
structures in (7) will however be admitted. The isothermal Gibbs-Duhem equation:
dp = ∑N

i=1 ρi dμi defines the intrinsic relationship between (1), (6), and the pressure
field. The paper [3] shows that the relation (6) indeed occurs in the limit case when
the bulk free energy density of the system adopts the singular form

�ψ = h∞(θ, ρ) :=
{
k(θ, ρ) if

∑N
i=1 ρi V̄i = 1,

+∞ otherwise.
(8)
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The relation (6) is an equivalent expression of μ ∈ ∂h∞(θ, ρ), where ∂ denote the
subdifferential of the convex function h∞(θ, ·), and the function p = −h∞(θ, ρ) +∑N

i=1 ρi μi can be understood as a ’Lagrangemultiplier’ associatedwith the constraint
(1).
We notice that, multiplying the equations (2) with the constants V̄i and summing

up, the local change of volume is described by the equation

div v = − div(
N∑

i=1

V̄i J
i ) +

N∑

i=1

V̄i ri . (9)

Effects like diffusion and chemical reactionswill induce a local change in themolecular
composition, implying a net local change of the volume, independent of a mechanical
compression or expansion.
Concerning the presence of reaction terms in (2), we have tomention in respect with

the compressible systems considered in [5] a subtle difference of the incompressible
models. For the compressible case, the reactions densities ri in (2) are allowed to
be general functions ri = ri (ρ1, . . . , ρN ), without influencing qualitatively the well-
posedness results or the mathematical methods. This is different in the incompressible
case. At first, the restriction (1) implies that μ does not depend on ρ only, so that
the structure r = r(ρ) does not comply with standard thermodynamically consistent
reaction terms. At second, the ’elliptic equation’ (9) defines a differential operator
acting on a certain relative chemical potential (variable ζ , details below). This elliptic
operator is linear for the pure diffusion case, but turns to nonlinear in the presence
of reactions of the general form r = r(μ). In this paper, we treat incompressible
multicomponent diffusion in itself. We shall address the specific problems raised by
chemical reactions in further research. Thus, allowing—as we shall do—for certain
source terms r = r(ρ) in (2) means a bit more mathematical generality, but it remains
clear that realistic models of chemical reactions require nontrivial modifications of
the methods used here.
As to the stress tensor S we shall restrict for simplicity to the standard Newtonian

form with constant coefficients. However, we present methods which are sufficient
to extend the results to the case of density and composition dependent viscosity co-
efficients. Pressure dependence of the coefficients is not really meaningful at zero
compressibility, since the partial mass densities turn independent on pressure (cf. the
incompressible asymptotics in [3]).
Boundary and initial conditions.We investigate the problem (2), (3) in a cylindri-

cal domain QT := Ω×]0, T [where T is a finite time andΩ ⊂ R
3 a bounded domain.

It is possible to treat the case Ω ⊂ R
d for general d ≥ 2 with similar methods. We

consider initial conditions

ρi (x, 0) = ρ0
i (x) for x ∈ Ω, i = 1, . . . , N , (10)

v j (x, 0) = v0j (x) for x ∈ Ω, j = 1, 2, 3. (11)
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For simplicity, we consider the linear homogeneous boundary conditions

v = 0 on ST := ∂Ω×]0, T [, (12)

ν · J i = 0 on ST for i = 1, . . . , N . (13)

In addition to the no-slip boundary condition (12), it would be interesting to consider
also other relevant choices, like partial split, inflow or pressure boundary conditions.
However, our main purpose in this article is to obtain a first result for incompressible
flow problems in the multicomponent case. To this aim the condition (12), which is
well-knownamongmathematicians, provides a good starting example.Other boundary
conditions would moreover oblige us to introduce more functional-space framework
to treat the traces. This will have to be the interesting subject of future work.
As a matter of fact, these simplifying choices oblige us to make a further restriction.

To see this, we recall the relation (9), that we integrate over Ω . If there is no mass flux
through the boundary, we see that

∫
Ω

∑N
i=1 V̄i ri (x, t) dx = 0. This condition cannot

be enforced for a general r = r(ρ), unless we assume that r takes values in {V̄ }⊥.
Recalling that realistic models for chemical reactions are to be treated in an upcoming
paper, we here restrict to the case that r(ρ) · V̄ = 0 for all ρ.

2. State of the art and our main result

2.1. A review of prior investigations and our method

Up to few exceptions, models for incompressible multicomponent fluids have not
been investigated in mathematical analysis. For a mathematical treatment in the case
of the constraint � = const, which corresponds to choosing V̄1 = · · · = V̄N in (1),
the reader might consult the papers [8] and [22] (global weak solution analysis) and
[18], and [6] (local-in-time well-posedness).2 From the viewpoint of the mathematical
structure, the case � = const exhibits profoundly different features than the general
relation (1). The principal difference is that (4), (5) and (6) imply the decoupling of the
pressure and of the diffusion fluxes. TheNavier–Stokes equations reduce to their single
component solenoidal variant and can be solved independently. Of course, this does
not mean that � = const cannot be a good approximation under special circumstances.
In [7] for instance, a class of multicomponent mixtures has been introduced for which
the use of the incompressible Navier–Stokes equation is realistic: Incompressibility is
assumed for the solvent only, and diffusion is considered against the solvent velocity.
See also the discussion in the paragraph 4.8 of [27] on incompressible mixtures.
In the case that V̄ is not parallel to 1N , (4) implies that the pressure affects the

diffusion fluxes via the chemical potentials. A corollary of this fact is that if we
multiply the equations (2) with the constants V̄i and sum up, we obtain (9) for the
local change of volume. Moreover,

2In the latter paper the phase change liquid/gas is actually in the focus. All references are based on the
equivalent Maxwell-Stefan structure for the diffusion fluxes, rather than the Fick-Onsager one.
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(a) the viscous stress tensor does not simplify to the symmetric velocity gradient;
(b) the total mass density is calculated from the equation ∂t� + div(� v) = 0;
(c) the pressure remains partly connected to the other variables by an algebraic

formula.

Our main method to approach the PDE problem is a switch of variables in the trans-
port problem as already applied in [5]. Instead of the original variables (ρ1, . . . , ρN )

and (p, v1, v2, v3), we regard N − 1 linear combinations of the chemical potentials
(μ1, . . . , μN ), the mass density � and the velocity field as main variables. After the
transformationweobtain for the new freevariables (�, q1, . . . , qN−2, ζ, v1, v2, v3)—
instead of (2), (3)—the equations (here without external forcing and chemical reac-
tions)

∂t Rk(�, q) + div(Rk(�, q) v − M̃k,�(�, q)∇q� − Ak(�, q)∇ζ ) = 0 for k = 1, . . . , N − 2,

div(v − A(�, q) · ∇q − d(�, q)∇ζ ) = 0,

∂t� + div(� v) = 0,

∂t (� v) + div(� v ⊗ v − S(∇v)) + ∇P(�, q) + ∇ζ = 0.

The nonlinear field R and the function P , the vector field A, the positive matrix M̃ ,
and the positive coefficient function d will be constructed below, combining certain
linear projection operators with the inverse map for the algebraic equations μ =
V̄ p + ∇ρk(ρ). We are then faced with a nonlinear PDE system of mixed parabolic–
elliptic–hyperbolic type. All variables are unconstrained, but for the restriction �min <

� < �max on the total mass density. Here, the constants 0 < �min < �max < +∞ are
the thresholds of the total mass for states ρ1, . . . , ρN that satisfy the constraint (1):

�min := min

{
N∑

i=1

ρi : ρi ≥ 0,
N∑

i=1

ρi V̄i = 1

}
= 1

max V̄
,

�max := max

{
N∑

i=1

ρi : ρi ≥ 0,
N∑

i=1

ρi V̄i = 1

}
= 1

min V̄
.

Comparing with the paper [5] on compressible class-one models based on a similar
reformulation, we see that the incompressible limit corresponds structurally to the
case that one of the relative chemical potentials is subject to an elliptic—instead of a
parabolic—equation, and the total mass density is confined to a bounded interval.
For an overview of possible methods to study the transformed PDE system, we

refer to our study [5]. We shall follow here the same principal road map, but pro-
found transformations are necessary to deal with the constraint on �, since it im-
plies that the nonlinear functions occurring in the transformed system are singular for
dist(�, {�min, �max}) → 0. The solution operator to the continuity equation, however,
does not ’see’ these thresholds, which is the source of additional problems when we
attempt to linearise.Moreover, wemust construct a solution operator for the parabolic–
elliptic subsystem of general form for (q, ζ ), while the reduced transport problem in
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[5] was purely parabolic. Nontrivial extensions of the method are therefore necessary
to deal with the incompressible case.
We shall study the problem in the class proposed in the paper [29] for Navier–

Stokes:W 2,1
p with p larger than the space dimension for the velocity andW 1,1

p,∞ for the

density. For the variable q1, . . . , qN−2, we also choose the parabolic setting of W 2,1
p .

For the elliptic component ζ , we choose the state space W 2,0
p . In these classes, we

are able to prove the local existence for strong solutions. In general, we obtain only a
short-time well-posedness result, and boundedness in the state space is not sufficient
to guarantee that the solution can be extended to a larger time interval. This is due to
the constraint �min < � < �max: A strong solution with bounded state space norm
might break down if the density reaches the thresholds. However, it is to note that for
choices of the tensor M reflecting the physically expected behaviour that, in the dilute
limit, a diffusion flux is linearly proportional with the mass density of the vanishing
species, we are able to show that a sufficiently smooth solution (p > 5) bounded in
the state space cannot reach the critical values in finite time. Thus, a kind of maximum
principle is available for the system.
We shall also prove the global existence under the condition that the initial data

are sufficiently near to an equilibrium (stationary) solution. However, since this result
relies on stability estimates in the state space, we need to assume higher regularity of
the initial data in order to obtain some stability from the continuity equation. Therefore,
these solutions exist on arbitrary large time intervals, but do not enjoy the extension
property.We shall notmake use of theLagrangian coordinates but employ the approach
of controlled growth in time of the solution by means of a priori estimates.
Let us finally mention also the paper [15], devoted to binary mixtures. Starting

from different modelling principles in the spirit of [19], the authors derive for N = 2
a similar PDE system. The variable q does not occur, and the coefficient d is assumed
constant. The authors prove for this system the global existence of weak solutions if
the singularity of P(�) at the thresholds is sufficiently strong.

The weak solution analysis for the general system is considered in the paper [14].

2.2. Main results

We denote Q = QT = Ω×]0, T [ with a bounded domain Ω ⊂ R
3 and T > 0 a

finite time. We use the standard Sobolev spaces Wm,p(Ω) for m ∈ N and 1 ≤ p ≤
+∞, and the Sobolev-Slobodecki spaces Ws

p(Ω) for s > 0 non-integer. If Ω is a
domain of class C2, the spaces Ws

p(∂Ω) are well defined for 0 ≤ s ≤ 2.
With a further index 1 ≤ r ≤ +∞, we use the parabolic Lebesgue spaces L p,r (Q)

(space index first: L p(Q) = L p,p(Q)). For � = 1, 2, . . . and 1 ≤ p ≤ +∞ we
introduce the parabolic Sobolev spaces

W 2�,�
p (Q) :={u ∈ L p(Q) : Dβ

t D
α
x u ∈ L p(Q)∀ 1 ≤ 2 β + |α| ≤ 2 �},

‖u‖W 2�,�
p (Q)

:=
∑

0≤2 β+|α|≤2 �

‖Dβ
t D

α
x u‖L p(Q),
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and, with a further index 1 ≤ r < ∞, the spaces

W 1
p,r (Q) = W 1,1

p,r (Q) :={u ∈ L p,r (Q) :
∑

0≤β+|α|≤�

Dα
x Dβ

t u ∈ L p,r (Q)},

‖u‖W �,�
p,r (Q)

:=
∑

0≤β+|α|≤�

‖Dβ
t D

α
x u‖L p,r (Q).

In these notations, the space integrability index always comes first. For r = +∞,
W �,�

p,∞(Q) denotes the closure of C�(Q) with respect to the norm above and, thus,

W 1,1
p,∞(Q) :={u ∈ L p,∞(Q) :

∑

0≤β+|α|≤1

Dα
x Dβ

t u ∈ C([0, T ]; L p(Ω))}.

We also encounter, for � = 1, 2 and 1 ≤ p < +∞,

W �,0
p (Q) :={u ∈ L p(Q) :

∑

0≤|α|≤�

Dα
x u ∈ L p(Q)},

‖u‖W �,0
p (Q)

:=
∑

0≤|α|≤�

‖Dα
x u‖L p(Q).

We denote by C(Q) = C0,0(Q) the space of continuous functions over Q and,
for α, β ∈ [0, 1], the Hölder spaces are defined by Cα, β(Q) := {u ∈ C(Q) :
[u]Cα,β (Q) < +∞} with

[u]Cα, β (Q) = sup
t∈[0, T ], x,y∈Ω

|u(t, x) − u(t, y)|
|x − y|α + sup

x∈Ω, t,s∈[0, T ]
|u(t, x) − u(s, x)|

|t − s|β .

Some brief remarks on notation:

(1) All Hölder continuity properties are global. For the sake of notation we identify
Cα, β(Q) with Cα, β(Q).

(2) Whenever confusion is impossible, we shall also employ for a function f of the
variables x ∈ Ω and t ≥ 0 the notations fx = ∇ f for the spatial gradient, and
ft for the time derivative.

(3) For maps like R, M̃ which depend on � and q, the derivatives are denoted by
R�, M̃q .

Due to (5), thematrixM(ρ) possesses only N−1 positive eigenvalues thatmoreover
might degenerate for vanishing species. The orthogonal projection on the N − 1
dimensional linear space span{1N }⊥ in RN is defined via

P{1N }⊥ : RN → {1N }⊥, P{1N }⊥ = IdRN − 1

N
1N ⊗ 1N .

Thevector V̄ occurring in (1) defines another singular direction in themodel preventing
parabolicity. We denote by P{1N , V̄ }⊥ the orthogonal projection onto the N − 2 dim.
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space {1N , V̄ }⊥. We also introduce the notations

R
N+ :={ρ = (ρ1, . . . , ρN ) ∈ R

N : ρi > 0 for i = 1, . . . , N },
R

N
+ :={ρ = (ρ1, . . . , ρN ) ∈ R

N+ : ρi ≥ 0 for i = 1, . . . , N },

S1 :={ρ = (ρ1, . . . , ρN ) ∈ R
N+ :

N∑

i=1

ρi = 1},

SV̄ :={ρ = (ρ1, . . . , ρN ) ∈ R
N+ :

N∑

i=1

V̄i ρi = 1}.

(14)

The surface SV̄ is the domain of existence for the incompressible state. It is readily
seen that ρ ∈ SV̄ implies for the variable � := ∑N

i=1 ρi the inequalities

�min = 1

max j=1,...,N V̄ j
< � < �max = 1

min j=1,...,N V̄ j
for all ρ ∈ SV̄ . (15)

Our first main result is devoted to the short-time existence of a strong solution. (In
order to avoid notational confusion with the pressure field, the integrability index is
called s in the next statements.)

Theorem 1. We fix s > 3 and T > 0 and assume that

(a) Ω ⊂ R
3 is a bounded domain of class C2;

(b) M : R
N+ → R

N×N is amapping of class C2(RN+; RN×N ) into the positive semi-
definite matrices of rank N − 1 with constant kernel span{1N } = {(1, . . . , 1)};

(c) k : R
N+ → R is of class C3(RN+), positively homogeneous, convex in its do-

main R
N+ , and lim infm→+∞ |∇ρk(ym)| = +∞ for all sequences {ym} ⊂ S1

approaching the relative boundary of S1;
(d) r : R

N+ → R
N is a mapping of class C1(RN+) into span{1N , V̄ }⊥;

(e) The forcing b satisfies P{1N }⊥ b ∈ W 1,0
s (QT ; RN×3) and b − P{1N }⊥ b ∈

Ls(QT ; RN×3). For simplicity, we assume ν(x)·P{1N }⊥ b(x, t) = 0 for x ∈ ∂Ω

and λ1−almost all t ∈]0, T [.
(f) The initial data ρ0

1 , . . . ρ
0
N : Ω → SV̄ are positive measurable functions satis-

fying the following conditions:
– The initial total mass density �0 := ∑N

i=1 ρ0
i is of class W 1,s(Ω);

– The vector field e0 :=∂ρk(ρ0
1 , . . . ρ

0
N ) satisfiesP{1N , V̄ }⊥ e0∈W 2−2/s

s (Ω; RN );

– The compatibility condition ν(x) · P{1N , V̄ }⊥∇e0(x) = 0 is valid in W 1−3/s
s

(∂Ω; RN ) in the sense of traces;
(g) The initial velocity v0 belongs to W 2−2/s

s (Ω; R3) with v0 = 0 in W 2−3/s
s (∂Ω;

R
3).

Then, there exists T ∗ ∈ (0, T ] such that the problem (2), (3) with closure relations
(4), (6), incompressibility constraint (1) and boundary conditions (10), (11), (12), (13)
possesses a unique solution (ρ, p, v) of class

ρ ∈ W 1
s (QT ∗; SV̄ ), p ∈ W 1,0

s (QT ∗), v ∈ W 2,1
s (QT ∗; R3),
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such that μ := p V̄ + ∂ρk(ρ) satisfies P{1N }⊥μ ∈ W 2,0
s (QT ∗; RN ). The solution can

be uniquely extended to a larger time interval whenever the two following conditions
are fulfilled:

(i) �min < inf{�(x, t) : x ∈ Ω, t ∈ [0, T ∗[} and sup{�(x, t) : x ∈ Ω, t ∈
[0, T ∗[} < �max;

(ii) There is α > 0 such that the quantity

‖P{1N , V̄ }⊥μ‖
Cα, α

2 (Qt )
+ ‖∇P{1N , V̄ }⊥μ‖L∞,s (Qt ) + ‖v‖Lz s,s (Qt ) +

∫ t

0
[∇v(τ)]Cα(Ω) dτ < ∞

stays finite as t ↗ T ∗. Here z = z(s) is defined via z = 3/(s−2) for 3 < s < 5,
z > 1 arbitrary for s = 5 and z = 1 if s > 5.

It is to note that the possibility to extend the solution is not—like in the compressible
case—reducible to the smoothness criterion (ii). If (i) is failing, even a smooth solution
can break down if its total mass density reaches the critical values {�min, �max}. This
singularity plays an important role also in the context of the weak solution analysis
(see [14]). However, we provide an important complement for physically motivated
choices of the mobility matrix M and of the function k. Here the boundedness in the
natural state space norm is sufficient to guarantee the extension property.

Theorem 2. In the situation of Theorem 1 we assume, in addition, that s > 5 and
that k is the function defined in (7). We define a matrix Bi, j (ρ) := Mi, j (ρ)/ρ j for
i, j = 1, . . . , N, and we assume that there is a continuous function C = C(|ρ|),
bounded on compact subsets of R

N
+\{0}, such that

|Bi, j (ρ)| + ρk |∂ρk Bi, j (ρ)| ≤ C(|�|) for all i, j, k ∈ {1, . . . , N } and all ρ ∈ R
N+ .

Then the strong solution of Theorem 1 can be extended beyond T ∗ whenever

lim
t↗T ∗ ‖P{1N , V̄ }⊥μ‖W 2,1

s (Qt ;RN )
+ ‖P{1N }⊥ μ‖W 2,0

s (Qt ;RN )
+ ‖v‖W 2,1

s (Qt ;R3)
< +∞.

