
Computer Science
Department
Technische Universität
Darmstadt
Security in Information
Technology (SIT) Research
Group

Internet-Wide Evaluations of
Security and Vulnerabilities
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von Tianxiang Dai aus China
Tag der Einreichung: 21/10/2022, Tag der Prüfung: 12/12/2022

1. Gutachten: Prof. Dr. Michael Waidner
2. Gutachten: Prof. Dr. Haya Shulman
3. Gutachten: Prof. Dr. Christian Rossow
Darmstadt

Internet-Wide Evaluations of Security and Vulnerabilities

Accepted doctoral thesis by Tianxiang Dai

Date of submission: 21/10/2022
Date of thesis defense: 12/12/2022

Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-234122
URL: http://tuprints.ulb.tu-darmstadt.de/23412

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Urheberrechtlich geschützt / In Copyright
https://rightsstatements.org/page/InC/1.0/

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2023

http://tuprints.ulb.tu-darmstadt.de/23412
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://rightsstatements.org/page/InC/1.0/

For Yuanzao

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 21/10/2022
T. Dai

v

Abstract

The Internet significantly impacts the world culture. Since the beginning, it is a multi-
layered system, which is even gaining more protocols year by year. At its core, remains
the Internet protocol suite, where the fundamental protocols such as IPv4, TCP/UDP, DNS
are initially introduced. Recently, more and more cross-layer attacks involving features in
multiple layers are reported. To better understand these attacks, e.g. how practical they
are and how many users are vulnerable, Internet-wide evaluations are essential.
In this cumulative thesis, we summarise our findings from various Internet-wide eval-

uations in recent years, with a main focus on DNS. Our evaluations showed that IP
fragmentation poses a practical threat to DNS security, regardless of the transport protocol
(TCP or UDP). Defense mechanisms such as DNS Response Rate Limiting could facilitate
attacks on DNS, even if they are designed to protect DNS. We also extended the evalua-
tions to a fundamental system which heavily relies on DNS, the web PKI. We found that
Certificate Authorities suffered a lot from previous DNS vulnerabilities. We demonstrated
that off-path attackers could hijack accounts at major CAs and manipulate resources there,
with various DNS cache poisoning attacks. The Domain Validation procedure faces similar
vulnerabilities. Even the latest Multiple-Validation-Agent DV could be downgraded and
poisoned.
On the other side, we also performed Internet-wide evaluations of two important

defence mechanisms. One is the cryptographic protocol for DNS security, called DNSSEC.
We found that only less than 2% of popular domains were signed, among which about
20% were misconfigured. This is another example showing how poorly deployed defence
mechanisms worsen the security. The other is ingress filtering, which stops spoofed traffic
from entering a network. We presented the most completed Internet-wide evaluations of
ingress filtering, which covered over 90% of all Autonomous Systems. We found that over
80% of them were vulnerable to inbound spoofing.
This cumulative thesis includes contents from following papers and posters:

[Dai16] T. Dai, H. Shulman, and M. Waidner. “DNSSEC Misconfigurations in Popular
Domains”. In: Cryptology and Network Security. CANS ’16. 2016. CORE
Rank B. Appendix A.1.

vii

[Dai18] M. Brandt et al. “Domain Validation++ For MitM-Resilient PKI”. in: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18. 2018. CORE Rank A*. Appendix A.2.

[Dai18p] T. Dai, H. Shulman, and M. Waidner. “Poster: Off-Path Attacks Against
PKI”. in: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’18. 2018. CORE Rank A*. Appendix A.3.

[Dai21i1] T. Dai, H. Shulman, and M. Waidner. “Poster: Fragmentation Attacks on
DNS over TCP”. in: 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). 2021. CORE Rank A. Appendix A.4.

[Dai21a] T. Dai, H. Shulman, and M. Waidner. “DNS-over-TCP Considered Vulnerable”.
In: Proceedings of the Applied Networking Research Workshop. ANRW ’21.
2021. Appendix A.5.

[Dai21s] T. Dai et al. “From IP to Transport and beyond: Cross-Layer Attacks against
Applications”. In: Proceedings of the 2021 ACM SIGCOMM Conference. SIG-
COMM ’21. 2021. CORE Rank A*. Appendix A.6.

[Dai21u] T. Dai et al. “The Hijackers Guide To The Galaxy: Off-Path Taking Over
Internet Resources”. In: 30th USENIX Security Symposium (USENIX Security
21). 2021. CORE Rank A*. Appendix A.7.

[Dai21c] T. Dai, H. Shulman, and M. Waidner. “Let’s Downgrade Let’s Encrypt”. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’21. 2021. CORE Rank A*. Appendix A.8.

[Dai21ac] T. Dai and H. Shulman. “SMap: Internet-Wide Scanning for Spoofing”. In:
Annual Computer Security Applications Conference. ACSAC. 2021. CORE Rank
A. Appendix A.9.

viii

Contributions

The cumulative thesis includes contents of multiple papers and posters in recent years.
Most works benefit from discussions and collaborations with other thoughtful researchers.
In some cases, the contributions are so closely integrated that it is difficult to identify
them individually, even though I try to declare my own contributions clearly. That said, I
would only use first-person singular personal pronouns in this section.
This cumulative thesis includes contents of seven papers and two posters. All of them

are cited with a prefix Dai. I am the only PhD co-author of four papers [Dai16; Dai21a;
Dai21c; Dai21ac] and two posters [Dai18p; Dai21i1], with the valuable support from my
supervisors Prof. Dr. Haya Shulman and Prof. Dr. Michael Waidner. The other three papers,
[Dai18; Dai21u; Dai21s], were co-authored with other PhD candidates. [Dai18] is a joint
work with Markus Brandt, who is another doctoral student at the Technical University of
Darmstadt. A detailed declaration of contributions is attached in Appendix A.2. [Dai21u;
Dai21s] are joint works with Philipp Jeitner, who is also a doctoral student at the Technical
University of Darmstadt. Detailed declaration of contributions are attached in Appendix
A.6 and A.7 accordingly.

Industrial Contributions

Apart from the academic publications included in this thesis, there are also some related
industrial contributions I would like to mention.
Following the disclosure of our work [Dai18], major CAs blocked fragments to mitigate

fragmentation-based vulnerabilities over UDP. The DNS community discussed the impact
of fragmentation-based attacks and proposed to rely on TCP to avoid fragmentation [Com].
However, our work [Dai21a] pointed out that TCP was also vulnerable. That paper was
presented at the ACM/IRTF Applied Networking Research Workshop 2021 (ANRW’21),
which was hosted at IRTF meeting. The topic attracted various researchers and network
operators. I was later invited for a guest post at the APNIC Blog about that, [Dai21ap1].
Following the disclosure of our work [Dai21u], I was invited for talks at NANOG 83 and

RIPE 83, during which many network operators showed concerns about the work. RIRs

ix

such as ARIN and RIPE stated that they would implement the countermeasures suggested
by us. I was also invited for a guest post about that at the APNIC Blog, [Dai22ap1].

x

Acknowledgements

It has been almost seven years since I started working on research that has culminated in
this thesis. Through all the years, I received a lot of support and help from many people. I
am sincerely grateful to anyone who has ever helped me, even though I cannot mention
all of them here.
I thank my supervisors Prof. Dr. Haya Shulman and Prof. Dr. Michael Waidner for all

the guidance and support during my PhD. Special thanks to Prof. Dr. Christian Rossow for
being my third referee. Thanks to Prof. Dr. Marc Fischlin, Prof. Dr. Max Mühlhäuser, and
Prof. Dr. Zsolt Istvan for taking the time to serve on the committee.
Most research projects included in the thesis were not completed solely by myself.

I thank all my collaborators - Markus Brandt, Philipp Jeitner, Haya Shulman, Michael
Waidner. Also thanks to Birgit Blume, Karina Köhres and Michael Kreutzer for helping
with many of the administrative tasks. Besides, I thank the IT team and the MPR team of
Fraunhofer SIT for their professional technical support.
It is a pleasant experience to be involved in the Collaborative Research Center CROSSING.

I thank Johannes Braun, Jacqueline Brendel, Marc Fischlin and Stefanie Kettler for keeping
me in the loop and always inviting me to CROSSING events. I enjoyed all of them, especially
all the CROSSING retreats. I am also grateful to CROSSING for offering the German
courses, which make my life in Germany much easier.
I would like to give special thanks to Ranim Chakra, Daniel Senf, Kris Shrishak and

Shujie Zhao. They are not only my colleagues, but also my friends in real life. I cannot
imagine a PhD without them.
Last but not least, I thank all my families and friends who have shared time with me,

wherever they are. Above all things, thanks to my wife, Yuanzao Zhu, for her unconditional
support through all the years.

Tianxiang Dai
Leipzig, October 2022

xi

Contents

Abstract vii

Contributions ix

Acknowledgements xi

Contents xiii

1. Introduction 1
1.1. Thesis Outline . 2
1.2. Contributions . 2
1.3. Papers and Posters . 3

2. Evaluations on DNS Vulnerabilities 7
2.1. IP Fragmentation . 7

2.1.1. Related Works . 8
2.1.2. Contributions . 10

2.2. Response Rate Limiting . 10
2.2.1. Related Works . 11
2.2.2. Contributions . 11

2.3. DNSSEC . 12
2.3.1. Related Works . 12
2.3.2. Contributions . 13

3. Evaluations on PKI Security 15
3.1. Related Works . 16
3.2. Contributions . 17

4. Evaluations on Ingress Filtering 19
4.1. Related Works . 19
4.2. Contributions . 21

xiii

5. Summary and Future Work 23
5.1. Summary . 23
5.2. Future Work . 24

Bibliography 27

Appendix 39

A. Papers and Posters 39
A.1. DNSSEC Misconfigurations in Popular Domains 39
A.2. Domain Validation++ For MitM-Resilient PKI 50
A.3. Poster: Off-path Attacks Against PKI . 68
A.4. Poster: Fragmentation Attacks on DNS over TCP 72
A.5. DNS-over-TCP Considered Vulnerable . 75
A.6. From IP to Transport and Beyond: Cross-Layer Attacks Against Applications 82
A.7. The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources 97
A.8. Let’s Downgrade Let’s Encrypt . 117
A.9. SMap: Internet-wide Scanning for Spoofing 138

xiv

1. Introduction

Ever since the standardisation in the 1980s and the commercialisation in the 1990s, the
Internet has significantly influenced the world culture and commerce. Nowadays, the
majority of communications are carried over the Internet, in the form of instant messaging,
email, telephony, video call, etc. So are the contents distributed to the whole world
through the World Wide Web (WWW), via different services such as blogs, forums, social
networks, news websites, etc. More and more activities are hosted in the Internet, too.
To name a few, working, shopping, voting, teaching, etc. Statistics shows that in 2021,
over 5 billions people used the Internet. That is about 66% of the whole world population
[Sta]. And the number keeps increasing.
Even though there are various ways to access the Internet, e.g. wirelessly from mobile

devices or wiredly from desktops, the core of the Internet remains the same, which is the
Internet protocol suite [RFC1122; RFC1123]. It includes a suite of protocols classified
into four conceptional layers. At the bottom is the link layer, which connects nodes
on the local network segment (link). Above that is the internet layer, which enables
hosts to identify and locate each other, as well as transport packets between each other.
Among them, one of the most important protocols is the Internet Protocol (IP), which
introduces IP addresses for host identification and location. In this thesis, we only mean
IPv4 [RFC791]. Transport layer connects different hosts with a logical channel. Two
typical examples are Transmission Control Protocol (TCP) [RFC793] for reliable delivery
and User Datagram Protocol (UDP) [RFC768] for unreliable datagram service. On top
of them is the application layer. The Domain Name System (DNS) [RFC1034; RFC1035]
belongs here, which resolves human-friendly domain names to the numerical IP addresses.
Another example is the Hypertext Transfer Protocol (HTTP) [RFC1945], the foundation
of the World Wide Web. With the rising concerns on security and privacy, cryptographic
protocols such as the Transport Layer Security (TLS) [RFC8446] get more adopted recently,
which is also an application layer protocol.
Conceptional separation of functions makes it easier for protocol design and implemen-

tation. However, it also introduces interoperational issues in practice. Recently, more and
more cross-layer attacks involving features in different layers are reported. One example
is to use IP-fragmentation-based DNS cache poisoning to generate fraudulent certificate

1

for TLS. The basic idea is to make use of specific mechanism of IP, to mislead the DNS
resolvers, which could then trick the authorities to issue fraudulent certificate. More
details are in our paper [Dai18] and poster [Dai18p], also in Appendix A.2 and A.3.
To better understand these cross-layer attacks, e.g. how practical they are and how

many users are vulnerable, Internet-wide evaluations are essential.

1.1. Thesis Outline

We performed many different Internet-wide evaluations from various perspectives in
recent years, with a main focus on DNS. We would summarise our findings in this thesis.
We start with our evaluations on DNS vulnerabilities in Chapter 2. More specifically, IP-
fragmentation-related vulnerabilities in Section 2.1 and Response-Rate-Limiting-related
vulnerabilities in Section 2.2. Additionally, we also evaluated the adoption of DNS Security
Extensions (DNSSEC) [RFC4033; RFC4034; RFC4035] and misconfigurations in signed
domains, which is presented in Section 2.3. In Chapter 3, we show our evaluations on
the web Public Key Infrastructure (PKI) system, focusing on the Certificate Authorities
(CA), concerning previous DNS vulnerabilities. Apart from those DNS-related topics, we
present our evaluations on ingress filtering in Chapter 4. Considering that the ability of
spoofing is required for all previously mentioned cross-layer attacks, the evaluations on
ingress filtering are indeed relevant. We conclude the thesis in Chapter 5.

1.2. Contributions

In this thesis, the focus is on Internet-wide evaluations of vulnerabilities and secure
mechanisms. We summarise our evaluations through the following contributions:

• IP fragmentation poses a practical threat to DNS security. We present two
proof-of-concept attacks with IP fragmentation. One uses IP fragmentation to bypass
security verification in DNS responses, which leads to cache poisoning and hijacking.
The other makes use of fragment mis-association, which results in Denial of Service
(DoS) and downgrade attacks. We show that DNS traffic over both TCP and UDP
are vulnerable to IP-fragmentation-based attacks. Our latest evaluation indicated
that over 55K domains were vulnerable.

• DNS Response Rate Limiting facilitates attacks on DNS, even if it is designed to
protect DNS. DNS RRL could be abused to mute nameservers. Besides the recent side-
channel-based cache poisoning which uses DNS RRL to extend the attack window,

2

we present a new downgrade attack with DNS RRL. The new attack makes the latest
Multiple-Validation-Agents (Multi-VA) system vulnerable. Our latest evaluation
showed that at least 20% of popular domains were vulnerable.

• The low adoption and high misconfiguration of DNSSEC could not secure DNS.
At the time of evaluation, we found that only less than 2% of popular domains were
signed. Among those signed domains, about 20% could not establish a chain of trust
to the root zone. That is to say, 20% of signed domains might be inaccessible due to
DNSSEC.

• The current practices of CA operations are insecure. We demonstrated that off-
path attackers could hijack accounts at major CAs and manipulate resources there,
with various DNS cache poisoning attacks. The Domain Validation (DV) procedure,
a prerequisite for issuing a certificate, also faces similar vulnerabilities. We also
present a new downgrade attack using IP-fragmentation and DNS RRL. Even the
latest Multi-VA DV can be downgraded and poisoned. Our evaluation showed that
all tested popular CAs were vulnerable to the new downgrade attack.

• Ingress filtering is poorly adopted. We performed Internet-wide evaluations of
ingress filtering using standard protocols such as IPv4, PMTUD and DNS. Thanks to
the availability of these standard protocol in almost all networks, our evaluations
covered over 90% of all ASes, much more than all other related studies. We found
that over 80% of tested ASes were vulnerable to inbound spoofing.

1.3. Papers and Posters

In this thesis, contents from the following papers and posters are included. The original
versions are also attached in Appendix A.

[Dai16] Tianxiang Dai, Haya Shulman, and Michael Waidner. “DNSSEC Misconfigura-
tions in Popular Domains”. In: Cryptology and Network Security. Ed. by Sara
Foresti and Giuseppe Persiano. Cham: Springer International Publishing,
2016, pp. 651–660. isbn: 978-3-319-48965-0. CORE Rank B. Appendix A.1.

3

[Dai18] Markus Brandt et al. “Domain Validation++ For MitM-Resilient PKI”. in:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’18. Toronto, Canada: Association for Com-
puting Machinery, 2018, pp. 2060–2076. isbn: 9781450356930. doi:
10.1145/3243734.3243790. url: https://doi.org/10.1145/
3243734.3243790. CORE Rank A*. Appendix A.2.

[Dai18p] Tianxiang Dai, Haya Shulman, and Michael Waidner. “Poster: Off-Path At-
tacks Against PKI”. in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’18. Toronto, Canada: Associa-
tion for Computing Machinery, 2018, pp. 2213–2215. isbn: 9781450356930.
doi: 10.1145/3243734.3278516. url: https://doi.org/10.
1145/3243734.3278516. CORE Rank A*. Appendix A.3.

[Dai21i1] Tianxiang Dai, Haya Shulman, and Michael Waidner. “Poster: Fragmentation
Attacks on DNS over TCP”. in: 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS). 2021, pp. 1124–1125. doi:
10.1109/ICDCS51616.2021.00118. CORE Rank A. Appendix A.4.

[Dai21a] Tianxiang Dai, Haya Shulman, and Michael Waidner. “DNS-over-TCP Con-
sidered Vulnerable”. In: Proceedings of the Applied Networking Research
Workshop. ANRW ’21. Virtual Event, USA: Association for Computing Ma-
chinery, 2021, pp. 76–81. isbn: 9781450386180. doi: 10.1145/3472305.
3472884. url: https://doi.org/10.1145/3472305.3472884. Ap-
pendix A.5.

[Dai21s] Tianxiang Dai et al. “From IP to Transport and beyond: Cross-Layer Attacks
against Applications”. In: Proceedings of the 2021 ACM SIGCOMM 2021
Conference. SIGCOMM ’21. Virtual Event, USA: Association for Computing
Machinery, 2021, pp. 836–849. isbn: 9781450383837. doi: 10.1145/
3452296.3472933. url: https://doi.org/10.1145/3452296.
3472933. CORE Rank A*. Appendix A.6.

[Dai21u] Tianxiang Dai et al. “The Hijackers Guide To The Galaxy: Off-Path Taking
Over Internet Resources”. In: 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 3147–3164. isbn: 978-
1-939133-24-3. url: https://www.usenix.org/conference/
usenixsecurity21 / presentation / dai. CORE Rank A*. Ap-
pendix A.7.

4

https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1109/ICDCS51616.2021.00118
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://www.usenix.org/conference/usenixsecurity21/presentation/dai
https://www.usenix.org/conference/usenixsecurity21/presentation/dai

[Dai21c] Tianxiang Dai, Haya Shulman, and Michael Waidner. “Let’s Downgrade
Let’s Encrypt”. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’21. Virtual Event, Republic of
Korea: Association for Computing Machinery, 2021, pp. 1421–1440. isbn:
9781450384544. doi: 10.1145/3460120.3484815. url: https://
doi.org/10.1145/3460120.3484815. CORE Rank A*. Appendix A.8.

[Dai21ac] Tianxiang Dai and Haya Shulman. “SMap: Internet-Wide Scanning for
Spoofing”. In: Annual Computer Security Applications Conference. ACSAC.
Virtual Event, USA: Association for Computing Machinery, 2021, pp. 1039–
1050. isbn: 9781450385794. doi: 10.1145/3485832.3485917. url:
https://doi.org/10.1145/3485832.3485917. CORE Rank A.
Appendix A.9.

5

https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3485832.3485917
https://doi.org/10.1145/3485832.3485917

2. Evaluations on DNS Vulnerabilities

Domain Name System (DNS), [RFC1034; RFC1035], was initially designed to translate
human-friendly domain names to numerical IP addresses. It plays a key role in the Internet.
Almost all services using domain names rely on DNS, e.g. web and email. With the rapid
development of the Internet, DNS has evolved into an extremely complex ecosystem. The
complexity of DNS ecosystem is continuously growing, as its usage and client base keep
increasing.
Considering the rising utilisation of DNS, attacks against DNS also increase, most notably,

DNS cache poisoning, [HS13a; HS13b; HS13c; Kam08; SW14; Ste03]. In a DNS cache
poisoning attack, the attacker injects malicious DNS records into the victim’s resolver, so
as to redirect the victim to an attacker-controlled malicious host for further exploits. DNS
cache poisoning attacks are not only practiced by cyber criminals, for credential theft
or malware distribution, but also performed by governments, for censorship [And12] or
surveillance [Hu15].
In this chapter, we evaluate DNS vulnerabilities in the Internet. More specifically,

IP-fragmentation-related evaluations in Section 2.1 and response-rate-limiting-related
evaluations in Section 2.2. Besides, in Section 2.3, we measure adoption and miscon-
figurations of a well-standardised security mechanism for DNS, Domain Name System
Security Extensions (DNSSEC) [RFC4033; RFC4034; RFC4035].

2.1. IP Fragmentation

IP fragmentation is a mechanism defined in Internet Protocol (IP) [RFC791]. By saying IP
fragmentation, we mean only IPv4 fragmentation. IPv6 fragmentation is a different topic,
which we would not cover. With fragmentation, large packets are broken into smaller
pieces (fragments), so that they can be transmitted over network links with smaller
Maximum Transmission Unit (MTU) than the original packets. The fragments will get
reassembled later by the receiver. Both the sender and the routers can fragment packets,
while only the receiver can reassemble them. Fields in the IPv4 header including source
address, destination address, protocol number as well as identification number (IPID) are

7

used to verify if the fragments belong to the same packet [RFC815].
DNS is transmitted over IP and is vulnerable to fragmentation-based attacks. Assume

that a server sends a fragmented packet to a client. By sending a spoofed fragment to the
victim client, which will get reassembled with other genuine fragments from the server,
the attacker could launch different attacks. If the reassembled packet is invalid and get
dropped, this results in a Denial of Service (DoS) attack against the server [KM95]. If the
reassembled packet is valid but contains malicious payload from the spoofed fragment,
this results in an injection attack, which can be used for DNS cache poisoning [HS13a].
With Internet Control Message Protocol (ICMP) [RFC792] fragmentation needed error
message (type: 3, code: 4), the attacker could even trigger source fragmentation.
In this section, we will briefly introduce related works about DNS cache poisoning and

fragmentation-based attacks. Then present our contributions in this field. This section
includes contents in our following papers and posters:

• [Dai18], also in Appendix A.2

• [Dai18p], also in Appendix A.3

• [Dai21i1], also in Appendix A.4

• [Dai21a], also in Appendix A.5

• [Dai21s], also in Appendix A.6

• [Dai21u], also in Appendix A.7

• [Dai21c], also in Appendix A.8

2.1.1. Related Works

History of DNS Cache Poisoning

Back in 1995, Vixie [Vix95] revealed the cache poisoning vulnerability and proposed to
randomise User Datagram Protocol (UDP) source ports in DNS requests. In 2002, Bernstein
[Ber] also warned that only randomising the Transaction ID (TXID) field could not provide
enough entropy, which made DNS vulnerable. In 2007, Klein found vulnerabilities in Bind9
[Kle07a] and in Windows resolver[Kle07b], which allowed off-path attackers to guess the
TXID more easily. In 2008, Kaminsky [Kam08] presented a practical DNS cache poisoning
attack, even against fully randomised TXID. To mitigate that, source port randomisation
was standardised in [RFC5452].

8

However, the safety didn’t last long. New attacks to bypass both source port and
TXID randomisation came up. In 2012, Herzberg et al. [HS12] showed that source port
could be inferred with side channels. More studies on side channels followed. Man et
al. [Man+20] used ICMP side channel and Klein [Kle21] used Pseudo-Random Number
Generator (PRNG) side channel, to predict UDP source port. In 2013, Herzberg et al.
[HS13a] proposed a new DNS cache poisoning attack using IPv4 fragmentation. The
IPv4-fragmentation-based cache poisoning was further used to attack PKI [Dai18] and
Network Time Protocol (NTP) [JSW20]. In 2015, Shulman et al. [SW15] showed that
it was possible to attack resolvers behind upstream forwarders. This attack was further
extended for stub resolvers [Alh+19] and forwarding devices [Zhe+20]. In 2018, Birge
et al. [Bir+18] presented another DNS cache poisoning attack via short-lived Border
Gateway Protocol (BGP) prefix hijacking.

Fragmentation-based Attacks

Back in 1995, Kent et al. [KM95] warned IP fragmentation could possibly lead to Denial
of Service (DoS). Gilad et al. [GH11] further explored this kind of DoS attack under the
network setups of Network Address Translation (NAT) or tunnelling. In 2004, Zalewski
[Zal] mentioned that it was possible to inject meaningful data into Transmission Control
Protocol (TCP) sessions with IP fragmentation. In 2013, Herzberg et al. [HS13a; HS13c]
found that it was possible to launch DNS cache poisoning attack with IP fragmentation,
bypassing both UDP source port and TXID randomisation. Shulman et al. [SW14; JSW20;
SW15] evaluated this vulnerability in the Internet and presented more practical scenarios,
such as NTP. In 2016, Malhotra et al. [Mal+16] noticed different implementations of IP
reassembly when fragments overlapped and demonstrated how to use that to shift time in
NTP.
Despite of those attacks, not many defensive mechanisms are proposed. In 2003,

Kaufman et al. [KPS03] argued that most protocols running on top of TCP could avoid the
need for fragmentation. In 2015, Zhu et al. [Zhu+15] proposed to use TCP and Transport
Layer Security (TLS) for DNS so as to improve privacy and security. Afterwards, DNS
over TCP was updated in [RFC7766], addressing the concern on fragmentation. DNS over
TLS (DoT) was later standardised as [RFC7858]. More recently, best practices [RFC8900;
FV21] considered TCP with Path Maximum Transmission Unit Discovery (PMTUD) as
a solution to IP fragmentation. Besides, Let’s Encrypt announced to reduce Extension
Mechanisms for DNS (EDNS) buffer size from 4,096 to 512 [Enca]. DNS operation
community recommended to reduce default EDNS buffer size from 4,096 to 1,232 [Com].
Both tried to send large DNS responses over TCP, in order to avoid fragmentation.

9

2.1.2. Contributions

We evaluated DNS vulnerabilities in the Internet concerning IP fragmentation. Our
contributions are:

• We show that off-path fragmentation-based DNS cache poisoning is a practical
threat. In our paper [Dai18] and poster [Dai18p], we demonstrated how to issue
fraudulent certificates with fragmentation-based cache poisoning and verified that
at least 7 Certificate Authorities (CAs) were vulnerable. In our paper [Dai21u],
we found about 17% of 94,997 accounts at different providers were vulnerable to
fragmentation-based cache poisoning. Their resources could be hijacked due to that.
We extended the evaluation to 904,555 domains in our paper [Dai21s], of which
about 4% were vulnerable to fragmentation-based cache poisoning. Later, in our
paper [Dai21c], we evaluated 1,858,165 domains and identified that 3% of the
domains were vulnerable.

• We show that IP fragmentation attacks also apply to servers that communicate over
TCP. In our paper [Dai21a] and poster [Dai21i1], we evaluated nameservers in the
Alexa Top-100K domains [Ama]. We found 496 domains whose nameservers could
be forced to fragment DNS responses over TCP. Among them, 393 domains were
only vulnerable when transmitting over TCP, instead of UDP. Moreover, 76 of the
393 domains’ nameservers had TrunCation (TC) bit set when responding over UDP.
They followed the best practices to avoid fragmentation with TCP, which actually
made them vulnerable.

