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The extension problem for fractional Sobolev spaces
with a partial vanishing trace condition

Sebastian Bechtel

Abstract. We construct whole-space extensions of functions in a fractional
Sobolev space of order s ∈ (0, 1) and integrability p ∈ (0, ∞) on an open
set O which vanish in a suitable sense on a portion D of the boundary
∂O of O. The set O is supposed to satisfy the so-called interior thick-
ness condition in ∂O\D, which is much weaker than the global interior
thickness condition. The proof works by means of a reduction to the case
D = ∅ using a geometric construction.
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1. Introduction and main results. Let O ⊆ R
d be open. For s ∈ (0, 1) and

p ∈ (0,∞), the fractional Sobolev space Ws,p(O) consists of those f ∈ Lp(O)
for which the seminorm

[f ]Ws,p(O) :=

⎛
⎜⎜⎜⎝

∫∫

x,y∈O
|x−y|<1

|f(x) − f(y)|p
|x − y|sp+d

dy dx

⎞
⎟⎟⎟⎠

1
p

is finite. Under the interior thickness condition

∀x ∈ O, r ∈ (0, 1] : |B(x, r) ∩ O| � |B(x, r)|, (ITC)

whole-space extensions for Ws,p(O) were constructed by Zhou [11]. Though
the mapping is in general not linear, extensions depend boundedly on the
data. The case p ≥ 1 was already treated earlier by Jonsson and Wallin [8],
and their extension operator is moreover linear. In fact, Zhou has shown that
the interior thickness condition is equivalent for Ws,p(O) to admit whole-space
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extensions. If we impose a vanishing trace condition on ∂O in a suitable sense,
zero extension is possible, so in this case no geometric quality of O is needed.
It is now natural to ask what happens if a vanishing trace condition is only
imposed on a portion D ⊆ ∂O.

To be more precise, we consider the space Ws,p
D (O) given by Ws,p(O)∩Lp(O,

d−sp
D ), where dD is the distance function to D. The fractional Hardy term in

there models the vanishing trace condition on D, compare with [3–6,9]. Spaces
of this kind were also recently investigated in [2] and have a history of successful
application in the theory of elliptic regularity, see for example [7].
The present paper seeks minimal geometric requirements under which func-
tions in Ws,p

D (O) can be boundedly extended to whole-space functions. We will
see in Lemma 2.2 that in (ITC) we could equivalently consider balls centered
in ∂O instead of O. Put N := ∂O\D. In Definition 2.1, we introduce the in-
terior thickness condition in N , which requires that |B(x, r) ∩ O| � |B(x, r)|
only holds for x ∈ N and r ∈ (0, 1]. For D = ∅, this is just the usual inte-
rior thickness condition in virtue of the aforementioned Lemma 2.2. It is the
main result of this article to show that the interior thickness condition in N
is sufficient for the Ws,p

D (O)-extension problem.
A major obstacle is that the interior thickness condition in N does not

provide thickness in any neighborhood around N , which makes localization
techniques not applicable. An example for this is a self-touching cusp, see Ex-
ample 2.3. Our construction is as follows. The extension procedure decomposes
into a zero extension from O to some suitable superset O of O, which is an
enlargement of O near D, followed by an application of Zhou’s construction
on O. Hence, suitability of O is measured by two properties: First, the zero
extension can be bounded in Ws,p(O) with the aid of the fractional Hardy
term. Second, O satisfies (ITC), so that Zhou’s result is applicable. A similar
construction of O was performed by the author together with M. Egert and
R. Haller-Dintelmann in [1]. The main result then reads as follows.

Theorem 1.1. Let O ⊆ R
d and let D ⊆ ∂O, p ∈ (0,∞), and s ∈ (0, 1). If O

satisfies the interior thickness condition in ∂O\D, then there exists a bounded
extension mapping

E : Ws,p(O) ∩ Lp(O,d−sp
D ) → Ws,p

D (Rd).

If p ≥ 1, then E can be chosen to be linear.

We will also comment on the sharpness of our result in Section 4.
Finally, a remark on the case p = ∞ is in order. In this situation, the

fractional Sobolev space is substituted by the Hölder space of order s ∈ (0, 1).
Then the Whitney extension theorem [10, Thm. 3, p. 174] provides a linear
extension operator without any geometric requirements. In particular, the frac-
tional Hardy term is not needed, though it is easily seen that ‖f d−s

D ‖∞ can
only be finite if f vanishes identically on D, and the same is of course true for
the extension.

(Non-)Standard notation. We write B(x, r) for the open ball around x with
radius r. The closure of a set A is denoted by A and the Lebesgue measure
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of A is denoted by |A|. If we integrate with respect to the Lebesgue mea-
sure, we write dx, dy, and so on. For diameter and distance induced by the
Euclidean metric, we write diam(·) and d(·, ·). Also, the shorthand notation
dE(x) := d({x}, E) is used. We employ the notation � and � for estimates up
to an implicit constant that does not depend on the quantified objects. If two
quantities satisfy both � and �, we write ≈.