Our second main result concerns global existence under suitable restrictions on the
data. An equilibrium solution for (2), (3) is defined as a vector (ρeq

1 , . . . , ρ
eq
N , peq, v

eq
1 ,

v
eq
2 , v

eq
3 ) of functions defined in Ω such that

ρeq ∈ W 1,s(Ω; SV̄ ), peq ∈ W 1,s(Ω), veq ∈ W 2,s(Ω; R3),

the vector μeq := peq V̄ + ∇ρk(θ, ρeq) satisfies P{1N }⊥ μeq ∈ W 2,s(Ω; RN ) and the
relations

div(ρeq
i veq −

N∑

j=1

Mi, j (ρ
eq) (∇μ

eq
j − b j (x))) = 0 for i = 1, . . . , N (16)

and

div(�eq veq ⊗ veq − S(∇veq)) + ∇ peq =
N∑

i=1

ρ
eq
i bi (x) (17)
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are valid in Ω . The boundary conditions are

veq = 0 and ν(x) · Mi, j (ρ
eq) (∇μ

eq
j − b j (x)) = 0 on ∂Ω.

We show that the problem (2), (3) possesses a unique strong solution on an arbitrary
large, but finite time interval if the distance of the initial data to an equilibrium solution
is sufficiently small, and if both initial conditions and equilibrium solution are smooth
enough.

Theorem 3. We adopt the assumptions of Theorem 1, but assume also that r ≡ 0 and
that b = b(x) does not depend on time with b ∈ W 1,s(Ω; RN×3). In addition, we
assume that an equilibrium solution (ρeq, peq, veq) ∈ W 1,s(Ω; SV̄ ) × W 1,s(Ω) ×
W 2,s(Ω; R3) is given. The associated total mass �eq := ∑N

i=1 ρ
eq
i and the velocity

possess the additional regularity �eq ∈ W 2,s(Ω) and veq ∈ W 3,s(Ω; R3). Assume
that the initial data satisfies �0 ∈ W 2,s(Ω) and v0 ∈ W 2,s(Ω; R3). Then, for every
0 < T < +∞, there exists R1 > 0, depending on T and all data in their respective
norms, such that under the condition

‖P{1N , V̄ }⊥ (e0 − μeq)‖
W

2− 2
s

s (Ω;RN )
+ ‖�0 − �eq‖W 1,s (Ω) + ‖v0 − veq‖

W
2− 2

s
s (Ω;R3)

≤ R1

the problem (2), (3)with incompressibility constraint (1), closure relations (4), (6) and
the initial and boundary conditions (10), (11), (12), (13) possesses a global unique
solution of the same class as in Theorem 1.

2.3. Road map

InSects. 3 and4we showhow to reformulate the original systemsuch that it becomes
easier to tackle via functional analytic methods. The functional setting is discussed in
Sect. 5. In Sect. 6, we introduce two ways to linearise the PDE system and reformulate
the initial-boundary-value problem as a fixed point problem in the state space. Both
fixed point equations exploit the parabolic substructure for the variables (q, v) and
treat the linear equations for (ζ, �) as side conditions. In the first method, used to
prove the short-time well posedness, all lower-order nonlinearities are frozen. For the
proof of Theorem 3 on small perturbations, a somewhat more elaborated linearisation
principle is used in order to exhibit some stability estimates.
The estimates for the linearised principal part of the system are presented in Sect. 7.

Here we can rely partly on our work in [5] for the compressible system, but have to
discuss the additional problems caused by the presence of an elliptic equation and
of a density constraint in the continuity equation. Section 8 shows the self mapping
estimate for the first fixed point equation, which yields the well posedness result in
Sect. 9. The extension criteria proved for the solution in the same Sect. 9 deserve
attention in their own right. The proof of the global well-posedness result for small
data, or rather small perturbations, is given in Sect. 10. Finally, some reminder, tools,
and purely technical statements are compiled in “Appendix”.
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3. The singular free energy function and its conjugate

In comparison to the analysis of compressible models in [5], a main specificity of
the incompressible model concerns the bulk free energy density and the definition (6)
of the chemical potentials. With k : R

N+ → R given, we introduce a bulk free energy
density defined for ρ ∈ R

N+ of the form

h∞(ρ) :=
{
k(ρ) if

∑N
i=1 ρi V̄i = 1,

+∞ otherwise.

The function h∞ is singular, but the subdifferential ∂h∞ is non-empty for every ρ

satisfying the incompressiblity constraint
∑N

i=1 ρi V̄i = 1. If the function k is con-
tinuously differentiable, it can be shown that μ ∈ ∂h∞(ρ) if and only if there exists
p ∈ R such that μi = p V̄i + ∂ρi k(ρ) for i = 1, . . . , N . It can easily be verified that
the number p can be characterised as follows:

p = sup
ρ∈RN+

{μ · ρ − h∞(ρ)} = sup
ρ∈RN+ ,

∑N
i=1 ρi V̄i=1

{μ · ρ − k(ρ)} = (h∞)∗(μ),

where (h∞)∗ is the convex conjugate of h∞. For systematic discussions and a proof
of these elementary statements, we refer to [3].

Our approach essentially relies on the properties of the dual free energy function
f := (h∞)∗ on R

N . We shall recall three statements of the paper [3]. Proofs are
provided in Appendix, Sect. A for the reader’s convenience. In the special case that
the gradient of k is explicitly invertible on S1 (see (14)), the statements can also be
proved by direct algebraic computations yielding in many cases explicit formulae; see
Sect. 4 in [14] for a complete characterisation of the example (7).

Lemma 4. We assume that k : R
N+ → R is a positively homogeneous convex function

of class C3(RN+). We moreover assume that the restriction of k to the surface S1 is
essentially smooth, meaning that |∇ρk(ym)| → +∞ for sequences {ym}m∈N ⊂ S1
such that mini=1,...,N ymi → 0 as m → +∞. For μ ∈ R

N , we define f (μ) :=
supρ∈SV̄ {μ · ρ − k(ρ)}. Then the function f belongs to C3(RN ), and ∇μ f maps onto
SV̄ .

Lemma 5. We adopt the same assumptions as in Lemma 4. Then

(1) f (μ + s V̄ ) = f (μ) + s and ∇μ f (μ + s V̄ ) = ∇μ f (μ) for all μ ∈ R
N and all

s ∈ R;
(2) TheHessian D2 f (μ) is positive semi-definite for allμ ∈ R

N , with ker(D2 f (μ))

= span{V̄ };
The next Lemma is a main tool for our reformulation of the PDE system.

Lemma 6. We adopt the assumptions of Lemma 4. If μ ∈ R
N , ρ ∈ SV̄ and p are

related via (6), then p = f (μ) and ρ = ∇μ f (μ).
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4. Change of variables for the incompressible model

We propose a reformulation of the equations (2), (3) subject to the constitutive
equations (4), (6) and to the volume constraint (1) in order to eliminate the positivity
constraints on ρ, the singularity due toM 1N = 0 (cf. (5)), and the singularity direction
due to the incompressibility (1)—equivalently, the fact that the function f , interpreted
as the dual of the free energy, is affine in the direction of V̄ (D2 f V̄ = 0, Lemma 5).
Like in the investigations in [5,11,14], the idea is to invert the algebraic relations (6)
for μ, p, ρ and to combine this procedure with appropriate linear projections.

4.1. General ideas

We choose a basis of RN : {ξ1, . . . , ξ N−2, ξ N−1, ξ N } with ξ N = 1N and ξ N−1 =
V̄ .We then chooseη1, . . . , ηN to be the dual basis, i. e. ξ i ·η j = δij for i, j = 1, . . . , N .

We define variables q1, . . . , qN−2 and ζ via

q� := η� · μ :=
N∑

i=1

η�
i μi for � = 1, . . . , N − 2, (18)

ζ(= qN−1) := ηN−1 · μ =
N∑

i=1

ηN−1
i μi . (19)

For ρ ∈ R
N+ such that

∑N
i=1 ρi V̄i = 1, we want to invert the relation μi = V̄i p +

∂ρi k(ρ) for i = 1, . . . , N .Weexploit the result ofLemma6 saying that (6) impliesρi =
∂μi f (μ1, . . . , μN ) for i = 1, . . . , N . The vector μ is then decomposed according to

μ =
N−2∑

�=1

q� ξ� + ζ V̄ + μ · ηN 1N

into its projection onto {1N }⊥, expressed by the variables q and ζ , and its projection
on span{1N }.

Next, the last coordinate μ · ηN is eliminated using the equation

� =
N∑

i=1

ρi = 1N · ∇μ f (μ1, . . . , μN ) = 1N · ∇μ f (
N−2∑

�=1

q� ξ� + ζ V̄ + (μ · ηN ) 1N ).

The gradient ∇μ f is invariant in the direction V̄ (cf. Lemma 5) and, therefore, the
variable ζ decouples from the latter equation, that now reads

� − 1N · ∇μ f (
N−2∑

�=1

q� ξ� + (μ · ηN ) 1N ) = 0.

This representation is an algebraic equation F(μ ·ηN , q1, . . . , qN−2, �) = 0. In view
of Lemma 5, note that ∂μ·ηN F(μ · ηN , q1, . . . , qN−2, �) = −D2 f (μ)1N · 1N < 0,
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due the fact that 1N is not parallel to V̄ . Thus, the last component μ · ηN is defined
implicitly as a differentiable function of � and q. We call this functionM and obtain
the equivalent formulation

μ =
N−2∑

�=1

q� ξ� + ζ V̄ + M (�, q1, . . . , qN−2) 1
N ,

ρ =∇μ f (
N−2∑

�=1

q� ξ� + M (�, q1, . . . , qN−2) 1
N ) =: R(�, q), (20)

where only the total mass density � and the relative chemical potentials q1, . . . , qN−2

and ζ occur as free variables. Note, moreover, that ζ and ρ decouple. Similarly, we
obtain a representation of the pressure as

p = f (μ) = f (
N−2∑

�=1

q� ξ� + ζ V̄ + M (�, q1, . . . , qN−2) 1
N )

= f (
N−2∑

�=1

q� ξ� + M (�, q1, . . . , qN−2) 1
N ) + ζ =: P(�, q) + ζ. (21)

All this is summarised in the following Lemma, the proof of which is direct in view
of the Lemmas 4 and 6.

Lemma 7. We adopt the assumptions of Theorem 1 for the function k. Let I =
]�min, �max[ with �min = mini=1,...,N 1/V̄i and �max = maxi=1,...,N 1/V̄i . Then there
exist a function M ∈ C2(I × R

N−2) and a field R ∈ C2(I × R
N−2; SV̄ ) such that

the equations ρ = ∇μ f (μ) are valid if and only if there are � ∈ I , q ∈ R
N−2 and

ζ ∈ R such that

N∑

i=1

ρi = �, ρ = R(�, q), μ =
N−2∑

j=1

q j ξ
j + ζ V̄ + M (�, q) 1N =: μ(�, q, ζ ).

If, moreover, μ = V̄ p + ∂ρk(ρ) then p = P(�, q) + ζ with P ∈ C2(I × R
N−2)

defined by (21).

In order to deal with the right-hand side (external forcing), we define in the same
spirit:

b̃�(x, t) :=
N∑

i=1

bi (x, t) η�
i for � = 1, . . . , N − 2,

b̂(x, t) :=
N∑

i=1

bi (x, t) ηN−1
i , b̄(x, t) :=

N∑

i=1

bi (x, t) ηN
i .
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This allows to express

bi (x, t) :=
N−2∑

�=1

b̃�(x, t) ξ�
i + b̂(x, t) V̄i + b̄(x, t) for i = 1, . . . , N .

For the reaction terms,wedefine r̃�(�, q) := ∑N
i=1 ξ�

i ri (R(�, q)) for � = 1, . . . , N−
2.

4.2. Reformulation of the partial differential equations and of the main theorem

The relation (5) and the equivalence of Lemma 7 show that

J i = −
N∑

j=1

Mi, j (ρ1, . . . , ρN ) (∇μ j − b j )

= −
N∑

j=1

Mi, j (ρ1, . . . , ρN )

[
N−2∑

�=1

ξ�
j (∇q� − b̃�) + V̄ j (∇ζ − b̂) + (∇M (�, q) − b̄)

]

= −
N−2∑

�=1

N∑

j=1

Mi, j (ρ1, . . . , ρN ) ξ�
j (∇q� − b̃�) −

N∑

j=1

Mi, j (ρ1, . . . , ρN ) V̄ j (∇ζ − b̂).

If we introduce the rectangular projection matrix Π j,� = ξ�
j for � = 1, . . . , N − 2

and j = 1, . . . , N , then J = −M Π(∇q − b̃) − M V̄ (∇ζ − b̂). Thus, we consider
equivalently

∂tρ + div(ρ v − M Π (∇q − b̃) − M V̄ (∇ζ − b̂)) = r,

∂t (� v) + div(� v ⊗ v − S(∇v)) + ∇P(�, q) + ∇ζ = ρ · b.
In the latter system, we have ρ = R(�, q) and (�, q1, . . . , qN−2, ζ, v1, v2, v3) are
the independent variables. Next, we define for k = 1, . . . , N − 2 the maps

Rk(�, q) :=
N∑

j=1

ξ kj ρ j = ΠT ρ =
N∑

j=1

ξ kj fμ j (

N−2∑

�=1

q� ξ� + M (�, q1, . . . , qN−2) 1
N ).

Multiplying the mass transfer equations with ξ ki , we obtain that

∂t Rk(�, q) + div
(
Rk(�, q) v − [ΠT M(ρ) Π ]k,� (∇q� − b̃�) − [ΠT M(ρ) V̄ ]k (∇ζ − b̂)

)
= r̃k .

It can be checked easily that the matrix ΠT M(ρ)Π ∈ R
(N−2)×(N−2) is symmetric

and strictly positive definite on all states ρ ∈ SV̄ . The Jacobian

Rq = ΠT D2 f Π − ΠT D2 f 1N ⊗ ΠT D2 f 1N

D2 f 1N · 1N ,

of size (N − 2)× (N − 2) is also strictly positive definite. Indeed, vectors of the form
Π a inRN with nonzero a ∈ R

N−2 can by construction never belong to span{1N , V̄ }.
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We next multiply the mass balance equations with V̄i . Making use of the constraint
(1) yields

div(v − V̄ · M(ρ)Π (∇q − b̃) − V̄ · M(ρ) V̄ (∇ζ − b̂)) = V̄ · r = 0,

where we use the additional assumption that r maps into {V̄ }⊥. Using that ρ =
R(�, q), we define

M̃(�, q) :=ΠT M(R(�, q))Π ∈ R
(N−2)×(N−2), (22)

A(�, q) :=ΠT M(R(�, q)) V̄ ∈ R
N−2, (23)

d(�, q) :=V̄ · M(R(�, q)) V̄ . (24)

Overall, we get for the variables (�, q1, . . . , qN−2, ζ, v)—instead of (2), (3)—the
equations

∂t R(�, q) + div(R(�, q) v − M̃(�, q)∇q − A(�, q)∇ζ )

= r̃(�, q) − div(M̃(�, q) b̃ + A(�, q) b̂), (25)

div(v − A(�, q) · ∇q − d(�, q)∇ζ ) = − div(A(�, q) · b̃ + d(�, q) b̂), (26)

∂t� + div(� v) = 0, (27)

∂t (� v) + div(� v ⊗ v − S(∇v)) + ∇P(�, q) + ∇ζ

= R(�, q) · b̃(x, t) + b̂(x, t) + � b̄(x, t). (28)

Theproblem (P ′) consisting of (25), (26), (27) and (28) for the variables (�, q, ζ, v)

might seem to exhibit more nonlinearities than the original problem for ρ, p and v.
However, it has the advantage that—up to the restriction on the total mass density
�min < � < �max—it is completely free of constraints. Furthermore, the differential
operator is linear in the variable ζ , which occurs only under spatial differentiation.
Our first aim is now to show that, at least locally in time, the system (25), (26), (27)

and (28) for the variables (�, q1, . . . , qN−2, ζ, v) is well posed. We consider initial
conditions

q(x, 0) = q0(x), �(x, 0) = �0(x), v(x, 0) = v0(x) for x ∈ Ω. (29)

Due to the preliminary considerations in Sect. 4.1, prescribing these variables is com-
pletely equivalent to prescribing initial values for themass densitiesρi and the velocity.
It suffices to define q0k = ηk · ∂ρk(ρ0) for k = 1, . . . , N − 2.
For simplicity, we consider the linear homogeneous boundary conditions

v = 0 on ST , (30)

ν · ∇ζ, ν · ∇qk = 0 on ST for k = 1, . . . , N − 2. (31)

The conditions (31) and (13) are equivalent, because we assume throughout that the
given forcing b satisfies ν(x) · P{1N }⊥ b(x, t) = 0 for x ∈ ∂Ω (see assumption (e) in
the statement of Theorem 1).
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Under the assumptions of Theorem 1 for the function k, the coefficient functions
R, M̃, A, d and P are of class C2 in the domain of definitions I × R

N−2 as shown
in the Lemma 7. We reformulate the Theorem 1 for the new variables. Since the
thermodynamic pressure does not occur explicitly as a variable, we now switch to
denoting p > 3 the integrability exponent (denoted s in the statement 1).

Theorem 8. Assume that the coefficient functions R, M̃, A, d and P are of class C2,
and r̃ is of class C1 in the domain of definition I ×R

N−2. LetΩ be a bounded domain
with boundary ∂Ω of class C2. Suppose that, for some p > 3, the initial data are of
class

q0 ∈ W
2− 2

p
p (Ω; RN−2), �0 ∈ W 1,p(Ω), v0 ∈ W

2− 2
p

p (Ω; R3),

satisfying�min < �0(x) < �max inΩ and the compatibility conditions ν(x)·∇q0(x) =
0 and v0(x) = 0 on ∂Ω . Assume that b̃ ∈ W 1,0

p (QT ; R(N−2)×3), b̂ ∈ W 1,0
p (QT ; R3)

and b̄ ∈ L p(QT ; R3). Then there is 0 < T ∗ ≤ T , depending only on these data,
such that the problem (25), (26), (27) and (28) with boundary conditions (29), (30)
and (31) is uniquely solvable in the class

(q, ζ, �, v) ∈ W 2,1
p (QT ∗ ; RN−2) × W 2,0

p (QT ∗) × W 1,1
p,∞(QT ∗ ; SV̄ ) × W 2,1

p (QT ∗ ; R3).

The solution can be uniquely extended within this class to a larger time interval
whenever at least one of the following holds:

(1) p > 5, the additional conditions of Theorem 2 for M and k are valid, and the
state space norm stays finite as t → T ∗

(2) The two following conditions are valid as t ↗ T ∗
– �min < �(x, t) < �max for all x ∈ Ω;
– ‖q‖

Cα, α
2 (Qt )

+ ‖∇q‖L∞,p(Qt ) + ‖v‖Lz p, p(Qt ) + ∫ t
0 [∇v(τ)]Cα(Ω) dτ < +∞,

with α > 0 and z = z(p) defined by Theorem 1.

5. Functional analytic approach

For functions q1, . . . , qN−2, ζ , � and v1, v2, v3 defined inΩ×[0, T ], we introduce

A (q, ζ, �, v) =(A 1(q, ζ, �, v), A 2(q, ζ, �, v), A 3(�, v), A 4(q, ζ, �, v)),

A 1(q, ζ, �, v) :=∂t R(�, q) + div(R(�, q) v) − div(M̃(�, q) (∇q − b̃)

+ A(�, q) (∇ζ − b̂)) − r̃(�, q),

A 2(q, ζ, �, v) := div(v − d(�, q) (∇ζ − b̂) − A(�, q) · (∇q − b̃)),

A 3(�, v) :=∂t� + div(� v),

A 4(q, ζ, �, v) :=� (∂tv + (v · ∇)v) − div S(∇v) + ∇P(�, q) + ∇ζ − R(�, q) · b̃ − b̂ − � b̄.