• We show that IP fragmentation can be used to eliminate nameservers so as to
manipulate server selection at resolvers, which could facilitate attacks on DNS. This
is part of a new downgrade attack against the latest Multiple-Validation-Agents
(Multi-VA) system [Encb], as presented in our paper [Dai21c].

• Weprovide a free online tool to test if a user’s resolvers are vulnerable to fragmentation-
based DNS cache poisoning. It can be accessed at https://crosslayerattacks.
sit.fraunhofer.de.

2.2. Response Rate Limiting

DNS Response Rate Limiting (DNS RRL) [VS12] is a method to limit the rate of responses
by a DNS nameserver, in order to mitigate DNS reflection and amplification attacks. Such
attacks send a large quantity of malicious DNS requests to a DNS nameserver with spoofed

10

https://crosslayerattacks.sit.fraunhofer.de
https://crosslayerattacks.sit.fraunhofer.de

source IPs. By configuring the limit of responses per-IP, per-prefix or even globally, the
nameserver can either drop the responses or truncate them, once the limit is reached. All
modern DNS software such as BIND, NSD and PowerDNS, support this security feature.
DNS hosting service providers such as Cloudflare also offer similar feature.
However, this feature can be abused to mute a nameserver, if the attacker can spoof

DNS requests to the nameserver with the victim resolver’s IP as source address. Once the
rate is high enough to trigger RRL for the victim resolver, the resolver can hardly receive
any response from the nameserver.
In this section, we will briefly introduce related works about DNS RRL. Then present

our contributions in this field. This section includes contents in our following papers:

• [Dai21s], also in Appendix A.6

• [Dai21u], also in Appendix A.7

• [Dai21c], also in Appendix A.8

2.2.1. Related Works

There are not so many works on RRL. In 2012, Vixie et al. [VS12] proposed RRL to blunt
the impact of DNS reflection and amplification attacks. Soon the method was implemented
in BIND. Afterwards, it was well acknowledged as a good mitigation of Distributed DoS
(DDoS) attacks [RMK13; CIS]. However, MacFarland et al. [MSK15] found that only
2.69% of the studied domains employed rate limiting in 2015, indicating the approach
was not widely used in practice. They evaluated again in 2017 [MSK17], and found
that 10.23% of nameservers employed the protective measure. In 2019, Deccio et al.
[DAD19] found that about 16% of authoritative DNS nameservers employed some sort of
rate limiting.
On the other side, Man et al. [Man+20] revealed that DNS RRL could be leveraged

maliciously to mute a nameserver. They used it to extend the attack window so as to
facilitate their DNS cache poisoning attack with ICMP side channel. Their measurement
showed that 18% of Alexa Top-100K domains had RRL enabled, thus were vulnerable to
the attack.

2.2.2. Contributions

We evaluated DNS vulnerabilities in the Internet concerning DNS RRL. Our contributions
are:

11

• We present up-to-date Internet-wide measurements on DNS RRL, concerning its
involvement in side-channel-based DNS cache poisoning. In our paper [Dai21u],
we found about 10% of 94,997 accounts at different providers were vulnerable to
side-channel-based cache poisoning. Their resources could be hijacked due to that.
We extended the evaluation to 904,555 domains in our paper [Dai21s], of which
about 12% were vulnerable to side-channel-based cache poisoning. Afterwards, in
our paper [Dai21c], we evaluated 1,858,165 domains and identified that about 20%
of the domains had DNS RRL enabled.

• We show that DNS RRL can be used to eliminate nameservers so as to manipulate
server selection at resolvers, which could facilitate attacks on DNS. This is part of a
new downgrade attack against the latest Multi-VA system, as presented in our paper
[Dai21c].

2.3. DNSSEC

Domain Name System Security Extensions (DNSSEC) [RFC4033; RFC4034; RFC4035],
was designed and standardised to protect DNS against DNS cache poisoning. It introduces
signatures for any authoritative DNS records, in order to provide data authentication and
data integrity. Besides, it also offers authenticated denial of existence. When a resolver
receives a signed DNS response, it could verify the data with the signature and the public
key, which is similar to the web Public Key Infrastructure (PKI). Even though DNSSEC
was officially standardise in 2005, it is still not widely adopted and deployed [HS14].
In this section, we will briefly introduce related works about DNSSEC evaluations and

describe our contributions. For more details, please check our paper [Dai16], also in
Appendix A.1.

2.3.1. Related Works

Measurements on DNSSEC show that DNSSEC deployment is rare but increasing. In 2011,
Yang et al. [Yan+10] estimated that there were only about 10,523 DNSSEC enabled
zones operating in the wild. In 2014, Herzberg et al. [HS14] found that only 2% of
the top 300,000 domains from Alexa [Ama] support DNSSEC. In 2017, Chung et al.
[Chu+17a] observed between 0.6% (.com) and 1.0% (.org) of domains have DNSKEY
records published.
On the resolver side, in 2013, Fukuda et al. [FSM13] revealed that less than 50% of

the potential DNSSEC validators were validating caching resolvers in the wild. Lian et
al. [Lia+13] showed that the fraction of clients which actually validate DNSSEC-signed

12

records was less than 3%. In 2017, Chung et al. [Chu+17a] found only 12% of the
DNSSEC-aware resolvers correctly validated DNSSEC responses. Measurements from
Asia-Pacific Network Information Centre (APNIC) show that currently about 26% of the
DNS resolvers validate DNSSEC [APN].
Besides the low adoption, DNSSEC deployments suffer frommisconfigurations. Herzberg

et al. [HS14] found only three out of 14 US popular domains adopted DNSSEC correctly.
Shulman et al. [SW17] showed that 35% of signed domains shared moduli with others
and 66% used weak keys. Chung et al. [Chu+17a] identified about one thousand keys
shared by multiple domains. And one key was even shared by over 132,000 domains!
They also studied how registrars make things worse [Chu+17b].
There are already some tools to study DNSSEC. OARC’s DNS Reply Size Test Server

[OAR] is an online service for testing response size of DNS. Users can evaluate themaximum
response size that their network can support, which is critical for DNSSEC adoption, as
DNSSEC-related responses normally exceed the default maximum size of 512 bytes. Both
DNSViz [San] and DNSSEC Analyzer [Ver] analyse all the keys the domain has and the
signatures over those keys. They also check if it is possible to establish a chain of trust
from the root to the target domain. SecSpider [Uni] provides metrics for DNSSEC global
deployment, by collecting DNSSEC-relevant records from the zones.

2.3.2. Contributions

Our paper [Dai16], also in Appendix A.1 has following contributions:

• We designed a DNSSEC evaluation tool. It collects DNSSEC-relevant records from
the Internet, analyses the misconfigurations and generates statistics automatically.
The reports quantify two types of vulnerabilities in signed domains: cryptographic
failures (e.g. broken chain of trust or vulnerable DNSSEC keys) and transport failures
(e.g. lack of TCP or EDNS support).

• We found that 90% of Top Level Domains (TLDs) and 1.66% of Alexa domains were
signed. Among signed domains, 0.89% TLDs and 19.46% Alexa domains could not
establish a chain of trust to the root zone. 12.88% of Alexa domains had nameservers
which could not serve DNS responses over TCP.

• Different from existing tools, our tool allows to study insecurity and misconfigura-
tions on a given domain, as well as historical within a given time period. It can be
accessed at https://dnssec.cad.sit.fraunhofer.de.

13

https://dnssec.cad.sit.fraunhofer.de

3. Evaluations on PKI Security

Public Key Infrastructure (PKI) is a system to create, store, and distribute digital certificates,
which can be used to prove that a particular public key belongs to a certain entity. PKI has
been used in different applications for security purpose, e.g. web, email and code signing.
In this thesis, we mainly discuss web PKI, which is used by Hypertext Transfer Protocol
Secure (HTTPS), for secure and private web browsing.
In web PKI system, if a certificate would like to be accepted by a browser automatically,

it must be chained up to a trusted root certificate. The trusted root certificate list is
managed by either the operating system or by the browser. In either case, a website could
not generate a certificate on its own and have it trusted by anyone else in the Internet. To
achieve that, the owner or administrator has to visit a trusted Certificate Authority (CA),
or its reseller, to issue a trusted certificate. During the issuance procedure, one of the
most important steps is Domain Validation (DV), which validates if the applicant actually
controls the domain or not.
With the increasing concerns on security and privacy, HTTPS is used by more and more

websites and web users. BuiltWith shows that over 60% of popular websites in the Internet
redirect traffic to an HTTPS version by default [Bui]. Google announces that 95% of its
services are served over HTTPS and over 80% of pages loaded in Chrome browser are
over HTTPS [Gooc]. Firefox shows similar statistics [Moza]. As the fundament of HTTPS,
the PKI system, more specifically, the procedure of certificate issuance and management
are of great importance.
Considering that a certificate binds a public key to one or more domain names, the web

PKI system has a strong connection to DNS. Therefore, PKI security is associated with DNS
vulnerabilities, which are mentioned in Chapter 2.
In this chapter, we will present our evaluations on PKI security, which are introduced

by the DNS vulnerabilities mentioned in Chapter 2. We start with related works on PKI
security in Section 3.1. Then show our contributions in Section 3.2. This chapter includes
contents in our following papers and posters:

• [Dai18], also in Appendix A.2

• [Dai18p], also in Appendix A.3

15

• [Dai21s], also in Appendix A.6

• [Dai21u], also in Appendix A.7

• [Dai21c], also in Appendix A.8

3.1. Related Works

CA Compromises

A certificate signed by any trusted CA is accepted by all the browsers. As a consequence, any
vulnerable or compromised CA could subvert the security of any domain in the Internet. In
2011, one regional CA, Dutch DigiNotar, issued many fraudulent certificates against more
than 20 different domains, including *.google.com, due to a security breach. Later
DigiNotar was removed from root list of all browsers [Wik]. In 2013, another regional
CA, TURKTRUST, disclosed to have mistakenly issued two intermediate CA certificates,
which were later detected to issue fraudulent certificate for *.google.com [Goob]. In
2016, Chinese CA WoSign reported a bug which allowed to issue a certificate for the base
domain if the applicant were able to prove control of any subdomain. For example, a
user of someone.github.com could get a certificate of github.com. Considering the
severe breaches, WoSign was also removed from the root list [Mozc]. Recently, one of the
largest CAs, Symantec, was distrusted by all browsers due to various issues [Mozb].

Domain Validation

Domain Validation (DV) is a process to verify if an applicant has control over a domain.
The most classic way is to send an email with verification code to some reserved email
addresses under that domain, e.g. webmaster@domain and admin@domain. However,
it was reported that in rare cases, the reserved email addresses could be registered by
normal users [Gooa]. Other DV methods such as DNS DV and HTTP DV, require the
applicant to modify either the DNS zone or the web server. In any case, DV heavily relies
on DNS, thus suffers from DNS hijacking. Many attacks were reported recently, [18; 19b;
19c; 19a]. During these attacks, the attackers gained access to victim DNS zones and
hijacked DNS. Then they could easily issue fraudulent certificates and establish phishing
websites. Most of the time, social engineering was involved to compromise the victim
accounts. In 2018, Birge et al. [Bir+18] evaluated the impact of BGP prefix hijacks on
domain validation. They also mentioned that with BGP prefix hijacking, an attacker could
redirect DNS traffic and hijack a whole domain. A similar attack was involved in the
myetherwallet.com hijack [S G18].

16

*.google.com
*.google.com
someone.github.com
github.com
webmaster@domain
admin@domain
myetherwallet.com

Distributed Domain Validation

Following the studies in 2018 [Bir+18; Dai18], Let’s Encrypt deployed domain validation
from multiple vantage points [Bir+21; Encb]. The concept of this kind of distributed
validation is not new. In 2004, Park et al. [Par+04] proposed CoDNS to achieve low-latency,
low-overhead and high-reliability name resolution. Poole et al. [PP06] further extended
CoDNS with multi-site agreement and per-site lookup histories, for better security. In 2008,
Wendlandt et al. [WAP08] proposed Perspectives, a notary service involving multiple
network vantage points, to improve host authentication. Instead of deploying servers in
different locations, Alicherry et al. [AK09] used the Tor [DMS04] network to achieve
similar goal. However, except for Let’s Encrypt’s Multi-VA [Encb], none of those proposals
are deployed and adopted by the community, due to additional modifications to the
existing infrastructure and the lack of motivation.

3.2. Contributions

We evaluated PKI security in the Internet concerning DNS-related vulnerabilities. Our
contributions are:

Resource Management

• We demonstrate that the current practices of Internet resource management are
insecure. In our paper [Dai21u], we demonstrated that off-path attackers could
hijack accounts at major CAs and manipulate resources there. We found that all the
five tested major CAs were vulnerable to fragmentation-based DNS cache poisoning,
as showed in Section 2.1. Two of them did not even validate DNSSEC. All the five
CAs did not use CAPTCHA, which made it possible to repeat the password recovery
for hijacking. When controlling an account at a CA, the attacker could easily revoke
or reissue existing certificates, sometimes even without additional domain validation.
Those new certificates could be further used for phishing or other cyber crimes.

Domain Validation

• We show that DV is vulnerable to off-path DNS cache poisoning attacks. In our paper
[Dai18] and poster [Dai18p], we demonstrated how to issue fraudulent certificates
with fragmentation-based cache poisoning and verified that at least 7 CAs were
vulnerable. In our recent work [Dai21s], we found that even though DV of five tested

17

CAs were not vulnerable to fragmentation-based (Section 2.1) or side-channel-based
(Section 2.2) DNS cache poisoning, most of them were vulnerable to BGP hijacking.

• We show that even latest Multi-VA is vulnerable to DNS-related downgrade attacks.
In our paper [Dai21c], we developed off-path downgrade attacks to reduce the
domain validation to be performed against a single, attacker-selected nameserver.
The attacks involved either fragmentation (Section 2.1) or RRL (Section 2.2). Our
evaluation showed that all tested popular CAs, including Let’s Encrypt with Multi-VA,
were vulnerable to the attacks.

18

4. Evaluations on Ingress Filtering

IP spoofing allows attackers to send packets with a false source IP address so as to
impersonate other hosts in the Internet, which could avoid attack source detection or
filtering. This is weaponised for reflecting traffic during Distributed Denial of Service
(DDoS) attacks [Ros14]. Recent DNS cache poisoning attacks also make use of IP spoofing
[Dai18; Man+20].
The recommendedmethod to mitigate IP spoofing is to deploy Source Address Validation

(SAV) on all packets. There are two types of SAV. One is ingress filtering, which inspects
inbound traffic at the receiving side. The other is egress filtering, which filters outbound
packets at the sending side. A specific Best Current Practice (BCP) addressing that was
standardised in 2000 as BCP38 [RFC2827]. BCP38 proposed to use ingress traffic filtering
to prohibit DoS attacks with IP spoofing, which was further updated in BCP84 [RFC3704].
In this chapter, we will briefly introduce related works about measurements on ingress

filtering and describe our contributions. For more details, please check our paper [Dai21ac],
also in Appendix A.9.

4.1. Related Works

Egress vs. Ingress

Most SAV-related studies focus on egress filtering, while only a few discuss about ingress
filtering. Even fewer studies compare them. In 2019, Luckie et al. [Luc+19] showed that
at least a quarter of tested ASes did not deploy egress filtering while at least two thirds of
tested ASes did not deploy ingress filtering, even though ingress filtering protects their
own network. In 2020, Jonglez et al. [JD20] looked into 559 /24 networks. They found
298 networks without ingress filtering only and 15 without egress only, which indicates
that ingress filtering is less deployed than egress. Later they [Kor+20b] showed that out
of 515 ASes within the Mutually Agreed Norms for Routing Security (MANRS), 81 ASes
were vulnerable to outbound spoofing, while as many as 114 and 207 ASes were fully
and partially vulnerable to inbound spoofing. The correlation between egress and ingress

19

filtering in these studies show that the measurements of networks without ingress filtering
could provide a lower bound on the number of networks without egress filtering.

Vantage Points

The Spoofer Project [CAI; BB05] first presented measurements of networks without egress
filtering in 2005. The idea is to craft specific packets with spoofed source IP addresses
and send them from vantage points, or volunteers, to several servers in different locations.
The disadvantage of this approach is that it requires the volunteers to install and run a
software with administrative privileges, which brings trust and permission issues. Even
though promoted for eight years, Spoofer only covered 1,586 ASes in 2013 [BKC13], less
than 5% of all ASes. In 2015, Huz et al. [Huz+15] addressed the concern of coverage and
proposed to use crowdsourcing for vantage-point-based measurements. Afterwards, Lone
et al. [Lon+18] reported the results with crowdsourcing from the Spoofer Project. They
discovered 342 new ASes, a 15% increase than previous year. In the latest publication
of the Spoofer Project [Luc+19], 5,178 ASes were included, among which 31.5% were
spoofable. Despite a big increase, it only covered less than 10% of all ASes. And the
coverage across networks and geolocations was not uniform.

Network Traces

Alternative approaches using network traces to infer spoofing abilities are proposed to
overcome the dependency on vantage points. In 2017, Lone et al. [Lon+17] used loops
in traceroute to detect absence of ingress filtering on provider ASes. They identified
loops in 1,780 ASes, 3.2% of all the ASes, and 703 of the ASes were spoofable. How-
ever, this technique has significant limitations. It requires support for traceroute, and
misconfigurations which create loops. Both can be challenging in practice. Lichtblau et
al. [Lic+17] proposed and evaluated a method to passively detect spoofed packets in
the traffic exchanged at a large European Internet Exchange Point (IXP). They covered
over 700 networks, among which over 50% were vulnerable. Apparently, this approach
requires to have access to the data from the IXP and can only include networks sending
traffic through the IXP.

Remote Scanning

With the help of certain reflective features or side channels, it is possible to detect SAV
from remote. Kührer et al. [Küh+14] made use of a broken resolver implementation to
detect absence of egress filtering. Even though this approach only applies to the networks

20

with such misconfigured DNS resolvers, it reported 2,692 ASes without egress filtering,
even more than the Spoofer Project. This shows the power of Internet-wide scans. The
Closed Resolver Project [KN] uses a different method of remote scanning. They send
DNS queries for their own domains to DNS resolvers all over the Internet, with spoofed
source IP. With the receipt of DNS queries at their own nameserver, they could confirm if
the remote networks have received the spoofed queries, which means absence of ingress
filtering. In their latest publication [Kor+20a], they reported 32,673 IPv4 ASes to be
vulnerable to spoofing of inbound traffic, which is a big increase, compared to all previous
studies.

4.2. Contributions

Our paper [Dai21ac], also in Appendix A.9 has following contributions:

• We present the Spoofing Mapper (SMap), a tool to perform Internet-wide studies of
ingress filtering. SMap evaluates spoofability using standard protocols such as IPv4,
PMTUD and DNS, which are present in almost any networks. SMap allows fully
remote scanning without cooperation of remote networks. It is easily reproducible
and scalable.

• SMap covers the most networks among all SAV-related studies. Recent scans covered
63,522 ASes, over 90% of all ASes. Among them, 51,046 were vulnerable to inbound
spoofing.

• We publish the statistics online and share the data on demand. Network administra-
tors could also use our online form to perform remote tests of their own networks.
SMap can be accessed at https://smap.cad.sit.fraunhofer.de.

21

https://smap.cad.sit.fraunhofer.de

5. Summary and Future Work

In this chapter, we conclude the thesis by summarising our main contributions in Section 5.1
and proposing potential future work directions in Section 5.2.

5.1. Summary

This thesis brings significant contributions on Internet-wide evaluations of DNS-related
vulnerabilities and security mechanisms. We summarise our findings below.

DNS Vulnerabilities

In Chapter 2, we present Internet-wide evaluations of DNS vulnerabilities. Section 2.1
includes evaluations of IP fragmentation from our papers [Dai18; Dai21a; Dai21s; Dai21u;
Dai21c] and posters [Dai18p; Dai21i1]. We show that DNS traffic over both TCP and
UDP are vulnerable to IP-fragmentation-based attacks, which could result in hijacking or
DoS. Our latest evaluation indicated that over 55K domains were in danger. Section 2.2
contains evaluations of DNS RRL from our papers [Dai21s; Dai21u; Dai21c]. We warn that
even if RRL is designed to protect DNS, it actually facilitates attacks on DNS. We show how
RRL can be abuse to mute nameservers, so as to downgrade the latest Multi-VA system for
DNS cache poisoning. Our latest evaluation showed that at least 20% of popular domains
were vulnerable. Section 2.3 summarises evaluations of DNSSEC from our paper [Dai16].
We found that only less than 2% of popular domains were signed, while about 20% of
those signed domains were misconfigured.

PKI Security

In Chapter 3, we present evaluations of PKI security, focusing on the CA side. We demon-
strated that off-path attackers could hijack accounts at major CAs andmanipulate resources
there, as shown in our paper [Dai21u]. The DV procedure of major CAs faces similar
vulnerabilities. Our papers [Dai18; Dai21s] and poster [Dai18p] found off-path DNS

23

cache poisoning attacks as a practical threat to DV. Even the latest Multi-VA DV can be
downgraded and attacked via cache poisoning, as presented in our paper [Dai21c].

Ingress Filtering

In Chapter 4, we present Internet-wide evaluations of ingress filtering. We only use
standard protocols such as IPv4, PMTUD and DNS to perform remote test without any
cooperation from the target network. Our evaluations covered the most ASes among all
related studies, over 90%. And we found absence of ingress filtering in over 80% of tested
ASes, as stated in our paper [Dai21ac].

5.2. Future Work

DNS Security

Chapter 2 presents our evaluations of DNS vulnerabilities. It also points out a severe issue
of existing defensive mechanisms. That said, even if they are designed to protect DNS, they
indeed make it worse, under specific circumstances. RRL could reduce the possibilities of
DDoS, while it could be abused to facilitate attacks, as shown in Section 2.2. DNSSEC
increases the size of DNS responses, which makes them easier to fragment, resulting in
fragmentation-related vulnerabilities mentioned in Section 2.1. The community [Com]
suggested to move on to TCP to mitigate that. However, the evaluations in our paper
[Dai21a] and poster [Dai21i1] revealed that even DNS over TCP was vulnerable. More
researches are needed in the field of design and deployment of these defensive mechanisms,
so that they could protect the Internet without bringing new vulnerabilities.
There are also other security protocols for DNS. For example, DNS over TLS (DoT)

[RFC7858] and DNS over HTTPS (DoH) [RFC8484]. Both of them transmit DNS traffic
over encrypted channels to avoid eavesdropping and data manipulation, so as to increase
user privacy and security. However, they only secure the path between the clients and
the resolvers. The traffic between the resolvers and the nameservers are still unprotected,
which is left for DNSSEC. Moreover, the DNS traffic aggregation at the resolver providers
brings huge debates on privacy issues [Cor]. As there are only few DNS providers offering
DoT or DoH services, people are indeed worried that those giant providers such as
Cloudflare and Google would get too much data. Researches on security-enhancing as
well as better privacy-preserving mechanisms are also promising.

24

PKI Security

Following the attacks against DV [Bir+18; Dai18; Dai18p], Let’s Encrypt deployed DV from
multiple vantage points (Multi-VA) [Encb]. Even if secure against previously mentioned
attacks [Bir+21], we found it vulnerable to downgrade attacks, as showed in our paper
[Dai21c]. We pointed out that the main pitfall of Let’s Encrypt’s Multi-VA deployment
was the limited selection of VAs, which allowed the attacker to investigate and predict in
advance. Better distribution and selection of VAs should have made Multi-VA even secure
against strong MitM adversaries. Studies on this are yet missing.
Another important direction of PKI security is about monitoring and revoking. Certificate

Transparency (CT) [Lau14] allows to detect fraudulent certificates quickly so that CAs
could revoke them once alarmed. However, CT monitors are sometimes unreliable [Li+19]
and it might take a few hours to detect those fraudulent certificates [Dai21c]. During
that undetected time, the damage of the attacks would have already taken place [S G18].
Better automation of certificate monitoring and revoking should also get more attentions.

Ingress Filtering

Chapter 4 summarises the findings on ingress filtering in our paper [Dai21ac]. Surprisingly,
even if ingress filtering protects the network itself, it is much less deployed. Lichtblau et
al. [Lic+17] mentioned two main reasons for not filtering traffic. One is that it might
falsely drop legitimate traffic from customers. The other is that filtering required a lot
of planning, configuration and maintenance, which was too difficult and too much work.
These bring a new question for ingress filtering. How to do it more accurately and easily?
More researches are expected.

25

Bibliography

[18] DNSpionage Campaign Targets Middle East. https://blog.talosintelligence.
com/2018/11/dnspionage-campaign-targets-middle-east.
html. Accessed: 2021-01-19. 2018.

[19a] ‘Unprecedented’ DNS Hijacking Attacks Linked to Iran. Accessed: 2021-1-
19. 2019. url: https://threatpost.com/unprecedented-dns-
hijacking-attacks-linked-to-iran/140737/.

[19b] Global DNS Hijacking Campaign: DNS Record Manipulation at Scale. https:
//www.fireeye.com/blog/threat-research/2019/01/global-
dns- hijacking- campaign- dns- record- manipulation- at-
scale.html. Accessed: 2021-1-19. 2019.

[19c] Sea Turtle keeps on swimming, finds new victims, DNS hijacking techniques.
https://blog.talosintelligence.com/2019/07/sea-turtle-
keeps-on-swimming.html. Accessed: 2021-01-19. 2019.

[AK09] Mansoor Alicherry and Angelos D Keromytis. “Doublecheck: Multi-path
verification against man-in-the-middle attacks”. In: 2009 IEEE Symposium
on Computers and Communications. IEEE. 2009, pp. 557–563.

[Alh+19] Fatemah Alharbi et al. “Collaborative client-side DNS cache poisoning at-
tack”. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communica-
tions. IEEE. 2019, pp. 1153–1161.

[Ama] Amazon. ALEXA INTERNET. url: https://www.alexa.com/ (visited
on 09/30/2021).

[And12] Daniel Anderson. “Splinternet Behind the Great Firewall of China: Once
China opened its door to the world, it could not close it again.” In: Queue
10.11 (2012), pp. 40–49.

[APN] APNIC. DNSSEC Validation Rate. url: https://stats.labs.apnic.
net/dnssec (visited on 09/30/2021).

27

https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/
https://threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-swimming.html
https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-swimming.html
https://www.alexa.com/
https://stats.labs.apnic.net/dnssec
https://stats.labs.apnic.net/dnssec

[BB05] Robert Beverly and Steven Bauer. “The Spoofer project: Inferring the extent
of source address filtering on the Internet”. In: Usenix Sruti. Vol. 5. 2005,
pp. 53–59.

[Ber] Dan J. Bernstein. DNS Forgery. url: http://cr.yp.to/djbdns/
forgery.html (visited on 09/30/2021).

[Bir+18] Henry Birge-Lee et al. “Bamboozling certificate authorities with {BGP}”. In:
27th {USENIX} Security Symposium ({USENIX} Security 18). 2018, pp. 833–
849.

[Bir+21] Henry Birge-Lee et al. “Experiences deploying multi-vantage-point domain
validation at Let’s Encrypt”. In: 30th {USENIX} Security Symposium ({USENIX}
Security 21). 2021.

[BKC13] Robert Beverly, Ryan Koga, and KC Claffy. “Initial longitudinal analysis of
IP source spoofing capability on the Internet”. In: (2013).

[Bra+18] M. Brandt et al. “Domain Validation++ For MitM-Resilient PKI”. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18. 2018.

[Bui] BuiltWith. SSL by Default Usage Statistics. url: https://trends.builtwith.
com/ssl/SSL-by-Default (visited on 09/30/2021).

[CAI] CAIDA. Spoofer. url: https://www.caida.org/projects/spoofer/
(visited on 09/30/2021).

