
Becker et al. J NeuroEngineering Rehabil          (2020) 17:164  
https://doi.org/10.1186/s12984-020-00778-z

RESEARCH

Predicting functional performance 
via classification of lower extremity strength 
in older adults with exergame‑collected data
Hagen Becker1, Augusto Garcia‑Agundez1*  , Philipp Niklas Müller1, Thomas Tregel1, André Miede2 
and Stefan Göbel1

Abstract 

Objective:  The goal of this article is to present and to evaluate a sensor-based functional performance monitoring 
system. The system consists of an array of Wii Balance Boards (WBB) and an exergame that estimates whether the 
player can maintain physical independence, comparing the results with the 30 s Chair-Stand Test (30CST).

Methods:  Sixteen participants recruited at a nursing home performed the 30CST and then played the exergame 
described here as often as desired during a period of 2 weeks. For each session, features related to walking and stand‑
ing on the WBBs while playing the exergame were collected. Different classifier algorithms were used to predict the 
result of the 30CST on a binary basis as able or unable to maintain physical independence.

Results:  By using a Logistic Model Tree, we achieved a maximum accuracy of 91% when estimating whether player’s 
30CST scores were over or under a threshold of 12 points, our findings suggest that predicting age- and sex-adjusted 
cutoff scores is feasible.

Conclusion:  An array of WBBs seems to be a viable solution to estimate lower extremity strength and thereby func‑
tional performance in a non-invasive and continuous manner. This study provides proof of concept supporting the 
use of exergames to identify and monitor elderly subjects at risk of losing physical independence.
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Introduction
Falls are an important cause of mortality and early place-
ment in nursing homes in older adults. The main causes 
of falls are accidental and environment-related (31%), or 
caused by gait imbalance (17%). Approximately 30 to 60% 
of older adults fall each year. Out of these falls, 10 to 20% 
result in injury, hospitalization, or death. Risk assessment 
and exercise are among the most relevant factors to pre-
vent these falls [1]. The role of sensor-based solutions in 
regards to falling risk has traditionally been focused on 

detecting said falls. Both wearable and smartphone-based 
solutions for fall detection are readily available for this 
purpose [2]. Although this approach is useful, detecting 
elderly who are at risk of losing physical independence, 
and thus may fall in the near future, would provide an 
additional method to prevent falls before they occur.

Exergames are active video games that incorporate 
physical movements, aiming to combine physical exercise 
with the fun associated with gaming. The main advantage 
of using exergames is that they increase motivation and 
thus adherence to training [3]. These exergames can be 
designed to require players to perform physical move-
ments similar to those of fall risk prevention exercises. 
At the same time, and in the background, data of clini-
cal relevance can be collected from the sensors used to 
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control the exergame, [4]. Furthermore, it is also possible 
to adapt the exergame to the specific needs of the user 
in real-time and without external intervention, based on 
how players perform in the game [5]. This holds promise 
for using exergames as rehabilitation tools able to provide 
continuous physical improvement [6].

The potential of the Wii Balance Board (WBB) to esti-
mate whether the player can maintain physical inde-
pendence has already been identified [7]. However, the 
relationship between WBB data and the estimation of 
clinically meaningful physical independence metrics is 
unclear. In this sense, Mertes et al. discussed that WBB 
data contain information that allows discrimination 
between elderly who previously fell and others who did 
not [8]. Their study achieved an accuracy of 76.6% when 
classifying fallers and non-fallers among 12 participants. 
Early evidence also shows that the WBB could be used to 
train balance in the elderly [9], and that there are statis-
tically significant differences in the way elderly at falling 
risk interact with the WBB as compared to individuals 
with no falling risk. These differences correlate with clini-
cal fall risk tests, further supporting our hypothesis that a 
direct relation between WBB data and clinical metrics for 
physical independence can be established. Yamada et al. 
[10] found statistically significant differences and moder-
ate correlations (r = 0.69) in a study with 45 participants.

A limitation of the WBB is that, due to its small surface, 
it can only be used to estimate balance while standing, 
but not in movement. In a previous article, we presented 
PDDanceCity, a city map exergame that provides dual-
tasked cognitive and physical rehabilitation [11]. The 
game is controlled with an array of six WBBs, which we 
call Extended Balance Board (EBB) [12]. Thanks to its 
extended surface, EBB data can be used to estimate the 
balance of the player both while standing and walking. 
We believe the data extracted from the EBB could be 
used to estimate the balance and gait skills of the player 
in the background, without the need to actively perform 
any specific test, or for any caregiver to be present.