Recall that b̃, b̂ and b̄ are given coefficients.
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To get rid of the highest-order coupling in the time derivative of �, we shall
employ the same approach as in [5], which is sketched below. Consider a solu-
tion u = (q, ζ, �, v) to A (u) = 0. Computing time derivatives in the equation
A 1(u) = 0, we obtain that

R� (∂t� + v · ∇�) +
N−1∑

j=1

Rq j (∂t q j + v · ∇q j ) + R div v − div(M̃ ∇q) + A∇ζ )

= − div(M̃ b̃ + A b̂) + r̃ .

Here the nonlinear functions R, R�, Rq , A and M̃ , r̃ etc. are evaluated at (�, q).
Under the side-condition A 3(�, v) = 0, the equation A 1(u) = 0 is equivalent to

Rq(�, q) ∂t q − div(M̃(�, q)∇q + A(�, q)∇ζ ) = (R�(�, q) �

− R(�, q)) div v − Rq(�, q) v · ∇q − div(M̃(�, q) b̃ + A(�, q) b̂) + r̃(�, q).

(32)

We introduce Ã (q, ζ, �, v) := (Ã 1(q, ζ, �, v), A 2(q, ζ, �, v), A 3(�, v),

A 4(q, ζ, �, v)), the first component being the differential operator defined by (32).
Clearly, A (u) = 0 if and only if Ã (u) = 0.

The functional setting was introduced in Sect. 2.2. Similar spaces were used in [5]
to study the compressible system and, in order to save room, we shall refer to this
paper for the trace and embedding theorems needed in the present analysis. For p > 3
and α := 1/2 + 3/(2p), we recall the interpolation inequality (see [26], Theorem 1)

‖∇ f ‖L∞(Ω) ≤C1 ‖D2 f ‖α
L p(Ω) ‖ f ‖1−α

L p(Ω) + C2 ‖ f ‖L p(Ω), (33)

valid for any function f in W 2,p(Ω), with certain constants C1, C2 depending only
on Ω . We consider the operator (q, ζ, �, v) �→ A (q, ζ, �, v) acting on

XT := W 2,1
p (QT ; RN−2) × W 2,0

p (QT ) × W 1,1
p,∞(QT ) × W 2,1

p (QT ; R3). (34)

The natural trace space at time zero is denoted TrΩ×{0} XT . The functional setting
does not allow to introduce traces for the variable ζ . Therefore, u(0) ∈ TrΩ×{0} XT

means that (q(0), �(0), v(0)) ∈ W 2−2/p
p (Ω; RN−2)×W 1,p(Ω)×W 2−2/p

p (Ω; R3).
We denote by 0XT the space of functions fulfilling zero initial conditions. This only
makes sense, of course, for the variables having traces at Ω × {0}. Thus

0XT := {ū = (r, χ, σ, w) ∈ XT : r(0) = 0, σ (0) = 0, w(0) = 0}. (35)

Since the coefficients of A are defined only if � has range in I , the domain of the
operator is contained in the subset

XT,I := W 2,1
p (QT ; RN−2) × W 2,0

p (QT ) × W 1,1
p,∞(QT ; I ) × W 2,1

p (QT ; R3).

(36)
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We shall moreover make use of a reduced state space containing only the parabolic
components (q, v), namely

YT := W 2,1
p (QT ; RN−2) × W 2,1

p (QT ; R3). (37)

The operator A is the composition of differentiation, multiplication and Nemicki
operators. Therefore, the properties of the coefficients R, M̃ etc. allow to show that
A is continuous and bounded from XT,I into

ZT = L p(QT ; RN−2) × L p(QT ) × L p,∞(QT ) × L p(QT ; R3). (38)

Since the coefficients R, M̃, A, d and P are twice continuously differentiable in their
domain of definition I ×R

N−2, the operatorA is even continuously differentiable at
every point of XT,I . We spare the proof of these rather obvious statements.

6. Linearisation and reformulation as a fixed-point equation

We shall present two different manners to linearise the equation Ã (u) = 0 for
u ∈ XT with initial condition u(0) = u0 in TrΩ×{0} XT . They correspond to the two
main Theorems 1, 3, respectively. In both cases, we start considering the problem
to find u = (q, ζ, �, v) ∈ XT,I such that Ã (u) = 0 and u(0) = u0, which after
permuting rows, possesses the following structure

∂t� + div(� v) =0, (39)

Rq(�, q) ∂t q − div(M̃(�, q)∇q + A(�, q)∇ζ ) =g(x, t, q, �, v, ∇q, ∇�, ∇v),

(40)

− div(d(�, q)∇ζ + A(�, q)∇q − v) = − div h(x, t, �, q), (41)

� ∂tv − div S(∇v) + ∇ζ = f (x, t, q, �, v, ∇q, ∇�, ∇v).

(42)

The functions g, h and f stand for the following expressions:

g :=(R�(�, q) � − R(�, q)) div v − Rq (�, q) v · ∇q − div(M̃(�, q) b̃ + A(�, q) b̂)

+ r̃(�, q), (43)

h :=d(�, q) b̂ + A(�, q) b̃, (44)

f := − P�(�, q)∇� − Pq (�, q) ∇q − � (v · ∇)v + R(�, q) · b̃ + b̂ + � b̄. (45)

These expressions are independent on the component ζ . We can regard g, h and f
as functions of x, t and of the vectors u and Dxu and write g(x, t, u, Dxu).
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6.1. The first fixed-point equation

For (q∗, v∗) given in W 2,1
p (QT ; RN−2) × W 2,1

p (QT ; R3) and for unknowns u =
(q, ζ, �, v), we consider the following system of equations

∂t� + div(� v∗) =0, (46)

Rq (�, q∗) ∂t q − div(M̃(�, q∗)∇q + A(�, q∗)∇ζ ) =g(x, t, q∗, �, v∗, ∇q∗, ∇�, ∇v∗),

(47)

− div(d(�, q∗)∇ζ + A(�, q∗)∇q) = − div(v∗ + h(x, t, q∗, �)), (48)

� ∂tv − div S(∇v) + ∇ζ = f (x, t, q∗, �, v∗, ∇q∗, ∇�, ∇v∗),

(49)

together with the initial conditions (29) and the homogeneous boundary conditions
(30), (31). Note that the continuity equation can be solved independently for �. Once
� is given, we solve the linear parabolic–elliptic system (47), (48) for q and ζ . Here we
must be careful, since the coefficients of this system are only defined as long as �(x, t)
takes values in I . Thus, the solution (q, ζ ) might exist only on a shorter time interval.
We can solve the problem (49), which is linear in v, under the same restriction.
We will show that the solution map (q∗, v∗) �→ (q, v), denoted T , is well defined

fromYT into itself for T fixed and suitably small. The solutions are unique in the class
YT . Clearly, a fixed point of T is a solution to Ã (q, ζ, �, v) = 0.

6.2. The second fixed-point equation

Here we construct the fixed-point map comparing the solutions to a given reference
vector (q̂0, v̂0) ∈ YT that extends the initial data. We assume that q̂0 and v̂0 satisfy
the initial compatibility conditions. In order to find an extension for �0 ∈ W 1,p(Ω),
we solve the problem

∂t �̂0 + div(�̂0 v̂0) = 0, �̂0(0) = �0. (50)

For this problem, Theorem 2 of [29] establishes unique solvability inW 1,1
p,∞(QT ) and,

in particular, the strict positivity �̂0 ≥ c0(Ω, ‖v̂0‖W 2,1
p (QT ;R3)

) infx∈Ω �0(x).

We find the extension ζ̂ 0 by solving, for all values of t such that the coefficients
b̃(t) and b̂(t) are defined, the elliptic problem

− div(d(�̂0, q̂0)∇ ζ̂ 0) = div(−v̂0 − d(�̂0, q̂0) b̂(t) + A(�̂0, q̂0)∇(q̂0 − b̃(t))),
(51)

with homogeneousNeumannboundary conditions and zeromean-value side-condition.
Consider a solution u = (q, ζ, �, v) ∈ XT to Ã (u) = 0. We introduce the

differences r := q − q̂0, χ = ζ − ζ̂ 0, w := v − v̂0 and σ := � − �̂0, and their
vector ū := (r, χ, σ, w). Clearly, ū belongs to the space 0XT of homogeneous initial
conditions. Recall that this does not imply a trace condition for χ , cp. (35). The
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equations Ã (u) = 0 mean, equivalently, that Ã (û0 + ū) = 0. The vector ū =
(r, χ, σ, w) satisfies

Rq ∂t r − div(M̃ ∇r + A∇χ) =g1 := g − Rq ∂t q̂
0 + div(M̃ ∇q̂0 + A∇ ζ̂ 0), (52)

− div(d ∇χ + A∇r − w) = − div h1 := − div(h + v̂0 − d ∇ ζ̂ 0 − A∇q̂0),
(53)

∂tσ + div(σ v) = − div(�̂0 w), (54)

� ∂tw − div S(∇w) + ∇χ = f 1 =: f − �∂t v̂
0 + div S(∇v̂0) − ∇ ζ̂ 0. (55)

Herein, all nonlinear coefficients R, Rq , etc. are evaluated at (�, q), while g, h and
f correspond to (43), (44) and (45).
We next want to construct a fixed-point map to solve (52), (53), (54), (55) by

linearising g1, h1 and f 1 defined in (52), (53) and (55). First, we expand as follows:

g = g(x, t, u∗, Dxu
∗) +

∫ 1

0
{(gq )θ (q − q∗) + (g�)θ (� − �∗) + (gv)θ (v − v∗)

+ (gqx )
θ · (qx − q∗

x ) + (g�x )
θ (�x − �∗

x ) + (gvx )
θ · (vx − v∗

x )} dθ. (56)

Here, (·)θ applied to a function of x, t , u and D1
xu stands for the evaluation at

(x, t, (1−θ) u∗ +θ u, (1−θ) Dxu∗ +θ Dxu). In short, in order to avoid the integral
and the parameter θ , we write

g =g(x, t, u∗, Dxu
∗) + gq(u, u∗) (q − q∗) + g�(u, u∗) (� − �∗) + gv(u, u∗) (v − v∗)

+ gqx (u, u∗) · (qx − q∗
x ) + g�x (u, u∗) (�x − �∗

x ) + gvx (u, u∗) · (vx − v∗
x )

=:g(x, t, u∗, Dxu
∗) + g′(u, u∗) (u − u∗). (57)

Obviously, the latter expressions make sense only if u, u∗ both belong to XT,I , in
which case the entire convex hull {θ u+(1−θ) u∗ : θ ∈ [0, 1]} is inXT,I . Following
the same scheme as for (57), we write in short

g1 =g1(x, t, q̂0, �̂0, v̂0, q̂0x , �̂0
x , v̂0x ) + g1q(u, û0) r + g1�(u, û0) σ + g1v(u, û0) w

+ g1qx (u, û0) rx + g1�x (u, û0) σx + g1vx (u, û0) wx

=:ĝ0 + (g1)′(u, û0) ū. (58)

Similar expressions are obtained for h1 and f 1. In the case of h1, note however that
div ĥ0 = div(h1(x, t, q̂0, �̂0, v̂0, q̂0x , �̂0

x , v̂0x ) = 0 due to the construction (51) of
ζ̂ 0.
Now we construct the fixed-point map to solve (52), (53), (54) and (55). For a given

vector (r∗, w∗) ∈ 0YT , we define q∗ := q̂0 + r∗ and v∗ := v̂0 + w∗. Then we define
�∗ to be the unique solution to

∂t�
∗ + div(�∗ v∗) = 0, �∗(x, 0) = �0(x). (59)
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We thus write �∗ := C (v∗)whereC is the solution operator to the continuity equation
with initial data �0. We employ the abbreviation

u∗ :=(q∗, 1, �∗, v∗) = (q∗, 1, C (v∗), v∗) ∈ XT . (60)

For ū := (r, χ, σ, w), we next consider the linear problem

R∗
q ∂t r − div

(
M̃∗ ∇r + A∗ ∇χ

) =ĝ0 + (g1)′(u∗, û0) ū, (61)

− div
(
d∗ ∇χ + A∗ ∇r − w

) = − div((h1)′(u∗, û0) ū), (62)

∂tσ + div(σ v∗) = − div(�̂0 w), (63)

C (v∗) ∂tw − div S(∇w) + ∇χ = f̂ 0 + ( f 1)′(u∗, û0) ū, (64)

with the boundary conditions ν · ∇r = 0 = ν · ∇χ on ST and w = 0 on ST , and
with zero initial conditions for r, σ and w. The superscript ∗ on a coefficient means
evaluation at (C (v∗), q∗).
We will show that the solution map T 1 : (r∗, w∗) �→ (r, w) is well defined from

0YT into itself for T > 0 arbitrary, provided that the distance of the initial data to
an equilibrium solution is sufficiently small. As to the latter restriction, note that the
expressions (g1)′(u∗, û0) make sense only if the density components in both u∗ and
û0 map into the interior of the critical interval, which cannot be expected globally for
the solutions to (50) and (59). If ū = (r, w) is a fixed point of T 1, then we can show
that u := û0 + ū is a solution to Ã (u) = 0. This is verified exactly as in [5], Remark
6.1.

6.3. The self-mapping property

Assume that the map T : (q∗, v∗) �→ (q, v) via the solution to (46), (47), (48),
(49) is well defined in YT , with image in YT̃ for some T̃ = T̃ (q∗, v∗) > 0. Then,
we want to show that T maps some closed bounded set of YT0 into itself for a fixed
T0 > 0. Here, a major change occurs in comparison to the compressible case, since
we do not expect that the linearised map T produces a solution defined globally up
to T . This is due to the constraint � ∈]�min, �max[ which can by nature be enforced
only locally for solutions to the continuity equation (46).
We shall rely on continuous estimates expressing the controlled growth of the so-

lution in time. We will show that there is a parameter a0 depending on the distance
of the initial density to the singular values {�min, �max} such that, whenever t > 0

satisfies t1−
1
p ‖(q∗, v∗)‖Yt < a0, the pair (q, v) = T (q∗, v∗) is well defined in Yt

and satisfies the estimate

‖(q, v)‖W 2,1
p (Qt ;RN−2)×W 2,1

p (Qt ;R3)

≤Ψ (t, R0, ‖(q∗, v∗)‖W 2,1
p (Qt ;RN−2)×W 2,1

p (Qt ;R3)
). (65)

Here R0 stands for the magnitude of the initial data q0, �0 and v0, and of the external
forces b in their respective norms. The function Ψ is continuous, increasing in all
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arguments, and finite for t1−
1
p ‖(q∗, v∗)‖Yt < a0. Hence we obtain a self mapping

property with the help of the following Lemma.

Lemma 9. Suppose that R0 is fixed. Suppose that there is a0 > 0 such that the
inequality (65) is valid with a continuous function Ψ = Ψ (t, R0, η) satisfying the
properties:

– Ψ (·, R0, ·) is finite for all t ≥ 0 and η ≥ 0 satisfying t1−
1
p η < a0;

– t �→ Ψ (t, R0, η) is nondecreasing for all 0 ≤ η, and η �→ Ψ (t, R0, η) is

nondecreasing for all t as long as t1−
1
p η < a0;

– The value of Ψ (0, R0, η) = Ψ 0(R0) > 0 is independent on η.

Then there is t0 = t0(R0) > 0 such that the map T (q∗, v∗) := (q, v) maps a ball of
Yt0 into itself.

Proof. In {(t, η) ∈ [R+]2 : t1−1/p η < a0}, the function (t, η) �→ Ψ (t, R0, η) is
continuous and finite. Then, there is a first t0 > 0 depending only on R0 such that

{η > 0 : Ψ (t0, R0, η) ≤ η and η < a0 t
1
p −1

0 } �= ∅.

Otherwise, for all t > 0 and η < a0 t1/p−1, we would have that Ψ (t, R0, η) > η.
Thus, Ψ (0, R0, η) = limt→0 Ψ (t, R0, η) ≥ η for all η > 0. Since Ψ (0, R0, η) =
Ψ 0(R0) is strictly positive, every choice of η > Ψ 0(R0) then yields a contradiction.
We can further show that

0 < η0 := inf{η > 0 : Ψ (t0, R0, η) ≤ η and η < a0 t
1
p−1

0 }.
Otherwise, there are positive {ηk}k∈N, ηk ↘ 0, such that Ψ (t0, R0, ηk) ≤ ηk for
all k. Then 0 ≥ limk→∞ Ψ (t0, R0, ηk) = Ψ (t0, R0, 0). Since Ψ (t0, R0, 0) ≥
Ψ (0, R0, 0) = Ψ 0(R0) > 0, this is again a contradiction.
Consider M := {(q∗, v∗) ∈ Yt0 : ‖(q∗, v∗)‖Yt0

≤ η0}. Since η0 < a0 t
1/p−1
0 , it

follows that t1−1/p
0 ‖(q∗, v∗)‖Yt0

< a0. The inequality (65) is valid by assumption
and it yields ‖(q, v)‖Yt0

≤ Ψ (t0, R0, η0) ≤ η0, hence (q, v) ∈ M . �

In the case of the map T 1 : (r∗, w∗) �→ (r, w) defined via solution to (59),
(61),(62), (63), (64), we look for a fixed-point in the space 0YT . The solution can only
be defined globally on [0, T ] if the solution to (59) remains inside of ]�min, �max[ on
the entire time-interval. We will show that this can be ensured if the starting perturba-
tion w∗ satisfies an inequality of type

φ0(T, ‖w∗‖W 2,1
p (QT )

) ‖w∗‖W 2,1
p (QT )

≤ a0,

in which a0 > 0 is a fixed number depending on the distance of the initial data to the

critical values {�min, �max}, and φ0 is a continuous function on R
2
+, which increases

in both arguments. We then prove a continuity estimate of the type

‖(r, w)‖YT ≤ Ψ (T, R0, ‖(r∗, w∗)‖YT ) R1. (66)
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Here R0 stands for the magnitude of initial data (q0, �0 and v0) and external forces b.
The parameter R1 expresses the distance of the initial data to a stationary/equilibrium
solution (def. in (16), (17)). Defining η0 to be the smallest positive solution to the
equation φ0(T, η0) η0 = a0, we will show that T 1 maps the ball of radius η0 in 0YT

for initial data satisfying R1 ≤ η0/Ψ (T, R0, η0). In order to apply the contraction
principle and prove the theorems, we shall therefore prove the continuity estimate
(65), (66). This is the main object of the next sections.

7. Estimates of the linearised problems

In this section, we present the estimates on which our main results in Theorem 1, 8
are footing. The preliminary work done in the paper [5] shall, in many points, allow
to abridge the calculations. The main novelty is the inversion of the parabolic–elliptic
subsystem, which shall be dealt with in all details.

To achieve more simplicity in the notation, we introduce both for a function or
vector field f ∈ W 2,1

p (QT ; Rk) (k ∈ N) and t ≤ T the notation

V (t; f ) := ‖ f ‖W 2,1
p (Qt ;Rk )

+ sup
τ≤t

‖ f (·, τ )‖
W

2− 2
p

p (Ω;Rk )

. (67)

Recall thatW 2−2/p
p (Ω) is the trace space for f ∈ W 2,1

p (QT ), f �→ f (·, t). Moreover
we will need Hölder half-norms. For α, β ∈ [0, 1] and f scalar valued, we denote

[ f ]Cα(Ω) := sup
x �=y∈Ω

| f (x) − f (y)|
|x − y|α , [ f ]Cα(0,T ) := sup

t �=s∈[0,T ]
| f (t) − f (s)|

|t − s|α
[ f ]Cα,β (QT ) := sup

t∈[0, T ]
[ f (·, t)]Cα(Ω) + sup

x∈Ω

[ f (x, ·)]Cβ (0,T ).