[Chu+17a] Taejoong Chung et al. “A longitudinal, end-to-end view of the {DNSSEC}
ecosystem”. In: 26th {USENIX} Security Symposium ({USENIX} Security 17).
2017, pp. 1307–1322.

[Chu+17b] Taejoong Chung et al. “Understanding the role of registrars in DNSSEC
deployment”. In: Proceedings of the 2017 Internet Measurement Conference.
2017, pp. 369–383.

[CIS] CISA-NCAS. Alert (TA13-088A) - DNS Amplification Attacks. url: https:
//www.cisa.gov/uscert/ncas/alerts/TA13-088A (visited on
09/30/2021).

[Com] Community. DNS flag day 2020. url: https://dnsflagday.net/
2020/ (visited on 09/30/2021).

28

http://cr.yp.to/djbdns/forgery.html
http://cr.yp.to/djbdns/forgery.html
https://trends.builtwith.com/ssl/SSL-by-Default
https://trends.builtwith.com/ssl/SSL-by-Default
https://www.caida.org/projects/spoofer/
https://www.cisa.gov/uscert/ncas/alerts/TA13-088A
https://www.cisa.gov/uscert/ncas/alerts/TA13-088A
https://dnsflagday.net/2020/
https://dnsflagday.net/2020/

[Cor] Gareth Corfield. DoH! Mozilla assures UK minister that DNS-over-HTTPS
won’t be default in Firefox for Britons. url: https://www.theregister.
com/2019/09/24/mozilla_backtracks_doh_for_uk_users/
(visited on 09/30/2021).

[DAD19] Casey Deccio, Derek Argueta, and Jonathan Demke. “A Quantitative Study of
the Deployment of DNS Rate Limiting”. In: 2019 International Conference on
Computing, Networking and Communications (ICNC). IEEE. 2019, pp. 442–
447.

[Dai+21a] T. Dai et al. “From IP to Transport and beyond: Cross-Layer Attacks against
Applications”. In: Proceedings of the 2021 ACM SIGCOMM Conference. SIG-
COMM ’21. 2021.

[Dai+21b] T. Dai et al. “The Hijackers Guide To The Galaxy: Off-Path Taking Over
Internet Resources”. In: 30th USENIX Security Symposium (USENIX Security
21). 2021.

[Dai16] Tianxiang Dai, Haya Shulman, andMichael Waidner. “DNSSECMisconfigura-
tions in Popular Domains”. In: Cryptology and Network Security. Ed. by Sara
Foresti and Giuseppe Persiano. Cham: Springer International Publishing,
2016, pp. 651–660. isbn: 978-3-319-48965-0.

[Dai18] Markus Brandt et al. “Domain Validation++ For MitM-Resilient PKI”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’18. Toronto, Canada: Association for Computing
Machinery, 2018, pp. 2060–2076. isbn: 9781450356930. doi: 10.1145/
3243734.3243790. url: https://doi.org/10.1145/3243734.
3243790.

[Dai18p] Tianxiang Dai, Haya Shulman, and Michael Waidner. “Poster: Off-Path At-
tacks Against PKI”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’18. Toronto, Canada: Associa-
tion for ComputingMachinery, 2018, pp. 2213–2215. isbn: 9781450356930.
doi: 10.1145/3243734.3278516. url: https://doi.org/10.
1145/3243734.3278516.

[Dai21a] Tianxiang Dai, Haya Shulman, and Michael Waidner. “DNS-over-TCP Con-
sidered Vulnerable”. In: Proceedings of the Applied Networking Research
Workshop. ANRW ’21. Virtual Event, USA: Association for Computing Ma-
chinery, 2021, pp. 76–81. isbn: 9781450386180. doi: 10.1145/3472305.
3472884. url: https://doi.org/10.1145/3472305.3472884.

29

https://www.theregister.com/2019/09/24/mozilla_backtracks_doh_for_uk_users/
https://www.theregister.com/2019/09/24/mozilla_backtracks_doh_for_uk_users/
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3472305.3472884

[Dai21ac] Tianxiang Dai and Haya Shulman. “SMap: Internet-Wide Scanning for Spoof-
ing”. In: Annual Computer Security Applications Conference. ACSAC. Virtual
Event, USA: Association for Computing Machinery, 2021, pp. 1039–1050.
isbn: 9781450385794. doi: 10.1145/3485832.3485917. url: https:
//doi.org/10.1145/3485832.3485917.

[Dai21ap1] Tianxiang Dai. DNS-over-TCP considered vulnerable. url: https://blog.
apnic.net/2021/11/09/dns-over-tcp-considered-vulnerable/
(visited on 11/30/2021).

[Dai21c] Tianxiang Dai, Haya Shulman, and Michael Waidner. “Let’s Downgrade
Let’s Encrypt”. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’21. Virtual Event, Republic of
Korea: Association for Computing Machinery, 2021, pp. 1421–1440. isbn:
9781450384544. doi: 10.1145/3460120.3484815. url: https://
doi.org/10.1145/3460120.3484815.

[Dai21i1] Tianxiang Dai, Haya Shulman, andMichael Waidner. “Poster: Fragmentation
Attacks on DNS over TCP”. In: 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS). 2021, pp. 1124–1125. doi:
10.1109/ICDCS51616.2021.00118.

[Dai21s] Tianxiang Dai et al. “From IP to Transport and beyond: Cross-Layer Attacks
against Applications”. In: Proceedings of the 2021 ACM SIGCOMM 2021
Conference. SIGCOMM ’21. Virtual Event, USA: Association for Computing
Machinery, 2021, pp. 836–849. isbn: 9781450383837. doi: 10.1145/
3452296.3472933. url: https://doi.org/10.1145/3452296.
3472933.

[Dai21u] Tianxiang Dai et al. “The Hijackers Guide To The Galaxy: Off-Path Taking
Over Internet Resources”. In: 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 3147–3164. isbn: 978-
1-939133-24-3. url: https : / / www . usenix . org / conference /
usenixsecurity21/presentation/dai.

[Dai22ap1] Tianxiang Dai. The Hijackers Guide to the Galaxy: Off-path taking over Internet
resources. url: https://blog.apnic.net/2022/04/21/off-path-
taking-over-internet-resources/ (visited on 04/30/2022).

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Tech. rep. Naval Research Lab Washington DC,
2004.

30

https://doi.org/10.1145/3485832.3485917
https://doi.org/10.1145/3485832.3485917
https://doi.org/10.1145/3485832.3485917
https://blog.apnic.net/2021/11/09/dns-over-tcp-considered-vulnerable/
https://blog.apnic.net/2021/11/09/dns-over-tcp-considered-vulnerable/
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1109/ICDCS51616.2021.00118
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933
https://www.usenix.org/conference/usenixsecurity21/presentation/dai
https://www.usenix.org/conference/usenixsecurity21/presentation/dai
https://blog.apnic.net/2022/04/21/off-path-taking-over-internet-resources/
https://blog.apnic.net/2022/04/21/off-path-taking-over-internet-resources/

[DS21] T. Dai and H. Shulman. “SMap: Internet-Wide Scanning for Spoofing”. In:
Annual Computer Security Applications Conference. ACSAC. 2021.

[DSW16] T. Dai, H. Shulman, and M. Waidner. “DNSSEC Misconfigurations in Popular
Domains”. In: Cryptology and Network Security. CANS ’16. 2016.

[DSW18] T. Dai, H. Shulman, and M. Waidner. “Poster: Off-Path Attacks Against
PKI”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’18. 2018.

[DSW21a] T. Dai, H. Shulman, andM.Waidner. “DNS-over-TCP Considered Vulnerable”.
In: Proceedings of the Applied Networking Research Workshop. ANRW ’21.
2021.

[DSW21b] T. Dai, H. Shulman, and M. Waidner. “Let’s Downgrade Let’s Encrypt”. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’21. 2021.

[DSW21c] T. Dai, H. Shulman, and M. Waidner. “Poster: Fragmentation Attacks on
DNS over TCP”. In: 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). 2021.

[Enca] Let’s Encrypt.Mitigating DNS fragmentation attack. url: https://community.
letsencrypt.org/t/mitigating-dns-fragmentation-attack/
74838 (visited on 09/30/2021).

[Encb] Let’s Encrypt. Multi-Perspective Validation Improves Domain Validation Se-
curity. url: https://letsencrypt.org/2020/02/19/multi-
perspective-validation.html (visited on 09/30/2021).

[FSM13] Kensuke Fukuda, Shinta Sato, and Takeshi Mitamura. “A technique for
counting dnssec validators”. In: 2013 Proceedings IEEE INFOCOM. IEEE.
2013, pp. 80–84.

[FV21] Kazunori Fujiwara and Paul A. Vixie. Fragmentation Avoidance in DNS.
Internet-Draft draft-ietf-dnsop-avoid-fragmentation-06. Work in Progress. In-
ternet Engineering Task Force, Dec. 2021. 12 pp. url: https://datatracker.
ietf.org/doc/html/draft-ietf-dnsop-avoid-fragmentation-
06.

[GH11] Yossi Gilad and Amir Herzberg. “Fragmentation considered vulnerable:
blindly intercepting and discarding fragments”. In: Proceedings of the 5th
USENIX conference on Offensive technologies. 2011, pp. 2–2.

31

https://community.letsencrypt.org/t/mitigating-dns-fragmentation-attack/74838
https://community.letsencrypt.org/t/mitigating-dns-fragmentation-attack/74838
https://community.letsencrypt.org/t/mitigating-dns-fragmentation-attack/74838
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-avoid-fragmentation-06
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-avoid-fragmentation-06
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-avoid-fragmentation-06

[Gooa] Dan Goodin. Bogus SSL certificate for Windows Live could allow man-in-
the-middle hacks. url: https://arstechnica.com/information-
technology/2015/03/bogus-ssl-certificate-for-windows-
live- could- allow- man- in- the- middle- hacks/ (visited on
09/30/2021).

[Goob] Google. Enhancing digital certificate security. url: https://security.
googleblog.com/2013/01/enhancing-digital-certificate-
security.html (visited on 09/30/2021).

[Gooc] Google.HTTPS encryption on the web. url: https://transparencyreport.
google.com/https/overview?hl=en (visited on 09/30/2021).

[HS12] Amir Herzberg and Haya Shulman. “Security of patched DNS”. In: European
Symposium on Research in Computer Security. Springer. 2012, pp. 271–288.

[HS13a] Amir Herzberg and Haya Shulman. “Fragmentation considered poisonous,
or: One-domain-to-rule-them-all. org”. In: 2013 IEEE Conference on Commu-
nications and Network Security (CNS). IEEE. 2013, pp. 224–232.

[HS13b] Amir Herzberg and Haya Shulman. “Socket overloading for fun and cache-
poisoning”. In: Proceedings of the 29th Annual Computer Security Applications
Conference. 2013, pp. 189–198.

[HS13c] Amir Herzberg and Haya Shulman. “Vulnerable delegation of DNS resolu-
tion”. In: European Symposium on Research in Computer Security. Springer.
2013, pp. 219–236.

[HS14] Amir Herzberg and Haya Shulman. “Retrofitting security into network pro-
tocols: The case of dnssec”. In: IEEE Internet Computing 18.1 (2014), pp. 66–
71.

[Hu15] Margaret Hu. “Taxonomy of the snowden disclosures”. In: Wash. & Lee L.
Rev. 72 (2015), p. 1679.

[Huz+15] Gokay Huz et al. “Experience in using mturk for network measurement”.
In: Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data. 2015, pp. 27–32.

[JD20] Baptiste Jonglez and Andrzej Duda. “Don’t Forget to Lock the Front Door!
Inferring the Deployment of Source Address Validation of Inbound Traffic”.
In: Passive and Active Measurement: 21st International Conference, PAM 2020,
Eugene, Oregon, USA, March 30–31, 2020, Proceedings. Vol. 12048. Springer
Nature. 2020, p. 107.

32

https://arstechnica.com/information-technology/2015/03/bogus-ssl-certificate-for-windows-live-could-allow-man-in-the-middle-hacks/
https://arstechnica.com/information-technology/2015/03/bogus-ssl-certificate-for-windows-live-could-allow-man-in-the-middle-hacks/
https://arstechnica.com/information-technology/2015/03/bogus-ssl-certificate-for-windows-live-could-allow-man-in-the-middle-hacks/
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en

[JSW20] Philipp Jeitner, Haya Shulman, and Michael Waidner. “The impact of dns
insecurity on time”. In: 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE. 2020, pp. 266–277.

[Kam08] Dan Kaminsky. “Black ops 2008: It’s the end of the cache as we know it”.
In: Black Hat USA 2 (2008).

[Kle07a] Amit Klein. “BIND 9 DNS cache poisoning”. In: Report, Trusteer, Ltd 3 (2007).
[Kle07b] Amit Klein. Windows DNS Server Cache Poisoning. 2007.
[Kle21] Amit Klein. “Cross layer attacks and how to use them (for dns cache poison-

ing, device tracking and more)”. In: 2021 IEEE Symposium on Security and
Privacy (SP). IEEE. 2021, pp. 1179–1196.

[KM95] Christopher A Kent and Jeffrey C Mogul. “Fragmentation considered harm-
ful”. In: ACM SIGCOMM Computer Communication Review 25.1 (1995),
pp. 75–87.

[KN] Maciej Korczyński and Yevheniya Nosyk. The Closed Resolver Project. url:
https://closedresolver.korlabs.io/ (visited on 09/30/2021).

[Kor+20a] Maciej Korczyński et al. “Inferring the Deployment of Inbound Source Ad-
dress Validation Using DNS Resolvers”. In: Proceedings of the Applied Network-
ing Research Workshop. ANRW ’20. Association for Computing Machinery,
2020, pp. 9–11. doi: 10.1145/3404868.3406668.

[Kor+20b] Maciej Korczyński et al. “The Closed Resolver Project: Measuring the De-
ployment of Source Address Validation of Inbound Traffic”. In: arXiv preprint
arXiv:2006.05277 (2020).

[KPS03] Charlie Kaufman, Radia Perlman, and Bill Sommerfeld. “DoS protection
for UDP-based protocols”. In: Proceedings of the 10th ACM conference on
Computer and communications security. 2003, pp. 2–7.

[Küh+14] Marc Kührer et al. “Exit fromHell? Reducing the Impact of {Amplification}{DDoS}
Attacks”. In: 23rd USENIX Security Symposium (USENIX Security 14). 2014,
pp. 111–125.

[Lau14] Ben Laurie. “Certificate transparency”. In: Communications of the ACM 57.10
(2014), pp. 40–46.

[Li+19] Bingyu Li et al. “Certificate transparency in the wild: Exploring the reliability
of monitors”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 2505–2520.

33

https://closedresolver.korlabs.io/
https://doi.org/10.1145/3404868.3406668

[Lia+13] Wilson Lian et al. “Measuring the Practical Impact of {DNSSEC} Deploy-
ment”. In: 22nd {USENIX} Security Symposium ({USENIX} Security 13).
2013, pp. 573–588.

[Lic+17] Franziska Lichtblau et al. “Detection, classification, and analysis of inter-
domain traffic with spoofed source IP addresses”. In: Proceedings of the 2017
Internet Measurement Conference. 2017, pp. 86–99.

[Lon+17] Qasim Lone et al. “Using loops observed in traceroute to infer the abil-
ity to spoof”. In: International Conference on Passive and Active Network
Measurement. Springer. 2017, pp. 229–241.

[Lon+18] Qasim Lone et al. “Using crowdsourcing marketplaces for network mea-
surements: The case of spoofer”. In: 2018 Network Traffic Measurement and
Analysis Conference (TMA). IEEE. 2018, pp. 1–8.

[Luc+19] Matthew Luckie et al. “Network hygiene, incentives, and regulation: deploy-
ment of source address validation in the Internet”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security.
2019, pp. 465–480.

[Mal+16] Aanchal Malhotra et al. “Attacking the Network Time Protocol”. In: 23rd
Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Society,
2016.

[Man+20] Keyu Man et al. “DNS Cache Poisoning Attack Reloaded: Revolutions with
Side Channels”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 2020, pp. 1337–1350.

[Moza] Mozilla. Percentage of Web Pages Loaded by Firefox Using HTTPS. url: https:
//letsencrypt.org/stats/#percent- pageloads (visited on
09/30/2021).

[Mozb] Mozilla. Symantec Issues. url: https://wiki.mozilla.org/CA/
Symantec_Issues (visited on 09/30/2021).

[Mozc] Mozilla. WoSign Issues. url: https : / / wiki . mozilla . org / CA /
WoSign_Issues (visited on 09/30/2021).

[MSK15] Douglas C MacFarland, Craig A Shue, and Andrew J Kalafut. “Characterizing
optimal DNS amplification attacks and effective mitigation”. In: International
Conference on Passive and Active Network Measurement. Springer. 2015,
pp. 15–27.

34

https://letsencrypt.org/stats/#percent-pageloads
https://letsencrypt.org/stats/#percent-pageloads
https://wiki.mozilla.org/CA/Symantec_Issues
https://wiki.mozilla.org/CA/Symantec_Issues
https://wiki.mozilla.org/CA/WoSign_Issues
https://wiki.mozilla.org/CA/WoSign_Issues

[MSK17] Douglas C MacFarland, Craig A Shue, and Andrew J Kalafut. “The best bang
for the byte: Characterizing the potential of DNS amplification attacks”. In:
Computer Networks 116 (2017), pp. 12–21.

[OAR] OARC. OARC’s DNS Reply Size Test Server. url: https://www.dns-oarc.
net/oarc/services/replysizetest (visited on 09/30/2021).

[Par+04] KyoungSoo Park et al. “CoDNS: Improving DNS Performance and Reliability
via Cooperative Lookups.” In: OSDI. Vol. 4. 2004, pp. 14–14.

[PP06] Lindsey Poole and Vivek S Pai. “ConfiDNS: Leveraging Scale and History to
Improve DNS Security.” In: WORLDS. 2006.

[RFC1034] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034. IETF,
Nov. 1987. url: http://tools.ietf.org/rfc/rfc1034.txt.

[RFC1035] P.V. Mockapetris. Domain names - implementation and specification. RFC
1035. IETF, Nov. 1987. url: http://tools.ietf.org/rfc/rfc1035.
txt.

[RFC1122] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122.
IETF, Oct. 1989. url: http://tools.ietf.org/rfc/rfc1122.txt.

[RFC1123] R. Braden. Requirements for Internet Hosts - Application and Support. RFC
1123. IETF, Oct. 1989. url: http://tools.ietf.org/rfc/rfc1123.
txt.

[RFC1945] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945. IETF, May 1996. url: http://tools.ietf.org/
rfc/rfc1945.txt.

[RFC2827] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of
Service Attacks which employ IP Source Address Spoofing. RFC 2827. IETF,
May 2000. url: http://tools.ietf.org/rfc/rfc2827.txt.

[RFC3704] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks. RFC 3704.
IETF, Mar. 2004. url: http://tools.ietf.org/rfc/rfc3704.txt.

[RFC4033] R. Arends et al. DNS Security Introduction and Requirements. RFC 4033.
IETF, Mar. 2005. url: http://tools.ietf.org/rfc/rfc4033.txt.

[RFC4034] R. Arends et al. Resource Records for the DNS Security Extensions. RFC 4034.
IETF, Mar. 2005. url: http://tools.ietf.org/rfc/rfc4034.txt.

[RFC4035] R. Arends et al. Protocol Modifications for the DNS Security Extensions. RFC
4035. IETF, Mar. 2005. url: http://tools.ietf.org/rfc/rfc4035.
txt.

35

https://www.dns-oarc.net/oarc/services/replysizetest
https://www.dns-oarc.net/oarc/services/replysizetest
http://tools.ietf.org/rfc/rfc1034.txt
http://tools.ietf.org/rfc/rfc1035.txt
http://tools.ietf.org/rfc/rfc1035.txt
http://tools.ietf.org/rfc/rfc1122.txt
http://tools.ietf.org/rfc/rfc1123.txt
http://tools.ietf.org/rfc/rfc1123.txt
http://tools.ietf.org/rfc/rfc1945.txt
http://tools.ietf.org/rfc/rfc1945.txt
http://tools.ietf.org/rfc/rfc2827.txt
http://tools.ietf.org/rfc/rfc3704.txt
http://tools.ietf.org/rfc/rfc4033.txt
http://tools.ietf.org/rfc/rfc4034.txt
http://tools.ietf.org/rfc/rfc4035.txt
http://tools.ietf.org/rfc/rfc4035.txt

[RFC5452] A. Hubert and R. van Mook. Measures for Making DNS More Resilient against
Forged Answers. RFC 5452. IETF, Jan. 2009. url: http://tools.ietf.
org/rfc/rfc5452.txt.

[RFC768] J. Postel. User Datagram Protocol. RFC 768. IETF, Aug. 1980. url: http:
//tools.ietf.org/rfc/rfc0768.txt.

[RFC7766] J. Dickinson et al. DNS Transport over TCP - Implementation Requirements.
RFC 7766. IETF, Mar. 2016. url: http://tools.ietf.org/rfc/
rfc7766.txt.

[RFC7858] Z. Hu et al. Specification for DNS over Transport Layer Security (TLS). RFC
7858. IETF, May 2016. url: http://tools.ietf.org/rfc/rfc7858.
txt.

[RFC791] J. Postel. Internet Protocol. RFC 791. IETF, Sept. 1981. url: http://
tools.ietf.org/rfc/rfc0791.txt.

[RFC792] J. Postel. Internet Control Message Protocol. RFC 792. IETF, Sept. 1981. url:
http://tools.ietf.org/rfc/rfc0792.txt.

[RFC793] J. Postel. Transmission Control Protocol. RFC 793. IETF, Sept. 1981. url:
http://tools.ietf.org/rfc/rfc0793.txt.

[RFC815] D.D. Clark. IP datagram reassembly algorithms. RFC 815. IETF, July 1982.
url: http://tools.ietf.org/rfc/rfc0815.txt.

[RFC8446] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. IETF, Aug. 2018. url: http://tools.ietf.org/rfc/rfc8446.
txt.

[RFC8484] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC 8484.
IETF, Oct. 2018. url: http://tools.ietf.org/rfc/rfc8484.txt.

[RFC8900] R. Bonica et al. IP Fragmentation Considered Fragile. RFC 8900. IETF, Sept.
2020. url: http://tools.ietf.org/rfc/rfc8900.txt.

[RMK13] Thijs Rozekrans, Matthijs Mekking, and Javy de Koning. “Defending against
DNS reflection amplification attacks”. In: University of Amsterdam System &
Network Engineering RP1 (2013).

[Ros14] Christian Rossow. “Amplification Hell: Revisiting Network Protocols for
DDoS Abuse”. In: 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.
The Internet Society, 2014.

36

http://tools.ietf.org/rfc/rfc5452.txt
http://tools.ietf.org/rfc/rfc5452.txt
http://tools.ietf.org/rfc/rfc0768.txt
http://tools.ietf.org/rfc/rfc0768.txt
http://tools.ietf.org/rfc/rfc7766.txt
http://tools.ietf.org/rfc/rfc7766.txt
http://tools.ietf.org/rfc/rfc7858.txt
http://tools.ietf.org/rfc/rfc7858.txt
http://tools.ietf.org/rfc/rfc0791.txt
http://tools.ietf.org/rfc/rfc0791.txt
http://tools.ietf.org/rfc/rfc0792.txt
http://tools.ietf.org/rfc/rfc0793.txt
http://tools.ietf.org/rfc/rfc0815.txt
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc8484.txt
http://tools.ietf.org/rfc/rfc8900.txt

[S G18] S. Goldberg. The myetherwallet.com hijack and why it’s risky to hold cryptocur-
rency in a webapp. Accessed: 2021-1-19. 2018. url: https://medium.
com/@goldbe/the-myetherwallet-com-hijack-and-why-its-
risky-to-hold-cryptocurrency-in-a-webapp-261131fad278.

[San] Sandia. DNSViz. url: https://dnsviz.net/ (visited on 09/30/2021).
[Sta] InternetWorld Stats.World Internet Users Statistics. url: https://internetworldstats.

com/stats.htm (visited on 09/30/2021).
[Ste03] Joe Stewart. DNS cache poisoning-the next generation. 2003.
[SW14] Haya Shulman and Michael Waidner. “Fragmentation considered leaking:

port inference for dns poisoning”. In: International Conference on Applied
Cryptography and Network Security. Springer. 2014, pp. 531–548.

[SW15] Haya Shulman and Michael Waidner. “Towards security of internet naming
infrastructure”. In: European Symposium on Research in Computer Security.
Springer. 2015, pp. 3–22.

[SW17] Haya Shulman and Michael Waidner. “One key to sign them all considered
vulnerable: Evaluation of {DNSSEC} in the internet”. In: 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17).
2017, pp. 131–144.

[Uni] George Mason University. SecSpider. url: http://secspider.net/
(visited on 09/30/2021).

[Ver] VeriSign.DNSSEC Analyzer. url: https://dnssec-analyzer.verisignlabs.
com/ (visited on 09/30/2021).

[Vix95] Paul Vixie. “DNS and BIND Security Issues”. In: Proceedings of the 5th
USENIX Security Symposium, Salt Lake City, Utah, USA, June 5-7, 1995.
Ed. by Frederick M. Avolio and Steven M. Bellovin. USENIX Association,
1995.

[VS12] Paul Vixie and Vernon Schryver. DNS Response Rate Limiting (DNS RRL). TN
2012-1. ISC, 2012. url: https://www.isc.org/pubs/tn/isc-tn-
2012-1.txt.

[WAP08] D Wendlandt, D Andersen, and A Perrigo Perspectives. “Improving SSH-style
Host Authentication with Multi-path Network Probing”. In: USENIX Annual
Technical Conference. 2008.

[Wik] Wikipedia. DigiNotar. url: https://en.wikipedia.org/wiki/
DigiNotar (visited on 09/30/2021).

37

https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://dnsviz.net/
https://internetworldstats.com/stats.htm
https://internetworldstats.com/stats.htm
http://secspider.net/
https://dnssec-analyzer.verisignlabs.com/
https://dnssec-analyzer.verisignlabs.com/
https://www.isc.org/pubs/tn/isc-tn-2012-1.txt
https://www.isc.org/pubs/tn/isc-tn-2012-1.txt
https://en.wikipedia.org/wiki/DigiNotar
https://en.wikipedia.org/wiki/DigiNotar

[Yan+10] Hao Yang et al. “Deploying cryptography in Internet-scale systems: A case
study on DNSSEC”. In: IEEE Transactions on Dependable and Secure Comput-
ing 8.5 (2010), pp. 656–669.

[Zal] Michal Zalewski. A new TCP/IP blind data injection technique? url: https:
//bugtraq.securityfocus.narkive.com/rm25I7e1/a-new-
tcp-ip-blind-data-injection-technique (visited on 09/30/2021).

[Zhe+20] Xiaofeng Zheng et al. “Poison over troubled forwarders: A cache poison-
ing attack targeting {DNS} forwarding devices”. In: 29th USENIX Security
Symposium (USENIX Security 20). 2020, pp. 577–593.

[Zhu+15] Liang Zhu et al. “Connection-oriented DNS to improve privacy and security”.
In: 2015 IEEE symposium on security and privacy. IEEE. 2015, pp. 171–186.