To do so, this study aims to analyze the possibility of 
training a classifier to predict the clinical functional per-
formance of a player based on EBB data collected in the 
background while playing PDDanceCity. This can be 
achieved by attempting to predict the score of a stand-
ardized test that can be used to assess the capability of 
maintaining physical independence. There are several 
such tests to measure lower extremity strength, for exam-
ple, the 30-s Chair-Stand test (30CST) [13], which is part 
of the Fullerton Fitness Test Battery, and is fairly easy to 
administer. The Fullerton Fitness Test Battery is com-
monly employed in older adults in community settings. 
It can measure physical patterns of physical decline in 
advanced ages. Evidence suggests it could also be used 

as a screening test to estimate the balance impairment in 
older adults [14, 15]. The 30CST classifies participants as 
subjects able or unable to maintain physical independ-
ence, depending on whether their test score is above or 
below an age- and sex-adjusted cutoff. We hypothesize 
this binary prediction could be achieved with a classifier 
algorithm using data extracted from the EBB.

The goal of this study is to determine the potential of 
classifying EBB-extracted data to perform a binary pre-
diction, that is, whether the player is able or unable to 
maintain physical independence. This prediction could 
be used to detect when individuals are at increased risk 
of losing physical independence and could be more prone 
to fall in the near future. We aim to validate this estima-
tion basing the result on a prediction of the 30CST score. 
Data is collected while users are playing PDDanceCity 
to provide a very simple background screening process 
determining whether the player may be unable to main-
tain physical independence.

Methods
PDDanceCity [11] is a labyrinth navigation exergame 
designed for dual-tasking rehabilitation. The goal of the 
game is to navigate the labyrinth, representing a city map, 
to reach a goal, where only two-dimensional movements 
are possible (up, down, right, and left). As an additional 
requirement, players are encouraged to reach the target 
with the least possible number of steps. Besides, they may 
be required to visit a given number of points of interest 
(for example a museum, monument, or café) which may, 
or may not, be directly on the shortest path (Fig. 1). The 
game offers dual-tasking rehabilitation, training visuospa-
tial function, memory, balance, and physical coordination.

PDDanceCity is controlled with a system consisting of 
an array of six WBBs, called EBB [12] (Fig. 2). A control-
ler receives all data from the WBBs and forwards it via 
a USB connection to a PC. Information sent through the 
USB interface contains the board identifier (ID), based on 

Fig. 1  PDDanceCity exergame
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its MAC address, as well as the current value of each of 
its weighing sensors (four per WBB, for a total of 24). The 
refresh rate per board is 20 Hz.

To use EBB data to control PDDanceCity, the center of 
mass com(t) is calculated as follows. We define S as the 

6 × 4 matrix of sensor values (six WBB boards and four 
sensors per board), and si,j(t) as the value of sensor 

(

i, j
)

 
of S in instant t . We define C as the matrix of (x, y) coor-
dinate vectors ci,j assigned to each sensor (Fig. 3), based 
on its position. We also define w(t) as the last total weight 
value calculated by all boards, that is, the weight of the 
player. com(t) is calculated as the weight-normalized 
bidimensional projection of sensor values as:

This results in a set of two minus-one to one values 
(comx, comy) which can be used to determine intention-
ality. To achieve this, we define a directional intention 
based on two conditions: the main directional compo-
nent must be equal to or greater than 0.5 in magnitude, 
and the other component must be equal to or lesser 
than 0.1 in magnitude. As an example, (0.1,0.9) repre-
sents an upwards step, and (−0.8,0.05) would represent 
a leftwards movement. Between each step, the player 
is always required to return to the center (both values 
lower than or equal to 0.1 in magnitude). Figure 4 repre-
sents two examples of this directional intention. We also 
define the instability factor if (t) as an approximation of 
the first-order differential of com(t) . This parameter is a 

com(t) = (comx(t), comy(t)) =
1

w(t)

6
∑

i=1

4
∑

j=1

(si,j(t)ci,j)

measure of how a player shifts their weight on the EBB. 
A very fast weight shifting, causing a high value of if (t) , 
would be an indicator of potential lack of balance (or loss 
thereof ) among older adults who are not expected to 
move quickly. This is calculated as:

where (t − 1) represents the value prior to the most 
recent one t . In this manner, when if (t) surpasses a cer-
tain threshold, a potential loss of balance might have 
occurred. For every level played, PDDanceCity stores 
a.xml file that includes the player’s profile information, 
information about the level, steps taken, and all values of 
com(t) andif (t).