The corresponding Hölder norms ‖ f ‖Cα(Ω), ‖ f ‖Cα(0,T ) and f ∈ Cα,β(QT ) are de-
fined by adding the corresponding L∞−norm to the half-norm.

7.1. Estimates of a linearised problem for the variables q and ζ

We first formulate some global assumptions and notations. Recall that I =]�min,

�max[. In this section, the maps Rq , M̃ : I × R
N−2 → R

(N−2)×(N−2) are assumed
to be of class C1(I × R

N−2) into the set of symmetric, positive definite matrices.
Furtheron, A : I ×R

N−2 → R
N−2, and d : I ×R

N−2 → R+ are of classC1 too.We
fix p > 3, and we consider given q∗ ∈ W 2,1

p (QT ; RN−2) and �∗ ∈ W 1,1
p,∞(QT ) such

that �∗(x, t) ∈]�min, �max[ for all (x, t) ∈ QT . We then denote R∗
q := Rq(�

∗, q∗),
M̃∗ := M̃(�∗, q∗), A∗ := A(�∗, q∗) and d∗ := d(�∗, q∗). For t ≤ T , we introduce
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the positive functions

m∗(t) :=m(�∗, t) := inf
(x,τ )∈Qt

min

{
�∗(x, τ )

�min
− 1, 1 − �∗(x, τ )

�max

}
, (68)

M∗(t) :=M(�∗, t) := max

⎧
⎨

⎩
1

inf(x,τ )∈Qt (
�∗(x, τ )

�min
− 1)

,
1

inf(x,τ )∈Qt (1 − �∗(x, τ )
�max

)

⎫
⎬

⎭ .

(69)

We let g ∈ L p(QT ; RN−2), q0 ∈ W 2−2/p
p (Ω; RN−2) such that ν · ∇q0(x) = 0 on

∂Ω in the sense of traces, and h ∈ W 1,0
p (QT ; R3).

For a pair (q, ζ ) : QT → R
N−2 × R we consider the linear parabolic–elliptic

auxiliary problem

R∗
q ∂t q − div(M̃∗ ∇q + A∗ ∇ζ ) =g in QT , ν · ∇q = 0 on ST ,

q(x, 0) = q0(x) in Ω, (70)

− div(d∗ ∇ζ + A∗ ∇q) = − div h in QT , ν · ∇ζ = 0 on ST , (71)

and we want to obtain an estimate in the norm of W 2,1
p (QT ; RN−2) × W 2,0

p (QT ) for
the solution. To this aim we first show that (70), (71) can be equivalently reformulated
as a system coupled only in the lower order.

Lemma 10. We adopt the general assumptions and notations formulated at the be-
ginning of this section. A pair (q, ζ ) ∈ W 2,1

p (QT ; RN−2) × W 2,0
p (QT ) is a solution

to the problem (70), (71) if the identity (71) and the initial and boundary condition
are satisfied, and if instead of (70) we have

R∗
q ∂t q − div([M̃∗ − A∗ ⊗ A∗

d∗ ] ∇q)

= g + ∇ζ · [∇A∗ − A∗

d∗ ∇d∗] + ∇(
A∗

d∗ ) · ∇q A∗ + A∗

d∗ div h. (72)

Proof. Computing the derivatives in the elliptic equation (71), we obtain that

−d∗ �ζ = ∇d∗ · ∇ζ + div(A∗ ∇q) − div h. (73)

Thus, under the side-condition (73), the parabolic equations (70) are equivalent to

R∗
q ∂t q − div(M̃∗ ∇q) = g + A∗ �ζ + ∇A∗ · ∇ζ

= g + ∇A∗ · ∇ζ − 1

d∗ A∗ [∇d∗ · ∇ζ + div(A∗ ∇q) − div h]. (74)

Use of A∗
d∗ div(A∗ ∇q) = div( A∗⊗A∗

d∗ ∇q) − A∗ ∇q · ∇( A∗
d∗ ) yields the claim. �

Using this lemma, we next prove an estimate for the solution to the linearised
parabolic–elliptic problem.
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Proposition 11. Under the general assumptions and notations of this section, there
is a unique pair (q, ζ ) ∈ W 2,1

p (QT ; RN−2) × W 2,0
p (QT ), solution to the problem

(70), (71), such that
∫
Ω

ζ(x, t) dx = 0 for all t ∈]0, T [. Moreover, there are a
constant C depending only on Ω , and continuous functions Ψ1 = Ψ1(t, a1, . . . , a5)
andΦ = Φ(t, a1, . . . , a5) defined for all t ≥ 0 and all numbers a1, . . . , a5 ≥ 0, such
that for all t ≤ T and for 0 < β ≤ 1 arbitrary:

V (t; q) + ‖ζ‖W 2,0
p (Qt )

≤ C Ψ1,t (1 + [�∗]
Cβ,

β
2 (Qt )

)
2
β (‖q0‖

W
2− 2

p
p (Ω)

+ ‖g‖L p(Qt )

+ ‖h‖W 1,0
p (Qt )

) + C Φt ‖h‖L p(Qt ),

Ψ1,t = Ψ1(t, M∗(t), ‖q∗(0)‖Cβ (Ω), V (t; q∗), [�∗]
Cβ,

β
2 (Qt )

, ‖∇�∗‖L p,∞(Qt )),

Φt = Φ(t, M∗(t), ‖q∗(0)‖Cβ (Ω), V (t; q∗), [�∗]
Cβ,

β
2 (Qt )

, ‖∇�∗‖L p,∞(Qt )).

The functionΨ1 possesses moreover the following two properties: It is increasing in all
arguments, and the value ofΨ1(0, a1, . . . , a5) = Ψ 0

1 (a1, a2) is a function independent
on the three last arguments. The function Φ is increasing in all arguments.

Proof. The existence and uniqueness can be easily obtained by means of the uniform
estimates. We thus suppose first that (q, ζ ) ∈ W 2,1

p (QT ; RN−2) × W 2,0
p (QT ) is a

given solution, and we prove the claimed estimate. In order to simplify the discussion,
we adopt the following convention: When computing the derivative of a coefficient,
like ∇d∗ = d∗

� ∇�∗ + d∗
q ∇q∗, there occur different functions d∗

� := d�(�∗, q∗) or
d∗
q j

= dq j (�
∗, q∗) of the variables �∗, q∗. We denote c∗

1 = c1(M∗(t), ‖q∗‖L∞(Qt )) a
generic continuous function depending only onM∗(t) and ‖q∗‖L∞(Qt ), and increasing
in these arguments. We then bound the L∞(QT ) norms of all nonlinear functions
depending on �∗, q∗ by this generic c∗

1.
Step 1: First estimate for the variable ζ .
For almost all s ≤ t , the function ζ satisfies the weak Neumann problem

∫

Ω

d∗ ∇ζ(x, s) · ∇φ(x) dx =
∫

Ω

(−A∗ ∇q + h)(x, s) · ∇φ(x) dx .

By well-known weak elliptic theory, there is a unique solution ζ(s) ∈ W 1,p(Ω) with∫
Ω

ζ(x, s) dx = 0. Moreover, for all 0 < β < 1, perturbation techniques shortly
recalled in Appendix, Lemma 28 yield the estimate

‖∇ζ(s)‖L p(Ω) ≤ c(Ω, p, inf
Ω

d∗(s), sup
Ω

d∗(s)) (1 + [d∗(s)]Cβ(Ω))
1
β ×

× (‖A∗ ∇q(s)‖L p(Ω) + ‖h(s)‖L p(Ω))

≤ c∗
1 (1 + [d∗(s)]Cβ(Ω))

1
β (‖A∗(s)‖L∞(Ω) ‖∇q(s)‖L p(Ω) + ‖h(s)‖L p(Ω)).

We define φ∗
t := sups≤t (1+ [d∗(s)]Cβ(Ω))

1
β . We bound sups≤t ‖A∗(s)‖L∞(Ω) with a

generic c∗
1, and it follows that

‖ζ‖W 1,0
p (Qt )

≤c∗
1 φ∗

t (‖∇q‖L p(Qt ) + ‖h‖L p(Qt )). (75)
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Step 2: First bound for the variable q.

We start from (72), andwedefine K (�, q) := M̃(�, q)−A(�, q)⊗A(�, q)/d(�, q).
In view of the definitions (22), (23), (24), K ∈ R

(N−2)×(N−2) is obviously symmetric,
and obeys

K = ΠT M Π − ΠT MV̄ ⊗ ΠT MV̄

MV̄ · V̄ .

For all y ∈ R
N−2, K y · y = M Πy · Πy − (MV̄ · Πy)2/MV̄ · V̄ ≥ 0, because M is

positive semi-definite. By the Cauchy-Schwarz inequality, Ky · y = 0 is possible only
if either Πy and V̄ are parallel, or if Πy and 1N are parallel. Recall in this place that
Πy = ∑N−2

k=1 yk ξ k . By the choice of the ξ ks, we know that {ξ1, . . . , ξ N−2, V̄ , 1N }
is a basis of RN . Thus, Πy = λ V̄ or Πy = λ 1N both would imply that y = 0. This
shows that Ky · y > 0 unless y = 0, hence K is positive definite.

Defining K ∗ := K (�∗, q∗), we rephrase (72) as

R∗
q ∂t q − div(K ∗ ∇q) =g + g̃, (76)

in which g̃ := ∇ζ · [∇A∗ − A∗
d∗ ∇d∗] + ∇( A∗

d∗ ) · ∇q A∗ + A∗
d∗ div h is bounded via

|g̃| ≤ c∗
1 (|∇ζ · ∇�∗| + |∇ζ · ∇q∗| + |∇q · ∇�∗| + |∇q · ∇q∗| + |∇h|). (77)

We now apply Appendix, Lemma 26, which basically recalls the result of [5], Prop. 7.1
for a similar parabolic system.With D0(t) := (1+[�∗]Cβ,β/2(Qt )

)2/β ‖q0‖
W 2−2/p

p (Ω)
+

‖g‖L p(Qt ), and using (77) to bound the norm of g̃, we obtain for the solution to (76)

V (t; q) ≤C Ψ̄1,t
[
D0(t) + c∗

1 ‖∇h‖L p(Qt ) + c∗
1 (‖∇ζ · ∇�∗‖L p(Qt ) + ‖∇ζ · ∇q∗‖L p(Qt )

+ ‖∇q · ∇�∗‖L p(Qt ) + ‖∇q · ∇q∗‖L p(Qt ))
]
, (78)

where Ψ̄1,t = Ψ̄1(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [�∗]Cβ,β/2(Qt )
, ‖∇�∗‖L p,∞(Qt )),

and the function Ψ̄1 fulfills all structural assumptions stated for Ψ1.

Step 3: Main estimate for the variable ζ .

Since ζ ∈ W 2,0
p (QT ), we can employ the pointwise identity (73). Since ζ has

mean-value zero for all times, the full W 2,p norm can be estimated by the Neumann-
Laplacian, and we obtain that

‖ζ‖W 2,0
p (Qt )

≤c(Ω, p) ‖ − �ζ‖L p(Qt )

=c(Ω, p) ‖(d∗)−1 (∇d∗ · ∇ζ + div(A∗ ∇q − h))‖L p(Qt )

≤c
1

inf(x,s)∈Qt d
∗(x, s)

(‖∇d∗ · ∇ζ‖L p(Qt ) + ‖ div(A∗ ∇q − h)‖L p(Qt )).

(79)
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Computing the derivatives of the coefficients, and using the same conventions as above,
we derive from (79) the inequality

‖ζ‖W 2,0
p (Qt )

≤ c∗
1 (‖�q‖L p(Qt ) + ‖ div h‖L p(Qt ))

+ c∗
1 (‖∇�∗ · ∇ζ‖L p(Qt ) + ‖∇q∗ · ∇ζ‖L p(Qt ) + ‖∇�∗ · ∇q‖L p(Qt )

+ ‖∇q∗ · ∇q‖L p(Qt )).

We estimate ‖�q‖L p(Qt ) ≤ V (t; q), then we employ the inequality (78) to see that

‖ζ‖W 2,0
p (Qt )

≤C Ψ̄1,t D0(t) + c∗
1 (1 + CΨ̄1,t ) ‖∇h‖L p(Qt )

+ c∗
1 (1 + CΨ̄1,t ) (‖∇�∗ · ∇ζ‖L p(Qt ) + ‖∇q∗ · ∇ζ‖L p(Qt ))

+ c∗
1 (1 + CΨ̄1,t ) (‖∇�∗ · ∇q‖L p(Qt ) + ‖∇q∗ · ∇q‖L p(Qt )). (80)

Step 4: Combined estimates.
We add (78) to (80) to obtain that

V (t; q) + ‖ζ‖W 2,0
p (Qt )

≤2C Ψ̄1,t D0(t) + c∗
1 (1 + 2CΨ̄1,t ) ‖∇h‖L p(Qt )

+ c∗
1 (1 + 2CΨ̄1,t ) (‖∇�∗ · ∇ζ‖L p(Qt ) + ‖∇q∗ · ∇ζ‖L p(Qt ))

+ c∗
1 (1 + 2CΨ̄1,t ) (‖∇�∗ · ∇q‖L p(Qt ) + ‖∇q∗ · ∇q‖L p(Qt )).

(81)

In order to control the factors on the right-hand, we first apply (33) to find that

‖∇ζ(s)‖L∞(Ω) ≤ C1 ‖D2ζ(s)‖α
L p(Ω) ‖ζ(s)‖1−α

L p(Ω) + C2 ‖ζ(s)‖L p(Ω), α := 1

2
+ 3

2p
,

with Ci = Ci (Ω), i = 1, 2. We can bound a b ≤ ε a1/α + cα ε−α/(1−α) b1/(1−α)

(Young’s inequality), for all ε > 0 and a, b > 0. By these means, it follows that

‖∇�∗ · ∇ζ‖p
L p(Qt )

≤
∫ t

0
|∇�∗(s)|pp |∇ζ(s)|p∞ ds

≤ C1

∫ t

0
|∇�∗(s)|pp |D2ζ(s)|pαp |ζ(s)|p(1−α)

p ds + C2

∫ t

0
|∇�∗(s)|pp |ζ(s)|pp ds

≤ ε

∫ t

0
|D2ζ(s)|pp ds + cα ε− α

1−α

∫ t

0
|∇�∗(s)|

p
1−α
p |ζ(s)|pp ds + C2

∫ t

0
|∇�∗(s)|pp |ζ(s)|pp ds

≤ ε

∫ t

0
|D2ζ(s)|pp ds +

∫ t

0
|ζ(s)|pp (cα ε− α

1−α |∇�∗(s)|
p

1−α
p + C2 |∇�∗(s)|pp) ds. (82)

Here we use the abbreviation | · |r for ‖ · ‖Lr (Ω). Just in the same way, we show that

‖∇q∗ · ∇ζ‖p
L p(Qt )

≤ ε

∫ t

0
|D2ζ(s)|pp ds +

∫ t

0
|ζ(s)|pp (cα ε− α

1−α |∇q∗(s)|
p

1−α
p + C2 |∇q∗(s)|pp) ds.

(83)
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We let

F∗(t) := sup
s≤t

(|∇q∗(s)|pL p + |∇�∗(s)|pL p ), X∗(t; ζ ) := ‖∇�∗ · ∇ζ‖p
L p(Qt )

+ ‖∇q∗ · ∇ζ‖p
L p(Qt )

.

With the help of (82) and of (83), it follows that

X∗(t; ζ ) ≤ 2 ε ‖D2ζ(s)‖p
L p(Qt )

+ [cα ε− α
1−α (F∗(t))

1
1−α + C2 F

∗(t)] ‖ζ‖p
L p(Qt )

.

We choose ε = 2−2−1/p (c∗
1(1 + 2CΨ̄1,t ))

−p, where c∗
1, C and Ψ̄1,t are the numbers

occurring in the relation (81). Then

(c∗
1 (1 + 2CΨ̄1,t ))

p X∗(t; ζ ) ≤ 1

21+1/p ‖ζ‖p

W 2,0
p (Qt )

+ (c∗
1 (1 + 2CΨ̄1,t ))

p [cα (22+1/p(c∗
1(1 + 2CΨ̄1,t ))

p)
α

1−α (F∗(t))
1

1−α + C2 F
∗(t)] ‖ζ‖p

L p(Qt )
.

(84)

Due to our conventions, we can bound every power of c∗
1 and the maximum of 1

and c∗
1 again by another such function. Introducing a factor

(Φ∗
1,t )

p :=c∗
1 (1 + 2CΨ̄1,t )

p max{cα (22+1/p (1 + 2CΨ̄1,t )
p)

α
1−α , C2}

× {(V p(t; q∗) + ‖∇�∗‖p
L p,∞(Qt )

)
1

1−α + (V p(t; q∗) + ‖∇�∗‖p
L p,∞(Qt )

)},
we can rephrase (84) as

(c∗
1 (1 + 2CΨ̄1,t ))

p X∗(t; ζ ) ≤ 1

21+1/p ‖ζ‖p

W 2,0
p (Qt )

+ (Φ∗
1,t )

p ‖ζ‖p
L p(Qt )

. (85)

By means of (75), we bound ‖ζ‖L p(Qt ) ≤ c∗
1 φ∗

t (‖∇q‖L p(Qt ) + ‖h‖L p(Qt )). Raising
(85) to the power 1/p, we show that

c∗
1 (1 + 2CΨ̄1,t ) (‖∇�∗ · ∇ζ‖L p(Qt ) + ‖∇q∗ · ∇ζ‖L p(Qt ))

≤ 1

2
‖ζ‖W 2,0

p (Qt )
+ Cp c

∗
1 φ∗

t Φ∗
1,t (‖∇q‖L p(Qt ) + ‖h‖L p(Qt )).

We insert the latter result into (81), obtaining

V (t; q)+1

2
‖ζ‖W 2,0

p (Qt )
≤ 2C Ψ̄1,t D0(t)

+ c∗
1 (1 + 2CΨ̄1,t ) ‖∇h‖L p(Qt ) + Cp c

∗
1 φ∗

t Φ∗
1,t ‖h‖L p(Qt )

+ c∗
1 (1 + 2CΨ̄1,t ) (‖∇�∗ · ∇q‖L p(Qt ) + ‖∇q∗ · ∇q‖L p(Qt )) + Cp c

∗
1 φ∗

t Φ∗
1,t ‖∇q‖L p(Qt ).

(86)

In order to estimate X∗(t, q), we apply the same steps as for X∗(t, ζ ) (cf. (85)).
Hence

(c∗
1 (1 + 2CΨ̄1,t ))

p X∗(t; q) ≤ 1

21+1/p ‖q‖p

W 2,0
p (Qt )

+ (Φ∗
1,t )

p ‖q‖p
L p(Qt )

,
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which, after raising to the power 1/p, yields

c∗
1 (1 + 2CΨ̄1,t ) (‖∇�∗ · ∇q‖L p(Qt ) + ‖∇q∗ · ∇q‖L p(Qt )) ≤ 1

2
‖q‖W 2,0

p (Qt )
+ Cp Φ∗

1,t ‖q‖L p(Qt ).

Since ‖q‖W 2,0
p (Qt )

≤ V (t; q), the latter and (86) imply that

1

2
(V (t; q) + ‖ζ‖W 2,0

p (Qt )
) ≤ Cp Φ∗

1,t (1 + c∗
1 φ∗

t ) ‖q‖W 1,0
p (Qt )

+ 2C Ψ̄1,t D0(t) + c∗
1 (1 + 2CΨ̄1,t ) ‖∇h‖L p(Qt ) + Cp c

∗
1 φ∗

t Φ∗
1,t ‖h‖L p(Qt ).