38

https://bugtraq.securityfocus.narkive.com/rm25I7e1/a-new-tcp-ip-blind-data-injection-technique
https://bugtraq.securityfocus.narkive.com/rm25I7e1/a-new-tcp-ip-blind-data-injection-technique
https://bugtraq.securityfocus.narkive.com/rm25I7e1/a-new-tcp-ip-blind-data-injection-technique

A. Papers and Posters

A.1. DNSSEC Misconfigurations in Popular Domains

[Dai16]
Tianxiang Dai, Haya Shulman, and Michael Waidner. “DNSSEC Misconfigu-

rations in Popular Domains”. In: Cryptology and Network Security. Ed. by Sara
Foresti and Giuseppe Persiano. Cham: Springer International Publishing, 2016,
pp. 651–660. isbn: 978-3-319-48965-0

39

DNSSEC Misconfigurations in Popular Domains

Tianxiang Dai(B), Haya Shulman, and Michael Waidner

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{tianxiang.dai,haya.shulman,michael.waidner}@sit.fraunhofer.de

Abstract. DNSSEC was designed to protect the Domain Name Sys-
tem (DNS) against DNS cache poisoning and domain hijacking. When
widely adopted, DNSSEC is expected to facilitate a multitude of future
applications and systems, as well as security mechanisms, that would use
the DNS for distribution of security tokens, such as, certificates, IP pre-
fix authentication for routing security, anti-spam mechanisms. Multiple
efforts are invested in adopting DNSSEC and in evaluating challenges
towards its deployment.

In this work we perform a study of errors and misconfigurations in
signed domains. To that end, we develop a DNSSEC framework and
a webpage for reporting the most up to date statistics and provide
reports with vulnerabilities and misconfigurations. Our tool also supports
retrieval of historical data and enables to perform long-term studies and
observations of changes in the security landscape of DNS. We make our
tool and the collected data available via an online webservice.

1 Introduction

Domain Name System (DNS), [RFC1034, RFC1035], has a key role in the Inter-
net. The correctness and availability of DNS are critical to the security and
functionality of the Internet. Initially designed to translate domain names to IP
addresses, the DNS infrastructure has evolved into a complex ecosystem, and the
complexity of the DNS infrastructure is continuously growing with the increas-
ing range of purposes and client base. DNS is increasingly utilised to facilitate
a wide range of applications and constitutes an important building block in the
design of scalable network infrastructures.

There is a long history of attacks against DNS, most notably, DNS cache
poisoning, [5–7,12,14,17]. DNS cache poisoning attacks are known to be prac-
ticed by governments, e.g., for censorship [1] or for surveillance [11], as well as
by cyber criminals. In the course of a DNS cache poisoning attack, the attacker
provides spoofed records in DNS responses, in order to redirect the victims to
incorrect hosts for credential theft, malware distribution, censorship and more.

To mitigate the threat from the DNS cache poisoning attacks, the
IETF designed and standardised Domain Name System Security Extensions
(DNSSEC) [RFC4033-RFC4035]. Unfortunately DNSSEC requires significant
changes to the DNS infrastructure as well as to the protocol, and although
proposed and standardised already in 1997, it is still not widely deployed. Stud-
ies show that less than 1% of the domains are signed with DNSSEC, [9,19] and

c© Springer International Publishing AG 2016
S. Foresti and G. Persiano (Eds.): CANS 2016, LNCS 10052, pp. 651–660, 2016.
DOI: 10.1007/978-3-319-48965-0 43

652 T. Dai et al.

about 3% of the DNS resolvers validate DNSSEC records, [3,13]. However, the
situation is improving and following the recent ICANN regulation, [15], the reg-
istrars are turning domain signing into an automated task, as the procedures for
automated domain signing by the registrars and hosting providers are becoming
widely supported. Now that the DNSSEC is taking off, tools for evaluating prob-
lems with signed domains are critical, since they can alert the domain owners
as well as clients of the potential pitfalls. Although tools for studying DNSSEC
exist, and we compare them with our tool in Related Work, Sect. 2, our tool
detects and reports misconfigurations and cryptographic vulnerabilities which
were not performed prior to our work.

In this work we perform a study of miconfigurations among DNSSEC-signed
domains. We first collect a list of popular signed domains, and then measure
the different misconfigurations and problems among them. We provide access to
our tool through a webpage, which can be accessed at: https://dnssec.cad.sit.
fraunhofer.de.

Contributions. We designed and implemented a framework, DNSSEC miscon-
figuration validation engine, which collects signed domains from multiple sources,
analyses the misconifgurations among them, and processes them into reports.
Our reports quantify two types of vulnerabilities in signed domains: crypto-
graphic failures (those preventing a DNS resolver from establishing a chain of
trust or domains using vulnerable DNSSEC keys) and transport failures (e.g.,
lack of support of TCP or EDNS). We use our engine to perform Internet-wide
collection of 1349 Top-Level Domains (TLDs) and top-1M Alexa (www.alexa.
com) domains.

We collected statistics between March and September 2016 with our tool,
and report on the current status as well as improvements that we detected over
time. Our study indicates that 90% of TLDs and 1.66% of Alexa domains are
signed. Among signed domains, 0.89% TLDs and 19.46% Alexa domains cannot
establish a chain of trust to the root zone; among those Alexa domains, 85.5%
are Second-Level Domains (SLDs). We also checked for the presence of DNSSEC
keys in domains with a broken chain of trust, in other repositories for DNSSEC
keys distribution. Of the 19.46% of the Alexa domains, only 51 have a DLV
resource record in dlv.isc.org. Namely, majority of the signed domains do not
provide any benefit by signing their records, since the clients anyway cannot
validate the signatures. We find domains with vulnerable DNSSEC keys, using
even RSA modulus. In contrast to February 2016, where 3% of TLDs did not
have support for TCP, all TLDs currently support TCP. However, 12.88% of
Alexa domains have nameservers which still cannot serve DNS responses over
TCP.

The reports and statistics can be accessed at https://dnssec.cad.sit.
fraunhofer.de.

Organisation. In Sect. 2 we compare our research to related work. In Sect. 3 we
describe our DNSSEC configuration validation engine, its components and the
data collection that we performed with. In Sect. 4 we perform a measurement of

DNSSEC Misconfigurations in Popular Domains 653

signed domains and characterise causes for the misconfigured signed domains.
We conclude this work in Sect. 5.

2 Related Work

The research and operational communities invested significant efforts in gener-
ating online services for studying DNS. We review some of the central services.

OARC’s DNS Reply Size Test Server is an online service for testing responses
size of DNS. The clients can use the tool to evaluate the maximum response size
that their network can support. This test is especially critical for adoption of
DNSSEC, since DNSSEC enabled responses typically exceed the standard size
of 512 bytes.

Multiple online services were designed for evaluating the security of port
selection algorithms, most notably porttest.dns-oarc.net; see survey and analysis
in [6]. The tools study the randomness in ports selected by the DNS resolver.

Recently multiple tools were proposed for checking DNSSEC adoption on
zones. For instance, DNSViz, given a domain name, visualises all the keys the
domain has and signatures over DNS records. It also checks that it is possible to
establish a chain of trust from the root to the target domain. SecSpider provides
overall statistics for DNSSEC deployment on zones, by collecting signed DNS
records and keys from the zones.

Our tool complements the existing tools by allowing to study insecurity or
misconfigurations on a given domain, as well as analysing statistics of the mis-
configurations over a given time period, and for a set of domains. In contrast to
existing tools which provide an analysis for a given domain that they receive in
an input, our tool is invoked periodically over the datasets that it uses, analyses
the data and produces reports with statistics. The reports contain misconfigu-
rations on the transport layer, such as support of TCP, as well as on the cryp-
tographic aspects, such as vulnerable keys and lack of chain of trust. Our tool
provides important insights to clients accessing domains as well as for domain
owners, and allows researchers to study changes in security and configurations
of domains over time.

Prior studies measuring adoption of DNSSEC, investigated validation on the
DNS resolvers’ side, [13], showing that a large fraction of DNS resolvers do
not perform correct validation of DNSSEC signatures. Other works investigated
obstacles towards adoption of DNSSEC, suggesting mitigations and alternative
mechanisms, [8–10].

Our tool provides insights on the status of adoption of DNSSEC among zones
and on misconfigurations within signed domains in DNS hierarchy, as well as on
the failures on nameservers, such as failures to serve responses over TCP.

3 DNSSEC Adoption/Configuration Framework

In this section we present our framework for collecting and processing domains,
illustrated in Fig. 1. In the rest of this section we explain the components of our

654 T. Dai et al.

Fig. 1. DNSSEC adoption and configuration evaluation framework.

DNSSEC validation engine, including data sources and data collection, and the
analysis of the data and processing into reports and online web page.

Domains Crawler. We developed a crawler to collect and store DNSSEC-
signed domains.

Data Sources. We collected sources of DNSSEC signed zones that we feed to
the database as ‘crawling seeds’:

(1) the root and Top Level Domain (TLD) zone files – we obtained the root and
TLD zone files (e.g., for com, net, org, info) from the Internet Corpo-
ration for Assigned Names and Numbers (ICANN). In total we study 1301
TLDs.

(2) we scanned the top-1M popular domains according to Alexa www.alexa.
com.

4 Evaluating Vulnerabilities in DNSSEC Adoption

In this section we provide our measurement of adoption of DNSSEC among
the domains in our dataset, i.e., the Top Level Domains (TLDs) and Second
Level Domains (SLDs) (based on the data sources in Sect. 3), and report on
misconfigurations and vulnerabilities.

Quantifying Signed Domains. We define DNSSEC-signed domains as those
with DNSKEY and RRSIG records. To check for the fraction of signed domains, we
checked for existence of DNSKEY and RRSIG records in our dataset. Our results
show that 90% of the TLDs and 1.66% of the SLDs are signed.

In Fig. 2 we plot the results we collected between March and September 2016.
The upper line indicates the total number of TLDs/SLDs, while the lower line
indicates the number of DNSSEC-signed TLDs/SLDs. In that time interval the
number of new TLDs increased by 250 and we observe roughly the same increase
in the number of signed TLDs. The graph also shows a growth in a number of new

DNSSEC Misconfigurations in Popular Domains 655

Fig. 2. All TLDs vs. signed TLDs (left). All SLDs vs. signed SLDs (right).

SLDs. However, in contrast to the steady increase in signed TLDs, the results
indicate a negligible increase in newly signed SLDs. The significant and constant
growth in the number of signed TLDs indicates that there is an increased aware-
ness to DNSSEC adoption. One of the main reason for lack of increase in SLDs
is that many registrars still do not support automated procedures for DNSSEC.

Crypto-Algorithms in Signed Domains. The signed zones can use
an arbitrary number of DNSSEC-standardised algorithms1. In addition,
[RFC4641,RFC6781] list mandatory support for RSA and recommend avoiding
large keys (specifying a range of 512–2048 bits for (ZSK) key size and recom-
mending a default value of 1024 bits); in order to avoid fragmentation, com-
munication and computation overhead and other problems with large keys and
signatures. In particular, [RFC6781] states “it is estimated that most zones can
safely use 1024-bit keys for at least the next ten years”.

We analysed our dataset of signed domains, and plot the results in Fig. 3.
For TLDs, the upper two lines are RSA-SHA256 and RSA-SHA1-NSEC3 corre-
spondingly. The two lines in the bottom are RSA-SHA512 and RSA-SHA1. For
SLDs, the upper four lines correspond to RSA-SHA256, RSA-SHA1-NSEC3,
RSA-SHA1 and ECDSA-P256-SHA256. DSA, RSA-SHA512 and ECDSA-P384-
SHA384 are in the bottom.

Our measurement shows that there is hardly any support for other crypto-
graphic algorithms, e.g., those that produce short signatures, such as ECC, since
the motivation to add more overhead to the transmitted data is low. Indeed,
most domains adopt different versions of RSA, which produces larger keys and
signatures.

RSA, with different digest implementations (SHA1, SHA256, SHA512), dom-
inates among the signed TLDs, and there is no support for other algorithms
among the TLDs, Fig. 4. In contrast, there is some, albeit still limited, attempt
to adopt also other cryptographic algorithms, such as DSA and EC in SLDs,
see Fig. 3. Indeed, ECDSA-P256 is ranked third among the cryptographic

1 http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.
xhtml.

656 T. Dai et al.

Fig. 3. DNSSEC algorithms adoption between March-September 2016 in signed TLDs
(left) and signed SLDs (right).

Fig. 4. DNSSEC algorithms in signed TLDs (left), in signed SLDs (right).

algorithms, just behind RSA-SHA1 (including RSA-SHA1 and RSA-SHA1-
NSEC3) and RSA-SHA256. ECDSA-P256 is gaining more popularity and grows
steadily. This also shows that more and more admins are adopting new algo-
rithms to improve DNSSEC performance.

We measured the key sizes in use by the different variations of RSA algo-
rithms, we plot our results in Fig. 5 on the right. It’s a CDF of key size in signed
domains. We can see about 34% of TLDs and 52% of SLDs are still using keys
shorter than or equal to 1024 bits. As for keys only, almost 1.4M keys are below
1024 bits, and 10 K keys are 512 bits long. These are really vulnerable. [18]
showed that factoring 512 bit keys on a cloud is a practical task. For updated
statistics on keys and DNSSEC algorithms see our webpage.

We also checked the digest algorithms used in DNSSEC. There are mainly
three digest algorithms employed by DNSSEC, SHA1, SHA256 and SHA512.
SHA1 has been known to be considerably weak. [16] showed a collision attack
against SHA1. Google also announced that they would completely block SHA1
certificates in 2017 [2]. Digests are used in three ways in DNSSEC. First, in digital
signature RRSIG along with RSA or ECC. Second, for authenticated proof of the
non-existence, in NSEC3. Third, as anchor for Key Signing Key, in DS.

DNSSEC Misconfigurations in Popular Domains 657

Fig. 5. Keys with even RSA moduli (left) and key sizes in TLDs and SLDs (right).

For digests in signature RRSIG as can be seen in Fig. 3 on the left for TLDs,
SHA256 is still the most popular and grows faster than the others. The growth
in adoption of SHA1 slows down. And there’s almost no increase in SHA512.
This indicates that there is an increased awareness to sunset SHA1 and promote
SHA256, while SHA512 is still not essential. When we look at the SLDs on the
right, SHA1 (including RSA-SHA1 and RSA-SHA1-NSEC3, 2nd and 3rd lines)
has almost the same share as SHA256 (including RSA-SHA256 and ECDSA-
P256, 1st and 4th lines). The good point is that SHA256 is growing faster than
SHA1. But it still needs time to move from SHA1 to SHA256.

Fig. 6. DNSSEC DS digest algorithms between March-September 2016 in signed TLDs
(left), in signed SLDs (right).

For digests in DS this is even more important, since a DS RR is the entry point
of a zone. As can be seen in Fig. 6, SHA256 overwhelms SHA1 in TLDs. Among
SLDs, number of domains using DS with SHA256 grows much faster than that
using SHA1 only. This indicates the increased awareness of vulnerability of SHA1.

Broken Chain of Trust. Finally we evaluate whether the DNS resolvers
can establish a chain of trust from the root to the signed domains (i.e., those

658 T. Dai et al.

with DNSKEY and RRSIG records). We perform this measurement for TLDs and
SLDs and report the results in Fig. 7. We use the terminology of [RFC3090],
where locally signed means that a chain of trust cannot be established from
the root (and the keys are also not present in external repositories, such as
DLV dlv.isc.org). The problems include wrong (or missing) DS records in parent
domain, incorrect (or missing) signatures, expired keys, DNSKEY and DS do not
match and more. There are 0.89% of domains among TLDs and 19.46% among
the SLDs to which we could not establish a chain of trust from the root, nor
could we locate their keys in DNSKEY repositories.

Fig. 7. TLDs with broken chain of trust vs. secure (left). SLDs with broken chain of
trust vs. secure (right).

In both domain types there is an increase in the number of signed domains
that cannot be validated. The increase is aligned with the increase in newly
signed domains.

We checked for the factors behind the large fraction of signed domains with
a broken chain of trust. The most common case of broken chain of trust is
an existence of DNSKEY but no DS in parent. This may happen when a domain
owner wants to enable DNSSEC but his registrar does not support DNSSEC,
which is common. Alternately, the same obstacle occurs when the registrar does
not support DNSSEC for a TLD under which the domain is registered, e.g.,
GoDaddy supports DNSSEC only for 10 TLDs. Other common cause is a faulty
DS record. This may happen when the domain operator transfers/updates the
domain/key or changes the name servers.

To fix these problems, it is recommended to move domains to the registrars
that support DNSSEC. If the TLD is not supported by the registrar, the DLV
service should be utilised. To track for misconfigurations, we provide our tool
for a public use, which can be accessed at: https://dnssec.cad.sit.fraunhofer.de.

RSA Keys with Even Moduli. Distinct moduli that share a prime factor will
result in public keys that appear different but whose private keys are efficiently
computable by calculating the greatest common divisor (GCD). For calculation
of GCD of every pair of keys we followed the approach in [4] and used the fast

DNSSEC Misconfigurations in Popular Domains 659

pairwise GCD quasilinear-time algorithm for factoring a collection of integers
into coprimes; we compiled and used the source code (https://factorable.net/
resources.html) provided by [4].

After calculating group-GCD on all the DNSKEY records, we found 16 even
RSA moduli.

The keys with even RSA moduli belonged to domains hosted or registered
by known registrars, such as Network Solutions, GoDaddy, OnlineNic. In Fig. 5
we plot our measurements of factorable RSA keys, collected over a period of
March-September 2016.

5 Conclusion

In this work we measured adoption of DNSSEC among TLDs and SLDs, and
then studied the security of the signed domains. To that end, we designed and
developed a tool that periodically collects data from signed domains, analyses
it and produces reports with statistics. Our data collection indicates that a
large fraction of signed domains have cryptographic misconfigurations, leading
to insecurity. The misconfigurations are either due to a broken chain of trust,
preventing the DNS resolver from validating the supplied DNS records, or due
to vulnerable cryptographic keys.

We developed an online service for providing updated reports and statistics
on adoption of DNSSEC, vulnerabilities and misconfigurations: https://dnssec.
cad.sit.fraunhofer.de.

Acknowledgments. The research reported in this paper has been supported by the
German Federal Ministry of Education and Research (BMBF) and by the Hessian
Ministry of Science and the Arts within CRISP www.crisp-da.de/.

References

1. Anderson, D.: Splinternet behind the great firewall of china. Queue 10(11), 40
(2012)

2. Google Online Security Blog: An Update on SHA-1 Certificates in Chrome (2015).
https://security.googleblog.com/2015/12/an-update-on-sha-1-certificates-in.html

3. Fukuda, K., Sato, S., Mitamura, T.: A technique for counting DNSSEC validators.
In: 2013 Proceedings IEEE INFOCOM, pp. 80–84. IEEE (2013)

4. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS, QS:
detection of widespread weak keys in network devices. In: Presented as part of the
21st USENIX Security Symposium (USENIX Security 12), pp. 205–220 (2012)

5. Herzberg, A., Shulman, H.: Fragmentation Considered Poisonous: or one-domain-
to-rule-them-all.org. In: The Conference on Communications and Network Security
IEEE CNS 2013, Washington, D.C., U.S. IEEE (2013)

6. Herzberg, A., Shulman, H.: Socket overloading for fun and cache poisoning. In:
C.N.P. Jr. (ed.) ACM Annual Computer Security Applications Conference (ACM
ACSAC), New Orleans, Louisiana, U.S, December 2013

660 T. Dai et al.

7. Herzberg, A., Shulman, H.: Vulnerable delegation of DNS resolution. In: Crampton,
J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 219–236.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 13

8. Herzberg, A., Shulman, H.: Negotiating DNSSEC algorithms over legacy proxies.
In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813,
pp. 111–126. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12280-9 8

9. Herzberg, A., Shulman, H.: Retrofitting security into network protocols: the case
of DNSSEC. Internet Comput. 18(1), 66–71 (2014). IEEE

10. Herzberg, A., Shulman, H., Crispo, B.: Less is more: cipher-suite negotiation for
DNSSEC. In: Computer Security Applications Conference, ACSAC 2014. Annual.
IEEE (2014)

11. Hu, M.: Taxonomy of the snowden disclosures. Wash Lee L. Rev. 72, 1679–1989
(2015)

12. Kaminsky, D.: It’s the End of the Cache As We Know It. In Black
Hat conference, August 2008. http://www.blackhat.com/presentations/bh-jp-08/
bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf

13. Lian, W., Rescorla, E., Shacham, H., Savage, S.: Measuring the practical impact
of DNSSEC deployment. In: Proceedings of USENIX Security (2013)

14. Shulman, H., Waidner, M.: Fragmentation considered leaking: port inference
for DNS poisoning. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS
2014. LNCS, vol. 8479, pp. 531–548. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07536-5 31

15. Internet Society: ICANNs 2013 RAA Requires Domain Name Registrars To Sup-
port DNSSEC (2013)

16. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full sha-1. Cryptology
ePrint Archive, Report 2015/967 (2015). http://eprint.iacr.org/2015/967

17. Stewart, J.: DNS cache poisoning-the next generation (2003)
18. Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S., Heninger, N.: Factoring

as a service
19. Yang, H., Osterweil, E., Massey, D., Lu, S., Zhang, L.: Deploying cryptography in

internet-scale systems: a case study on DNSSEC. IEEE Trans. Dependable Secur.
Comput. 8(5), 656–669 (2011)

A.2. Domain Validation++ For MitM-Resilient PKI

[Dai18]
Markus Brandt et al. “Domain Validation++ For MitM-Resilient PKI”. in: Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18. Toronto, Canada: Association for Computing Machinery, 2018,
pp. 2060–2076. isbn: 9781450356930. doi: 10.1145/3243734.3243790.
url: https://doi.org/10.1145/3243734.3243790

Declaration of Contributions

The paper "Domain Validation++ For MitM-Resilient PKI" was published as a
full research paper at the "2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18)". It constitutes a joint work of Markus Brandt,
Tianxiang Dai, Amit Klein, Haya Shulman and Michael Waidner.
Haya Shulman proposed initial concept and structured the paper. Haya Shulman
also wrote Introduction, Related Work and Conclusions. Tianxiang Dai wrote the
offence part including CA selection (Section 2) and attacks against CAs (Section
3), except for Subsection 3.3 about cache overwriting, which was written by Haya
Shulman. Tianxiang Dai also wrote the Appendix. Markus Brandt wrote the
defence part about DV++ (Section 4). Tianxiang Dai designed, implemented
and analysed the evaluations on CAs and popular domains. More specifically,
on the CA and resolver side, Tianxiang Dai setup the testing infrastructure and
evaluated all CA resolvers’ vulnerabilities, except for the cache overwriting test,
which was performed by Haya Shulman. On the domain and nameserver side,
Tianxiang Dai performed all the evaluations and analysed them. Markus Brandt
designed, implemented and analysed the DV++ system. Tianxiang Dai also
implemented a proof-of-concept attack and demonstrated it against a chosen CA.
Besides, Tianxiang Dai developed the project website. Michael Waidner was a
general advisor of this work and contributed with continuous feedback during all
phases of the paper writing process. The paper was presented at the conference
by Markus Brandt.
All authors agree with the use of their joint paper as part of Tianxiang Dai’s
cumulative dissertation, considering a contribution of 50% from Tianxiang Dai.

50

https://doi.org/10.1145/3243734.3243790
https://doi.org/10.1145/3243734.3243790

Domain Validation++ For MitM-Resilient PKI
Markus Brandt
Fraunhofer SIT
TU Darmstadt

Tianxiang Dai
Fraunhofer SIT

Amit Klein
Fraunhofer SIT

Haya Shulman
Fraunhofer SIT
TU Darmstadt

Michael Waidner
Fraunhofer SIT
TU Darmstadt

ABSTRACT
The security of Internet-based applications fundamentally relies
on the trustworthiness of Certificate Authorities (CAs). We prac-
tically demonstrate for the first time that even a weak off-path
attacker can effectively subvert the trustworthiness of popular com-
mercially used CAs. Our attack targets CAs which use Domain
Validation (DV) for authenticating domain ownership; collectively
these CAs control 99% of the certificates market. The attack utilises
DNS Cache poisoning and tricks the CA into issuing fraudulent
certificates for domains the attacker does not legitimately own –
namely certificates binding the attacker’s public key to a victim
domain.

We discuss short and long term defences, but argue that they fall
short of securing DV. To mitigate the threats we propose Domain
Validation++ (DV++). DV++ replaces the need in cryptography
through assumptions in distributed systems. While retaining the
benefits of DV (automation, efficiency and low costs) DV++ is se-
cure even against Man-in-the-Middle (MitM) attackers. Deployment
of DV++ is simple and does not require changing the existing in-
frastructure nor systems of the CAs. We demonstrate security of
DV++ under realistic assumptions and provide open source access
to DV++ implementation.

CCS CONCEPTS
• Security and privacy→ Security protocols; Public key encryp-
tion; Distributed systems security;

KEYWORDS
PKI security, DNS cache poisoning, Certificates, CA attacks

ACM Reference Format:
Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael
Waidner. 2018. Domain Validation++ For MitM-Resilient PKI. In 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’18), Oc-
tober 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3243734.3243790

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243790

1 INTRODUCTION
Stability and security of web ecosystem rely on Certificate Authori-
ties (CAs) to ensure that services are trusted and communication
to them is secure. CAs vouch for trustworthiness of a service by
issuing a digital certificate that binds a domain name to a public
key of the service. Upon receiving the request for a certificate for
domain, say vict.im, a CA validates that the server issuing the
request owns and controls the domain for which it requests the
certificate. After a successful validation of the ownership of the
domain, CA issues the certificate. The certificate contains, among
others, the public key of the requesting server and the requested
domain. Domain name within the certificate is a key element on
which trust can be built. The certificate is signed by the private key
of the CA. The server then uses this certificate to prove its identity
to clients in the Internet. The clients use the server’s public key in
the certificate to establish a secure (encrypted and authenticated)
connection to the server.

Browsers have hundreds of registered CAs, and a valid certificate
for any domain signed by any of these trusted CAs is accepted by
the browsers. Hence, correctly verifying ownership of the domain
during the certificate issuance is critical to ensure the security of
the clients and services. There are a number of approaches that
CAs can use to establish ownership of domains: Domain Validation
(DV), Organisation Validation (OV) and Extended Validation (EV).
DV provides a number of techniques (e.g., using Email or Domain
Name System (DNS)) that allow to prove in an automated way that
the applicant owns a given domain name. The idea behind DV is
that only the owner of the domain can receive the communication
sent to the services in that domain and can respond to them. EV
and OV are meant to ensure more stringent certification and are
carried out with some human interaction.

Although EV and OV provide a higher assurance of ownership,
they are cumbersome and inefficient since they require manual
processes for establishing the identity of the applicant, e.g., commu-
nication with the customer that requests the certificate, phone calls
to the company, additional documents, such as personal identifica-
tion card, or impose checks against official government sources. In
addition, manual verification during certificates generation is more
lengthy and results in high costs, e.g., certificates’ prices can exceed
1000 USD. In contrast, the automation offered by DV enabled to
reduce the certificates’ prices while improving efficiency of the
certificates’ issuance process and ultimately increasing the market
share of DV supporting CAs to 99%.

In this work we explore the security of the DV procedure used
by the CAs to establish ownership of domains. We identify vulner-
abilities and show that even a weak off-path attackers can trick the

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2060

DV process and issue certificates for domains they do not own. We
evaluate the attack against CAs and show that vulnerabilities exist
in popular and large CAs. Our attack exploits vulnerabilities in
DNS, which allow us to inject incorrect mappings into the caches of
DNS resolution platforms of CAs. These mappings map the target
domain to attacker’s controlled IP addresses. As a result, the CAs
perform the DV process against the hosts that are controlled by the
attacker and not against the real owner of the domain. We discuss
obstacles and challenges and show how to overcome them and
launch a successful off-path attack during the certificate issuance.
Our results demonstrate that Public Key Infrastructure (PKI)1 which
is meant to provide security against strong Man-in-the-Middle (MitM)
attackers, is relying on a weak building block that can be circumvented
by an off-path attacker.