Finally, we extract a series of features based on com(t ) 
and if (t) . These features are mostly related to average 
values, standard deviations and maxima and minima 
of com(t ) under different circumstances, as well as the 
number of times that if (t) overcame different possible 
thresholds. In addition to these two elements, we also 
consider features related to the time intervals between 
steps, and the standard deviation of these intervals. A 
complete feature list is presented in Table 1. All features 
are calculated per playthrough, with no windowing. We 
used the Matlab software to calculate these features [16].

To evaluate our system, we recruited 16 participants 
(median age 73, 6 males) at a nursing home in Darmstadt, 
Germany. A computer was installed in a common room, 
connected to a television and the EBB (Fig.  2). Partici-
pants were invited to play PDDanceCity as often as they 
desired for a period of 2 weeks. During the first session, 
nominal data (age and sex) was collected, and the 30CST 
was administered. The resulting 30CST scores ranged 
between 0 and 17, with a median of 13. All sessions took 

if (t) =

√

1

2
(comx(t)− comx(t − 1))2 +

1

2
(comy(t)− comy(t − 1))2

Fig. 2  PDDanceCity scenario setup
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place under observation of one of the authors, to ensure 
that no falls occurred. Otherwise, the game sessions were 
unsupervised. We obtained the approval of the ethics 
committee of the Technical University of Darmstadt for 
this evaluation.

In total, these 16 participants played 87 levels of 
PDDanceCity during this period. The median number of 
levels per participant was 5. Each level of PDDanceCity 
takes approximately 2 to 3  min to complete, resulting 
in an approximated gameplay time of 10 to 15  min per 
participant. For each level, a single training instance 
was obtained. The data of 6 of these levels had to be dis-
carded due to data failure, leaving 81 training instances 
for classification. Due to the reduced number of partici-
pants, and to minimize the risk of overfitting based on 
age and sex, we attempted to classify if the player’s pre-
dicted 30CST score was above or below a cutoff score of 
12 points, without using these nominal data (age and sex) 
as features. We refer to players classified above this cut-
off as fit, and those under the cutoff as not fit. This score 
was chosen to even out both groups, as eight participants 

had a 30CST score of 11 or lower. We also explore the 
possibility of predicting the adjusted cutoffs, which we 
discuss at the end of “Results” section. All classification 
tasks were performed using Weka [17].

Results
The best classification results are presented in Table  2. 
This decision tree used the average time between steps 
exclusively, with a score of 6.17 or lower, indicating a 
participant able to maintain physical independence. A 
comparison of different classification algorithms is pre-
sented in Fig. 5. In all cases, we performed our classifica-
tion using ten-fold cross-validation. Results of a feature 
selection analysis (information gain attribute evaluation) 
are included in Table  3. No features were excluded for 
classification.

As a second potential scenario of analysis, we also 
aimed to predict the age- and sex-adjusted 30CST cutoff 
scores. The resulting accuracy was very high (99%) but, as 
discussed in the previous section, we suspect that to be 
due to overfitting to age and sex because of our limited 

Fig. 3  EBB coordinate system
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sample size, as the classifier did achieve 100% accuracy 
using exclusively age and sex as features. If we remove 
these two features in this scenario, we achieve a clas-
sification accuracy of 86% predicting the age- and sex-
adjusted 30CST outcome. For this reason, we believe 
that provided a large (and diverse) enough sample size of 
participants of a wide array of ages and different degrees 
of fitness, it should be possible to predict the age- and 
sex-adjusted 30CST binary result using the methods pre-
sented in this publication.

We complemented this classification with the analy-
sis of the effect sizes of each feature between the fit and 
not fit groups, measured on the basis of Hedges’ g, due to 
the low sample size and the disparity in standard devia-
tions. We also evaluated statistical significance using a 
Welch t-test. These effect sizes are presented in Table 4. 
Features related to the instability factor and the mean 
and standard deviation of the time between steps, seem 
to contain the information most related to the 30CST. 
Following Cohen’s rule of thumb (0.2 is a small, 0.5 a 

medium and 0.8 a large effect size), the effect sizes of 
these features are large, with the differences between the 
fit and not fit groups being in most cases very significant 
(p < 0.001) or at least significant (p < 0.05).

Discussion
Despite the limited number of participants and training 
instances, we obtained excellent classification results. 
Generally, decision trees seem to provide the best perfor-
mance in the proposed classification task.

Although we decided on using the 30CST to mini-
mize the risk of falls while conducting the test, such 
test is correlated to physical independence, but not the 
risk of falling. This is a limitation of this study since, in 
order to evaluate the feasibility of using EBB data to pre-
dict the risk of falling directly, an alternative assessment 
method, such as the Berg Balance Scale (BBS), should be 
used. A future study with a larger cohort should consider 
using the BBS instead of the 30CST to further support 
the hypothesis that EBB data can be used to accurately 

Fig. 4  Calculation of the center of mass (top) and position of the feet (bottom) during a step forward (a), while standing on the center (b) and 
during a step leftwards (c)
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identify participants at an increased falling risk. In addi-
tion, further balance-related data from participants 
(Physiological Profile Assessment, functional balance, 
gait speed, or prior falls) should be collected as well.