(87)

In order to finally get rid of the factors with q on the right-hand side, we introduce

[A(t)] 1
p :=2C Ψ̄1,t D0(t)+c∗

1 (1 + 2CΨ̄1,t ) ‖∇h‖L p(Qt )+Cp c
∗
1 φ∗

t Φ∗
1,t ‖h‖L p(Qt ),

and

[B(t)] 1
p :=Cp Φ∗

1,t (1 + c∗
1 φ∗

t ), f (t) := sup
τ≤t

‖q(τ )‖p

W
2− 2

p
p (Ω)

.

Weraise (87) to the pth power.Weuse f (t) ≤ V p(t; q) and‖q‖p

W 1,0
p (Qt )

≤ ∫ t
0 f (τ ) dτ .

In this way, we obtain the inequality f (t) ≤ 2p A(t) + 2p B(t)
∫ t
0 f (τ ) dτ . Using

that A and B are monotone increasing by construction, the Gronwall Lemma yields
f (t) ≤ 2p A(t) exp(2p t B(t)). In particular, we conclude that

‖q‖W 1,0
p (Qt )

≤ [ f (t) t] 1
p ≤ cp t

1
p [A(t)] 1

p exp(
2p

p
t B(t)).

Combining the latter with (87), it follows that

V (t; q) + ‖ζ‖W 2,0
p (Qt )

≤ 2 {1 + c̃p t
1
p exp(

2p

p
t B(t)) [B(t)] 1

p }
× {2C Ψ̄1,t D0(t) + c∗

1 (1 + 2CΨ̄1,t ) ‖∇h‖L p(Qt ) + Cp c
∗
1 φ∗

t Φ∗
1,t ‖h‖L p(Qt )}.

(88)

In order to verify that the factors occurring in the latter inequality possess the structure
as claimed in the statement, we note that occurrences of B(t) in (88) are multiplied by
a power of t , so that they do not occur at t = 0. Moreover, the factor Ψ̄1,t possesses
the structure required for Ψ1,t in the statement. In order to estimate the dependence of
‖q∗‖L∞(Qt ) on the coefficients c

∗
1, we apply the same strategy as in the section 7 of [5]:

‖q∗‖L∞(Qt ) ≤ ‖q0‖L∞(Ω) + tγ V (t; q∗) (Lemma 27). Setting Φt := Cp c∗
1 φ∗

t Φ∗
1,t ,

we are done. �
7.2. Estimates for linearised problems for the variables v and �

First we state the estimate for the linearised momentum equation. The proof follows
the lines of the corresponding result in [5]. (Since we can assume �∗ ∈ [�min, �max],
the proof is actually simpler.)
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Proposition 12. Assume that �∗ ∈ Cα,0(Qt ) (0 < α ≤ 1) attains values in ]�min,

�max[, that f ∈ L p(QT ; R3), and that v0 ∈ W 2−2/p
p (Ω; R3) is such that v0 = 0 on

∂Ω . Then, there is a unique solution v ∈ W 2,1
p (QT ; R3) to �∗ ∂tv−div S(∇v) = f in

QT with the boundary conditions v = 0 on ST and v(x, 0) = v0(x) in Ω . Moreover,
there is C independent on t, �∗, v0, f and v such that

V (t; v) ≤C Ψ2(t, sup
τ≤t

[�∗(τ )]Cα(Ω)) (1 + sup
τ≤t

[�∗(τ )]Cα(Ω))
2
α (‖ f ‖L p(Qt ) + ‖v0‖

W 2−2/p
p (Ω)

).

The function Ψ2 is continuous and increasing in both arguments, and it can be

chosen such that Ψ2(0, a) = (min{1, �min})− 2
α (�max/�min)

p+1
p is independent of a.

For the linearised continuity equation, we must acknowledge the main difference
with respect to the analysis of the compressible models.

Proposition 13. Assume that v∗ ∈ W 2,1
p (QT ; R3) and that �0 ∈ W 1,p(Ω) satisfies

�min < �0(x) < �max in Ω . We define M0 = M(�0, 0) := [infx∈Ω {�0(x)/�min −
1, 1− �0(x)/�max}]−1. Then the problem ∂t� + div(� v∗) = 0 in QT with �(x, 0) =
�0(x) in Ω possesses a unique strictly positive solution of class W 1,1

p,∞(QT ). Define
also M(t) := M(�, t) (cf. (69)). Then, we can find a constant c depending only on Ω

and a function Ψ3 = Ψ3(t, a1, a2) continuous and finite in the set

{t, a1, a2 ≥ 0 : c a1 t
1− 1

p a2 e
c t

1− 1
p a2 < 1},

such that M(t) ≤ Ψ3(t, M0, V (t; v∗)). Moreover, for β = 1−3/p, there areΨ4, Ψ5

depending on t, ‖∇�0‖L p(Ω) and V (t; v∗) such that

‖∇�‖L p,∞(Qt ) ≤Ψ4(t, ‖∇�0‖L p(Ω), V (t; v∗)), [�]
Cβ,

β
2 (Qt )

≤ Ψ5(t, ‖∇�0‖L p(Ω), V (t; v∗)).

For i = 3, 4, 5,Ψi is continuous and increasing in all variables, andΨi (0, a1, a2) =
Ψ 0
i (a1) is independent on the last variable. The identity Ψ4(0, a1, a2) = a1, and the

inequality Ψ5(0, a1, a2) ≤ C a1, are also valid.

Proof. The existence statement as well as the construction of the functions Ψ4 and Ψ5

is proved in [5], Corollary 7.8. The critical point is the construction of the functionΨ3.
We start from the well-known representation of the solution to the continuity equation
(see a. o. [29])

�(x, t) := �0(y(0; x, t)) exp

(
−
∫ t

0
div v∗(y(τ ; x, t), τ ) dτ

)
,

where y(τ ; x, t) is the characteristic curve with speed v∗ through (x, t). Therefore,

�max − � =�max − �0(y(0; x, t)) + �0(y(0; x, t))

(
1 − exp

(
−
∫ t

0
div v∗(y(τ ; x, t), τ ) dτ

))

≥�max

(
1

M0
−
∣∣∣∣1 − exp

(
−
∫ t

0
div v∗(y(τ ; x, t), τ ) dτ

)∣∣∣∣

)
.
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Use of |1 − eb| ≤ e|b| |b| allows to bound
∣∣∣∣1−exp

(
−
∫ t

0
div v∗(y(τ ; ·), τ ) dτ

)∣∣∣∣ ≤ exp
(‖ div v∗‖L∞,1(Qt )

) ‖ div v∗‖L∞,1(Qt )
.

Owing to the continuity of W 1,p(Ω) ⊂ L∞(Ω) and Hölder’s inequality

‖ div v∗‖L∞,1(Qt )
≤ cΩ

∫ t

0
‖ div v∗(τ )‖W 1,p(Ω) dτ ≤ cΩ t1−

1
p ‖v∗‖W 2,0

p (Qt )
.

Thus 1 − �/�max ≥ 1/M0 − cΩ t1−
1
p V (t; v∗) exp(cΩ t1−

1
p V (t; v∗)). Thanks to a

similar argument applied to �min − �, we find that

M(t) ≤ M0

1 − cΩ M0 t
1− 1

p V (t; v∗) ecΩ t
1− 1

p V (t; v∗)
(89)

and define the function Ψ3 to be the right-hand of the latter relation. �

8. The continuity estimate for T

We now want to combine the Propositions 11 and 12 with the linearisation of the
continuity equation in Proposition 13 to study the fixed point map T described at
the beginning of Sect. 6 and defined by the equations (46), (47), (48), (49) for given
v∗ ∈ W 2,1

p (QT ; R3) and q∗ ∈ W 2,1
p (QT ; RN−2). We define V ∗(t) := V (t; q∗) +

V (t; v∗). At first we state estimates for the lower-order nonlinearities (43), (45).

Lemma 14. For u∗ = (q∗, ζ ∗, �∗, v∗) ∈ XT,I , define g∗ := g(x, t, u∗, D1
xu

∗)
and, similarly, f ∗ := f (x, t, u∗, D1

xu
∗) via (43) and (45). There are continuous

Ψg, Ψ f = Ψ (t, a1, . . . , a4) defined for all t ≥ 0 and a1, . . . , a4 ≥ 0 such that

‖g∗‖L p(Qt ) ≤ Ψg(t, M∗(t), ‖(q∗(0), v∗(0))‖
W 2−2/p

p (Ω)
, ‖∇�∗‖L p,∞(Qt ), V

∗(t)),

‖ f ∗‖L p(Qt ) ≤ Ψ f (t, M∗(t), ‖(q∗(0), v∗(0))‖
W 2−2/p

p (Ω)
, ‖∇�∗‖L p,∞(Qt ), V

∗(t)).

Ψg and Ψ f are increasing in all arguments with Ψg(0, a1, . . . , a4) = 0 = Ψ f (0, a1,
. . . , a4).

These estimates were proved in [5] for the case that the nonlinear coefficients R, M̃
are defined for�∗ taking values in ]0, +∞[. The proof is exactly the same for�∗ taking
values in I , provided that we adapt the definition ofm∗(t), M∗(t) via (69). Moreover,
the arguments are very similar to the ones used to bound the right-hand vector field h.
This statement, that we next prove in detail, might serve as an illustration.

Lemma 15. Consider u∗ = (q∗, ζ ∗, �∗, v∗) ∈ XT,I . Define h∗ := h(x, t, u∗) via
(44). Then there is a continuous functionΨh = Ψh(t, a1, . . . , a4) defined for all t ≥ 0
and a1, . . . , a4 ≥ 0 such that

‖h∗‖W 1,0
p (Qt )

≤Ψh(t, M∗(t), ‖q∗(0)‖
W 2−2/p

p (Ω)
, ‖∇�∗‖L p,∞(Qt ), V

∗(t)).

The function Ψh is increasing in all arguments. Moreover Ψh(0, a1, . . . , a4) = 0.
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Proof. Recall that h := A(�∗, q∗) b̃(x, t) + d(�∗, q∗) b̂(x, t). With c∗
1 as in the

proof of Prop. 11, we bound |d(�∗, q∗) b̂| ≤ c∗
1 |b̂| and |A(�∗, q∗) b̃| ≤ c∗

1 |b̃|. Hence
‖h‖L p(Qt ) ≤ c∗

1 (‖b̃‖L p(Qt ) + ‖b̂‖L p(Qt )). Lemma 27 allows to bound ‖q∗‖L∞(Qt ) ≤
‖q0‖L∞(Ω) + tγ V ∗(t) and, evidently, ‖q0‖L∞(Ω) ≤ C ‖q0‖

W 2−2/p
p (Ω)

.

We thendefine a functionΨ 1
h (t, a1, . . . , a4) := (‖b̃‖L p(Qt )+‖b̂‖L p(Qt )) c1(a1, a2+

tγ a4). We see that Ψ 1
h satisfies Ψ 1

h (0, a1, . . . , a4) = 0, and ‖h‖L p(Qt ) ≤ Ψ 1
h,t .

We compute h∗
x , and readily show a bound |h∗

x | ≤ c∗
1 ((|�∗

x | + |q∗
x |) (|b̃| + |b̂|) +

|b̃x | + |b̂x |). Hence

‖h∗
x‖L p(Qt )

≤ c∗1 (‖�∗
x‖L p,∞(Qt ) + ‖q∗

x ‖L p,∞(Qt )) (‖b̃‖L∞,p(Qt ) + ‖b̂‖L∞,p(Qt ))

+ c∗1 (‖b̃x‖L p(Qt ) + ‖b̂x‖L p(Qt ))

≤ c∗1 [(‖b̃‖L∞,p(Qt ) + ‖b̂‖L∞,p(Qt )) (‖�∗
x‖L p,∞(Qt ) + V ∗(t)) + ‖b̃x‖L p(Qt )

+ ‖b̂x‖L p(Qt )] =: Ψ 2
h .

Weuse againLemma27 to control c∗
1, seeing thus that the functionΨ 2

h also possesses
the desired structure (Ψ 2

h = 0). �

We are now ready to establish the final estimate that allows to obtain the self-
mapping property.

Proposition 16. For (q∗, v∗) ∈ YT , the solution (q, v) = T (q∗, v∗) to the equations
(46), (47), (48), (49) exists and is unique in the class Yt for all t subject to

c M0 t
1− 1

p V ∗(t) ec t
1− 1

p V ∗(t) < 1, (90)

where c = c(Ω) and M0 are the same as in Prop. 13. There is a continuous function
Ψ6 = Ψ6(t, a1, . . . , a4)defined for all t ≥ 0anda1 . . . a4 ≥ 0 subject to the restriction

c a1 t
1− 1

p a4 e
c t

1− 1
p a4 < 1, (91)

such thatV (t; q)+V (t; v) ≤ Ψ6(t, M0, ‖(q0, v0)‖
W 2−2/p

p (Ω)
, ‖∇�0‖L p(Ω), V

∗(t)).
The function Ψ6 is increasing in all arguments and

Ψ6(0, M0, ‖(q0, v0)‖
W 2−2/p

p (Ω)
, ‖∇�0‖L p(Ω), η)

= Ψ 0
6 (M0, ‖(q0, v0)‖

W 2−2/p
p (Ω)

, ‖∇�0‖L p(Ω))

for all η > 0.

Proof. Applying Prop. 13, we first find the global solution � to the continuity equation
(46) with data v∗ on [0, T ]. The number M(t) expressing the distance of the solution �

to the thresholds {�min, �max} remains finite for all t subject to the restriction (90) (see
Prop. 13). On this time interval, we can therefore insert (�, q∗) into the coefficients
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of the system (47), (48). Applying Prop. 11, we find a unique solution (q, ζ ) ∈
W 2,1

p (Qt ; RN−2) × W 2,0
p (Qt ). We then use (�, q∗) and ζ as data of the system (49).

Applying Proposition 12, we obtain a solution v ∈ W 2,1
p (Qt ; R3) for all t subject to

(90). This shows that (q, v) := T (q∗, v∗) is well defined in Yt for all t subject to
(90).
In order to verify the estimates, we first recall the outcome of Proposition 11 applied

with �∗ = �. It follows that

V (t; q) + ‖ζ‖
W 2,0

p (Qt )

≤ C Ψ1(t, M(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [�]
Cβ,

β
2 (Qt )

, ‖∇�‖L p,∞(Qt )) ×

× (1 + [�]
Cβ,

β
2 (Qt )

)
2
β (‖q0‖

W 2−2/p
p (Ω)

+ ‖g∗‖L p(Qt ) + ‖h∗ + v∗‖
W 1,0

p (Qt )
)

+ C Φ(t, M(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [�]
Cβ,

β
2 (Qt )

, ‖∇�‖L p,∞(Qt )) ‖h∗ + v∗‖L p(Qt ).

(92)

Evidently ‖v∗‖W 1,0
p (Qt )

≤ t
1
p supτ≤t ‖v(τ)‖W 1,p(Ω) ≤ t

1
p V (t; v∗). For the choices

�∗ = � and β := 1 − 3/p, Proposition 13 yields

M(t) ≤Ψ3(t, M0, V (t; v∗)) =: Ψ3(t, . . .),

‖∇�‖L p,∞(Qt ) ≤Ψ4(t, ‖∇�0‖L p(Ω), V (t; v∗)) =: Ψ4(t, . . .),

[�]
Cβ,

β
2 (Qt )

≤Ψ5(t, ‖∇�0‖L p(Ω), V (t; v∗)) =: Ψ5(t, . . .).

Moreover, due to the Lemma 14 and due to Lemma 15,

‖g∗‖L p(Qt ) ≤Ψg
(
t, Ψ3(t, . . .), ‖(q0, v0)‖

W 2−2/p
p (Ω)

, Ψ4(t, . . .), V ∗(t)
) =: Ψg(t, . . .),

‖h∗‖
W 1,0

p (Qt )
≤Ψh(t, Ψ3(t, . . .), ‖q0‖

W 2−2/p
p (Ω)

, Ψ4(t, . . .), V ∗(t)) =: Ψh(t, . . .).

Combining all these estimates we can bound the quantity V (t; q) + ‖ζ‖W 2,0
p (Qt )

by

some independent constant times the function

Ψ 1
6 := Ψ1(t, Ψ3(t, . . .), ‖q0‖Cβ (Ω), V (t; q∗), Ψ5(t, . . .), Ψ4(t, . . .)) ×

× (1 + Ψ5(t, . . .))
2
β (‖q0‖

W2−2/p
p (Ω)

+ Ψg(t, . . .) + Ψh(t, . . .) + t
1
p V (t; v∗))

+ Φ(t, Ψ3(t, . . .), ‖q0‖Cβ (Ω), V (t; q∗), Ψ5(t, . . .), Ψ4(t, . . .)) (Ψh(t, . . .) + t
1
p V (t; v∗)).

Applying the inequalities V (t; v∗), V (t; q∗) ≤ V ∗(t), and ‖q0‖Cβ(Ω)

≤ c ‖q0‖
W 2−2/p

p (Ω)
, we reinterpret the latter expression as a function Ψ 1

6 of the ar-

guments t , M0, ‖(q0, v0)‖
W 2−2/p

p (Ω)
, ‖∇�0‖L p(Ω) and V ∗(t).

At t = 0,we can use the estimates proved in the Propositions 11, 12 and the Prop. 13.
Recall in particular thatΨ1(0, a1, . . . , a4) = Ψ 0

1 (a1, a2).Moreover,Ψ3(0, M0, a4) =
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M0 (cf. (89)). Thus, sinceΨ5(0, a1, a4) ≤ C a1 is bounded independently of a4, since
Ψg(0, . . .) = 0 = Ψh(0, . . .) (see Lemma 14, 15), we can compute that

Ψ 1
6 (0, M0, ‖(q0, v0)‖

W 2−2/p
p (Ω)

, ‖∇�0‖L p(Ω), V
∗(t))

= Ψ 0
1 (M0, ‖q0‖C1−3/p(Ω)) (1 + ‖∇�0‖L p(Ω))

2p
p−3 ‖q0‖

W 2−2/p
p (Ω)

. (93)

We next apply Proposition 12 with �∗ = � and f = f ∗ to obtain

V (t; v) ≤ C Ψ2(t, sup
τ≤t

[�(τ)]Cα(Ω)) (1 + sup
τ≤t

[�(τ)]Cα(Ω))
2
α (‖v0‖

W 2−2/p
p (Ω)

+ ‖ f ∗‖L p(Qt ) + ‖∇ζ‖L p(Qt )).

For α = 1 − 3/p, the norm V (t; v) is estimated above by the quantity

Ψ2(t, Ψ5(t, . . .)) (1 + Ψ5(t, . . .))
2
α (‖v0‖

W 2−2/p
p (Ω)

+ Ψ f (t, . . .) + ‖∇ζ‖L p(Qt )).

Recalling that (92) and the subsequent arguments also provide an estimate for
‖∇ζ‖L p(Qt ) by Ψ 1

6 , we reinterpret the latter function as a Ψ 2
6 of the same arguments,

and we note that

Ψ 2
6 (0, M0, ‖(q0, v0)‖

W 2−2/p
p (Ω)

, ‖∇�0‖L p(Ω), V
∗(t))

= Ψ 0
2 × (1 + ‖∇�0‖L p(Ω))

2p
p−3 (‖v0‖

W 2−2/p
p (Ω)

+ Ψ 1
6 (0, . . .))

=
(

1

min{1, �min}
) 2p

p−3
(

�max

�min

) p+1
p

(1 + ‖∇�0‖L p(Ω))
2p
p−3 (‖v0‖

W 2−2/p
p (Ω)

+ Ψ 1
6 (0, . . .)).

The value of Ψ 1
6 (0, . . .) is given in (93). We define Ψ6 := Ψ 1

6 + Ψ 2
6 . Due to

Proposition 13, the functionΨ3(t, M0, V (t; v∗)) is finite for all arguments satisfying
(91), and therefore Ψ6 is finite under the same condition. The claim follows. �

We sum up the continuity estimates in the following statement.