We discuss short term patches but show that they do not miti-
gate the vulnerability. A cryptographic defence for DNS, DNSSEC
[RFC4033-RFC4035], would prevent the attacks, but it would take
long until the domains are protected with DNSSEC and DNS re-
solvers perform validation (we explain this in Section 3.6.2). We
build upon the ideas of replacing cryptography through assump-
tions in distributed systems, [19], and design and implement Do-
main Validation++ (DV++) - a distributed mechanism for authen-
ticating ownership of Internet domains. We show that DV++ is
resilient to MitM attackers, while retaining the benefits of DV.

PKI Security
A large research effort is focused on evaluating and improving
security of PKI; see Section A for background on PKI. There are
works that evaluate security of keys used to establish a secure
communication [29], others showed how to exploit side channels
to recover plaintext from encrypted communication [6], or launch
downgrade attacks for recovering the encrypted communication
[9]. There is also a history of attacks against PKI, typically by
compromising a CA (we review these in Related Work, Section 5).
However, no attention was given to the authentication of ownership
used by the CAs. Correctly authenticating ownership of resources
is a key element in certification and essential for building trust in
the cryptographic material used for securing the communication.

The vulnerabilities along with the need to secure PKI motivated
research on security mechanisms, most of which propose alter-
native models for PKI. Some proposals attempt to identify com-
promised certificates by using log servers which monitor CAs be-
haviour, for instance, Certificate Transparency [42], Sovereign Keys
[21], Accountable Key Infrastructure [38], Attack-Resilient Public
Key Infrastructure [12].

The proposals provide a good starting point and promising di-
rections for design of future PKI. However, most are not adopted
due to their prohibitive complexity and performance as well as
the changes that they require to the existing infrastructure and
the deployment overhead (e.g., introduction of multiple interacting
entities). In this work we propose improvements to the existing PKI
without changing the infrastructure or introducing new actors – we
design and implement DV++ which replaces DV without requiring
further modifications to the PKI. In contrast to DV, which we show

1PKI is a set of roles, policies, procedures and entities for creating and managing
certificates and public-key encryption.

is vulnerable even to off-path attacks, DV++ provides resilience
against the strong (on-path) Man-in-the-Middle (MitM) attackers.
Security against MitM attackers is essential since PKI needs to op-
erate over untrusted networks. Hence it is prudent to assume that
the attackers can eavesdrop, modify and inject messages. A critical
property of DV++ is that it requires no changes to the existing CAs
ecosystem. The interface and communication with the CA and with
the verified domain are identical to DV. The difference is in the
verification process which DV++ applies - which is transparent to
the other actors in the CA ecosystem. We explain this in Section 4.

Attacker Model
For our attacks we use the weakest off-path attacker, which does
not have access to the communication of legitimate parties. The
attacker can generate packets and spoof source IP addresses. No-
tice that often off-path attackers can gain MitM capabilities, e.g.,
by launching BGP prefix hijacking attacks. Indeed, attackers are
becoming more sophisticated and increasingly leverage BGP hi-
jacking for DNS cache poisoning [44]. Such attackers obtain MitM
capabilities for a short period of time and can efficiently launch the
attacks described in this work. We demonstrate however, that even
weaker (complete off-path) attackers, can subvert the security of
DV validation in PKI.

Disclosure and Ethics
Our research shows that even weak off-path attackers can exploit
vulnerabilities to issue fraudulent certificates. This puts at risk not
only the vulnerable CAs but the entire PKI ecosystem, with services
and clients. Nevertheless, we believe that this research is important:
since the vulnerabilities exist, they may be exploited by attackers
for malicious purposes without notifying the affected entities. Our
goal is to expose and mitigate these issues. We are disclosing the
vulnerabilities and are in contact with the affected CAs.

In the attacks that we demonstrate in this work we leverage DNS
cache poisoning for injecting spoofed records into DNS caches.
Hence to mitigate our attacks the immediate short term counter-
measure is to fix the vulnerabilities in DNS that allow injection of
records into caches. We notified the affected DNS vendors, DNS
operators and service providers of the vulnerabilities.

Our attacks did not target any existing Internet clients and do-
mains. Evaluation of our attacks against CAs’ DNS resolvers were
carried out using a domain that we own (for simplicity in this
work we use domain vict.im). This ensured that the CA would
not use the spoofed records for any “real” purpose. We setup a set
of attacking hosts, which were issuing certificates for resources in
domain vict.im. Our techniques can be applied to attack other
domains (we survey the attack surface of popular domains that can
be potential victims) hence adoption of mitigations is critical.

Our attacks were carried out ensuring that the normal CAs func-
tionality is not affected. Part of our study was inferring different
cache overwriting vulnerabilities, which we tested against the DV-
supporting CAs. The study of caches introduces a larger volume of
traffic, than say, merely running an attack with the goal of exploit-
ing a single vulnerability. To avoid any potential load on the CAs
infrastructure we distributed the study over a long period of time,
with waiting intervals between the requests for issuing certificates.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2061

Hence, guaranteeing that we do not generate an excessive traffic
volume on the CAs.

Contributions
In this work we show that the DV mechanism, applied by the CAs
to authenticate ownership of domains, can be circumvented by
off-path attackers. In our attacks we leverage DNS cache poisoning
for injecting spoofed records into caching DNS resolvers, mapping
the resources in the target domain to attacker-controlled hosts. As
a result, the DV performed by the CA is run against attacker’s
hosts (in this work these are our machines), which allows the off-
path attacker to successfully pass the validation, and to receive
fraudulent certificates (signed by a CA) for domains that the attacker
does not own. We demonstrate the attack and evaluate it against
DV supporting CAs. We successfully launched the complete attack
against 7 of the DV-supporting CAs. Hence at least 7 CAs are
vulnerable to our attack, but potentially more DV-supporting CAs
are vulnerable; we explain the conditions for successful attack in
Section 3. Unfortunately, even a single vulnerable CA is sufficient
for subverting the security of PKI. This is due to the fact that the
security of PKI is based on the security of the weakest link in
the infrastructure - compromising a single CA allows attackers to
issue fraudulent certificates for any domain, which would then be
accepted by any operating system and any browser which have
that vulnerable CA on a list of trusted CAs.

Our work is the first to weaponise off-path DNS cache poisoning
for attacking a complex system, such as the certificates generation.
Prior to our work, such off-path attacks were considered anecdotal
and rather on a theoretical spectrum. DNS cache poisoning attacks
are known to be launched in the wild, but these are done with
a MitM attacker, which observes the requests and can efficiently
craft malicious DNS responses, e.g., DNS cache poisoning for email
hijacking [18] or for stealing digital cash [44]. In this work we
provide the first demonstration of exploitation of off-path DNS
cache poisoning for attacking a critical system - the certificate
generation in PKI.

We discuss possible mitigations but argue that they do not solve
the problem. Cryptographic protection of DNS would prevent the
attacks but it is not clear when DNSSEC is going to be fully de-
ployed. We follow the ideas of [19] for replacing cryptography
through assumptions in distributed systems. We propose DV++,
a modification to DV, which maintains the benefits of DV (it is
efficient, automated, fits within the existing business model) while
providing resilience even against MitM attackers. We discuss how
DV++ can be useful also in other settings where mechanisms rely
on correct and secure DNS functionality. We make the code of DV
publicly available.

Organisation
In Section 2 we discuss the CAs ecosystem and explain which
CAs we focus on in this work. In Section 3 we present the different
modules in our attack and then show how to apply them to trick CAs
to issue certificates for domains that the applicant does not own.We
also survey the attack surface of domains that are potential victims.
We provide recommendations and discuss their impact on clients.
In Section 4 we propose DV++, and provide its implementation

and experimental evaluations. In Section 5 we review related work.
Finally, in Section 6 we conclude this work. Appendix, Section A
provides background on DNS and PKI.

2 DV-SUPPORTING CA LIST
2.1 Selecting CAs
Although there are 122 root CAs, the 51 DV supporting CAs control
more than 99% of certificates market share2,3. The other CAs are
resellers which use root CAs, device based CAs, e.g., for ID card
or hardware, or country-specific CAs, which accept only specific
country code for issuing certificates.

In our study we focus on CAs supporting DV, with which we
could register and issue certificates. We list them in Figure 1. Root
certificate programs can be extracted from the browsers and the
Operating Systems (OS). We extracted CAs from the following OS:
Internet Explorer with Windows, Apple with OS X/iOS, Mozilla
with Linux.

2.2 Issuing Certificates
To issue a certificate an applicant should fill out a form called Cer-
tificate Signing Request (CSR) on CAs websites. The CSR contains
information that is included in the certificate, such as organisation
name, domain name, country, public key and more. A CA then uses
the submitted CSR to authenticate the domain ownership by the
applicant and subsequently to issue the certificate. When submit-
ting the CSR the applicant should also specify which DV method
it would like the CA to use for authenticating ownership of the
domain. In what follows we describe the DV procedures that are
supported by the CAs.

2.3 DV Methods
There are a number of methods for performing DV. We list them
in Figure 1. Some CAs support more than one DV method. When
a CA supports more than one method, the applicant can specify
which method it wishes to use. All the methods rely on DNS, and
can be subverted via DNS cache poisoning. We summarise which
CA supports what DV methods in Figure 1, and below explain how
the validation is performed:

2.3.1 Email-Based DV. Upon filling out a CSR an email is issued
to the administrative contact of the domain selected by the appli-
cant out of email addresses registered for that domain in Whois.
The email typically contains validation code and link, which the
recipient has to click and enter the code to prove control over the
domain. If the correct code is entered the code proceeds with the
certificate issuance.

2.3.2 WHOIS-Based DV. Similar to email-based DV, except that
the client cannot select which email (out of those registered as
administrative for the domain) will be used in the validation. During
the DV procedure the CA selects itself the email address and can
use any Admin, Registrant, Tech or Zone contact email address that
appears in the domain’s WHOIS record.

2https://w3techs.com/technologies/overview/ssl_certificate/all
3https://www.netcraft.com/internet-data-mining/ssl-survey/

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2062

2.3.3 DNS-Based DV. Upon submitting a CSR, a hash value
is provided which has to be entered as a DNS CNAME Resource
Record (RR) for the domain in the zonefile. For example, assume that
applicant’s domain is vict.im and CAs domain is ca-domain.com.
The CNAME record would be:

hash1.www.vict.im. CNAME hash2.ca-domain.com.
The DNS resolver of the CA queries the domain of the applicant

and checks the presence of the CNAME record. If the correct record
is present, the CA proceeds to issue the requested certificate.

2.3.4 HTTP/S-Based DV. Upon the submission of a CSR, a hash
value is returned to the client. A file should be created and placed
at the root of the web server with the hash value as its name, as
follows: http://www.vict.im/hash-value1.txt.

The content of the file should contain hash-value2 and the
domain ca-domain.com.

The CA makes an HTTP/HTTPS request to retrieve the file. If
correct, the CA proceeds to issue the certificate.

Figure 1: List of CAs and the supported DV methods.

3 OFF-PATH ATTACKS AGAINST DV
In this section we show that an off-path attacker can impersonate a
victim domain to a CA and cause the CA to issue a spoofed (fraud-
ulent) certificate binding the public key of an off-path attacker to a
victim domain. The main ingredient in impersonating a victim do-
main is a DNS cache poisoning attack against a caching resolver of
the CA. During the attack we inject a spoofed DNS record mapping
the CA to an attacker controlled email and DNS server. As a result
the DV process is performed against the attacker-controlled host,
to which the attacker can respond, impersonating a victim domain.

The attack consists of a number of components. First we show
how to cause the victim CA to issue a DNS request to the name-
server controlled by the attacker. Next we show how to match
the challenge response authentication parameters in the spoofed
DNS response, such that the response is accepted by the receiving

caching DNS resolver of the CA. Finally, we explain how to con-
struct the records in the spoofed DNS response, so that they are
cached by the receiving caching resolver. We then present the at-
tack and provide a measurement study of the CAs and the potential
victim domains (from popular Alexa www.alexa.com domains) to
estimate the number of clients and servers in the Internet vulnerable
to our attack.

3.1 Triggering DNS Request
To initiate our study of cache poisoning vulnerabilities in CAs we
need to trigger a DNS request from the victim DNS caching resolver
to our nameservers. The problem is that the resolvers are configured
not to respond to external requests, and since we are not on the
network of the CA triggering a DNS request from the outside is a
challenge. We trigger a query indirectly. To trigger a DNS request
we upload a CSR – this initiates the DV procedure against the target
domain (which we provide in the CSR). The “target domain” is the
victim domain whose records the attacker wishes to poison in CA’s
DNS resolver. As a target domain in this work we use vict.im.

In the rest of this section, our study and attacks are performed
in a black-box manner, using the requests that are sent from the
caching DNS resolver of the CA to our nameservers. In response to
the DNS request of the caching resolver we generate responses that
cause the resolver to follow-up with DNS requests. This is achieved
with, e.g., referral type responses, as well with responses with
CNAME records. These interactions allow us to characterise the
caches, identify vulnerabilities and eventually launch the attacks.

Figure 2: Defragmentation cache poisoning for subverting
DV.

3.2 Defragmentation Cache Poisoning
The goal of our attacker is to spoof a DNS response packet from the
nameserver to the CA’s DNS resolver, which the resolver accepts
as valid.

Once a DNS request is issued the time window for DNS cache poi-
soning attack is initiated. The window ends either when a timeout
event happens or when a correct response arrives. To craft a correct
response, the attacker has to guess the challenge-response authen-
tication parameters in the DNS request. These are different values,
most notably, source port and DNS Transaction Identifier (TXID),

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2063

which are randomised by the DNS resolver in the request, and are
validated in the response [RFC5452]; we provide background on
DNS and security against cache poisoning in Appendix, Section A.
Figure 3 illustrates a structure of a DNS request from DNS resolver
at IP address 7.7.7.7 to a nameserver at IP address 2.2.2.2 sent from
UDP source port 12345 and with TXID of 76543.

Figure 3: DNS request packet from DNS resolver at 7.7.7.7 to
a nameserver at 7.7.7.7

Since source port and TXID are both 16 bits, they generate to-
gether a range of 232 possible values. This is a lot of entropy hence
it seems to make DNS robust to off-path attacks. Specifically, the
attacker must spoof DNS responses with the correct source port
and TXID which is about 232 bits of entropy. In this section we
show that this is not the case. We show how an off-path attacker
can hijack the communication between the resolver and the name-
server. The key ingredient is overlapping IPv4 packet fragments.
Our attacker does not attempt to guess the source port and TXID.
Instead we use IPv4 packet fragmentation to overwrite the relevant
fields in a real DNS response from the nameserver, with malicious
values. In what follows, we explain fragmentation and Maximum
Transmission Unit (MTU), we discuss how to force a server to send
a fragmented response, and then describe how to combine these
for attacking a defragmentation cache to inject a spoofed record
into the caching DNS resolver of the CA.

3.2.1 Maximum Transmission Unit. The Maximum Transmis-
sion Unit (MTU) is the largest number of bytes that can be transmit-
ted over a link in one datagram. The Path MTU between two end
points is limited by the lowest MTU on the path [RFC791]. When
packets exceed the path MTU, they will not be received at the des-
tination. To cope with this, the Internet Protocol (IP) provides the
possibility to fragment packets into smaller fragmented packets.
Most networks support currently MTU of 1492 bytes [RFC2516].
According to [RFC791] the minimum MTU in the Internet is 68
bytes. The DNS responses typically do not exceed 1500 bytes, unless
they contain a cryptographic material due to the use of DNSSEC
[RFC4033-RFC4035]. Hence, most DNS responses would not frag-
ment.

The idea of the attack is that the attacker “convinces” the name-
server to fragment responses to a specific destination. As a result,
the nameserver responds with a fragmented packet, such that the
second fragment contains either the additional or also the authority

Figure 4: CDF of the packets’ sizes in response to an ICMP
fragmentation needed error message for servers that re-
duced their responses sizes.

sections of a DNS response; see Appendix A for details on DNS
packet structure.

3.2.2 ICMP Fragmentation Needed. To reduce fragmentation
load on the routers, [RFC1191] proposes a mechanism to discover
the MTU between two hosts. To do so, hosts make use of the Do
Not Fragment (DF) bit in the IP header to instruct the routers along
the path to not fragment the packet in case the packet exceeds the
MTU of the next hop. Instead, intermediate hosts will discard the
packet and issue an ICMP Destination Unreachable error message
(type 3) to the originator with the code Fragmentation Needed and
DF set (code 4). The information in the ICMP error message is stored
by the receiving OS, e.g., 10 minutes by default on Linux 3.13. The
ICMP error message can be originated by any Internet node on the
path between the sender and the receiver and the receiver of the
ICMP error message is not expected to know the IP addresses of the
nodes on the path. Hence, we use an off-path attacker to issue an
ICMP fragmentation needed packet to the nameserver, indicating
that it should reduce the MTU when sending packets to the victim
resolver.

We measured the fraction of servers among 5K-top Alexa that
reduce the MTU size following ICMP fragmentation needed packet:
33, 4% of the servers reduce the packet size up to 296 bytes, and
11% reduce the fragment size to below 296 bytes. Figure 4 shows
the CDF of packet sizes that were received in response to an ICMP
fragmentation needed packet. While less than 15% of servers reduce
their packet size below 296 bytes, almost 80% of servers are willing
to reduce the packet size below 600 bytes (the two steps in Figure
4 represent 552 bytes, which is the default minimal value in the
Linux kernel and 576, which is the suggested minimum MTU by
the RFC).

The spoofed ICMP error message does not need to be sent from a
spoofed source IP address - ICMP error message can originate from
any node on the path. In contrast to ICMP with TCP headers, the
OSes typically do not apply any checks on the received ICMP error

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2064

messages with UDP headers, e.g., Linux 3.13. This is due to the fact
that UDP is stateless. Hence, crafting a spoofed ICMP fragmentation
needed error message is a simple task.

Figure 5 shows an example ICMP fragmentation needed error
sent by an attacker at IP 6.6.6.6 to nameserver at IP 2.2.2.2 telling
the nameserver to reduce the MTU to 100 bytes for all packets
it sends to the DNS resolver at 7.7.7.7. The payload of the ICMP
packet is the IP header and the first eight bytes of the original
packet (that triggered the ICMP error message). The nameserver
stores this information and uses it for limiting the size of IP packets
to destination IP (7.7.7.7) and protocol (UDP).

Figure 5: ICMP fragmentation needed packet from attacker
at 6.6.6.6 to nameserver at 2.2.2.2 indicating an MTU of 100
bytes for resolver at 7.7.7.7.

3.2.3 IPv4 Fragmentation and Reassembly. Upon arrival to the
receiver the fragments of an IP packet are stored in an IP defrag-
mentation cache, by default for 30 seconds. The receiver uses the IP
ID value in the fragments to identify all the fragments of the same
original IP packet (they all have the same IP ID value). Then uses
the offset field to reassemble their payload together. The receiver
knows that all the fragments of the original IP packet have arrived
by checking that the fragment with the lowest offset has a More
Fragments (MF) value of zero.

Figure 6: Malicious second fragment sent by attacker at
6.6.6.6 from a spoofed IP address 2.2.2.2 to the DNS resolver
at 7.7.7.7, assuming MTU of 68 bytes.

Figure 7: First fragment sent by the nameserver at 2.2.2.2 to
the DNS resolver at 7.7.7.7, assuming MTU of 68 bytes.

3.2.4 Exploiting Fragmentation for Defrag. Cache Poisoning. In
this section we show how we exploit fragmentation for injecting a
spoofed payload into a DNS response from the real nameserver. For
our attack we exploit fragmentation, and trick the receiving resolver
into reassembling the first fragment from the real response from the
nameserver with the second fragment generated by the attacker.
This allows us to bypass the challenge-response authentication
fields used by the DNS resolvers, since they are echoed by the
nameserver in the first fragment. In Section 3.2.2 we showed howwe
ensure that the response from the target nameserver is fragmented.

Assume that the attacker wishes to impersonate vict.im, and
get a certificate for vict.im with a mapping to an attacker con-
trolled IP address. The attack is initiated with an off-line prepro-
cessing phase, during which the attacker needs to perform a mea-
surement and a calculation, which it will use to set the values in
the ICMP fragmentation needed error message in step (4) (Figure 2)
and based on which it will construct the spoofed second fragment
in step (1) (Figure 2). The attacker measures the responses’ sizes
from the nameserver of vict.im and calculates the offset where
the fragmentation should occur. The MTU in the ICMP fragmenta-
tion needed error message is set accordingly. The goal is to ensure
that the records, which it will replace with spoofed records, are in
second fragment.

The attack proceeds as illustrated in Figure 2. In step (1) the
attacker sends to the victim DNS resolver a spoofed second frag-
ment (see spoofed second fragment illustrated in Figure 6). The
fragment is cached by the receiving resolver in the IP defragmenta-
tion cache waiting for the remaining fragments to arrive. In step (2)
the attacker uploads a CSR form requesting certification for domain
vict.im. The attacker selects an email based DV, hence in step
(3) the DNS resolver at the CA issues a DNS request to the name-
server of vict.im domain asking for an IP address of the email
server mail.vict.im. The attacker issues an ICMP fragmentation
needed packet in step (4) to ensure that the response is fragmented;
this ICMP error message can be issued also before step (3). In step
(5) the nameserver of vict.im sends a fragmented DNS response.
The first fragment contains the entropy (resolver’s source port and
TXID are copied by the nameserver to the response) and some of
the DNS payload, such as the question section, answer section, and

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2065

probably part of the authoritative section (see first fragment in
Figure 7). Some of the records from the authoritative section (or
the complete authoritative section) as well as the additional section
are in the second fragment. The first fragment is then reassembled
with the spoofed second fragment that was already in the cache
of the DNS resolver; they both leave the cache, and are passed on
to the UDP layer. The legitimate second fragment will not have
any first fragment to reassemble with, since when it arrives the
legitimate first fragment have already been reassembled with the
spoofed second fragment and left the buffer. The remaining steps
(6)-(8) complete the DV process.

Notice that in step (1) when sending the spoofed fragment the
attacker needs to ensure the correctness of UDP checksum and IP
ID. In what follows we describe both challenges and explain how
we ensure them.

3.2.5 UDP Checksum. The method to calculate UDP checksum
is defined in [RFC768]. The UDP checksum is calculated as the 16-bit
one’s complement of the one’s complement sum of the fields in IP
header, the UDP header and the UDP payload. The UDP checksum
value is stored in the UDP header. Upon receipt of a UDP packet the
receiver calculates the UDP checksum (using the same procedure as
the sender did) and then compares whether it is the same value as
in UDP header. If the value differs - the UDP datagram is discarded.

If the checksum in the second spoofed fragment is not adjusted,
When the spoofed second fragment is reassembled with the first real
fragment, the overall value of the UDP checksum of both fragments
is altered, and will differ from the UDP checksum value in the
UDP header. Specifically, the spoofed second fragment contains
different records than the real second fragment. Hence, the attacker
needs to adjust the UDP checksum of the second fragment such that
the computation of the UDP checksum using the payload in both
fragments remains similar to the original value of UDP checksum
in the UDP header.

The attacker can ensure this as follows: the attacker sends a
request to the nameserver and receives a response in two fragments
(possibly using the ICMP fragmentation needed packet to enforce
fragmentation). The attacker calculates the UDP checksum value of
the second fragment, then alters the second fragment and calculates
the checksum of the altered second fragment. The difference value
in the checksum of both second fragments the attacker needs to add
(or remove) by altering two bytes (in even location) in the altered
second fragment. This is a simple computation since the attacker
knows the original value, and knows what bytes were modified, it
can efficiently compute the difference and add (or remove) it to the
value of UDP checksum of second fragment.

To adjust the value of two bytes the attacker can either modify
two bytes in any record in the second altered fragment, or can add
the two bytes at the end, after the EDNS [RFC6891] record (in this
case the DNS software will ignore these two bytes but they will be
included in the UDP checksum computation).

3.2.6 IP ID. The spoofed second fragment should contain the
correct IP ID value – the same value as the original IP packet sent
by the nameserver. The attacker must predict this value correctly,
otherwise, when the first fragment and the spoofed second fragment
have different IP ID values, the receiving OS will not reassemble
them together.

Predicting the IP ID value can typically be done efficiently. There
are three IP ID assignment algorithms: sequentially incrementing
(the OS increments IP ID value by one for every sent packet), per-
destination sequentially incrementing (the OS increments IP ID
by one for every packet sent to a given destination), and random
[24, 41]. We describe the three cases below.

Sequentially Incrementing IP ID. More than 60% of 10K-top Alexa
domains use sequentially incrementing IP ID values assignment.
Windows operating systems use a sequentially incrementing IP ID.

The attacker samples the IP ID value from the nameserver and
samples the IP ID increase rate. Then the attacker calculates the
IP ID value that will be assigned at the time the nameserver sends
the DNS response to the victim DNS resolver. The attacker uses
this value in the second spoofed fragment. The attacker can also
send multiple fragments with different IP ID values to increase his
chances to hit the correct IP ID value.

Per-Destination IP ID. A bit less than 40% of the nameservers use
a per-destination incrementing IP ID. Linux versions are using a
per-destination incrementing IP ID assignment. Our attacker uses
the techniques presented in [41] for predicting the IP ID values.
Since this is not the focus of our work, we do not describe the
algorithm here and refer an interested reader to [24, 41] for details.

Random IP ID. Very few servers use random IP ID values, less
than 1%. The reason is the overhead that it introduces on the server.
Specifically, instead of maintaining a single counter (as in the case
of globally incrementing) or one counter per destination (in the case
of per destination incrementing IP ID), in this case the server has to
maintain multiple counters, and to continually check for collisions,
i.e., that it does not select an IP ID that was already allocated.

The success probability of the attack in case of a single fragment
is 1

216 . The attacker can increase its success probability by sending
multiple fragments, each with a different IP ID value. Assuming
an infinite size defragmentation cache, if the attacker sends 216
fragments, its success probability is 1. The existing OSes however
limit the number of fragments that can be sent, e.g., Windows to 100
fragments, recent Linux versions to 64 and older allow several thou-
sand fragments [37]. In Linux, the limit is set via ip_frag_max_dist
parameter.

3.3 Overwriting Cached Records
Defragmentation cache poisoning allows to bypass the challenge
response authentication as the entropy is in the first fragment and
the attacker injects payload into the second fragment. A successful
defragmentation cache poisoning allows to bypass the validation
of the OS and the packet is transferred on to the DNS software.
Now, the task is to ensure that the records (sent in the spoofed DNS
response) are cached and served in responses to applications and
clients. The problem is that often the records will already be present
in the cache. For instance, records of domains of interest or popular
domains, such as banks and social networks, are typically present
in caches. The resolvers will not necessarily overwrite the already
cached values, in fact, often they will silently ignore records for
which there are cached copies but with other values. This poses a
challenge - how to overwrite the already cached records with new
values?

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2066

The tricky part here is that different DNS software assign dif-
ferent trust ranks to DNS records and apply different logic when
overwriting the cached records with new values. The higher the
rank the more difficult it is to overwrite the cached record with a
new value. The ranking of DNS records is discussed in [RFC2181],
and these recommendations are interpreted and implemented in
each software differently. Since the records’ overwriting behaviour
is so different between the different DNS resolver software, it can
be used to fingerprint the software of the DNS cache.

To understand how to overwrite cached records with new values
we did a characterisation of DNS caches of CAs and modelled under
which conditions the caches replace copies of cached records with
new values. Our study builds on [40] which evaluated different
approaches for overwriting cached records. We next describe the
setup, the study and the results.

3.3.1 Setup. Based on a lab model of the caches’ overwriting
behaviour, we applied our study over the resolvers of CAs. We used
the vict.im domain and its subdomains for our study. The zone
file was configured with 6 nameservers each with an A record (IPv4
address) and AAAA record (IPv6 address), 3 MX records (incoming
email servers), and other records, such as DNS specific records (e.g.,
SOA) and anti-spam records (e.g., SPF). The study proceeded in a
black box manner - we cause the CAs to issue DNS requests for
records within vict.im and monitor requests that arrive to our
nameservers. We generate responses dynamically on the name-
server with program we built based on Stanford::DNSserver perl
library. We then use the monitored queries to characterise the
caches and to understand the overwriting behaviour.