Our design also presents some technical limitations. 
At the moment, the WBBs send the data via Bluetooth, 

which means they have to be manually connected for 
each play session. They also operate on batteries, and 
when these are low the data received is not reliable any-
more, thus leading to data failure. Additionally, the EBB 
frame presents a risk depending on how the EBB is 
placed in its surroundings: if it is not set against a wall 

Table 1  System features and calculation

Features Description Calculation

ComAvgDirection Average com value for movements in each direction, where 
nCOM,Direction represents the number of steps for each direction. Four 
two-dimensional features (x , y) per playthrough

∑nCOM,Direction
t=1 com(t)

nCOM,Direction

Direction = Up ↔ comy > 0.5, |comx | < 0.1

Direction = Down ↔ comy < −0.5, |comx | < 0.1

Direction = Right ↔ comx > 0.5,
∣

∣comy

∣

∣ < 0.1

Direction = Left ↔ comx < −0.5,
∣

∣comy

∣

∣ < 0.1

ComStdDirection Standard deviation of com, for each direction, as above. Eight fea‑
tures per playthrough 

√

∑nCOM,Direction
t=1

(

comi (t)−ComAvgDirection,i

)2

nCOM,j−1
,

i = x , y ,Direction = Up,Down, Left , Right

BalanceUp , BalanceDown Average value of comy for all values where comy > 0 (up) or 
comy < 0 (down), where nCOM is the number of com samples. Two 
features per playthrough

∑nCOM
t=1 comy (t)

nCOM
: comy > 0 , 

∑nCOM
t=1 comy (t)

nCOM
: comy < 0

BalanceRight , BalanceLeft Average value of comx for all values where comx > 0 (right) or 
comx < 0 (left). Two features per playthrough

∑nCOM
t=1 comx (t)

nCOM
: comx > 0 , 

∑nCOM
t=1 comx (t)

nCOM
: comx < 0

Avgx , Avgy Average value of comx and comy . Two features (x , y) per playthrough ∑nCOM
t=1 comx (t)

nCOM
 , 
∑nCOM

t=1 comy (t)

nCOM

Maxx ,Maxy , Minx ,Miny Maximum and minimum value of comx and comy . Two features (x , y) 
per playthrough

Max(comx(t), ∀t) , Max(comy(t), ∀t),
Min(comx(t), ∀t),Max(comy(t), ∀t)

Stdx , Stdy Standard deviation of comx and comy . Two features (x , y) per playth‑
rough

√

∑nCOM
t=1 (comi (t)−Avgi)

2

nCOM−1
, i = x , y

If Avg , If Max Average if(t) value and maximum for the whole playthrough. Two 
features per playthrough

∑nCOM
t=1 if (t)

nCOM
 , Max(if(t), ∀t)

If Threshold,i Number of times if(t) > i, i = [0.5, 1, 1.5, 2]. Normalized by the total 
number of samples. Four features per playthrough

N(if (t)>i)
nCOM

, i = 0.5, 1, 1.5, 2

If SumAvg
 , If SumMax

Average value and maximum of the sum of the last 25 values of if(t) 
for the whole playthrough. Two features per playthrough

∑nCOM
t=1 if Sum(t)

nCOM
, if Sum(t) =

∑t
i=t−24 if (t) , Max(if Sum(t), ∀t)

If SumOverx
Number of times If Sum(t) > i, i = [0.5, 1, 1.5, 2]. Normalized by total 

playthrough time. Four features per playthrough
N(if Sum(t)>i)

nCOM
, i = 0.5, 1, 1.5, 2

StepAvg Average time between steps, excluding the first step, defining 
StepTime(i) as the time in seconds in which step i  occurred, and 
nSteps as the total number of steps in the playthrough. One feature 
per playthrough

∑nSteps
i=2 StepTime(i)−StepTime(i−1)

nSteps

StepStd Standard deviation of time between steps, excluding the first step. 
One feature per playthrough

√

∑nSteps
i=2

(

StepTime(i)−StepTime(i−1)−StepAvg
)2

nSteps−1

Table 2  Best classification results using a Logistic Model Tree

TP true positive, FP false positive, F F-measure, MCC Matthews correlation coefficient, ROC receiver-operating characteristic curve, PRC precision-recall curve