Proposition 17. We adopt the assumptions of Theorem 8. Given (q∗, v∗) ∈ YT , we
define a map T (q∗, v∗) = (q, v) via solution to the equations (46), (47), (48), (49)
with homogeneous boundary conditions (31), (30) and initial conditions (q0, �0, v0).
Then, there are 0 < T0 ≤ T and η0 > 0 depending on the data R0 := (M0, ‖(q0, v0)

‖
W 2−2/p

p (Ω)
, ‖∇�0‖L p(Ω)) such that T maps the ball with radius η0 in YT0 into itself.

Proof. We define a0 > 0 to be the solution to the equation c M0 x ec x = 1 associated
with the numbers in (91). We apply the Lemma 9 with Ψ (t, R0, η) := Ψ6(t, R0, η)

from Prop. 16, and the claim follows. �
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9. Proof of the theorem on short-time well-posedness

9.1. Existence and uniqueness

We choose T0, η0 > 0 according to Proposition 17. Starting from (q1, v1) = 0,
we consider a fixed point iteration (qn+1, vn+1) := T (qn, vn) for n ∈ N. Recalling
(67), we define V n+1(t) := V (t; qn+1) + V (t; vn+1). Since obviously V 1(t) ≡ 0,
Proposition 17 guarantees that

sup
n∈N

V n(T0) ≤ η0, sup
n∈N

‖�n‖W 1,1
p,∞(QT0 )

+ ‖ζ n‖W 2,0
p (QT0 )

< +∞. (94)

From Lemma 18 hereafter, we infer that the fixed-point iteration therefore yields
strongly convergent subsequences in L2(QT0) for the components of qn , ζn , �n and
vn and for the gradients qnx , ζ n

x and vnx . The passage to the limit in the approximation
scheme is then a straightforward exercise, since we can rely on a uniform bound in
XT0 . The proofs are almost identical with the fixed-point iteration in [5]. We leave the
minor changes to the interested reader, and state without proof the following iteration
lemma.

Lemma 18. For n ∈ N, we define

rn+1 := qn+1 − qn, χn+1 := ζ n+1 − ζ n, σ n+1 := �n+1 − �n, wn+1 := vn+1 − vn .

Then there are k0, p0 > 0 and 0 < t1 ≤ T0 such that for all t ∈ [0, T0 − t1], the
quantity

En+1(t) :=k0 sup
τ∈[t, t+t1]

(‖rn+1(τ )‖2L2(Ω)
+ ‖wn+1(τ )‖2L2(Ω)

+ ‖σn+1‖2L2(Ω)
)

+ p0

∫

Qt,t+t1

(|∇rn+1|2 + |∇χn+1|2 + |∇wn+1|2) dxdτ

satisfies En+1(t) ≤ 1
2 En(t) for all n ∈ N.

9.2. Verification of continuation criteria

In order to complete the proof of the Theorems 1, 2 it remains to investigate the
claimed characterisations of the maximal existence interval.

Lemma 19. Suppose that u = (q, ζ, �, v) ∈ Xt is a solution to Ã (u) = 0 and
u(0) = u0 for all 0 < t < T ∗. Then the two following statements are valid:

(1) IfN (t) := ‖q‖Cα,α/2(Qt )
+‖∇q‖L∞,p(Qt ) +‖v‖Lz p, p(Qt ) +

∫ t
0 [∇v(τ)]Cα(Ω) dτ

with α > 0 arbitrary and z = z(p) defined in Theorem 1, and M(�, t) (cf. (69))
are finite for t ↗ T ∗, then it is possible to extend the solution to a larger time
interval.
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(2) If the tensor M occurring in (4) satisfies the additional conditions stated in
Theorem 2, and if K(t) := ‖q‖W 2,1

p (Qt ;RN−2)
+ ‖ζ‖W 2,0

p (Qt )
+ ‖v‖W 2,1

p (Qt ;R3)

remains finite for t ↗ T ∗, then the solution can be extended without additional
condition concerning M(�, t).

Proof. First criterion (1). We must show that the quantity V (t; q) + V (t; v) is
bounded by a continuous function of t, M(�, t), N (t). Wewill only sketch this point,
which relies on going carefully through the proofs of the estimates in the Propositions
11, 12 in the spirit of [5].
To begin with, we notice that the components of vx have all spatial mean-value

zero over Ω due to the boundary condition (30). Hence, for α > 0, inequalities
‖vx (τ )‖L∞(Ω) ≤ cΩ [vx (τ )]Cα(Ω) and ‖vx‖L∞,1(Qt )

≤ cΩ

∫ t
0 [vx (τ )]Cα(Ω) dτ are

available. For the solution to the continuity equation, Theorem 2 of [29] (see also
Proposition 7.7 in [5]) implies that supτ≤t [�(τ)]Cα(Ω) is bounded by a function of∫ t
0 [vx (τ )]Cα(Ω) dτ , thus also by a function of N (t). Moreover, as in the same refer-
ences, we show for all t ≥ 0 that

‖�x (t)‖L p(Ω) ≤φ(R0, ‖vx‖L∞,1(Qt )
) (1 +

∫ t

0
‖vx,x (τ )‖L p(Ω) dτ)

≤φ(R0, N (t)) (1 + V (t; v)).

Here and throughout the proof, we denote by φ some generic continuous function
increasing in its arguments, and R0 stands for the initial data and the external forces.
We next exploit the momentum balance equation for v. We apply Proposition 12,

hence V (t; v) ≤ φ(t, N (t)) (‖ f ‖L p(Qt ) +‖∇ζ‖L p(Qt ) +‖v0‖
W 2−2/p

p (Ω)
). The func-

tion f obeys (45) and therefore

| f (x, t)| ≤|∇�(x, t)| sup
Qt

|P�(�, q)| + |∇q(x, t)| sup
Qt

|Pq(�, q)|

+ c (|v(x, t)| |∇v(x, t)| + |b̄(x, t)| + |b̃(x, t)|) sup
Qt

� + |b̂(x, t)|.

Coefficients depending on � and q can in general be bounded following the example
of

sup
Qt

|P�(�, q)| ≤ φ(M(�, t), ‖q‖L∞(Qt )) ≤ φ(M(�, t), N (t)).

Therefore, we show that

‖ f ‖p
L p(Qt )

≤ φ(M(�, t), N (t)) (‖∇�‖p
L p(Qt )

+ ‖∇q‖p
L p(Qt )

+ ‖v ∇v‖p
L p(Qt )

+ ‖b̃‖p
L p(Qt )

+ ‖b̄‖p
L p(Qt )

+ ‖b̂‖p
L p(Qt )

).

We define A0(t) := ‖b̃‖p
L p(Qt )

+ ‖b̄‖p
L p(Qt )

+ ‖b̂‖p
L p(Qt )

+ ‖v0‖
W 2−2/p

p (Ω)
, hence

V p(t; v) ≤ φ(M(�, t), N (t)) (‖∇ζ‖p
L p(Qt )

+ ‖∇�‖p
L p(Qt )

+ ‖v ∇v‖p
L p(Qt )

+ ‖∇q‖p
L p(Qt )

+ A0(t)).
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As shown, ‖∇�‖p
L p(Qt )

≤ φ(R0, ‖vx‖L∞,1(Qt )
)
∫ t
0 (1+V (τ ; v))p dτ , and ζ satisfies

the weak Neumann problem (48), hence

‖∇ζ‖L p(Qt ) ≤ φ(M(�, t), N (t)) (‖∇q‖L p(Qt ) + ‖v‖L p(Qt )

+ ‖b̃‖L p(Qt ) + ‖b̂‖L p(Qt )).

We define z = 3
p−2 if 3 < p < 5, z > 1 arbitrary if p = 5 and z = 1 if p > 5.

Recalling the continuity of the embeddingW 1−2/p
p ⊂ L3p/(5−p)+ , we show by means

of Hölder’s inequality that ‖v vx‖p
L p(Qt )

≤ cΩ

∫ t
0 ‖v(τ)‖p

Lz p V p(τ ; v) dτ . Therefore,
combining the latter bounds yields

V p(t; v) ≤ φ(t, M(�, t), N (t))

× ( ∫ t

0
(1 + ‖v(τ)‖p

Lz p )V
p(τ ; v) dτ + ‖∇q‖p

L p(Qt )
+ A0(t)

)
.

We invoke the Gronwall Lemma, hence V p(t; v) ≤ φ(t, M(�, t),
N (t)) (‖∇q‖p

L p(Qt )
+ A0(t)). Since ‖∇q‖L p(Qt ) is also controlled by a function of

t and N (t), so does V p(t; v). It follows that ‖∇�‖p
L p,∞(Qt )

≤ φ(t, R0, N (t)). For
β = 1− 3/p, the Proposition 13 yields that ‖�‖Cβ,β/2(Qt )

≤ φ(t, R0, N (t)). Recall-
ing that q satisfies (76), we can now finish the proof as in [5], Lemma 9.2.

Second criterion (2). The more interesting point is to get rid of the dependence on
the distance M(�, t) to the density thresholds in the estimates. First we note that the
relation (28) implies for the gradient of the pressure

∇P(�, q) = F := − ∇ζ − � (∂tv + (v · ∇)v) + div S(∇v)

+ R(�, q) · b̃ + b̂ + � b̄. (95)

Clearly, ‖F‖L p(Qt ) is bounded by a function of b and the norms of ζ and v occurring in
the quantityK(t). We notice in particular that this function is independent on M(�, t).
In order to obtain a bound on the entire pressure gradient, we employ the continuity

equation (27). We compute that

∂t P(�, q) =P�(�, q) ∂t� + Pq(�, q) ∂t q

=P�(�, q) (−v · ∇� − � div v) + Pq(�, q) ∂t q.

Define m(�, t) := minQt {1 − �/�max, �/�min − 1}. Thanks to Lemma 24, the prop-
erties of the pressure function guarantee that |P�(�, q)| ≤ c4 m(�, t)−1 in Qt . Since
|P�(�, q)| |∇�| = |∇P(�, q)− Pq(�, q)∇q|, the same Lemma 24 also implies that

c3 m(�, t)−1 |∇�| ≤ |∇P(�, q)| + c5 |∇q|).
By these means, the time derivative of pressure is bounded via

|∂t P(�, q)| ≤c4 m
−1 (|v| |∇�| + |�| | div v|) + |Pq | |∂t q|

≤c4
1 + c5
c3

|v| (|∇P(�, q)| + |∇q|) + c4 �max m
−1 | div v| + c5 |∂t q|.

(96)
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We want to obtain a control on m(�, t)−1 | div v|. To this aim, we recall the relation
(26), which allows us to compute

div v = div(d(�, q) (∇ζ − b̂) + A(�, q) (∇q − b̃))

= d(�, q) div(∇ζ − b̂) + A(�, q) div(∇q − b̃) + (∇ζ − b̂) · ∇d(�, q)

+ ∇A(�, q) · (∇q − b̃)

= d div(∇ζ − b̂) + A div(∇q − b̃) + [(∇ζ − b̂) dq + (∇q − b̃) Aq ] ∇q

+ ∇� [d� (∇ζ − b̂) + A� (∇q − b̃)]. (97)

We recall Lemma 24, which shows for a constant c1, depending only on the kinetic
matrix M and the free energy function k, that

|d(�, q)| + |A(�, q)| + |dq(�, q)| + |Aq(�, q)| ≤ c1 m(�),

and, moreover, that |d�(�, q)| + |A�(�, q)| ≤ c2. Applying these estimates to (97),
we obtain that

1

m(�, t)
| div v| ≤c1 [|D2ζ | + |D2q| + |b̃x | + |b̂x | + |∇q| (|∇ζ | + |∇q| + |b̃| + |b̂|)]︸ ︷︷ ︸

=:G

+ c2
|∇�|

m(�, t)
(|∇ζ | + |∇q| + |b̃| + |b̂|).

Recalling again that m(�)−1 |∇�| ≤ c (|∇P(�, q)| + |∇q|), we get the bound
1

m(�, t)
| div v| ≤ |G| + c (|∇P(�, q)| + |∇q|) (|∇ζ | + |∇q| + |b̃| + |b̂|).

It is readily verified that G is continuously bounded in L p(Qt ) by the quantity K(t),
independently of M(�, t). Since |ζx | + |qx | + |b̃| + |b̂| is bounded in L∞,p(Qt ), we
recall (95) to finally obtain

‖m(�, t)−1 div v‖
L p, p2 (Qt )

≤ Ψ (t, K(t)). (98)

By means of (98), (95), (96) we see that also ‖∂t P(�, q)‖L p,p/2(Q) is bounded by a
function of t and K(t), independently of M(�, t). Overall we have ‖∂x P‖L p(Qt ) +
‖∂t P‖L p,p/2(Qt )

≤ Ψ . For p > 5, we can show that this implies a bound ‖P‖L∞(Qt ) ≤
C(t) Ψ , where C(t) is the embedding constant of an anisotropic Sobolev space into
L∞(Qt ). It remains to recall that for the choice (7), the function P satisfies (cf. [14],
Proposition 5.3)

|P(�, q)| ≥ c ln max{ 1

�max − �
,

1

� − �min
} − C (1 + |q|).

This implies that M(�, t) ≤ C1 e
C2 (‖P(�, q)‖L∞(Qt )+‖q‖L∞(Qt )), and the claim

follows. �
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10. Global well-posedness

10.1. The map T 1 is well defined

We consider the equations (59), (61), (62), (63), (64) characteristic of the definition
of the map T 1. We recall that these equations are obtained by comparing a solution
to some suitable extension (q̂0, v̂0) ∈ YT , to be constructed here below, of the initial
data. The initial density �0 is extended by a function �̂0 obtained via the solution of
(50). We moreover introduce the function ζ̂ 0, solution to (51).
In order to define T 1 we must make sense of the linear operators (g1)′(u∗, û0),

(h1)′(u∗, û0) and ( f 1)′(u∗, û0). The density components in the vectors û0 = (q̂0, 1,
�̂0, v̂0) and u∗ (def. in (60)) must therefore assume values in I up to time T > 0!
This property is to be expected if the initial data are close enough to an equilibrium
solution (ρeq, peq, veq) defined by the relations (16), (17). The distance of the initial
data to this solution is expressed by the number

R1 := ‖q0 − qeq‖
W 2−2/p

p (Ω;RN−2)
+ ‖v0 − veq‖

W 2−2/p
p (Ω;R3)

+ ‖�0 − �eq‖W 1,p(Ω),

(99)

in which �eq := ∑N
i=1 ρ

eq
i and qeq� = η� ·∇ρk(ρeq) for � = 1, . . . , N −2. Throughout

this section, we moreover employ the abbreviation

R0 :=‖û0‖XT + ‖�̂0‖W 2,0
p (QT )

+ ‖b̃‖W 1,0
p (QT )

+ ‖b̂‖W 1,0
p (QT )

+ ‖b̄‖L p(QT )).

(100)

Observe the occurrence of the higher-order W 2,0
p -norm of �̂0 in the definition of R0.

To commence with, we recall a result of [5] for estimating the gradient of solutions
to a perturbed continuity equation. The proof in [5] is given for zero initial conditions,
but the extension to the nonzero case is completely straightforward.

Lemma 20. Assume thatσ ∈ W 1,1
p,∞(QT ) satisfies ∂tσ+div(σ v) = − div(�̂0 w)with

�̂0 ∈ W 1,1
p,∞(QT ) ∩ W 2,0

p (QT ) and v, w ∈ W 2,1
p (QT ; R3). Then there are constants

C, c, depending only on Ω , such that

‖σ(t)‖p
W 1,p(Ω)

≤C exp
(
c
∫ t

0
[‖vx (τ )‖L∞(Ω) + ‖vx,x (τ )‖L p(Ω) + 1]dτ

)×
× (‖σ(0)‖p

W 1,p(Ω)
+ ‖�̂0‖p

W 2,0
p (Qt )

‖w‖p
L∞(Qt )

+ ‖�̂0‖p

W 1,1
p,∞(Qt )

‖w‖p

W 2,0
p (Qt )

)

for all t ≤ T .

Construction of global extensions.Under the assumptions of Theorem3, the trivial
extensions qeq(x, t) := qeq(x) and veq(x, t) := veq(x) are such that qeq ∈ W 2,∞

p,∞
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and veq ∈ W 3,∞
p,∞(QT ). Introduce on Ω the differences q1(x) := q0(x) − qeq(x) and

v1(x) := v0(x) − veq(x). We extend q0 and v0 via

v̂0(x, t) := veq(x) + E(v1)(x, t)︸ ︷︷ ︸
=:v̂1(x, t)

, q̂0(x, t) := qeq(x) + E(q1)(x, t)︸ ︷︷ ︸
=:q̂1(x, t)

, (101)

in which E : W 2−2/p
p (Ω) → W 2,1

p (QT ) is a linear, bounded extension operator.
Typically, the components of q1, v1 defined in Ω are first extended to elements of
W 2−2/p

p (R3) with bounded support. Then, we solve Cauchy-problems for the heat
equation to extend the functions into R

3 × [0, T ] or even R
4. As the assumptions in

Theorem 3 moreover guarantee that v1 ∈ W 2,p(Ω), this procedure even yields the
additional regularity v̂1 ∈ W 4,2

p (QT ; R3) (cf. [21], Ch. 4, Par. 3, inequality (3.3)).
Then, the extensions defined in (101) satisfy

‖q̂0 − qeq‖W 2,1
p (QT )

+ ‖v̂0 − veq‖W 2,1
p (QT )

≤CE (‖q1‖
W 2−2/p

p (Ω)
+ ‖v1‖

W 2−2/p
p (Ω)

)

≤CE R1, (102)

‖v̂0‖W 3,0
p (QT )

≤C (‖veq‖W 3,p(Ω) + ‖v0‖W 2,p(Ω)).

(103)

In order to extend�0,we solve ∂t �̂
0+div(�̂0 v̂0) = 0with initial condition �̂0 = �0.By

these means, �̂0 ∈ W 1,1
p,∞(QT ). Due to (103), we can even show that �̂0 ∈ W 2,0

p (QT ).

We next extend the equilibrium solution via �eq(x, t) := �eq(x) ∈ W 2,∞
p,∞(QT ). Then,

by definition, div(�̂eq v̂eq) = 0 in QT (cp. (16)), and ∂t �̂
eq = 0. Thus, the difference

�̂1 := �̂0 − �eq is a solution to

∂t �̂
1 + div(�̂1 v̂0) = − div(�̂0 v̂1), �̂1(x, 0) = �1(x) := �0(x) − �eq(x).

Since �̂0 ∈ W 1,1
p,∞(QT ) ∩ W 2,0

p (QT ) by construction, the estimate of Lemma 20
applies (with the choices σ = �̂1, v = v̂0 and w := v̂1). Hence, invoking also (102),

‖�̂1‖p

W 1,1
p,∞(QT )

≤C exp
(
c
∫ T

0
[‖v̂0x (τ )‖L∞(Ω) + ‖v̂0x,x (τ )‖L p(Ω) + 1]dτ

)×
× [‖�1‖p

W 1,p(Ω)
+ ‖�̂0‖p

W 2,0
p (QT )

‖v̂1‖p
L∞(QT )

+ ‖�̂0‖p

W 1,1
p,∞(QT )

‖v̂1‖p

W 2,0
p (QT )

]
≤CT (‖�1‖p

W 1,p(Ω)
+ ‖v̂1‖p

W 2,1
p (QT )

) ≤ C(R0, T ) Rp
1 .