In Appendix, in Figure 12 we recap a number of selected pay-
loads (see full list in [40]) of the DNS responses and the cached
records that they can overwrite, using records that are returned
in answer, authority and/or additional sections. Our measurement
of minimum MTU values in popular Alexa servers shows that the
responses can be often reduced to even 68 bytes. Furthermore, frag-
mentation at the boundaries of authority or additional sections is
common and can often be enforced.

In Figure 13 we recap the in-lab evaluation of selected payloads
(from [40]) against popular DNS resolvers’ software, appliances
and public services. The indexes in the leftmost column correspond
to indexes of the payloads in Figure 12. The values in cells indicate
whether the cache in column j is vulnerable to overwriting by
payload in row k : 0 means not vulnerable and 1 means vulnerable.
The evaluation indicates that all the resolvers that were tested,
except Unbound in hardened mode (which is resilient to all the
payloads), are vulnerable to at least one type of cache overwriting
payloads.

Caches’ Overwriting Study. For each CA, our study proceeds for
each payload pi in Figure 12 in three phases: (a) seed the honey
record, (b) overwrite the value of the honey record with a new
value, (c) probe the value of the honey record.

We first plant the honey record in the cache of the DNS resolver
of the CA. The honey record simulates a real value of our test do-
main vict.im. During phase (b) we attempt to overwrite the honey
record with a new value. During phase (c) we send a DNS request
for the honey record and check its value. If the value was modified

following step (b), we mark the cache as vulnerable to payload pi .
Next iteration, increment i and evaluate with new payload.

Overwriting Vulnerabilities in CAs. We next list the CAs that
were found vulnerable to overwriting attacks. Within our study we
also identified CAs that share the same infrastructure (Email server
and caching DNS resolver) - we grouped those CAs below.

• COMODO, InstantSSL, NetworkSolutions, SSL.com: these CAs
use the same MX email server mcmail1.mcr.colo.comodo.net
which uses the same caching DNS resolver. The results from our
cache overwritingmethods indicates that the DNS resolver software
is New BIND 9.x with DNSSEC-validation.

• Thawte, GeoTrust, RapidSSL: use the same MX server and
resolution platform.

• StartCom4, StartSSL: both use the same email server and the
same DNS resolver.

• SwissSign: uses New BIND 9.x.

Caches Overwriting Attacker. The study of caches overwriting is
performed with a man-in-the-middle (MitM) type attacker – in this
step we do not attempt to guess ports or TXID, just to characterise
the caches of the CAs. In particular, we observe the requests from
the caching DNS resolvers of the CAs and generate the responses
dynamically “on the fly” as a function of the requests and the pay-
loads in Figure 12. After characterising the caches of the CAs in this
model, we run the complete attack in an off-path attacker model in
Section 3.4.

3.4 Evaluation of Attack Against CAs
3.4.1 Setup. We evaluated the attack (with the components in

Sections 3.1, 3.2 and 3.3) against the DNS resolvers of CAs (in Figure
1) using our own test domain vict.im. The nameservers hosting
the test domain were located on one network (belonging to Internet
Service Provider (ISP) A), while the attacking hosts were located on
a different network (belonging to ISP B). Our nameservers running
vict.im as well as its subdomains were set up with a globally
sequential IP ID allocation. The attacking hosts are configured with
a mapping of cache overwrite vulnerabilities per each CA on the
list. Namely, when running an attack against CA ω, the attacker
selects one of the payloads from the list 12 to which the caching
DNS resolver of ω is vulnerable, and uses it to generate the payload
of the spoofed second fragment. The attacking host queries the
nameserver for IP ID value ipid and uses it to calculate the IP ID
value that will be assigned to the response that we will be attacking
with a spoofed second fragment.

3.4.2 Issuing Spoofed Certificate. The attacking host initiates
the CSR process for victim domain vict.im (and its subdomains).
After submitting the CSR the attacker selects the DV method that
it wishes to pass (CAs typically support a number of DV methods,
see Figure 1). Since the attacker cannot control the timing when
the request is sent, it must periodically transmit spoofed second
fragment, until the validation is initiated. Finally, if the attacker
receives a signed certificate for the resource that it requested (i.e., a
domain vict.im or its subdomains) we mark the CA as vulnerable.

4StartCom stopped issuing new certificates in January 2018.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2067

3.4.3 Which Record To Attack? All the different DV methods
(in Section 2) generate NS (nameserver) and A (IP address) type
requests. In addition, DV with Email (or withWHOIS) also generate
MX (email server exchanger) type requests. Responses to these
requests are suitable attack targets. Specifically, the attacker hijacks
the entire vict.im domain by injecting into a response packet a
spoofed NS or A records or hijacks an email server by injecting an
MX record (with the corresponding A record). Once a CA caches a
record mapping the nameserver of vict.im to attacker’s host, all
the subsequent requests (e.g., for email server or webserver) will
go to the attacker. The attacker passes any DV verification option
listed in Section 2.

3.4.4 Constructing the Second Fragment. Essentially for many
domains the attacker can control even the answer section of a DNS
response, if fragmentation is at around 200 bytes. For instance,
consider fragmentation at 68 bytes. Given a nameserver whose
responses fragment so that the first fragment is 68 bytes long,
the attacker can control the whole answer section. The headers
take 40 bytes: IP header is 20 bytes, UDP header is 8 bytes, DNS
header is 12 bytes. The query part (which is the first part in the
response) copies the QNAME (n + 1 bytes, for QNAME of length n)
together with the CLASS (2 bytes) and type (2 bytes). So a QNAME
of length 23 or more bytes results in an Answer section getting
fragmented before the answer part. Even with first fragment of size
200 bytes, the attacker controls the answer part using QNAME of
160 or more bytes (DNS names can be up to 253 characters). In other
cases, where fragmentation occurs significantly above 200 bytes, the
attacker controls the authority and additional sections. Depending
on the DNS resolver software and the fragmentation restriction the
attacker selects the suitable payload for cache poisoning attacks
(selected payloads are listed in Figure 12).

3.4.5 Measuring the CAs (Off-Path) Attack Surface. All the CAs
we measured use unpredictable source ports and TXIDs. Hence,
we use the defragmentation cache poisoning to bypass the entropy
in first fragment. As it turns out, many CAs block fragmented
IP packets. We evaluated the complete attack against CAs that
allow fragmented responses. These include COMODO, InstantSSL,
NetworkSolutions, Let’s Encrypt, SSL.com, CERTUM, NETLOCK.

3.5 Challenges and Conditions for Success
Our attack does not apply against all the DV-supporting CAs. In this
section we explain why, and list the conditions that are required for
our attack to succeed. We also discuss the challenges and hurdles
in such off-path attack and how we overcame them.

3.5.1 Conditions for Success. Our attack succeeds against a DNS
resolver of a given CA, for a specific target (victim) domain vict.im
if the following conditions hold:

• The authentication of the client requesting a certificate is done
via DV. The list of DV-supporting CAs that we could test is in Figure
1.

• The DNS resolver and the network of the CA allow fragmented
responses. Some CAs block fragmented traffic (see list in Section
3.4.5).

• The domain vict.im does not filter ICMP fragmentation
needed error messages and reduces the MTU based on the MTU

indicated in ICMP fragmentation needed packet. The fraction of
domains that do not filter ICMP fragmentation needed messages
were measured by [27], see Figure 4.

• The caching DNS resolver is vulnerable to at least one of the
overwriting attacks. As we show in Section 3.3 all tested resolvers
except one (Unbound in hardened mode) are vulnerable to at least
one overwriting payload.

3.5.2 Challenges and Hurdles. The attacks we launched are hard
due to the following factors:

Putting it All Together. Putting all the modules into a working
attack is a challenge. First the attacker has to synchronise all the
modules: triggering the query, measuring the IP ID, crafting the
spoofed second fragment with the correct payload (that will over-
write the value of a cached record with a new value), injecting the
spoofed second fragment into the defragmentation cache. Carrying
these steps out correctly requires off-line preprocessing prior to
the attack.

Second, some servers fragment not exactly at the location spec-
ified in the MTU in ICMP fragmentation needed error message.
For instance, when signalling MTU of 512 bytes, some servers may
fragment at 500 bytes. To cope with this, depending on the situation,
the attacker may need to add padding, or use records’ names that fit
within the fragment. The attacker can also play with compression in
DNS (defined in [RFC1035]) and increase or decrease the size of the
injected record. The compression uses pointers to locations where
a given string already appeared, hence by using combinations of
names that are already in the first fragment the attacker can reduce
the size, or with strings that did not appear before, increase the
size.

Off-path Attacker. Off-path attackers cannot see the communi-
cation between the DNS resolver and the nameservers. This intro-
duces challenges with timing and synchronisation. To overcome
this, we did a preprocessing phase, during which we performed a
careful study of the certificate issuance procedure for a given CA:
the time at which DNS queries are triggered, when validation is
performed. The attack is then tailored for each CA based on the
observed behaviour of the CA during the preprocessing phase.

Indirect Study. A key ingredient in our attacks is understanding
the caching behaviour in the DNS resolver of the CA to identify and
evaluate cache overwriting vulnerabilities. The challenge is that
we do not have a direct communication to the resolver, and cannot
trigger the queries ourselves.We trigger the queries indirectly, using
the CSR submission form. This indirect communication introduces
noise and prevents us from knowing when the queries will be sent.

Victim Domain. In this work we attacked our own domain. This
allowed us to anticipate the traffic volume to the domain and the
IP ID assignment method. In a real life scenario the attacker does
not have visibility into the nameservers of some other domain, and
hence has to learn this information using side channels. To identify
the IP ID assignment the attacker sending queries to the nameserver
from different hosts and checks the IP ID values in responses. Simi-
larly, the attacker has to measure the IP ID increments by probing
the value in intervals. If a random IP ID assignment is used, the
attack becomes much more difficult since it needs to be repeated

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2068

until the correct IP ID value is hit. Fortunately for the attackers
(and unfortunately for security), random IP ID assignment is rare.

3.6 Mitigations and Recommendations
Our evaluations indicate that off-path attacks against CAs are fea-
sible using DNS cache poisoning. We found a few vulnerable CAs,
but even a single trusted CA that is attacked exposes to devastating
consequences. We next discuss a few possible short and long term
mitigations.

3.6.1 Blocking Fragmentation. Perhaps the simplest way to pro-
tect against defragmentation cache poisoning (and hence against
issuance of spoofed certificates) is by blocking fragmented traffic;
which many CAs indeed do. We considered this as a possible simple
fix to the problem. However, as we show, MTU reductions are still
common in the Internet, e.g., because of PPPoE on DSL lines. How
common MTU values less than 1500 bytes in the Internet?

Is Fragmentation Common? We answer this question empirically,
using the data captures that Center for Applied Internet Data Anal-
ysis (CAIDA) [14] offers. CAIDA operates two passive Internet
monitors in the Equinix datacenters in Chicago and San Jose. The
monitors capture packets, anonymise them, and provide them for
download as gzipped pcap files, with the content limited to network
and transport-layer protocol headers. Each dataset corresponds to
one hour (between 12:59 and 14:01 UTC), split into chunks of one
minute (between approx. 150 MB - 1.5 GB). In total, we analysed
14484 traces in 121 datasets, representing data from 9 years (2008 -
2016).

We observe 2.9 million ICMP fragmentation needed packets in
total which is approximately one in 135k packets. On average, there
are 24k ICMP fragmentation needed packets per dataset. Our mea-
surement study indicates that blocking fragmented traffic would
block access to many Internet clients.

The Issue Is More Significant. Nevertheless, even blocking frag-
ments would not block the vulnerability. Off-path attackers may
come up with other approaches to bypass the randomisation. Fur-
thermore, there is an increasing tendency to launch short-lived
Border Gateway Protocol (BGP) prefix hijacks, for redirecting DNS
requests via attacker’s network for launching DNS cache poison-
ing attacks. This allows the attacker to become a MitM (on-path)
attacker for a short period of time, sufficient to inspect the DNS
request, and to craft a correct DNS response (with valid challenge-
response parameters), e.g., see [44]. In this recent attack, the at-
tackers leveraged BGP prefix hijacking for launching DNS cache
poisoning to redirect myetherwallet clients to attacker controlled
servers.

Hence, the solution should be robust even against stronger MitM
attackers, and should not rely on patches against off-path attackers.

3.6.2 DNSSEC. To mitigate DNS cache poisoning attacks even
by MitM attackers, the IETF designed and standardised Domain
Name System Security Extensions (DNSSEC) [RFC4033-RFC4035].
With DNSSEC, nameservers respond with signed DNS records and
keys and the DNS resolvers validate the records prior to caching
them. Fully deployed DNSSEC would prevent DNS cache poisoning
attacks.

Nevertheless, although proposed and standardised more than
two decades ago, DNSSEC is still not widely deployed. Measure-
ments show that currently about 25% of the DNS resolvers validate
DNSSEC (e.g., see stats.labs.apnic.net/dnssec) and only a bit
more than 1% of domains are signed with DNSSEC, [51]. This means
that DNSSEC validating DNS resolver gets no security benefit since
most domains are not signed. More significantly, recent works
found problems with DNSSEC keys generation and management
procedures exposing a large fraction of signed domains (more than
35%) to attacks, [16, 47]. It is not clear when the problems are ex-
pected to be resolved since they involve practices used by many
large registrars and DNS hosting providers.

Therefore, it is important to improve security of PKI indepen-
dently of other defences. In the next section we introduce our
proposal DV++ for a MitM-resilient PKI.

4 DOMAIN VALIDATION++
Our goal is to design a defence that preserves the benefits of DV
while providing resilience against MitM attackers. We aim to ensure
that the integration of the new mechanism would not require any
changes to the CA infrastructure and functionality and that it should
be easy to deploy. These properties ensure that the mechanism will
have better changes to be used by the CAs.

In this section, we present the design, implementation, and sim-
ulations of our proposal.

4.1 Setup and Attacker Model
The main aspect of our proposal is to utilise distributed nodes
which perform DV from multiple vantage points. The security
against MitM attackers is achieved by placing the nodes in different
networks, which do not traverse overlapping paths. In Figure 8
we provide an illustration of the attacker model, the CAs, and the
DV++ agents.

In contrast to a cryptographic eavesdropping attacker, which
is a global eavesdropper, a realistic MitM attacker can be present
only on some networks but does not control the entire Internet.
This serves as a premise for our design of DV++. The attacker is
a malicious ISP, that passively collects the traffic that traverses its
networks. The attacker can also actively try to attract traffic from
other networks by performing BGP prefix hijacking.

4.2 Design
DV++ is a decentralised mechanism, that utilises the existing In-
ternet infrastructure to validate claims of domain ownership. In
contrast to the centralised validation performed by the CAs with
DV, DV++ is based on a flat hierarchy with several equally trusted
certification agents. To pass a DV++ validation domain owners
must prove their ownership to a majority of the agents in a fully
automated manner by responding to queries sent by the agents for
the resource records in the domain. The agents are synchronised
with an orchestrator module. The orchestrator is located on the CA
network. The components of DV++ with the messages exchange
are illustrated in Figure 9.

The orchestrator and the agents use HTTPS for their communi-
cation. During the domain validation process, all the agents receive
from the orchestrator the domain and the record that need to be

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2069

Figure 8: DV++ setup and attacker model.

queried. The agents send DNS requests to the nameservers in the
domain requesting the record. As soon as the response arrives, the
agent sends the response to the orchestrator. When more than 50%
of the responses arrive, and they match, the orchestrator returns
success otherwise failure. The number of the correct responses from
the agents is a parameter that the CA can configure.

When sending a DNS request, each agent selects independently
a source port at random as well as a random TXID. To launch a
successful attack the attacker has to spoof correct responses to
more than 50% of the agents. This is an impossible task even for
strong, nation state attackers.

The agents are configured on different physical availability net-
works of AWS cloud. The selection of the cloud networks is done
so that the agents are located in different networks, whose routes
do not intersect. For selecting the networks to place the agents we
use the empirically derived CAIDA AS-level graph [4] from 2016.

Similarly to DV, DV++ authentication is initiated by the CA
following a submission of a CSR by the applicant. During this
process, queries are sent to the agents, that perform look-ups in
the target domain. Once majority of the responses are received by
the orchestrator, they are processed.

The core idea of DV+ is that, even if the attacker can corrupt
some agents, controlls some networks or path, it cannot control all
the paths and all the networks in the Internet and cannot corrupt
all the agents. For instance, even strong nation state attackers, such
as security agencies, do not control all Internet networks and paths.

4.3 Implementation
The orchestrator and the agents are written in Go. This ensures
good performance, easy configuration and cross-compilation of
static executables. Static executables allow easy deployment with-
out the need to install any runtimes or libraries. Integrating DV++
in CAs current infrastructure does not require replacing software
or hardware nor any other modifications: DV++ uses the same in-
terface and interaction as DV. To use DV++ a CA should merely
configure the system to make a call to DV++ library instead of DV.

Figure 9: DV++ components and messages exchange.

The code, as well as configuration and execution instructions,
are provided on GitHub https://github.com/dvpp/dvpp.

Using Our Setup. We have set up a pilot installation for eval-
uating our DV++ implementation. This can be used by the CAs,
systems or users in the Internet, for verifying DNS responses and
authenticating domain ownerships. We prepared a zip file con-
taining everything needed to perform a DNS-based domain val-
idation with a CNAME record. The zip file is available at http:
//45.76.90.74/orchestrator.zip, it contains a configuration file to use
the local orchestrator with our agents. To get started, first extract
the zip file and enter the extracted orchestrator directory with your
terminal. Three parameters should be provided: (1) the domain
requesting the certificate, (2) the CNAME to look up and (3) the
expected response. For instance, to request a certificate for domain
example.com with verification of abcdef.example.com that re-
solves to ghijkl.example.com the user should invoke (in one line
without a linebreak):

./orchestrator_<platform>_<architecture> cname
example.com. abcdef.example.com. ghijkl.example.com

where platform is either Windows, Linux, or Darwin and archi-
tecture is either 386 or amd64. The command line tool will then
return the status of the verification as a JSON object. If XML output
is preferred a -x can be written in front of the CNAME.

4.4 Security Evaluations
We consider an attacker that tries to pass the authentication of
DV++ to issue a fraudulent certificate. To succeed the attacker must
provide correct spoofed responses for the majority of the DNS
requests issued by the DV++ agents.

If the attacker is located on a network of the victim nameserver,
it can hijack requests on the network of the nameserver and send
spoofed responses to the DV++ agents. Luckily domains have more
than one nameserver and the nameservers are placed in different
networks; this is following best practices to avoid a single point
of failure for domains. Our measurements of 1M-top Alexa do-
mains show that an average number of nameservers per domain
is 5, and minimal is 2. Furthermore, the nameservers belonging to
the same domain are hosted in different networks. This ensures
that the attacker cannot hijack and replace responses from all the
nameservers.

We next evaluate attacks by passive MitM attacker, that con-
trols a large ISP, and by an active attacker, that also additionally
attempts to attract traffic from other networks. We run simulations

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2070

using a different number of agents, and demonstrate that even 3
agents in networks of top-tier ISPs suffice to provide strong security
guarantees against MitM attackers.

4.4.1 MitM Attacker. We quantify the ability of an on-path at-
tacker to intercept majority of the DNS requests sent from the
agents to the victim domain. We run simulations using Alexa name-
servers in 1000-top domains and quantify over different attacker-
agents pairs and the fraction of nameservers whose BGP routes
to the victim traverse the attacker. We run simulations with the
BGP route computations presented in [25, 26] to the empirically de-
rived CAIDA AS-level graph [4] from 2016. The graph is annotated
with bilateral business relationships. We average our measurements
over 106 combinations of attacker-victim AS pairs, selecting them
at random. To identify ASes that host the nameservers we mapped
the IP addresses of the nameservers to AS numbers using RIPE
https://stat.ripe.net.

The simulations evaluate all the possibilities for an on-path at-
tacker to cover almost all the routes between the victim domain and
the DV++ agents. We used the dataset from January 2018, which
contained 60006 ASes. We categorise ASes into four classes: large
ASes with more than 250 customers, medium ASes that have be-
tween 25 and 250 customers, small ASes with 1 to 25 customers
and stub ASes that have no customers. AS graph has 56 large ASes,
615 medium ASes, 8329 small ASes and 50995 stub ASes. Our graph
had in total 60006 nodes and 261340 edges.

In our simulation for each combination of attacker-victim ASes
pairs, we measure the fraction of attacker-victim pairs in which the
attacker can capture traffic from more than 50% of the DV++ agents.
This would be a very strong attacker, nevertheless, we show that
DV++ when using sufficient amount of agents ensures security. In
practice, the attackers are of course much weaker. The simulations
show that only 0.1% of the attackers can be on the path between
the victim nameservers and 50% or more of the agents, and hence
capture the traffic between the victim and the agents. No attacker
can capture 50% of the traffic to the agents when one or more
agents are in a large AS, and attackers that are small ISPs or stubs
cannot launch successful attacks. We summarise the result of our
simulation in Table 1, and plot the results in Figure 10. Figure 10
shows that even with agents in 3 vantage points located in either
of top 10 ISPs, the probability of the attacker to launch a successful
hijack of more than 50% of the agents drops to almost 0.

victim/attacker Large Medium Small Stub
Large 0.00 0.00 0.00 0.00
Medium 0.21 0.02 0.00 0.00
Small 0.34 0.12 0.00 0.00
Stub 0.52 0.07 0.00 0.00

Table 1: Evaluation of on-path attacker. % of attackers cap-
turing traffic from ≥ 50% agents

4.4.2 Hijacking Attacker. The Border Gateway Protocol (BGP)
is vulnerable to prefix hijack attacks [1–3, 10]. In prefix hijacks,
the attacker hijacks all the traffic of a victim network. We evaluate

Figure 10: Passive Attacker. Large ISP with > 250 customers,
and top ISP is tier 1 ISP.

attacker ability to exploit the insecurity in inter-domain routing
protocol (BGP) to hijack traffic between the victim nameservers
and the DV++ agents. In this case, both the victim nameservers
and the attacker announce victims’ BGP prefixes. We evaluate the
fraction of agents that the attacker can attract. The simulation
result in Figure 11 shows that probability that the attacker attracts
more than 50% of the agents is 2%. The simulation also shows that
the attackers that can hijack traffic from 50% of the agents, would
disconnect the victim from the rest of the Internet. Only 0.20% of
the attackers can successfully launch the attack while maintaining
their route to the victim in order to relay packets between the victim
nameservers and the rest of the Internet while avoiding detection.
This is due to the fact that the fraction of agent nodes that the
attacker hijacks is close to the fraction of the ASes in the Internet
that the attacker attracts when announcing the victim’s prefix.

Figure 11: Simulations with active BGP prefix hijacking at-
tacker.

4.5 Other Applications of DV++
DV++ can be used to bootstrap other mechanisms with security. For
instance, our attacks apply against password recovery procedures in
popular web services. In password recovery procedure the password
or a link to reset the password is sent back to the email that initiated
the password recovery. If the DNS resolver on the network of the
service is attacked, and caches an incorrect record (mapping the
email of the victim to attacker’s controlled IP address) the password
will be sent to the attacker.

DV++ can be used by the web services, to validate the DNS record
of the email requesting the password recovery, hence blocking
malicious requests that do not pass the verification of DV++.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2071

5 RELATEDWORK
5.1 DNS Security
Although researchers warned already in late 90s against the poten-
tial vulnerabilities to cache poisoning, DNS cache poisoning was
first demonstrated in 2008 [36] against DNS resolvers that used
fixed or incrementing source ports. Subsequently, [RFC5452] pro-
vided recommendations for patches, which included randomising
the source ports in DNS requests, selecting the nameservers to
which the requests are sent at random, and other patches. Never-
theless, shortly after attacks were found allowing to circumvent the
[RFC5452] patches. Initially, [30, 32] showed that despite randomi-
sation the source ports can be often predicted using side channels,
such as timing. Followup works applied fragmentation for bypass-
ing the recommendations in [RFC5452], [31, 33, 45].

However, predicting the source ports and other defences in
[RFC5452] does not suffice for guaranteeing successful cache poi-
soning attacks. In particular, when the records are already in the
cache, the DNS resolvers would often ignore and discard the DNS
records which contain new values. To gain insights into caches
behaviour [40, 48] performed a study of Which resolvers overwrite
cached records with new values and under what conditions. Often,
DNS resolution platforms consist of multiple actors and caches,
these were studied in [39, 43] and multiple forwarders in DNS
resolution chains which also expose to cache poisoning attacks
[46].

DNSSEC [RFC4033-RFC4035] would prevent the cache poison-
ing attacks, however, recently vulnerabilities and misconfigurations
were found in DNSSEC keys generation and management proce-
dures exposing a large fraction of signed domains (more than 35%)
to attacks, [16, 17, 47]. Furthermore, as [28] showed DNSSEC does
not prevent attacks which replay DNSSEC-signed DNS response
to redirect clients to incorrect servers in Content Distribution Net-
works (CDNs).

5.2 CA Compromises
A valid certificate signed by any of the trusted CAs in the browser,
is accepted by the browsers. This property has spurred a proliferat-
ing market for certificates, it also has devastating implications for
security: any vulnerable or compromised CA can subvert the security
of any domain.

Indeed, there is a long history of attacks against the CAs. The
compromise of small Dutch CA DigiNotar CA in 2011 was a critical
point in history of PKI. For the first time a CA was removed from
browser root stores because of poor infrastructure control and
issuance of spoofed certificates. Subsequent works documented
loopholes in PKI ecosystem, [7, 20, 34]. Other large CAs such as
Comodo and Verisign have experienced breaches as well. In 2016
Chinese CA Wosign ‘mistakenly’ gave out certificates for GitHub
domains due to a loophole in domain validation process. Specifically,
if a user could prove ownership of a subdomain the CA would also
issue certificate for the parent domainwithout applyingDV to prove
ownership of the base domain. In 2015 Comodo issued a certificate
to an unauthorised party for live.fi – domain used by Microsoft
to provide free email. This would have caused users to leak their
credentials. Recently a Egyptian ISP (MCS holdings) obtained a
certificate that was signed by CNNIC, that was included in root

stores. Namely any certificate issued by MCS would be accepted as
valid (even for domains MCS did not own). In 2008, a bug in Debian
OpenSSL caused thousands of certificates to be issued for keys with
only 15-17 bits of entropy [22]. In addition, many browsers accept
(non-root) certificates for 1024-bit RSA keys, which are believed to
be broken by nation state attackers [11].

The research community also pointed out that Border Gateway
Protocol (BGP) prefix hijacking can be leveraged to bypass domain
validation (DV), see poster [13].

5.3 PKI Defences and Alternative Proposals
Following CA compromises and the risk of MitM attacks, new secu-
rity mechanisms have been added to SSL/TLS, and the PKI. These
include certificate transparency (CT), HSTS and HPKP headers,
SCSV for protection against downgrade attacks. A taxonomy in
[12] lists the proposals for improving the security of PKI infrastruc-
ture. We briefly recap here for completeness.