Algorithm: Logistic Model 
Tree, accuracy 91.358%

Correctly classified Incorrectly 
classified

TP rate FP rate Precision Recall F MCC ROC area PRC area

Not fit 29 (TP) 5 (FN) 0.853 0.043 0.935 0.853 0.892 0.823 0.940 0.946

Fit 45 (TN) 2 (FP) 0.957 0.147 0.900 0.957 0.928 0.823 0.940 0.930

Weighted average 74 7 0.914 0.103 0.915 0.914 0.913 0.823 0.940 0.936
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behind it, a player may fall when taking a step backward. 
We aim to address these technical limitations in a future 
iteration of the EBB by providing direct electrical supply 
to the WBBs, automating the Bluetooth synchronization 
process, and building a complete enclosure around the 
EBB.

Conclusions
This study provides proof of concept supporting the use 
of exergames to identify elderly subjects at risk of losing 
physical independence. Despite the aforementioned limi-
tations, our results suggest that the EBB, as an extension 
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Fig. 5  Classification accuracies

Table 3  Information gain attribute results based on  delta 
entropy information gain

Feature Information gain (∆ Entropy)

StepAvg 0.486

If SumOver0.5
0.321

If SumOver1
0.241

If Threshold,0.5 0.178

StepStd 0.145

If Avg 0.14

If SumAvg
0.14

If Max 0.138

BalanceLeft 0.118

Table 4  Effect size and statistical significance of features

All values are presented as not fit vs. fit, meaning that a negative effect size indicates the parameter has lower values in the not fit group. According to Cohen’s rule, 
g > 0.8 indicates a large effect size. Bold emphasis indicates statistical significance (p < 0.05)

Feature Not fit-fit effect size (g) Not fit-fit significance (p) Feature Not fit-fit effect size (g) Not fit-fit significance (p)

ComAvgUp ,x 0.3168 0.1998 Avgy − 0.0056 0.9817

ComAvgUp ,y − 0.4678 0.0595 Maxx − 0.3507 0.1528

ComAvgDown,x 0.2790 0.2692 Maxy − 0.5279 0.0310
ComAvgDown,y − 0.1171 0.6238 Minx 0.3565 0.1472

ComAvgRight ,x − 0.2328 0.3404 Miny − 0.1036 0.6630

ComAvgRight ,y − 0.4073 0.1028 Stdx − 0.6665 0.0068
ComAvgLeft ,x 0.2661 0.2756 Stdy − 0.3789 0.1247

ComAvgLeft ,y − 0.3234 0.1863 If Avg − 0.7478 0.0035
ComStdUp,x − 0.0323 0.8966 If Max − 0.6337 0.0119
ComStdUp,y − 0.4913 0.0461 If Threshold ,0.5 − 0.7452 0.0024
ComStdDown,x 0.2234 0.3490 If Threshold,1 − 0.2411 0.2873

ComStdDown,y 0.4173 0.0860 If Threshold,1.5 0 0

ComStdRight,x 0.0318 0.8977 If Threshold,2 0 0

ComStdRight,y 0.0753 0.7621 If SumAvg − 0.7387 0.0038
ComStdLeft ,x − 0.3164 0.1959 If SumMax

− 0.2107 0.3938

ComStdLeft ,y − 0.0237 0.9217 If SumOver0.5
− 1.5261 < 0.0001

BalanceUp 0.1598 0.5215 If SumOver1
− 0.9196 0.0003

BalanceDown 0.1623 0.4988 If SumOver1.5
− 0.2206 0.3477

BalanceRight − 0.3628 0.1429 If SumOver2
− 0.2062 0.3762

BalanceLef t 0.6306 0.0091 StepAvg 1.2260 < 0.0001
Avgx 0.1925 0.4267 StepStd 0.8446 0.0020
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of the WBB, can be used to screen the elderly population 
for individuals which are likely to lose physical independ-
ence in the near future, thus guiding therapeutic and 
rehabilitation adjustments. Nevertheless, a larger data-
set is required to determine the feasibility of predicting 
if a participant will be above or below their age- and sex-
adjusted 30CST cutoff score. This could also open the 
possibility of predicting the result of similar tests, such 
as the Berg Balance Scale or the Ten-Meter Walk Test. 
Once the technical limitations of the EBB are addressed, 
and considering that participants played without supervi-
sion, a home (or, more generally, unsupervised) scenario 
seems feasible. In the future, we aim to extend our evalu-
ation including features related to game performance, 
conducting a similar evaluation concerning cognition. 
This could be done, for example, on the basis of the Mini-
Mental State Examination.
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