The latter and (102) now entail

‖q̂0 − qeq‖W 2,1
p (QT )

+ ‖v̂0 − veq‖W 2,1
p (QT )

+ ‖�̂0 − �eq‖W 1,1
p,∞(QT )

≤ C R1. (104)

Thus, it also follows that ‖�̂0 − �eq‖L∞(QT ) ≤ C R1. Therefore

�max − �̂0(x, t) ≥ �max − �eq(x) − C R1, �̂0(x, t) − �min ≥ �eq(x) − �min − C R1.
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By definition, the equilibrium density remains in the thresholds, that is, M(�eq, 0) <

+∞ (see (69)). If R1 is small enough, for instance if it satisfies the condition

R1 ≤ 1

2C
min
x∈Ω

{�max − �eq(x), �eq(x) − �min}, (105)

we can show that

M(�̂0, T ) = esssupQT
max{ 1

�max − �̂0 ,
1

�̂0 − �min
} ≤ 2M(�eq, 0) < +∞.

(106)

We define ζ eq(x) := ηN−1 · ∇ρk(ρeq(x)). Multiplying (16) with V̄ , we see that ζ eq

satisfies

div(veq − d(�eq, qeq) (∇ζ eq − b̂(x)) + A(�eq, qeq) (∇qeq − b̃(x))) = 0.

Since ζ̂ 0 is constructed solving (51), the difference y := ζ̂ 0 − ζ eq satisfies

− div(d0 ∇ y) = − div(v̂0 − veq + (d0 − deq) (b̂(x) − ∇ζ eq))

− div(Aeq · (∇qeq − b̃(x)) − A0 (∇q̂0 − b̃(x)))

where zero superscript of a coefficient means evaluation at (�̂0, q̂0), while eq super-
script means evaluation at (�̂eq, q̂eq). Thus, elementary calculations show that also

‖ζ̂ 0 − ζ eq‖W 2,0
p (QT )

≤ C (‖q̂0 − qeq‖W 2,1
p (QT )

+ ‖v̂0 − veq‖W 2,1
p (QT )

+ ‖�̂0 − �eq‖W 1,1
p,∞(QT )

)

≤ C R1. (107)

The nonlinearmap.Consider now (r∗, w∗) given in 0YT .We define q∗ := q̂0+r∗
and v∗ = v̂0 + w∗. Following (59), we introduce �∗ := C (v∗). Then, the difference
σ ∗ := �∗ − �̂0 is a solution to

∂tσ
∗ + div(σ ∗ v∗) = − div(�̂0 w∗), σ ∗(x, 0) = 0.

Making use of Lemma 20 (σ ∗ = σ and v∗ = v, w∗ = w therein), we get

‖�∗ − �̂0‖p

W 1,1
p,∞(QT )

≤C exp
(
c
∫ T

0
[‖v∗

x (τ )‖L∞(Ω) + ‖v∗
x,x (τ )‖L p(Ω) + 1]dτ

)×
× (‖�̂0‖p

W 2,0
p (QT )

‖w∗‖p
L∞(QT ) + ‖�̂0‖p

W 1,1
p,∞(QT )

‖w∗‖p

W 2,0
p (QT )

)

≤φ0(T, R0, ‖w∗‖W 2,1
p (QT )

) ‖w∗‖p

W 2,1
p (QT )

,

with a certain continuous function φ0 increasing of its arguments. Hence, use of
the continuous embedding W 1,1

p,∞ ⊂ L∞ yields ‖�∗ − �̂0‖L∞(QT ) ≤ φ0(T, R0,

‖w∗‖W 2,1
p (QT )

) ‖w∗‖W 2,1
p (QT )

. We recall (106) to show that, under the condition

φ0(T, R0, V (T ; w∗))V (T ; w∗) ≤ 1

4
min
x∈Ω

{�max − �eq(x), �eq(x) − �min} =: a0,
(108)
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we can guarantee that M(�∗, T ) < +∞ globally.
The vector û0 := (q̂0, 1, �̂0, v̂0) is in XT,I under the condition (105). Given

(r∗, w∗) ∈ 0YT satisfying (108), we define u∗ := (q̂0+r∗, 1, C (v̂0+w∗), v̂0+w∗)
(cp. (60)), and we see by the latter arguments that u∗ ∈ XT,I too. Thus, we can make
sense of the operators (g1)′(u∗, û0), (h1)′(u∗, û0) and ( f 1)′(u∗, û0) in the right-hand
of the equations (61), (62), (64) on the entire interval [0, T ].
If we can solve the linear system (61), (62), (63), (64) for (r, χ, ζ, w), we obtain

a globally defined solution in 0XT , and we can meaningfully define T 1(r∗, w∗) :=
(r, w). We shall prove the solvability by linear continuation on the base of the conti-
nuity estimates, that we are in the position to prove next.

10.2. Continuity estimates

We need at first an estimate for the operators (g1)′, (h1)′ and ( f 1)′. We shall prove
it for general body forces b = b(x, t), even if the statement of Theorem 3 requires
only b = b(x).

Lemma 21. Assume that the initial data satisfy (105). Consider û0 := (q̂0, 1, �̂0, v̂0)

∈ XT,I with �̂0 ∈ W 2,0
p (QT ) constructed in Sect. 10.1. For a given (r∗, w∗) ∈ 0YT

satisfying (108), we define u∗ := (q̂0+r∗, 1, C (v̂0+w∗), v̂0+w∗) ∈ XT,I (cf. (60),
Sect. rm 10.1). We further consider (r, w) ∈ 0YT , and we denote by σ the function
obtained via solution of (63). We define ū := (r, 1, σ, w) ∈ 0XT . Then the operators
(g1)′, (h1)′ and ( f 1)′ on the right-hand side of (61), (62), (63) satisfy

‖(g1)′(u∗, û0) ū‖p
L p(Qt )

+ ‖(h1)′(u∗, û0) ū‖p

W 1,0
p (Qt )

+ ‖( f 1)′(u∗, û0) ū‖p
L p(Qt )

≤ K ∗
2 (t)

∫ t

0
V p(s) K ∗

1 (s) ds

with functions K ∗
1 ∈ L1(0, T ) and K ∗

2 ∈ L∞(0, T ). There is a continuous function
Φ∗(t, a1, a2) defined for all t, a1, a2 ≥ 0, such that

‖K ∗
1‖L1(0,t), ‖K ∗

2‖L∞(0,t) ≤Φ∗(t, V ∗(t), R0)

for all t ≤ T , where V (t) := V (t; r) + V (t; w), V ∗(t) := V (t; r∗) + V (t; w∗)
and R0 is defined in (100).

Proof. The estimates of (g1)′, ( f 1)′ were performed in [5] for the corresponding
norms. They can be translated one to one to the present context. In adapting the proof,
recall also that the numbers M(�∗, T ) and M(�̂0, T ) are finite by construction. We
consider here the factor (h1)′, which is treated with similar arguments. We recall that

h1 =h1(x, t, q, �)

=d(�, q) (b̂(x, t) − ∇ ζ̂ 0(x, t)) + A(�, q) (b̃(x, t) − ∇q̂0(x, t)),
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where ζ̂ 0 is constructed solving (51). The derivatives of h1 are given by the following
expressions:

h1q = dq (b̂ − ∇ ζ̂ 0) + Aq (b̃ − ∇q̂0), h1� = d� (b̂ − ∇ ζ̂ 0) + A� (b̃ − ∇q̂0),

while the gradients in x obey

∇h1q =(dq,q ∇q + dq,� ∇�) (b̂ − ∇ ζ̂ 0)

+ (Aq,q ∇q + Aq,� ∇�) (b̃ − ∇q̂0) + dq (∇b̂ − D2ζ̂ 0) + Aq (∇b̃ − D2q̂0),

∇h1� =(d�,q ∇q + d�,� ∇�) (b̂ − ∇ ζ̂ 0)

+ (A�,q ∇q + A�,� ∇�) (b̃ − ∇q̂0) + d� (∇b̂ − D2ζ̂ 0) + A� (∇b̃ − D2q̂0).

Denote by c∗
1 a generic function depending on M(�, T ) and ‖q‖L∞(QT ). Then the

following estimates are obviously valid:

|h1q | + |h1�| ≤c∗
1 (|b̂| + |b̃| + |∇ ζ̂ 0| + |∇q̂0|),

|∇h1q | + |∇h1�| ≤c∗
1 (|∇q| + |∇�|) (|b̂| + |b̃| + |∇ ζ̂ 0| + |∇q̂0|)
+ c∗

1 (|b̂x | + |b̃x | + |D2
x,x ζ̂

0| + |D2
x,x q̂

0|).

Using that W 1,p(Ω) ⊂ L∞(Ω), it follows that

‖h1q‖L∞,p(Qt ) + ‖h1�‖L∞,p(Qt ) ≤ c∗
1 (‖b̂‖W 1,0

p (Qt )

+ ‖b̃‖W 1,0
p (Qt )

+ ‖ζ̂ 0‖W 2,0
p (Qt )

+ ‖q̂0‖W 2,0
p (Qt )

), (109)

‖∇h1q‖L p(Qt ) + ‖∇h1�‖L p(Qt ) ≤ c∗
1 (‖∇q‖L p,∞(Qt ) + ‖∇�‖L p,∞(Qt ) + 1)×

× (‖b̂‖W 1,0
p (Qt )

+ ‖b̃‖W 1,0
p (Qt )

+ ‖ζ̂ 0‖W 2,0
p (Qt )

+ ‖q̂0‖W 2,0
p (Qt )

). (110)

Next we turn to estimate (h1)′(u∗, û0) ū in W 1,0
p (Qt ). At first we notice that

(h1)′(u∗, û0) ū = h1q(u
∗, û0) r + h1�(u∗, û0) σ . Thus

‖(h1)′(u∗, û0) ū‖p
L p(Qt )

≤
∫ t

0
(|h1q(u∗, û0)|pL∞ + |h1�(u∗, û0)|pL∞) (|r |pL p + |σ |pL p ) dτ

≤c∗
1

∫ t

0
K ∗
1 (τ ) (|r |pL p + |σ |pL p ) dτ (111)

with c∗
1 = c1(M(�∗, T ), M(�̂0, T ), ‖q∗‖L∞(QT ), ‖q̂0‖L∞(QT )), and

K ∗
1 (τ ) := ‖b̂(τ )‖W 1,p(Ω) + ‖b̃(τ )‖W 1,p(Ω) + ‖ζ̂ 0(τ )‖W 2,p(Ω) + ‖q̂0(τ )‖W 2,p(Ω).

The function K ∗
1 is integrable on (0, t) with norm bounded by a function Φ∗

t of the
required structure. Estimating ‖q∗‖L∞(Qt ) ≤ ‖q̂0‖L∞(Qt ) + C tγ V (r∗; t), we see
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that

‖(h1)′(u∗, û0) ū‖p
L p(Qt )

≤ φ(t, V ∗(t), R0)

∫ t

0
K ∗
1 (τ ) (‖r(τ )‖p

L p(Ω) + ‖σ(τ)‖p
L p(Ω)) dτ

≤ φ(t, V ∗(t), R0)

∫ t

0
K ∗
1 (τ ) (‖r(τ )‖p

L p(Ω) + c0 ‖σx (τ )‖p
L p(Ω)) dτ.

For the terms containing σx , we use the result of Lemma 20. It yields for τ ≤ t that,
in particular,

‖σ(τ)‖W 1,p(Ω) ≤K3(τ ) ‖w‖p
L∞(Qτ ) + K4(τ ) ‖w‖p

W 2,0
p (Qτ )

with K3(τ ) :=C ec
∫ τ
0 [‖v∗

x‖L∞(Ω)+‖v∗
x,x‖L p (Ω)+1] ds ‖�̂0‖p

W 2,0
p (Qτ )

,

K4(τ ) :=C ec
∫ τ
0 [‖v∗

x‖L∞(Ω)+‖v∗
x,x‖L p (Ω)+1] ds ‖�̂0‖p

W 1,1
p,∞(Qτ )

. (112)

Since ‖w‖L∞(Qτ ) ≤ c̄ sups≤τ ‖w(s)‖
W 2−2/p

p (Ω)
, we obtain that

∫ t

0
K ∗
1 (τ ) ‖σx (τ )‖p

L p(Ω) dτ

≤ max{K3(t), K4(t)}
∫ t

0
K ∗
1 (τ ) [‖w‖p

L∞(Qτ ) + ‖w‖p

W 2,0
p (Qτ )

] dτ

≤ max{K3(t), K4(t)} (1 + c̄)p
∫ t

0
K ∗
1 (τ )V p(w; τ) dτ.

Thus for K ∗
2 (t) := C φ(t, V ∗(t), R0) max{K3(t), K4(t), 1}, it follows that

‖(h1)′(u∗, û0) ū‖p
L p(Qt )

≤ φ(t, V ∗(t), R0)

∫ t

0
K ∗
1 (τ ) ‖r(τ )‖p

L p(Ω) dτ

+ φ(t, V ∗(t), R0) c0 max{K3(t), K4(t)} (1 + c̄)p
∫ t

0
K ∗
1 (τ )V p(w; τ) dτ

‖(h1)′(u∗, û0) ū‖p
L p(Qt )

≤ K ∗
2 (t)

∫ t

0
K ∗
1 (τ )V p(τ ) dτ.

We can prove a similar estimate for ‖∇((h1)′(u∗, û0) ū)‖p
L p(Qt )

. First we notice that

∇((h1)′(u∗, û0) ū) =∇(h1q(u
∗, û0) r + h1�(u∗, û0) σ )

=∇h1q(u
∗, û0) r + ∇h1�(u∗, û0) σ + h1q(u

∗, û0)∇r

+ h1�(u∗, û0)∇σ.

As before (see (111)), ‖h1q ∇r + h1� ∇σ‖p
L p(Qt )

≤ c∗
1

∫ t
0 K ∗

1 (τ ) (‖rx‖p
L p(Ω) +

‖σx‖p
L p(Ω)) dτ . Treating σx as in (112), we obtain that ‖h1q ∇r + h1� ∇σ‖p

L p(Qt )
≤

K ∗
2 (t)

∫ t
0 K ∗

1 (τ )V p(τ ) dτ .
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On the other hand, (110) yields

‖∇h1q(u
∗, û0) r + ∇h1�(u∗, û0) σ‖p

L p(Qt )

≤ c∗
1 (‖∇q∗‖L p,∞(Qt ) + ‖∇q̂0‖L p,∞(Qt ) + ‖∇�∗‖L p,∞(Qt ) + ‖∇�̂0‖L p,∞(Qt ) + 1)p ×

×
∫ t

0
(‖b̂‖W 1,p(Ω) + ‖b̃‖W 1,p(Ω) + ‖ζ̂ 0‖W 2,p(Ω) + ‖q̂0‖W 2,p(Ω))

p

× (‖r‖p
L∞(Ω) + ‖σ‖p

L∞(Ω)) dτ.

This implies that

‖∇h1q r + ∇h1� σ‖p
L p(Qt )

≤ K̃ ∗
2 (t)

∫ t

0
K̃ ∗
1 (τ ) (‖r(τ )‖p

L∞(Ω) + c0 ‖σx (τ )‖p
L p(Ω)) dτ.

Again, we treat σx by means of (112). The claim follows. �
Next we prove the main continuity estimate. We apply Proposition 11 to (61), (62).

Making use of the fact that r(0, x) = 0 in Ω , we get the estimate

V (t; r) + ‖χ‖W 2,0
p (Qt )

≤ C Ψ̃1,T (‖g1‖L p(Qt ) + ‖(h1)′(u∗, û0) ū‖W 1,0
p (Qt )

+ ‖w‖W 1,0
p (Qt )

)

≤ C Ψ̃1,T (‖ĝ0‖L p(Qt ) + ‖w‖W 1,0
p (Qt )

)

+ C Ψ̃1,T (‖(g1)′(u∗, û0) ū‖L p(Qt ) + ‖(h1)′(u∗, û0) ū‖W 1,0
p (Qt )

). (113)

Here Ψ̃1,T = max{Ψ1,T , ΦT } depends continuously on the data.We then apply Propo-
sition 12 to (64) and obtain

V (T ; w) ≤C Ψ̃2,T (‖ f 1‖L p(Qt ) + ‖∇χ‖L p(Qt ))

≤C Ψ̃2,T (‖ f̂ 0‖L p(Qt ) + ‖∇χ‖L p(Qt ) + ‖( f 1)′(u∗, û0) ū‖L p(Qt )),

(114)

againwith some Ψ̃2,T dependingonT and sups≤t [�∗(s)]Cα(Ω)).Weestimate‖∇χ‖L p(Qt )

by means of (113). We next raise both (113) and (114) to the pth power, add both in-
equalities, and get for the function V (t) := V (t; r) + V (t; w) + ‖χ‖W 2,0

p (Qt )
the

inequality

V p(t) ≤C (Ψ̃
p
1,T + Ψ̃

p
2,T ) (‖ĝ0‖p

L p(QT ) + ‖ f̂ 0‖p
L p(QT ) + ‖w‖p

W 1,0
p (Qt )

+ ‖(g1)′(u∗, û0) ū‖p
L p(Qt )

+ ‖( f 1)′(u∗, û0) ū‖p
L p(Qt )

+ ‖(h1)′(u∗, û0) ū‖p

W 1,0
p (Qt )

).

Then we make use of ‖w‖p

W 1,0
p (Qt )

≤ ∫ t
0 V

p(s) ds, and we apply the Lemma 21 to

find that

V p(t) ≤C (Ψ̃
p
1,T + Ψ̃

p
2,T )

(
‖ĝ0‖p

L p(QT ) + ‖ f̂ 0‖p
L p(QT ) + K ∗

2 (t)
∫ t

0
K ∗
1 (s)V p(s) ds

)
.

(115)



Vol. 21 (2021) Well-posedness analysis of multicomponent incompressible flow models 4085

The Gronwall inequality implies that

V p(t) ≤ C (Ψ̃
p
1,T + Ψ̃

p
2,T ) exp

[
C (Ψ̃

p
1,T + Ψ̃

p
2,T ) K ∗

2 (t)
∫ t

0
K ∗
1 (s) ds

]

× (‖ĝ0‖p
L p(QT ) + ‖ f̂ 0‖p

L p(QT )).

We thus have proved the following continuity estimate.

Proposition 22. We define R0 via (100). Suppose that (r∗, w∗) ∈ 0YT satisfy the
condition (108). Then (r, w) = T 1(r∗, w∗) is well defined in 0YT . Moreover, there
is a continuous function Ψ7 = Ψ7(T, R0, η), increasing of all arguments and finite
for all φ0(T, R0, η) η < 1

4M(�eq, 0) such that

V (T ) ≤Ψ7(T, R0, V
∗(T )) (‖ĝ0‖L p(QT ) + ‖ f̂ 0‖L p(QT )).

10.3. Existence of a unique fixed-point of T 1

We are now in the position to prove a self-mapping property for sufficiently small
data. We recall the definitions (99), (100) of the critical norms R0, R1. We denote
ueq = (qeq, ζ eq, �eq, veq) and let û0 := (q̂0, ζ̂ 0, �̂0, v̂0) and û1 := ueq − û0. In
(104), (107), we just proved that ‖û1‖XT ≤ C R1. Recalling that the operator Ã is
continuously differentiable into the space ZT defined in (38), and that Ã(ueq) = 0 by
the definition of an equilibrium solution, we can verify that

Ã (û0) =Ã (ûeq + û1) = Ã (ûeq + û1) − Ã (ûeq) =
∫ 1

0
Ã ′(ûeq + θ û1) dθ û1.

Thus ‖Ã (û0)‖ZT ≤ C R1. The definitions of ĝ0 and f̂ 0 in (58) show that

‖ĝ0‖L p(QT ) + ‖ f̂ 0‖L p(QT ) = ‖Ã 1(û0)‖L p(QT ) + ‖Ã 4(û0)‖L p(QT ) ≤ C̄ R1.

(116)

These considerations allow to state and prove the main properties of T 1.