2. Geometry.

Definition 2.1. Let E ⊆ R
d. Say that E satisfies the interior thickness condi-

tion if

∀x ∈ E, r ∈ (0, 1] : |B(x, r) ∩ E| � |B(x, r)|.
Moreover, if F ⊆ ∂E, then E satisfies the interior thickness condition in F if

∀x ∈ F, r ∈ (0, 1] : |B(x, r) ∩ E| � |B(x, r)|.
In the special case E = O, the condition (ITC) from the introduction just
means that O satisfies the interior thickness condition, and the following lemma
shows the equivalence between (ITC) and the interior thickness condition in
∂O for O already mentioned in the introduction. Though its proof is simple,
we include it for good measure.

Lemma 2.2. Let E ⊆ R
d. Then E satisfies the interior thickness condition if

and only if E satisfies the interior thickness condition in ∂E.

Proof. Assume (ITC) and let x ∈ ∂E, r ∈ (0, 1]. Then pick some y ∈ B(x, r/2)∩
E and calculate

|B(x, r) ∩ E| ≥ |B(y, r/2) ∩ E| � |B(y, r/2)| ≈ |B(x, r)|.
Conversely, let x ∈ E, r ∈ (0, 1] and assume that E is interior thick in ∂E.
If B(x, r/2) ⊆ E, then the claim follows immediately. Otherwise, pick again
some y ∈ B(x, r/2) ∩ ∂E and argue as above. �
The following simple example shows that a set can satisfy the interior thickness
condition in some closed subset of the boundary but fails to have it in any
neighborhood of it.

Example 2.3. Consider O = {(x, y) ∈ R
2 : |y| < x2, x < 0} ∪ {(x, y) ∈ R

2 : x >
0}. This means that O consists of the right half-plane touched by a cusp from
the left. Put D to be the boundary of the cusp and N is the y-axis except the
origin. Then the (ITC) estimate holds in N since each ball centered in N hits
the half-plane with half of its area, but any proper neighborhood around N
would contain a region around the tip of the cusp, in which thickness does not
hold (consider a sequence that approximates the tip of the cusp and test with
balls that do not reach N).

3. The extension operator. In this section, we prove Theorem 1.1. We follow
the strategy outlined in the introduction. First, we construct an auxiliary set
O and show that it is interior thick. Second, we show that the zero extension to
O is bounded using a simple geometric argument. Finally, we patch everything
together to conclude. Throughout, O and D are as in Theorem 1.1 and we put
N := ∂O\D for convenience.
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3.1. Embedding into an interior thick set. We construct an open set O ⊆ R
d

with O ⊆ O, ∂O ⊆ ∂O and that satisfies (ITC). According to the assumption
on N and Lemma 2.2, it suffices to check that O is interior thick in D and
the “added” boundary. Of course we could take O as R

d\ ∂O in this step
but this would make zero extension in Section 3.2 impossible. Therefore, our
construction will be in such a way that moreover |x − y| � dD(x) whenever
x ∈ O and y ∈ O\O, see Lemma 3.1, which will do the trick in step two.
Let {Qj}j be a Whitney decomposition for the complement of N in R

d, which
means that the Qj are disjoint dyadic open cubes such that

(i)
⋃
j

Qj = R
d\N, (ii) diam(Qj) ≤ d(Qj , N) ≤ 4 diam(Qj).

Using the Whitney decomposition, we define

Σ := {Qj : Qj ∩ O �= ∅} and O := O ∪
( ⋃

Q∈Σ

Q\D
)
.

Note that for Q ∈ Σ, one has Q\D = Q\ ∂O. Then all claimed properties of O
except (ITC) follow immediately by definition. So, let x ∈ ∂O and r ∈ (0, 1].
If x ∈ N , then we are done by assumption (argue as in the proof of Lemma 2.2
to even get the interior thickness condition in N instead of merely in N).
Otherwise, either x ∈ D or x ∈ ∂Q for some Q ∈ Σ (to see this, use that the
Whitney decomposition is locally finite). But if x ∈ D, then x ∈ Q for some
Q ∈ Σ by property (i) of the Whitney decomposition and the definition of Σ.
Hence, in either case x ∈ Q for some Q ∈ Σ. Now we make a case distinction
on the radius size compared to the size of Q. If r ≥ 4 d(Q,N), pick y ∈ Q and
z ∈ N with d(Q,N) = |y − z|. Then, with (ii), we get

|x − z| ≤ |x − y| + |y − z| ≤ diam(Q) + d(Q,N) ≤ 2 d(Q,N) ≤ r/2,

hence B(x, r) contains a ball of radius r/2 centered in N and we are done.
Otherwise, if r < 4 d(Q,N), then, by (ii), we get r < 16 diam(Q) and the
claim follows from (ITC) for Q.

3.2. Zero extension. Let O denote the set constructed in the previous step.
We define the zero extension operator E0 from O to O ∪ D and claim that it
is Ws,p(O) ∩ Lp(O,d−sp

D ) → Ws,p(O) bounded. We start with a preparatory
lemma.

Lemma 3.1. One has |x − y| ≥ 1
2 dD(x) whenever x ∈ O and y ∈ O\O.