There are attempts to create a new alternative PKI and propos-
als to use additional entities for storing and checking certificates.
Some proposals are aimed at making compromises visible using log
servers to monitor CAs behaviour, for instance, Certificate Trans-
parency (CT) [42], Sovereign Keys [21], Accountable Key Infras-
tructure [38], Attack-Resilient Public Key Infrastructure (ARPKI)
[12], DTKI [5, 15, 49, 50]. DNS-Based Authentication of Named En-
tities (DANE) [RFC7671] uses DNSSEC [RFC4033-RFC4035] to list
trusted CAs for issuing domains certificates. Similarly DNS Certifi-
cate Authority Authentication (CAA) Resource Record [RFC6844]
uses DNS to list acceptable CAs. The goal of these proposals is
to replace or complement the existing certificates issued by CAs
trusted by the browsers. The proposals provide a good starting
point and promising options for design of future PKI. However, due
to their complexity and efficiency overhead as well as the changes
that they require to the existing infrastructure and the deployment
overhead (e.g., introduce multiple interacting entities), most are
not adopted. Since March 2016, the Chrome Browser uses CT and
ceased displaying the green bar for EV certificates that are not
registered in a log server.

After making our DV++ available in March 2017, a parallel simi-
lar direction was proposed by LetsEncrypt, called multi-VA. The
difference is that in contrast to DV++, multi-VA uses fixed nodes
(currently three). Which it uses to perform the validation. By cor-
rupting the nodes, the attacker can subvert the security of multi-VA
mechanism. DV++ selects the nodes at random from a large set.
Furthermore, we ensure that the nodes’ placement guarantees that
the nodes are not all located in the same autonomous system (AS)
and the paths between the nodes and that the validated domain
servers do not overlap.

6 CONCLUSIONS
Automated, efficient and easy-to-use procedures pave success for
many mechanisms and DV is no exception to it. Unfortunately,
the benefits also come with reduced security due to reliance on
an insecure DNS. This makes DV vulnerable to off-path attacks,
allowing even very weak attackers to issue fraudulent certificates
for domains they do not own. We demonstrate such attacks.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2072

Since cryptography for DNS is far from being sufficiently de-
ployed, we need another way to bootstrap security. The only alter-
native is utilising the distributed nature of the Internet and making
structural assumptions about the attacker’s capabilities. Based on
this observation we design and implement DV++: an innovative
distributed mechanism which comes with the same benefits as DV
while providing resilience even against strong MitM attackers.

7 ACKNOWLEDGEMENTS
The research reported in this paper was supported in part by the
German Federal Ministry of Education and Research (BMBF), by the
Hessian Ministry of Science and the Arts within CRISP (www.crisp-
da.de/) and co-funded by the DFG as part of project S3 within the
CRC 1119 CROSSING.

REFERENCES
[1] [n. d.]. Hijack Event Today by Indosat.

http://www.bgpmon.net/hijack-event-today-by-indosat. ([n. d.]).
[2] [n. d.]. New Threat: Targeted Internet Traffic Misdirection.

http://www.renesys.com/2013/11/mitm-internet-hijacking. ([n. d.]).
[3] 2008. Renesys Blog - Pakistan Hijacks YouTube.

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml. (Feb.
2008).

[4] 2011. The CAIDA AS Relationships Dataset, 2011.
http://www.caida.org/data/active/as-relationships/. (2011).

[5] Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber, and Yinglian Xie. 2013.
Global Authentication in an Untrustworthy World.. In HotOS.

[6] Nadhem J Al Fardan and Kenneth G Paterson. 2013. Lucky thirteen: Breaking
the TLS and DTLS record protocols. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 526–540.

[7] Bernhard Amann, Matthias Vallentin, Seth Hall, and Robin Sommer. 2012.
Extracting certificates from live traffic: A near real-time SSL notary service.
Technical Report TR-12-014 (2012).

[8] Daniel Anderson. 2012. Splinternet Behind the Great Firewall of China. Queue
10, 11 (2012), 40.

[9] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J Alex Halderman, Viktor
Dukhovni, et al. 2016. DROWN: Breaking TLS Using SSLv2.. In USENIX Security
Symposium. 689–706.

[10] Hitesh Ballani, Paul Francis, and Xinyang Zhang. 2007. A Study of Prefix
Hijacking and Interception in the Internet. (2007), 265–276 pages.
https://doi.org/10.1145/1282380.1282411

[11] E. Barker and A. Roginsky. 2011. Transitions: Recommendation for transitioning
the use of cryptographic algorithms and key lengths. NIST Special Publication.
(2011).

[12] David Basin, Cas Cremers, Tiffany Hyuni-jin, Adrian Perrig, Ralf Sasse, and
Pawel Szalachowski. 2016. Design, Analysis, and Implementation of ARPKI: an
Attack-Resilient Public-Key Infrastructure. IEEE Transactions on Dependable and
Secure Computing (2016).

[13] Henry Birge-Lee, Yixin Sun, Annie Edmundson, Jennifer Rexford, and Prateek
Mittal. 2017. Using BGP to acquire bogus TLS certificates. HotPETSâĂŹ17 (2017).

[14] CAIDA. [n. d.]. Anonymized Internet Traces Dataset. ([n. d.]).
[15] Vincent Cheval, Mark Ryan, and Jiangshan Yu. 2014. DTKI: a new formalized

PKI with no trusted parties. arXiv preprint arXiv:1408.1023 (2014).
[16] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran,

David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson.
2017. A longitudinal, end-to-end view of the DNSSEC ecosystem. In USENIX
Security.

[17] Tianxiang Dai, Haya Shulman, and Michael Waidner. 2016. DNSSEC
Misconfigurations in Popular Domains. In International Conference on
Cryptology and Network Security. Springer, 651–660.

[18] Deploy260. 2014. Email Hijacking.
https://www.internetsociety.org/blog/2014/09/email-hijacking-new-research-
shows-why-we-need-dnssec-now/. (2014).

[19] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. 1993. Perfectly
Secure Message Transmission. J. ACM 40, 1 (Jan. 1993), 17–47.
https://doi.org/10.1145/138027.138036

[20] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2013. ZMap: Fast
Internet-wide Scanning and Its Security Applications.. In USENIX Security
Symposium, Vol. 8. 47–53.

[21] Peter Eckersley. 2011. Sovereign keys: A proposal to make https and email more
secure. Electronic Frontier Foundation 18 (2011).

[22] P. Eckersley and J. Burns. 2010. An observatory for the SSLiverse. DEFCON’18.
(2010).

[23] Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip Porras, Shalini Ghosh, Jian
Jiang, and Haixin Duan. 2013. An empirical reexamination of global DNS
behavior. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
ACM, 267–278.

[24] Yossi Gilad and Amir Herzberg. 2013. Fragmentation Considered Vulnerable.
ACM Transactions on Information and System Security (TISSEC) 15, 4 (April 2013),
16:1–16:31. A preliminary version appeared in WOOT 2011.

[25] Phillipa Gill, Michael Schapira, and Sharon Goldberg. 2011. Let the market drive
deployment: a strategy for transitioning to BGP security. In SIGCOMM,
Srinivasan Keshav, Jörg Liebeherr, John W. Byers, and Jeffrey C. Mogul (Eds.).
ACM, 14–25. http://doi.acm.org/10.1145/2018436.2018439

[26] Phillipa Gill, Michael Schapira, and Sharon Goldberg. 2012. Modeling on
quicksand: Dealing with the scarcity of ground truth in interdomain routing
data. ACM SIGCOMM Computer Communication Review 42, 1 (2012), 40–46.

[27] Matthias Gohring, Haya Shulman, and Michael Waidner. 2018. Path MTU
Discovery Considered Harmful. In 38th IEEE International Conference on
Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018.
866–874.

[28] Shuai Hao, Yubao Zhang, Haining Wang, and Angelos Stavrou. 2018. End-Users
Get Maneuvered: Empirical Analysis of Redirection Hijacking in Content
Delivery Networks. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association.

[29] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman. 2012.
Mining your Ps and Qs: Detection of widespread weak keys in network devices.
In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12).
205–220.

[30] Amir Herzberg and Haya Shulman. 2012. Security of Patched DNS. In Computer
Security - ESORICS 2012 - 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings. 271–288.

[31] Amir Herzberg and Haya Shulman. 2013. Fragmentation considered poisonous,
or: One-domain-to-rule-them-all. org. In Communications and Network Security
(CNS), 2013 IEEE Conference on. IEEE, 224–232.

[32] Amir Herzberg and Haya Shulman. 2013. Socket Overloading for Fun and Cache
Poisoning. In ACM Annual Computer Security Applications Conference (ACM
ACSAC), New Orleans, Louisiana, U.S., Charles N. Payne Jr. (Ed.).

[33] Amir Herzberg and Haya Shulman. 2013. Vulnerable Delegation of DNS
Resolution. In Computer Security - ESORICS 2013 - 18th European Symposium on
Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings.
219–236. https://doi.org/10.1007/978-3-642-40203-6_13

[34] Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The SSL
landscape: a thorough analysis of the x. 509 PKI using active and passive
measurements. In Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference. ACM, 427–444.

[35] Margaret Hu. 2015. Taxonomy of the Snowden Disclosures. Wash & Lee L. Rev.
72 (2015), 1679–1989.

[36] Dan Kaminsky. 2008. It’s the End of the Cache As We Know It. In Black Hat
conference. http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-
Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf.

[37] Kernel.org. 2011. Linux Kernel Documentation.
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt. (2011).

[38] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and
Virgil Gligor. 2013. Accountable key infrastructure (AKI): a proposal for a
public-key validation infrastructure. In Proceedings of the 22nd international
conference on World Wide Web. ACM, 679–690.

[39] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Counting in the Dark:
Caches Discovery and Enumeration in the Internet. In The 47th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[40] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-Wide Study of
DNS Cache Injections. In INFOCOM.

[41] Jeffrey Knockel and Jedidiah R Crandall. 2014. Counting Packets Sent Between
Arbitrary Internet Hosts.. In FOCI.

[42] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate transparency.
Technical Report.

[43] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
measuring the client-side DNS infrastructure. In Proceedings of the 2013
conference on Internet measurement conference. ACM, 77–90.

[44] Sharon Goldberg. 2018. The myetherwallet.com hijack and why it’s risky to hold
cryptocurrency in a webapp.
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-
risky-to-hold-cryptocurrency-in-a-webapp-261131fad278. (2018).

[45] Haya Shulman and Michael Waidner. 2014. Fragmentation Considered Leaking:
Port Inference for DNS Poisoning. In Applied Cryptography and Network Security
(ACNS), Lausanne, Switzerland. Springer.

[46] Haya Shulman and Michael Waidner. 2015. Towards Security of Internet
Naming Infrastructure. In European Symposium on Research in Computer

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2073

Security. Springer, 3–22.
[47] Haya Shulman and Michael Waidner. 2017. One Key to Sign Them All

Considered Vulnerable: Evaluation of DNSSEC in the Internet.. In NSDI. 131–144.

[48] Sooel Son and Vitaly Shmatikov. 2010. The hitchhikerâĂŹs guide to DNS cache
poisoning. In Security and Privacy in Communication Networks. Springer,
466–483.

[49] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert:
Secure and flexible TLS certificate management. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 406–417.

[50] Dan Wendlandt, David G Andersen, and Adrian Perrig. 2008. Perspectives:
Improving SSH-style Host Authentication with Multi-Path Probing.. In USENIX
Annual Technical Conference, Vol. 8. 321–334.

[51] Hao Yang, Eric Osterweil, Dan Massey, Songwu Lu, and Lixia Zhang. 2011.
Deploying cryptography in Internet-scale systems: A case study on DNSSEC.
Dependable and Secure Computing, IEEE Transactions on 8, 5 (2011), 656–669.

A PKI AND DNS SECURITY
A.1 Public Key Infrastructure
Public Key Infrastructure (PKI) is a comprehensive system to pro-
vide public-key encryption and digital signature services. It in-
cludes a set of roles, policies and procedures to manage digital
certificates and public-key encryption. It is used when there is a
strict requirement to confirm the identity of parties involved in
the communication or to validate the information transferred. The
basic concept behind PKI is to bind public keys with respective
identities of entities such as persons or organizations. To establish
the binding, an entity should go through a process of registration
and verification at and by a certificate authority (CA). Since there
are different levels of binding, the process may vary, which can
be fully automated or under human supervision. With a complete
process of registration and verification, the CA would conclude
the binding by issuing a certificate, which confirms the identity
of the entity bound with the public key. Registration Authority
(RA) accepts requests for digital certificates and authenticates the
requesting entity. However, they do not actually sign the certificate
that is issued. They would forward the certificate issuing to a CA
after assuring valid and correct registration. After the issuance of a
certificate, CA should publish it so that applications can retrieve it
on behalf of users. Directory systems that are LDAP (Lightweight
Directory Access Protocol)-compliant are believed to be the best
technology for certificate repositories. Directories may be made
publicly available or they may be private to a specific organization.
Prior to each use of a certificate, the revocation status of a certificate
must be checked. As a result, a PKI must incorporate a scalable
certificate revocation system. The CA must securely publish the
status of each certificate, while application software must verify
the revocation information prior to each use of a certificate. Certifi-
cate Revocation List (CRL) is a popular way to maintain revocation
information, which contains a list of digital certificates that have
been revoked. CRLs can be published to a directory system by CAs.
An alternative to CRLs is the certificate validation protocol, On-
line Certificate Status Protocol (OCSP), where a responder answers
queries about the revocation information of a requested certificate.

A.2 Domain Name System (DNS)
Domain Name System (DNS), [RFC1034, RFC1035], is a distributed
database containing mappings for resources (also called resource
records (RRs)), from domain names to different values. The most

popular and widely used mappings, [23], are for IP addresses, repre-
sented by A type RRs, that map a domain name to its IPv4 address,
and name servers, represented by NS type RRs, that map a name
server to domain name. The resource records in DNS correspond to
the different services run by the organisations and networks, e.g.,
hosts, servers, network blocks.

DNS is a client-server protocol, used by the resolvers to re-
trieve RRs stored in the zone files maintained by the name servers.
The resolvers communicate to the name servers using a simple
request-response protocol (typically over UDP); for instance, (ab-
stracting out details) to translate www.foo.bar resolvers locate the
name server ns.foo.bar, authoritative for foo.bar, and obtain
the IP address of the machine hosting the web server of the web-
site www.foo.bar. Resolvers store the DNS records, returned in
responses, in their caches for the duration indicated in the Time To
Live (TTL) field of each record set.

The zones are structured hierarchically, with the root zone at
the first level, Top Level Domains (TLDs) at the second level, and
millions of Second Level Domains (SLDs) at the third level. The IP
addresses of the 13 root servers are provided via the hints file, or
compiled into DNS resolvers software and when a resolver’s cache
is empty, every resolution process starts at the root. According to
the query in the DNS request, the root name server redirects the
resolver, via a referral response type, to a corresponding TLD,
under which the requested resource is located. There are a number
of TLDs types, most notably: country code TLD (ccTLD), which
domains are (typically) assigned to countries, e.g., us, il, de, and
generic TLD (gTLD), whose domains are used by organisations, e.g.,
com, org, and also by US government and military, e.g., gov, mil.
Domains in SLDs can also be used to further delegate subdomains
to other entities, or can be directly managed by the organisations,
e.g., as in the case of ibm.com, google.com.

A.3 DNS Cache Poisoning and Defences
In the course of a DNS cache poisoning attack, the attacker sends
spoofed DNS responses impersonating a real nameserver. The re-
sponses containmalicious DNS records, pointing legitimate services
at incorrect addresses or names. If a victim DNS resolver accepts
and caches the responses, it will redirect the services or clients
using it to incorrect hosts. DNS cache poisoning expose to malware
distribution, credentials theft, and can be leveraged for censorship
[8] or for surveillance [35], as well as for financial gain by cyber
criminals. The poisoned DNS responses are sent from a spoofed IP
address (impersonating a legitimate nameserver) to the victim DNS
resolver. Prior to accepting poisoned responses, the DNS resolvers
validate that the responses contain the same source port and trans-
action identifier (TXID) as were in the corresponding DNS request.
In accordance with the standard best practices [RFC5452] the DNS
resolvers should select source ports and TXIDs at random, hence
spoofing the correct responses, for attackers that do not see the
DNS request packets, is not a simple challenge – the attacker has a
1
232 success chance.
Following Kaminsky’s cache poisoning attack, DNS resolvers

were quickly patched to support challenge-response defences
against cache poisoning. Most existing challenge-response mecha-
nisms, [RFC5452], are ‘patches’, randomising and validating existing
fields in the TCP/IP protocols. We next review standardised and

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2074

Figure 12: Selected payloads for cache overwriting; see full list in [40]. Spoofed DNS records are marked in red.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2075

Figure 13: Evaluation of selected payloads against popular DNS software, appliances and public services; see full list in [40].

most commonly used challenge-response authentication mecha-
nisms.

DNS uses a random 16-bit TXID (transaction identifier) field that
associates a DNS response with its corresponding request. DNS
implementations additionally support a random selection of name
servers each time they send a request. The main defence, that makes
poisoning impractical is a (16-bit) source port randomisation recom-
mended in [RFC5452], which together with a TXID result in a search
space containing 232 possible values; a source port identifies the
client side application in requests, and is echoed (as a destination
port) in responses. Specific recommendations for port randomisa-
tion algorithms were recently provided in [RFC6056]. Due to the
significance of port randomisation for preventing off-path attacks,
e.g., cache poisoning and injections into TCP, multiple studies were
conducted to measure support of port randomisation in the Internet,

and it seems that many resolvers adopted port randomisation meth-
ods that were recommended in [RFC6056]. Currently the security of
most DNS resolvers relies on these challenge-response mechanisms.
However, relying only on TXID and source port randomisation is
not believed to be sufficient against cache poisoning.

To mitigate the DNS cache poisoning attacks, the IETF designed
and standardised Domain Name System Security Extensions
(DNSSEC) [RFC4033-RFC4035]. Unfortunately DNSSEC requires
significant changes to the DNS infrastructure as well as to the pro-
tocol, and although proposed and standardised already in 1997,
it is still not widely deployed. The low adoption of DNSSEC in
tandem with the recent wave of cache poisoning vulnerabilities
and evidence for DNS injections in the Internet stimulated efforts
within the operational and research communities to standardise
alternative easy to adopt defences.

Session 10C: TLS 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

2076

A.3. Poster: Off-path Attacks Against PKI

[Dai18p]
Tianxiang Dai, Haya Shulman, and Michael Waidner. “Poster: Off-Path Attacks

Against PKI”. in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. Toronto, Canada: Association for Com-
puting Machinery, 2018, pp. 2213–2215. isbn: 9781450356930. doi: 10.
1145/3243734.3278516. url: https://doi.org/10.1145/3243734.
3278516

68

https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516
https://doi.org/10.1145/3243734.3278516

Poster: Off-path Attacks Against PKI
Tianxiang Dai
Fraunhofer SIT

Haya Shulman
Fraunhofer SIT
TU Darmstadt

Michael Waidner
Fraunhofer SIT
TU Darmstadt

ABSTRACT
The security of Internet-based applications fundamentally relies
on the trustworthiness of Certificate Authorities (CAs). We practi-
cally demonstrate for the first time that even a very weak attacker,
namely, an off-path attacker, can effectively subvert the trustworthi-
ness of popular commercially used CAs. We demonstrate an attack
against one popular CA which uses Domain Validation (DV) for
authenticating domain ownership. The attack exploits DNS Cache
Poisoning and tricks the CA into issuing fraudulent certificates for
domains the attacker does not legitimately own – namely certifi-
cates binding the attacker’s public key to a victim domain.

1 INTRODUCTION
Public Key Infrastructure (PKI) is a fundamental mechanism that
facilitates Internet security and bootstraps cryptographic mecha-
nisms. In a nutshell PKI provides procedures and technology for
creating and managing digital certificates. Certificates bind entities,
such as digital resources, to cryptographic keys. These keys can
then be used to establish security, e.g., authentication or encryption,
with Internet destinations.

Over the years various PKI models were proposed, designed
and standardised. The main difference between the models is in the
entities that can be certified, currently these include: clients, devices
and digital resources. A challenge common to all the different PKIs
is the authentication of the entity that is to be certified.

In this work, we focus on the most widely deployed and used PKI
in the Internet: the web PKI, which certifies ownership over domain
names.We explore the security of the authentication technique used
by popular Certificate Authorities (CAs) to establish ownership over
domain names during the certificates issuance procedure. Correctly
establishing ownership over domain names is critical for ensuring
that services are trusted and communication to them is secure.
Ultimately CAs vouch for trustworthiness of a service by issuing a
digital certificate that binds a domain name to a public key of the
service. The certificate contains, among others, the public key of the
requesting server and the requested domain. Domain name within
the certificate is a key element on which trust can be built. The
certificate is signed by the private key of the CA. The server then
uses this certificate to prove its identity to clients in the Internet. The
clients use the key in the certificate to establish a secure (encrypted
and authenticated) connection to the server.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278516

To validate that the server issuing the request owns and controls
the domain for which it requests the certificate most CAs use Do-
main Validation (DV). DV allows to prove in an automated way that
the applicant owns a given domain name. The idea behind DV is
that only the owner of the domain can receive the communication
sent to the services in that domain and can respond to them.

In this work we build on the attack presented in [1] and prepare
a real life demonstration of the attack against a popular and widely
used CA with a victim domain controlled by us. Our demo is the
first to weaponise DNS cache poisoning by off-path attackers in
practice and to demonstrate it against a critical system such as the
web PKI. Prior to our work, off-path DNS cache poisoning was
considered a theoretical threat.

Our demo shows that although PKI is supposed to provide se-
curity against the strong Man-in-the-Middle (MitM) attackers, the
widely supported DV mechanism, which underlies the security
of certificates issued within the PKI, is vulnerable to even weak
off-path attackers. We show that off-path attackers can trick the
DV process and issue fraudulent certificates for domains they do
not own.

Our attack uses DNS cache poisoning as a building block to inject
incorrect mappings into the caches of CAs. These mappings map
the target domain to attacker’s controlled IP addresses. As a result,
the CAs perform the DV process against attacker controlled hosts
and not against the real owner of the domain. We show how to
overcome all the challenges with an off-path attacker during the
certificate issuance. Our results show that Public Key Infrastructure
(PKI)1 which is meant to provide security against strong Man-in-the-
Middle (MitM) attackers, is relying on a weak building block that
can be circumvented by an off-path attacker – and in this work we
demonstrate this.

CA Compromises
There is a long history of attacks against the CAs. The compromise
of small Dutch CA DigiNotar CA in 2011 was a critical point in
history of PKI. Subsequent works documented loopholes in PKI
ecosystem, [4]. In 2016 Chinese CA Wosign ‘mistakenly’ gave out
certificates for GitHub domains due to a loophole in domain vali-
dation process. Recently a Egyptian ISP (MCS holdings) obtained
a certificate that was signed by CNNIC, that was included in root
stores. Namely any certificate issued by MCS would be accepted as
valid (even for domains MCS did not own). In 2008, a bug in Debian
OpenSSL caused thousands of certificates to be issued for keys with
only 15-17 bits of entropy, [5].

1PKI is a set of roles, policies, procedures and entities for creating and managing
certificates and public-key encryption.

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2213

DNS Cache Poisoning
DNS cache poisoning was first demonstrated in 2008 [10] against
DNS resolvers that used fixed or incrementing source ports. Subse-
quently, [RFC5452] provided recommendations for patches. Never-
theless, shortly after attacks were found allowing to circumvent the
[RFC5452] patches. Initially, [6, 8] showed that despite randomisa-
tion the source ports can be often predicted using side channels,
such as timing. Followup works applied fragmentation for bypass-
ing the recommendations in [RFC5452], [7, 9, 11–13].

DNSSEC [RFC4033-RFC4035] would prevent the cache poison-
ing attacks, however, recently vulnerabilities and misconfigurations
were found in DNSSEC keys generation and management proce-
dures exposing a large fraction of signed domains (more than 35%)
to attacks, [2, 3, 14].

2 WEAPONISING CACHE POISONING TO
SUBVERT DV

In this section we demonstrate an off-path attack that allows an
attacker to impersonate a victim domain to a CA and cause the CA
to issue a spoofed (fraudulent) certificate binding the public key of
the attacker to a victim domain. Our demonstration is based on the
attack presented in [1], and describes the technical and practical
challenges.

The attack leverages off-path DNS cache poisoning against a
DNS resolver of the CA. During the attack we inject a spoofed DNS
record mapping the victim domain to attacker controlled hosts, so
that the DV checks, that the CA runs, are performed against the
attacker’s hosts.

For our demo we set up a victim domain at victim-org.info.
We will inject spoofed records redirecting a nameserver and email
server in this domain to attacker controlled IP addresses. The attack
is initiated with a DNS request, which the CA should send to the
victim. The attacker then injects a DNS response with malicious
records from a spoofed IP address (impersonating a victim name-
server). If the CA’s cache does not have the records of the victim
domain in its DNS cache - injecting the DNS records is simple.
Often, the victim’s records would be present in the cache. In this
case the cached records need to be overwritten with new values
supplied by the attacker. We present demonstration of both cases
(when the target records are cached and when they are not).

2.1 DNS Request
To prevent attacks against DNS resolvers the networks are config-
ured to block external requests from the Internet and to serve only
the requests that are originated by the internal clients or services.
Since the off-path attacker is not located on the same network with
the attacked CA, we need to use alternative techniques to initiate
communication with the CA’s DNS resolver.

We trigger DNS requests by utilising the CSR uploading form.
This causes the CA to initiate a DV process, which triggers DNS
requests for the domain that was provided in the CSR - this is the
target domain.

The attack is initiated with a DNS request. To succeed in the
attack, the attacker has to craft a correct DNS response before the
authentic response from the real nameserver arrives. The attack
leverages defragmentation cache poisoning, with a spoofed second

Figure 1: Defragmentation cache poisoning for subverting
DV; in the illustration we use vict.im as victim domain.

fragment that contains malicious payload. Once the malicious sec-
ond fragment is reassembled with the authentic first fragment, the
payload is passed on to the DNS software. The software examines
the records, and based on its caching logic determines whether to
cache the records or to ignore them. We show how we launched the
attack with the steps above against a real CA, which uses a patched
Bind9 resolver: New BIND 9.x with DNSSEC.

2.2 Defragmentation Cache Poisoning
The idea of the attack is that the attacker “convinces” the (vic-
tim) nameserver to fragment responses to a specific destination.
To cause fragmentation the attacker has to reduce the Maximum
Transmission Unit (MTU) from the server to the CA. To do this our
off-path attacker issues an ICMP fragmentation needed packet to
the nameserver, indicating that it should reduce the MTU when
sending packets to the victim resolver (of the CA).

After reducing the MTU we trick the receiving resolver into
reassembling the first fragment of the real response from the name-
server with the second fragment generated by the attacker. This
allows us to bypass the challenge-response authentication fields
used by the DNS resolvers, since they are echoed by the nameserver
in the first fragment.

We first perform a measurement and a calculation, needed for
setting the values in the ICMP fragmentation needed error message
in step (4) (Figure 1) and based on which the attacker constructs
the spoofed second fragment in step (1) (Figure 1). The attacker
measures the responses’ sizes from the nameserver of vict.im
and calculates the offset where the fragmentation should occur.
The MTU in the ICMP fragmentation needed error message is set
accordingly. The goal is to ensure that the records, which it will
replace with spoofed records, are in the second fragment.

The attack proceeds as illustrated in Figure 1. In step (1) the at-
tacker sends to the victim DNS resolver a spoofed second fragment.
The fragment is cached by the receiving resolver in the IP defrag-
mentation cache waiting for the remaining fragments to arrive. In
step (2) the attacker uploads a CSR form requesting certification
for victim domain. The attacker selects an email based DV, hence

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2214

in step (3) the DNS resolver at the CA issues a DNS request to
the nameserver of victim domain asking for an IP address of the
email server. The attacker issues an ICMP fragmentation needed
packet in step (4) to ensure that the response is fragmented; this
ICMP error message can be issued also before step (1). In step (5)
the nameserver of the victim sends a fragmented DNS response.
The first fragment contains the entropy (resolver’s source port and
TXID are copied by the nameserver to the response) and some of the
DNS payload. The question, answer, authoritative and additional
sections are split between the first and the second fragment. The
first fragment is then reassembled with the spoofed second frag-
ment that was already in the cache of the DNS resolver; they both
leave the cache, and are passed on to the UDP layer. The legitimate
second fragment will not have any first fragment to reassemble
with, since when it arrives the legitimate first fragment has already
been reassembled with the spoofed second fragment and left the
buffer. The remaining steps (6)-(8) complete the DV process.