Lemma 23. We define R0 via (100) and R1 via (99). For φ0 and a0 defined in (108),
we define η0 > 0 as the smallest positive number such that φ0(T, R0, η0) η0 =
a0. We define R̄1 = min{1/(2CM(�eq, 0)), η0/(C̄ Ψ7(T, R0, η0))} with Ψ7 from
Proposition 22, C from (105), and C̄ from (116). If R1 ≤ R̄1, the map T 1 is well
defined and possesses a unique fixed-point.

Proof. If w∗ satisfies (108) and if R1 satisfies (105), T 1(r∗, w∗) is well defined in
YT . We apply Proposition 22, use (116) and obtain

‖T 1(r∗, w∗)‖YT ≤Ψ7(T, R0, ‖(r∗, w∗)‖YT ) (‖ĝ0‖L p(QT ) + ‖ f̂ 0‖L p(QT )) ≤ η0.

We consider the iteration ūn+1 := T 1(ūn), starting at zero. The sequence (qn, ζ n,

�n, vn) is then uniformly bounded in XT . We show the contraction property with
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respect to the same lower-order norm than in Lemma 18. There are k0, p0 > 0 such
that the quantities

En(t) := p0

∫ t+t1

t
{|∇(rn − rn−1)|2 + |∇(χn − χn−1)|2 + |∇(wn − wn−1)|2} dxds

+ k0 sup
τ∈[t, t+t1]

{‖(rn − rn−1)(τ )‖2L2(Ω)
+ ‖(σ n − σ n−1)(τ )‖2L2(Ω)

+ ‖(wn − wn−1)(τ )‖2L2(Ω)
}

satisfy En+1(t) ≤ 1
2 En(t) for some fixed t1 > 0 and every t ∈ [0, T − t1]. �
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A. Properties of the free energy density

In this section we prove the statements of Sect. 3 devoted to the convex conjugate
of the free energy density: Lemmas 4, 5 and 6.

We assume that k satisfies the assumptions of Lemma 4. Notice that requiring k
essentially smooth on S1,while positive homogeneous, induces that k is also essentially
smooth on SV̄ . To see this, we consider any sequence {rm} ⊂ SV̄ such that rm → r̄
for m → ∞, and r̄ belongs to the relative boundary of SV̄ , which means that there is
i ∈ {1, . . . , N } such that r̄i = 0. Then we define ym := r̄m/

∑N
i=1 r

m
i which belongs

to S1 for allm, and satisfies ymi → 0 form → ∞. Since k is positively homogeneous,
we have ∇ρk(rm) = ∇ρk(ym). Thus, by the assumptions of Lemma 4, we see that
|∇ρk(rm)| → +∞, which is the essential smoothness on SV̄ .

Consider now μ ∈ R
N arbitrary. Then we claim first that there exists a unique

r̄ ∈ SV̄ such that

f (μ) = sup
r∈SV̄

{μ · r − k(r)} = μ · r̄ − k(r̄).

Since SV̄ is bounded, we first notice that supr∈SV̄ {μ·r−k(r)} = maxr∈SV̄ {μ·r−k(r)}.
Thus, there is r̄ ∈ SV̄ such that supr∈SV̄ {μ · r − k(r)} = μ · r̄ − k(r̄). We want to show

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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that r̄ is an interior point. Since SV̄ is a convex set, we can find for every a ∈ SV̄ a
h > 0 such that r̄ + h (a − r̄) ∈ SV̄ . Due to the choice of r̄

μ · (r̄ + h (a − r̄)) − k(r̄ + h (a − r̄)) ≤ μ · r̄ − k(r̄),

which yields k(r̄+h (a−r̄))−k(r̄) ≥ h μ·(a−r̄) and limh↘0
k(r̄+h (a−r̄))−k(r̄)

h > −∞.
The latter however contradicts the fact that k is essentially smooth on SV̄ (cf. [28],
Lemma 26.2). Thus, r̄ ∈ SV̄ is an interior point.
The uniqueness of r̄ follows from the strict convexity of k on SV̄ .
Since k is differentiable, and since r �→ μ · r − k(r) attains its maximum in r̄ , we

must have (∇k(r̄)−μ) ·ξ = 0 for every tangential vector ξ ∈ R
N such that ξ · V̄ = 0.

Thus, there is p ∈ R such that μ = ∇ρk(r̄) + p V̄ . Multiplying with r̄ , use of the
homogeneity of degree one implies that r̄ · ∇ρk(r̄) = k(r̄), hence

sup
r∈SV̄

{μ · r − k(r)} = μ · r̄ − k(r̄) = p r̄ · V̄ = p, (117)

showing that p = f (μ). Due to the structure f (μ) = μ · r̄ − k(r̄) = maxr∈SV̄ {μ ·
r − k(r)}, we easily show that f is differentiable in μ with ∇μ f (μ) = r̄ . In order to
show the differentiability of higher order, we can exploit the identities

μ − f (μ) V̄ = ∇ρk(∇μ f (μ)), V̄ · ∇μ f (μ) = 1.

For a system of orthonormal vectors ξ1, . . . , ξ N−1 for {V̄ }⊥, and ξ N := V̄ /|V̄ |, we
then have

μ · ξ j =ξ j · ∇ρk(
N−1∑

i=1

ξ i · ∇μ f (μ) ξ i + ξ N

|V̄ | ) for j = 1, . . . , N − 1,

1

|V̄ | =ξ N · ∇μ f (μ).

The latter can be viewed as an algebraic system of the form F(X) = (μ · ξ1, . . . , μ ·
ξ N−1, 1

|V̄ | ) for the unknowns X := (ξ1 · ∇μ f (μ), . . . , ξ N · ∇μ f (μ)) ∈ R
N . The

Jacobian of this system obeys

∂Fj

∂Xi
=

⎧
⎪⎪⎨

⎪⎪⎩

D2kξ i · ξ j for i = 1, . . . , N − 1, j = 1, . . . , N − 1,

0 for i = N , j = 1, . . . , N − 1,

δi, N for i = 1, . . . , N , j = N ,

where D2k is evaluated at ∇μ f (μ). We can easily verify that {D2k(∇μ f (μ))ξ i ·
ξ j }i, j=1,...,N−1 is strictly positive definite: A vector of the form

∑N−1
j=1 ξ j a j , a �= 0

can never be parallel to ∇μ f (μ), since multiplying with V̄ yields a contradiction. On
the other hand, the properties of k guarantee that the kernel of D2k(∇μ f (μ)) is the
one-dimensional span of ∇μ f (μ).
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Thus, the equations F(X (μ)) = (μ ·ξ1, . . . , μ ·ξ N−1, 1
|V̄ | ) define implicitly a map

μ �→ X (μ) of class C1(RN ). This clearly implies that f ∈ C2(RN ), and we obtain
the formula

D2
μk ,μi

f (μ) =
N∑

j=1

∂X j

∂μk
ξ
j
i . (118)

If k ∈ C3(RN+), we then differentiate again to obtain that f is C3(RN ). This proves
the claims of Lemma 4. The claims of Lemma 5 and 6 are also readily established
(use (118) and (117)).

B. Auxiliary statements

For the proof of the following Lemma, we need the variable transformation in
Sect. 4.1.

Lemma 24. We adopt the assumptions of Theorem 1 for the tensor M : R
N+ →

R
N×N , and we assume that k : R

N+ → R is given by (7). We assume moreover that

there is a continuous function C = C(|ρ|), bounded on compact subsets of R
N\{0},

such that Bi, j (ρ) := Mi, j (ρ)/ρ j , with entries belonging to C1(RN+), satisfies for all
ρ ∈ R

N+ the conditions

|Bi, j (ρ)| + ρk |Bi, j,ρk (ρ)| ≤ C(|�|) for all i, j, k ∈ {1, . . . , N }.

For � ∈ I and q ∈ R
N−2, we denote M(�, q) := M(

∑N−2
�=1 R�(�, q) η� + � ηN ),

and recall the definitions (22), (23), (24) of the objects M̃(�, q), A(�, q), d(�, q) and
the definition (21) of the nonlinear part P(�, q) of the pressure. For � ∈ I , we define
m(�) := min{1− �/�max, �/�min − 1}. Then the following statements are valid: For
all � ∈ I and q ∈ R

N−2

– |d(�, q)| + |A(�, q)| + |dq(�, q)| + |Aq(�, q)| ≤ c1 m(�);
– |d�(�, q)| + |A�(�, q)| ≤ c2;
– The function P� is positive and c3 (m(�))−1 ≤ P�(�, q) ≤ c4 (m(�))−1 with

c3 > 0; Moreover |Pq(�, q)| ≤ c5.

Proof. For ρ ∈ SV̄ we consider the vector u j = −ρ j (V̄ j −1/�min) for j = 1, . . . , N .
By the definition of �min, all components of u are positive. Moreover

∑N
j=1 u j =

�/�min−1by thedefinitionof SV̄ . SinceM 1N = 0, the identityM(ρ) V̄ = M(ρ) (V̄−
1N/�min) = −B(ρ) u holds. By assumption |B(ρ)| ≤ C(|ρ|), and therefore

|M(ρ) V̄ | ≤ C(|ρ|) |u| ≤ C0 (
�

�min
− 1).

Analogously, considering next u j := ρ j (V̄ j − 1/�max), we obtain that |M(ρ) V̄ | ≤
C1 (1 − �/�max), and overall that |M(ρ) V̄ | ≤ C m(�).
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We next investigate the derivatives. To do so, we recall two properties of the map
R(�, q) (Sect. 4.1, (20)). For � = 1, . . . , N − 2 direct computations yield for i =
1, . . . , N

∂q�
Ri (�, q) =D2 f ei · ξ� − D2 f ei · 1N D2 f ξ� · 1N

D2 f 1N · 1N for � = 1, . . . , N − 2,

∂�Ri (�, q) = D2 f ei · 1N
D2 f 1N · 1N .

In these formula,we evaluate D2 f atμ = ∑N−2
�=1 q� ξ�+M (�, q) 1N . In the Section 4

of [14], we prove that D2 f ei · 1N ≤ C0 D2 f 1N · 1N for i = 1, . . . , N (Lemma 4.3
(e)). Moreover, |D2 f ei · a| ≤ ca ρi for any vector a (cf. Lemma 4.3 (a)). From these
properties, we infer that

1

ρi
|∂qRi (�, q)| ≤ |D2 f ei |

ρi
(1 + C0 max

�=1,...,N−2
|ξ�|) ≤ c, |∂�Ri (�, q)| ≤ c.

We again express Mi, j (ρ) V̄ j = −Bi, j (ρ) ρ j (V̄ j − 1/�min), hence

∂ρk Mi, j (ρ) V̄ j = −Bi, j,ρk (ρ) ρ j (V̄ j − 1

�min
) − Bi,k (V̄k − 1

�min
),

and therefore, it follows for � = 1, . . . , N − 2 that

∂q�
Mi, j (R(�, q)) V̄ j =

N∑

k=1

(−Bi, j,ρk (ρ) ρ j (V̄ j − 1

�min
) − Bi,k (V̄k − 1

�min
))Rk,q�

.

Since −Bi, j,ρk (ρ) ρ j (V̄ j − 1/�min) = −Bi, j,ρk u j , and, by assumption, |Bi, j,ρk | ≤
C(|ρ|)/ρk , we invoke that |Rk,q�

| ≤ C ρk to show that

|Bi, j,ρk (ρ) u j Rk,q�
| ≤ C0 |u| ≤ C0 (

�

�min
− 1).

Moreover, by the same means

|Bi,k (V̄k − 1

�min
))Rk,q�

| ≤ |Bi,k uk (Rk,q�
/ρk)| ≤ C1 |u| ≤ C1 (

�

�min
− 1).

Arguing the same for the other choice of u, it follows that |∂q�
Mi, j (R(�, q)) V̄ j | ≤

C m(�). The other estimates claimed have been verified for this special case of the
function k in the Section 4 of [14]. �

Remark 25. In the case that the matrix M results from inversion of the Maxwell-
Stefan equations, we notice that the matrix B of Lemma 24 is nothing else but the
pseudo-inverse of the Maxwell–Stefan matrix. It is shown in the paper [4] that natural
assumptions on the binary diffusivities are sufficient for proving that the entries of
B consist of regular functions of the state variables. In particular, they satisfy the
assumptions of Lemma 24.
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The following statement is directly taken from our paper [5]. There we must only
adapt the definition of the parameters m∗ and M∗ according to (69), (68) in order to
account for different density thresholds in the incompressible model.

Proposition 26. Assume that Rq , M̃ : I × R
N−2 → R

(N−2)×(N−2) are maps of
class C1 into the set of symmetric, positive definite matrices. Consider given q∗ ∈
W 2,1

p (QT ; RN−2) and �∗ ∈ W 1,1
p,∞(QT ) (p > 3) such that the values of �∗ are

strictly contained in I in QT . Let g ∈ L p(QT ; RN−2) and q0 ∈ W 2−2/p(Ω) such
that ν · ∇q0(x) = 0 in the sense of traces on ∂Ω . Then, there is a unique q ∈
W 2,1

p (QT ; RN−2) solution to the problem

Rq(�
∗, q∗) ∂t q − div(M̃(�∗, q∗)∇q) = g in QT , ν · ∇q = 0 on ST ,

q(x, 0) = q0(x) in Ω,

Moreover there is a constant C independent on T , q, �∗ and q∗ such that for all t ≤ T
and 0 < β ≤ 1:

V (t; q) ≤ C Ψ̄1,t

[
(1 + [�∗]

Cβ,
β
2 (Qt )

)
2
β ‖q0‖

W
2− 2

p
p (Ω)

+ ‖g‖L p(Qt )

]
,

Ψ̄1,t = Ψ̄1(t, M∗(t), ‖q∗(0)‖Cβ(Ω), V (t; q∗), [�∗]
Cβ,

β
2 (Qt )

, ‖∇�∗‖L p,∞(Qt )),

with a continuous function Ψ̄1 defined for all t ≥ 0 and all numbers a1, . . . , a5 ≥ 0.
The function Ψ̄1 is increasing in all arguments and moreover Ψ̄1(0, a1, . . . , a5) =
Ψ̄ 0
1 (a1, a2, a3) is a function independent on the two last arguments.

We also recall some estimates of Hölder norms. This is also proved in [5].

Lemma 27. For 0 ≤ β < min{1, 2 − 5
p } we define

γ :=
{

1
2 (2 − 5

p − β) for 3 < p < 5,

(1 − β)
p−1
3+p for 5 ≤ p.

Then, there is C = C(t) bounded on finite time intervals such that C(0) = C0 depends
only on Ω and for all q∗ ∈ W 2,1

p (Qt )

‖q∗‖
Cβ,

β
2 (Qt )

≤ ‖q∗(0)‖Cβ (Ω) + C(t) tγ [‖q∗‖W 2,1
p (Qt )

+ ‖q∗‖
C([0,t];W 2− 2

p
p (Ω)

)].

Finally we have a perturbation Lemma for elliptic problems. This property ought
to be well known, and we only mention details for more convenience on reading.

Lemma 28. Let a ∈ Cβ(Ω) (β > 0) satisfy 0 < a0 ≤ a(x) ≤ a1 < +∞ for all
x ∈ Ω . Suppose that F ∈ L p(Ω) with p > 3. Then, there is a unique u ∈ W 1,p(Ω)

satisfying
∫
Ω

(a(x)∇u − F(x)) · ∇φ dx = 0 for all φ ∈ C1(Ω) and
∫
Ω
u dx = 0.

Moreover, there is c = c(Ω, p, a0, a1) such that

‖∇u‖L p(Ω) ≤ c (1 + [a]Cβ )
1
β ‖F‖L p(Ω).
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Proof. Existence of a unique weak solution is well-known. In order to prove the
estimate,we start recalling a few standard inequalities. First, the bound

√
a0 ‖∇u‖L2 ≤

‖F‖L2 is valid. Since we choose the mean-value of u to be zero, then also ‖u‖L2 ≤
cΩ a

− 1
2

0 ‖F‖L2 . Moreover, for s > 3 arbitrary, we find that ‖u‖L∞(Ω) ≤ c(Ω, s) (a−1
0

‖F‖Ls (Ω)+ a1
a0

‖u‖Ls/2(Ω)). Thus, choosing s ≤ min{p, 4} and employing theHoelder
inequality, we easily show that ‖u‖L∞(Ω) ≤ c̃(Ω, a0, a1) ‖F‖L p(Ω).

We now come to the main argument. We consider x0 in Ω and r > 0. We choose
a nonnegative cut-off function η ∈ C1

c (Br (x
0)) satisfying |∇η| ≤ c0 r−1. Choosing

in the weak formulation a testfunction of the form φ η, we obtain, after some obvious
shifting, for w := u η the identity

a(x0)
∫

Ω

∇w · ∇φ dx =
∫

Ω

(a(x0) − a)∇w · ∇φ dx

+
∫

Ω

(F η + a u ∇η) · ∇φ dx +
∫

Ω

(F · ∇η + a ∇η · ∇u) φ dx .

This is a weak Neumann problem for the Laplacian of w. By standard results, we
obtain an estimate

‖∇w‖L p ≤ c(Ω, p)
(
‖(1 − a

a(x0)
)∇w‖L p

+ 1

a(x0)
(‖F η + a u ∇η‖L p + ‖F · ∇η + a ∇η · ∇u + a(x0) w‖

L
p∗

p∗−1 (Ω)

)
)
.

Here p∗ is the Sobolev embedding exponent of W 1,p(Ω). For p > 3, we have p∗ =
+∞ and p∗/(p∗ − 1) = 1. Next, since w is supported in Br (x0), and since a is
Hoelderian, it follows that

‖(1 − a

a(x0)
)∇w‖L p ≤ [a]Cβ

a(x0)
rβ ‖∇w‖L p .

Thus, fixing rβ := a0
2c(Ω, p)[a]Cβ

, we obtain that

‖∇w‖L p ≤ 2 c(Ω, p)

a(x0)
(‖F η + a u ∇η‖L p + ‖F · ∇η + a ∇η · ∇u + a(x0) w‖L1(Ω)).

With the notation Ωr (x0) = Br (x0) ∩ Ω , we notice that

‖∇w‖L p ≥‖∇u η‖L p − c0
r

‖u‖L p(Ωr (x0)),

‖F η + a u ∇η‖L p ≤‖F η‖L p + a1 c0
r

‖u‖L p(Ωr (x0)),

‖F · ∇η + a ∇η · ∇u + a(x0) w‖L1 ≤c0
r

(‖F‖L1(Ωr (x0)) + a1 ‖∇u‖L1(Ωr (x0))).

Thus, we have shown that

‖∇u η‖L p ≤2 c(Ω, p)

a0
(‖F η‖L p + c0

r
(‖F‖L1(Ωr (x0)) + a1 ‖∇u‖L1(Ωr (x0))))

+ c0
r

(1 + 2 c(Ω, p)
a1
a0

) ‖u‖L p(Ωr (x0)).
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By appropriate covering of Ω with partition of unity, we obtain the inequality

‖∇u‖L p ≤2m0 c(Ω, p)

a0
‖F‖L p + 2 c0 m0 c(Ω, p)

a0 r
‖F‖L1

+ a1 c0
a0 r

m0 (2 c(Ω, p) ‖∇u‖L1 + (1 + 2 c(Ω, p)) ‖u‖L p ).

Here m0 is some geometric constant associated with the covering of Ω . It remains to
estimate

‖∇u‖L1 ≤ |Ω| 12 ‖∇u‖L2 ≤ |Ω| 12 a− 1
2

0 ‖F‖L2

‖u‖L p ≤ |Ω| 1p ‖u‖L∞(Ω) ≤ c(Ω, p) ‖F‖L p ,

where we employ the preliminary consideration at the beginning of this proof to show
that ‖u‖L∞ ≤ c ‖F‖L p . Recalling the choice of r , we are done. �
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