Proof. We consider y ∈ O\O and pick some Q ∈ Σ that contains y. We
distinguish whether or not x and y are far away from each other in relation to
diam(Q).
Case 1 : |x−y| < diam(Q). Fix a point z ∈ ∂O on the line segment connecting
x with y. Assume for the sake of contradiction that z ∈ N . Then, using (ii),
we calculate

d(Q,N) ≤ |y − z| ≤ |x − y| < diam(Q) ≤ d(Q,N),

hence we must have z ∈ D. Thus, |x − y| ≥ |x − z| ≥ dD(x).
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Case 2 : |x − y| ≥ diam(Q). By definition of Σ and since y �∈ O, we can pick
z ∈ Q ∩ D. Then

|x − z| ≤ |x − y| + |y − z| ≤ |x − y| + diam(Q) ≤ 2|x − y|,
hence |x − y| ≥ 1

2 dD(x). �

This enables us to estimate E0. Clearly, we only have to estimate the Ws,p(O)–
seminorm since extension by zero is always isometric on Lp. Let f ∈ Ws,p(O)∩
Lp(O,d−sp

D ). Then
∫∫

x,y∈O
|x−y|<1

|E0f(x) − E0f(y)|p
|x − y|sp+d

dy dx ≤
∫∫

x,y∈O
|x−y|<1

|f(x) − f(y)|p
|x − y|sp+d

dxdy

+ 2
∫∫

x∈O,y∈(O\O)
|x−y|<1

|f(x)|p
|x − y|sp+d

dxdy.

(1)

The first term is bounded by ‖f‖p
W s,p(O), so it only remains to bound the

second term. Using Lemma 3.1 and calculating in polar coordinates, we find∫

y∈(O\O)
|x−y|<1

|x − y|−sp−d dy � dD(x)−sp.

Plugging this back into (1) yields that we can bound the second term therein
by the Hardy term ‖f‖p

Lp(O,d−sp
D )

.

3.3. Proof of Theorem 1.1. We combine the results from the previous sections
with the extension procedure of Zhou to conclude.

Proof of Theorem 1.1. Put E = E ◦ E0, where E is the (non-linear) extension
operator of Zhou and E0 is the zero extension operator from the previous step.
Clearly, E0 is linear, and we have seen in Section 3.2 that it is Ws,p

D (O) →
Ws,p(O) bounded. Since O satisfies (ITC) by Section 3.1, E is well-defined on
Ws,p(O) and bounded into Ws,p(Rd) by Zhou’s result.

The claim for p < 1 then follows already by composition. In the case p ≥ 1,
note that E can be constructed to be linear, see also [8]. �

4. On the sharpness of our result. In this final section, we take a look on
how close to a characterization our condition is. We will see in Example 4.1
that the interior thickness condition in N is not necessary for the extension
problem, but that our construction might fail without it. Afterwards, we will
introduce a degenerate interior thickness condition in N , which is necessary
for the extension problem, but is not sufficient for our construction.

Example 4.1. Consider the upper half-plane in R
2. A Whitney decomposition

can be constructed from layers of dyadic cubes. Let O be a “cusp” that is
build from those Whitney cubes which intersect the area below the graph
of the exponential function, and let N be its lower boundary given by the
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real line in R
2. It is eminent that O is not interior thick in N . Moreover,

our construction of O just adds another layer of cubes, so O is of the same
geometric quality. Hence, our construction does not work in this situation. But
zero extension to the upper half-plane is still possible, so with O chosen as
the upper half-plane, we can construct an extension procedure for Ws,p

D (O) in
this configuration. This shows that the interior thickness condition in N is not
necessary for Ws,p

D (O) to admit whole-space extensions, but is “necessary” for
our construction to work.

We introduce the aforementioned modified version of the interior thickness
condition in N ⊆ ∂O that degenerates near ∂O\N .

Definition 4.2. Say that O satisfies the degenerate interior thickness condition
in N if O ⊆ R

d is open, N ⊆ ∂O, and they fulfill

∀x ∈ N, r ≤ min(1,d∂O\N (x)) : |B(x, r) ∩ O| � |B(x, r)|.

In fact, this condition is necessary for the Ws,p(O) ∩ Lp(O,d−sp
D )-extension

problem. The technique to show this is due to Zhou [11]. By the restriction in
radii, the test functions used in Zhou’s proof belong to Ws,p

D (O), and then his
proof applies verbatim, hence we omit the details.

Proposition 4.3. Let O ⊆ R
d be open, D ⊆ ∂O, p ∈ (0,∞), s ∈ (0, 1), and put

N := ∂O\D. If Ws,p
D (O) admits whole-space extensions, then O satisfies the

degenerate interior thickness condition in N .

Remark 4.4. In Example 4.1, we have seen a configuration which admits whole-
space extensions for Ws,p

D (O)-functions, so in this situation, O satisfies the de-
generate interior thickness condition in N by Proposition 4.3 (of course, this
can also be seen directly). On the other hand, we have seen in that example
that in this configuration our construction does not work. Hence, the degener-
ate interior thickness condition in N is too weak for our proof of Theorem 1.1.
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