Notice that in step (1) when sending the spoofed fragment the
attacker needs to ensure the correctness of UDP checksum and IP
ID.

2.3 Overwriting Cached Records
Next, the task is to ensure that the records (sent in the spoofed DNS
response) are cached and served in responses to applications and
clients. Often the records will already be present in the cache. We
use the techniques in [12] to overwrite the cached record with new
values. The attack in our demo is launched against a patched new
BIND 9.x with DNSSEC, hence we focus on the caching logic of
BIND.
// CASE - NOT CACHED //
Query: MX? victim-org.info
Answer: victim-org.info MX exchanger0.victim-org.info

Query: A? exchanger0.victim-org.info
Answer: exchanger0.victim-org.info A 198.22.162.189
// Attacker changes this IP to 199.244.49.220

// CASE - CACHED //
Query: MX? victim-org.info
Answer: victim-org.info MX exchanger0.victim-org.info

Query: A? exchanger0.victim-org.info
Answer: exchanger0.victim-org.info A 198.22.162.189
Authority: victim-org.info NS ns0.victim-org.info
Additional: ns0.victim-org.info A 198.22.162.189
// Attacker changes last two records
// victim-org.info NS ns000.attacker.info
// ns000.attacker.info A 199.244.49.220

2.4 Validating Success
How can we know if the attack succeeded? An off-path attacker
cannot measure a state change in a remote cache. We measure the
success of the attack indirectly, by inspecting the records arriving
at the attacker’s host. Specifically, once the record with malicious
mappings is injected into the cache of the CA’s DNS resolver, the
remainder of DV will be performed against attacker’s IP addresses
and not against the victim domain. Hence, by inspecting the queries
at the attacker’s host at IP 199.244.49.220 we identify when the
attack is successful. Subsequently, after successfully passing the
DV, the attacker will also receive the fraudulent certificate to its
own email address.

3 CONCLUSIONS
We provide a real life proof of concept attack against PKI. Our
attack is launched with the weak off-path attacker and utilises DNS
cache poisoning to issue fraudulent certificates which the attacker
does not own. After deployment of [RFC5452] recommendations
in 2008 DNS cache poisoning was believed to be only a theoretical
threat. This also reduced the motivation to adopt more systematic
cryptographic protection with DNSSEC.

Our work is the first since 2008 to weaponise DNS cache poi-
soning with an off-path attacker, and to leverage cache poisoning
against an application of interest - the web PKI. Our demonstration
runs an attack against a large and popular CA. Although more
popular CAs are vulnerable, e.g., see [1], we argue that even a
single vulnerable CA (trusted by the browsers and operating sys-
tems) is sufficient for subverting web security with devastating
consequences for Internet clients and services.

ACKNOWLEDGEMENTS
The research reported in this paper was supported in part by the
German Federal Ministry of Education and Research (BMBF), by the
Hessian Ministry of Science and the Arts within CRISP (www.crisp-
da.de/) and co-funded by the DFG as part of project S3 within the
CRC 1119 CROSSING.

REFERENCES
[1] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.

2018. Domain Validation++ For MitM-Resilient PKI. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.

[2] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. 2017.
A longitudinal, end-to-end view of the DNSSEC ecosystem. In USENIX Security.

[3] Tianxiang Dai, Haya Shulman, and Michael Waidner. 2016. DNSSEC Miscon-
figurations in Popular Domains. In International Conference on Cryptology and
Network Security. Springer, 651–660.

[4] Zakir Durumeric, EricWustrow, and J Alex Halderman. 2013. ZMap: Fast Internet-
wide Scanning and Its Security Applications.. In USENIX Security Symposium,
Vol. 8. 47–53.

[5] P. Eckersley and J. Burns. 2010. An observatory for the SSLiverse. DEFCON’18.
(2010).

[6] Amir Herzberg and Haya Shulman. 2012. Security of Patched DNS. In Computer
Security - ESORICS 2012 - 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings. 271–288.

[7] Amir Herzberg and Haya Shulman. 2013. Fragmentation considered poisonous,
or: One-domain-to-rule-them-all. org. In Communications and Network Security
(CNS), 2013 IEEE Conference on. IEEE, 224–232.

[8] Amir Herzberg and Haya Shulman. 2013. Socket Overloading for Fun and Cache
Poisoning. In ACM Annual Computer Security Applications Conference (ACM
ACSAC), New Orleans, Louisiana, U.S., Charles N. Payne Jr. (Ed.).

[9] Amir Herzberg and Haya Shulman. 2013. Vulnerable Delegation of DNS Resolu-
tion. In Computer Security - ESORICS 2013 - 18th European Symposium on Research
in Computer Security, Egham, UK, September 9-13, 2013. Proceedings. 219–236.
https://doi.org/10.1007/978-3-642-40203-6_13

[10] Dan Kaminsky. 2008. It’s the End of the Cache As We Know It. In Black Hat con-
ference. http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/
BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf.

[11] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Counting in the Dark:
Caches Discovery and Enumeration in the Internet. In The 47th IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN).

[12] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-Wide Study of
DNS Cache Injections. In INFOCOM.

[13] Haya Shulman and Michael Waidner. 2014. Fragmentation Considered Leaking:
Port Inference for DNS Poisoning. In Applied Cryptography and Network Security
(ACNS), Lausanne, Switzerland. Springer.

[14] Haya Shulman and Michael Waidner. 2017. One Key to Sign Them All Considered
Vulnerable: Evaluation of DNSSEC in the Internet.. In NSDI. 131–144.

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2215

A.4. Poster: Fragmentation Attacks on DNS over TCP

[Dai21i1]
Tianxiang Dai, Haya Shulman, and Michael Waidner. “Poster: Fragmentation

Attacks on DNS over TCP”. in: 2021 IEEE 41st International Conference on Dis-
tributed Computing Systems (ICDCS). 2021, pp. 1124–1125. doi: 10.1109/
ICDCS51616.2021.00118

72

https://doi.org/10.1109/ICDCS51616.2021.00118
https://doi.org/10.1109/ICDCS51616.2021.00118

Poster: Fragmentation Attacks on DNS over TCP
Tianxiang Dai∗, Haya Shulman∗, Michael Waidner∗†

∗Fraunhofer Institute for Secure Information Technology SIT, †Technical University of Darmstadt

Abstract—The research and operational community believe that
TCP provides protection against IP fragmentation based attacks
and recommend that servers avoid sending responses over UDP
and use TCP instead.

In this work we show for the first time that IP fragmentation
attacks may also apply to communication over TCP. We perform a
study of the nameservers in the 100K-top Alexa domains and find
that 454 domains are vulnerable to IP fragmentation attacks. Of
these domains, we find 366 additional domains that are vulnerable
only to IP fragmentation attacks on communication with TCP.
We also find that the servers vulnerable to TCP fragmentation
can be forced to fragment packets to much smaller sizes (of less
than 292 bytes) than servers vulnerable to UDP fragmentation (not
below 548 bytes). This makes the impact of the attacks against
servers vulnerable to fragmentation of TCP segments much more
detrimental. Our study not only shows that the recommendation
to use TCP and avoid UDP is risky but it also shows that the
attack surface due to fragmentation is larger than was previously
believed.

We evaluate known IP fragmentation-based DNS cache poisoning
attacks against DNS responses over TCP.

I. INTRODUCTION

IP fragmentation allows to adjust packets to the size supported
by the networks which the packets traverse. Given a too large
packet, the source or the routers fragment packets into smaller
fragments. The receiver reassembles the fragments back into the
original IP packets. To identify the fragments during reassembly
that belong to the same IP packet the receiver uses a 16 bit IP
identifier (IP ID) in the IP header: the operating system at the
sender assigns an IP ID to every outbound IP packet.

Fragmentation-based attacks. There is a long history of
attacks which exploit fragmentation to launch Denial of Service
(DoS) [1], [2] or DNS cache poisoning attacks [3]–[5], [5]–[8].
The idea underlying the attacks is to send a spoofed fragment
to the victim client, which when reassembled with the genuine
fragment from the server, results either in an incorrect fragment
which is discarded by the client (causing DoS attack against the
target service) or results in a correct fragment which contains
malicious payload that was carried in the spoofed fragment.
Such attacks are typically launched against services that run
over UDP, such as most of DNS traffic, or directly over IP,
such as tunnelling mechanisms. Since most UDP traffic is not
fragmented, the attackers can trigger source fragmentation by
sending a spoofed ICMP fragmentation needed error message
(type: 3, code: 4) to the target server.

TCP uses path MTU discovery. Communication over TCP
avoids fragmentation since TCP performs path MTU discovery
(PMTUD) and accordingly adjusts the Maximum Segment Size
(MSS). To discover the MTU the sender transmits IP packets
with a do not fragment (DF) bit set in the IP header. When
a router with a smaller MTU receives such a packet it discards
the packet and returns to the sender an ICMP fragmentation

needed error message. This causes the TCP at the sender to
reduce the MSS to the value indicated in the MTU (minus 20
bytes) and resend the packet. The process iterates until the packet
is received by the destination. As a result of PMTUD, services
running over TCP are not subject to fragmentation and hence
should not be vulnerable to fragmentation based attacks. Indeed,
there are many recommendations to use TCP when possible in
order to avoid (DNS cache poisoning and DoS) fragmentation
based attacks [9], [10]. Many DNS servers are configured to
avoid fragmentation by setting the TC bit on DNS responses,
signalling to the client to resend the DNS request over TCP.

We show fragmentation-based attacks against TCP. In this
work we show for the first time that off-path attackers can force
the servers to fragment communication over TCP. We perform
a measurement study of the vulnerable servers. In contrast
to common belief that the TCP provides sufficient protection
against off-path network adversaries we show that this is not
so. We reveal that fragmentation based attacks against services
over TCP allow to circumvent the entropy in TCP segments,
including Sequence Number (SN) and source port. We explain
the challenges that the network adversaries need to address to
inject spoofed payload into TCP segments and demonstrate how
forcing the servers to fragment traffic over TCP can be exploited
for DNS cache poisoning attacks.

II. MEASURING TCP FRAGMENTATION

We perform a study of the Alexa Top-100K domains to
infer the fraction of domains with nameservers that can be
forced to fragment responses over TCP. For this, we send to
the nameservers ICMP fragmentation needed packet with an
TCP packet embedded, a UDP packet embedded and an echo
reply. We then issue a DNS request over TCP to the nameserver,
and check if the response arrives fragmented, and the minimum
fragment size that we observed. The results of our measurements
are listed in Table I.

Out of 100K domains, we collected nameservers in 97,493
domains (column ‘Total’ in Table I) by querying for NS record.
‘N/A’ indicates that we received no response. The valid re-
sponses are marked as‘Checked’. If we are able to cause name-
servers in a domain to fragment responses, we mark the domain
as ‘Fragmented’. Column ‘TC/NEW’ has different meanings
for UDP and TCP rows. For the UDP row, it says 13.43%
domains have nameservers responding with TC (Truncated) bit
set. For the TCP row, it shows the number of new domains that
were identified as ‘Fragmented’, which do not fragment DNS
responses over UDP. Our results show that 9752 domains are
vulnerable only to fragmentation attacks against UDP and 366
domains are vulnerable only to fragmentation attacks against
TCP. More importantly, among the servers that are vulnerable
to our IP fragmentation attacks over TCP, we find servers

1124

2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)

2575-8411/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDCS51616.2021.00118

which actively avoid UDP by responding with a TC bit set and
requesting that the DNS resolver re-sends the DNS request over
TCP. Indeed, there are 74 of the 366 new domains which respond
with TC bit but are vulnerable to our attacks. Namely, these
servers implement the recommendations to move to TCP in order
to avoid fragmentation based attacks to which communication
over UDP is known to be vulnerable!

Fragmented Checked N/A TC/NEW Total
UDP 10.09% 87.51% 12.49% 13.43% 100%

9840 85320 12173 13093 97493
TCP 0.47% 90.94% 9.06% 0.38% 100%

454 88663 8830 366 97493
TABLE I

FRAGMENTATION OF UDP AND TCP IN 100K-TOP ALEXA DOMAINS.

To infer the fragment sizes that the vulnerable nameservers
are willing to reduce to, we evaluated ICMP error messages
with varying MTU sizes. Surprisingly, we find that domains
supporting fragmentation over TCP allow much smaller frag-
ments than UDP. About 50% of the domains that allow TCP
fragmentation, can be reduced to MTU of 292 bytes or smaller,
while 90% of the domains vulnerable to UDP fragmentation
limit the minimum fragment size to at least 548 bytes. Our
findings are inline with the findings in [11], that analysed the
CAIDA datasets between years 2009 and 2016 and found a
large fraction of small fragments with TCP segments and UDP
datagrams.

III. ATTACKS EXPLOITING TCP FRAGMENTATION

IP fragmentation attacks on TCP allow to bypass the randomi-
sation with the sequence number and the source ports of TCP.
To inject a spoofed fragment the attacker has to compute IP ID
value in the original response from the nameserver.

Predicting IP ID. Our measurements of the 100K-top Alexa
domains show that 76,267 of the nameservers use predictable IP
ID values in IP packets that contain TCP segments. In contrast,
when communicating over UDP only 12,540 of the servers use
predictable IP ID values in outbound packets.

Attack evaluation. DoS attacks by fragment mis-association
are simple: the attacker sends fragments that result in an invalid
TCP segment that is discarded by the operating system. We
evaluate the traditional DNS cache poisoning attacks that were
previously shown to apply to UDP communication, against the
servers that we found vulnerable to fragmentation attacks on
TCP. The idea of the attacks is to inject a spoofed fragment
(with a source IP address of the victim nameserver) that contains
a malicious payload. We implement the DNS cache poisoning
attack from [3] and inject DNS records in a second spoofed
fragment, which is reassembled with the genuine first fragment
from the nameserver. The resulting DNS response contains
malicious records injected from the second spoofed fragment.

We simulate the success rate of the attack using an updated
DNS resolver with an IP defragmentation cache size of 64
packets, for different IPID increment rates Figure 1. The hitrate
reaches 30% even at very high traffic rates of 1K packet per
second.

IV. CONCLUSION: BUG OR FEATURE?
We show that the attacks which were believed to apply only

to connectionless communication, such as UDP or tunnelling,

Fig. 1. Attack hit rate for different traffic volumes.

also apply to IP communication with TCP. Our work demon-
strates that the recommendation to move to TCP to avoid the
fragmentation attacks, does not solve the problem since TCP
faces similar exploits as UDP. We recommend that the ICMP
messages that trigger fragmentation should be filtered, e.g., in
firewalls.

ACKNOWLEDGEMENTS

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Ministry
for Higher Education, Research and Arts within their joint sup-
port of the National Research Center for Applied Cybersecurity
ATHENE and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) SFB 1119.

REFERENCES

[1] C. A. Kent and J. C. Mogul, “Fragmentation considered harmful,” ACM
SIGCOMM Computer Communication Review, vol. 25, no. 1, pp. 75–87,
1995.

[2] Y. Gilad and A. Herzberg, “Fragmentation considered vulnerable: blindly
intercepting and discarding fragments,” in Proceedings of the 5th USENIX
conference on Offensive technologies, 2011, pp. 2–2.

[3] A. Herzberg and H. Shulman, “Fragmentation Considered Poisonous, or:
One-domain-to-rule-them-all.org,” in 2013 IEEE Conference on Commu-
nications and Network Security (CNS). IEEE, 2013, pp. 224–232.

[4] ——, “Vulnerable delegation of dns resolution,” in European Symposium
on Research in Computer Security. Springer, 2013, pp. 219–236.

[5] H. Shulman and M. Waidner, “Fragmentation considered leaking: port
inference for dns poisoning,” in International Conference on Applied
Cryptography and Network Security. Springer, 2014, pp. 531–548.

[6] M. Brandt, T. Dai, A. Klein, H. Shulman, and M. Waidner, “Domain
validation++ for mitm-resilient pki,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 2060–2076.

[7] P. Jeitner, H. Shulman, and M. Waidner, “The impact of dns insecurity
on time,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2020, pp. 266–277.

[8] H. Shulman and M. Waidner, “Towards security of internet naming
infrastructure,” in European Symposium on Research in Computer Security.
Springer, 2015, pp. 3–22.

[9] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and N. Somaiya,
“Connection-oriented dns to improve privacy and security,” in 2015 IEEE
symposium on security and privacy. IEEE, 2015, pp. 171–186.

[10] LetsEncrypt, “Mitigating DNS Fragmentation Attack,”
https://community.letsencrypt.org/t/mitigating-dns-fragmentation-
attack/74838, 2018.

[11] M. Göhring, H. Shulman, and M. Waidner, “Path mtu discovery considered
harmful,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 866–874.

1125

A.5. DNS-over-TCP Considered Vulnerable

[Dai21a]
Tianxiang Dai, Haya Shulman, and Michael Waidner. “DNS-over-TCP Consid-

ered Vulnerable”. In: Proceedings of the Applied Networking Research Workshop.
ANRW ’21. Virtual Event, USA: Association for Computing Machinery, 2021,
pp. 76–81. isbn: 9781450386180. doi: 10.1145/3472305.3472884. url:
https://doi.org/10.1145/3472305.3472884

75

https://doi.org/10.1145/3472305.3472884
https://doi.org/10.1145/3472305.3472884

DNS-over-TCP Considered Vulnerable
Tianxiang Dai
Fraunhofer SIT

Germany

Haya Shulman
Fraunhofer SIT

Germany

Michael Waidner
Fraunhofer SIT
TU Darmstadt

Germany

ABSTRACT
The research and operational communities believe that TCP
provides protection against IP fragmentation attacks and
recommend that servers avoid sending DNS responses over
UDP but use TCP instead.
In this work we show that IP fragmentation attacks also

apply to servers that communicate over TCP. Our measure-
ments indicate that in the 100K-top Alexa domains there are
393 additional domains whose nameservers can be forced to
(source) fragment IP packets that contain TCP segments. In
contrast, responses from these domains cannot be forced to
fragment when sent over UDP.
Our study not only shows that the recommendation to

use TCP instead of UDP in order to avoid attacks that exploit
fragmentation is risky, but it also unveils that the attack
surface due to fragmentation is larger than was previously
believed. We evaluate IP fragmentation-based DNS cache
poisoning attacks against DNS responses over TCP.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
DNS Cache Poisoning, IP Fragmentation, TCP
ACM Reference Format:
Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. DNS-
over-TCP Considered Vulnerable. In Applied Networking Research
Workshop (ANRW ’21), July 24–30, 2021, Virtual Event, USA. ACM,
NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3472305.3472884

1 INTRODUCTION
IP fragmentation allows to adjust packets to the size sup-
ported by the networks which the packets traverse. Given

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’21, July 24–30, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8618-0/21/07. . . $15.00
https://doi.org/10.1145/3472305.3472884

a too large packet, the source or the routers fragment pack-
ets into smaller fragments. The receiver reassembles the
fragments back into the original IP packets. To identify the
fragments that belong to the same IP packet the receiver
uses a 16 bit IP identifier (IP ID) in the IP header during
reassembly. The operating system at the sender assigns an IP
ID to every outbound IP packet. If a packet is fragmented by
the source or by the intermediate devices, each IP fragment
receives the same IP ID value as the original IP packet. The
receiving host identifies fragments with the same IP ID and
reassembles them into original IP packet.

Computing the IP ID value. Some operating systems
use a globally incremental counter to generate IP ID values:
after a packet is sent, the IP ID counter is incremented and the
next packet receives the next value. For instance, Windows
(e.g., Windows 8 and 10), Android 5.0.1 and FreeBSD use a
global counter [20]. Other operating systems, such as new
Linux versions, use unpredictable IP ID assignment. For in-
stance, Linux and MacOS to use local counters and OpenBSD
use pseudo-random IP ID assignment [21]. In this work we
focus on servers with global incremental IP ID counters.

Fragmentation-based attacks. The idea underlying the
attacks that exploit fragmentation is to interfere in the IP
reassembly process with fragment mis-association by send-
ing a spoofed fragment to the victim client, which when
reassembled with the genuine fragment from the server, re-
sults either in an incorrect fragment which is discarded by
the client (causing DoS attack against the target service ,
such as [16]) or results in a correct fragment which contains
malicious payload that was carried in the spoofed fragment
[10]. Such attacks are typically launched against services
that run over UDP, such as DNS, where the majority of the
requests/responses are exchanged over UDP. Sincemost UDP
traffic is not fragmented, the attackers can trigger source
fragmentation by sending a spoofed ICMP fragmentation
needed error message (type: 3, code: 4) to the target server.
The ICMP packet should contain the original IP header and
first 8 bytes of the payload that triggered the error message
as well as the MTU of the router that sent the ICMP error,
[RFC792] [22].

TCP uses pathMTU discovery. To avoid fragmentation
TCP performs path MTU discovery (PMTUD) and accord-
ingly adjusts the Maximum Segment Size (MSS). To discover
the MTU the sender transmits IP packets with a do not

76

ANRW ’21, July 24–30, 2021, Virtual Event, USA Tianxiang Dai, Haya Shulman, and Michael Waidner

fragment (DF) bit set in the IP header. When a router with
a smaller MTU receives such a packet it discards the packet
and returns to the sender an ICMP fragmentation needed
error message, illustrated in Figure 1. This causes the TCP
at the sender to reduce the MSS to the value indicated in the
MTU (minus 20 bytes) and resend the packet. The process
iterates until the packet is received by the destination. As a
result of PMTUD, services running over TCP are not subject
to fragmentation and hence should not be vulnerable to frag-
mentation based attacks. Indeed, there are recommendations
to use TCP when possible in order to avoid (DNS cache poi-
soning and DoS) fragmentation based attacks [2, 7, 18, 27].
Many DNS servers are configured to avoid fragmentation
by lowering default EDNS buffer size and setting the TC bit
on oversized DNS responses, signalling to the client that it
should resend the DNS request over TCP.

Figure 1: ICMP Packet too big with EchoReply.

Fragmentation attacks against TCP. In this work we
show that off-path attackers can force the servers to frag-
ment communication over TCP. We perform a measurement
study of the vulnerable servers. In contrast to common be-
lief that TCP provides sufficient protection against off-path
network adversaries we show that this is not so. We reveal
that fragmentation based attacks against services over TCP
allow to circumvent the entropy in TCP segments, includ-
ing Sequence Number (SN) and source port. We explain the
challenges that the network adversaries need to address to
inject spoofed payload into TCP segments and demonstrate
how forcing the servers to fragment traffic over TCP can
be exploited for DoS and DNS cache poisoning attacks. In
addition, fragmentation is also performed by the intermedi-
ate routers, when these have small next-hope MTU values.
An analysis of CAIDA data-traces between 2008 and 2016
showed at least 1K intermediate routers in the Internet gen-
erate ICMP fragmentation needed packets with next MTU
values even below 576 bytes, and fragment IP packets with
TCP, despite path MTU discovery pf the source, [9].

Organisation. We review related work in Section 2. In
Section 3 we provide measurements of servers that can be

forced to fragment TCP traffic. In Section 4 we show mea-
surements of IPID allocation in the Internet. In Section 5 we
evaluate DNS cache poisoning attacks against DNS responses
served over TCP. We conclude in Section 6.

2 RELATEDWORK
IP fragmentation of UDP communication has a long his-
tory of attacks, including DoS (Denial of Service) attacks on
IP defragmentation caches, [15, 16], and more recently IP
fragments mis-association was exploited for injecting mali-
cious content into NTP and DNS packets for shifting time
and for launching DNS cache poisoning attacks respectively,
[3, 10, 11, 13, 14, 19, 24, 25].

To reduce the threats introduced by fragmented IP packets
that carry UDP datagrams best practices recommend to avoid
fragmentation [1, 2, 5, 7, 18, 27]. Indeed, most servers were
patched to avoid fragmentation, and use TCP for transmitting
responses that are too large to fit in a single IP packet.

Is TCP really secure against IP fragmentation attacks? The
possibility of fragmentation attacks against TCP was dis-
cussed in non academic community, starting with Zalewski
who in 2004 in a bugtraq post1 discussed a possibility for an
attack that spoofs a non-first fragment of a TCP segment.
There was however not a proof of concept of this attack and
it was not validated in practice. In this work we demonstrate
attacks that exploit IP fragmentation for injecting malicious
records into DNS responses sent over TCP.

3 MEASURING TCP FRAGMENTATION
We perform a study of the Alexa Top-100K domains to infer
the fraction of domains with nameservers that can be forced
to fragment responses over TCP. For this, we first create
a TCP connection to remote nameserver and send a DNS
request over the connection. Once we receive the response,
without acking, we send to the nameservers ICMP fragmen-
tation needed packet, a.k.a. Packet Too Big (PTB, type: 3
and code: 4). Then we wait for retransmission and check if
the response arrives fragmented, and record the minimum
fragment size that we observe.

We evaluate reaction to three types of payloads embedded
in ICMP PTB messages: TCP header, UDP header and ICMP
echo reply. One example of ICMP PTB packet with ICMP
echo reply as payload in showed in Figure 1. Considering that
TCP is stateful, we also test two variations of TCP headers.
One with wrong sequence number embedded in ICMP PTB
(the TCP_Wrong row). The other with random port, thus for
unexisting TCP connection (the TCP_New row). The results
of our measurements are listed in Table 1.

1https://bugtraq.securityfocus.narkive.com/rm25I7e1/a-new-tcp-ip-blind-
data-injection-technique

77

DNS-over-TCP Considered Vulnerable ANRW ’21, July 24–30, 2021, Virtual Event, USA

Out of 100K domains, we collected nameservers in 97,493
domains (column ‘Total’ in Table 1) by querying for NS
record. ‘N/A’ indicates that we received no response. The
valid responses are marked as ‘Checked’. If we are able to
cause nameservers in a domain to fragment responses, we
mark the domain as ‘Fragmented’. Column ‘TC/NEW’ has
different meanings for UDP and TCP rows. For the UDP row,
it says 13.77% domains have nameservers responding with
TC (Truncated) bit set. For the TCP row, it shows the num-
ber of new domains that were identified as ‘Fragmented’,
which do not fragment DNS responses over UDP. Our results
show that 9,751 domains are vulnerable only to fragmenta-
tion attacks against UDP and 393 domains are vulnerable
only to fragmentation attacks against TCP.More importantly,
among the servers that are vulnerable to our IP fragmenta-
tion attacks over TCP, we find servers which actively avoid
UDP by responding with a TC bit set and requesting that the
DNS resolver re-sends the DNS request over TCP. Indeed,
there are 76 of the 393 new domains which respond with TC
bit but are vulnerable to our attacks. Namely, these servers
implement the recommendations to move to TCP in order to
avoid fragmentation based attacks to which communication
over UDP is known to be vulnerable!

Fragmented Checked N/A TC/NEW Total
UDP 10.11% 87.62% 12.38% 13.77% 100%

PTB_UDP 9,854 85,428 12,065 13,429 97,493
TCP 0.46% 90.30% 9.70% 0.37% 100%

PTB_TCP_Right 445 88,037 9,456 356 97,493
TCP 0.43% 89.42% 10.58% 0.34% 100%

PTB_TCP_Wrong 420 87,174 10,319 334 97,493
TCP 0.13% 89.51% 10.49% 0.07% 100%

PTB_TCP_New 130 87,263 10,230 72 97,493
TCP 0.15% 90.29% 9.71% 0.12% 100%

PTB_UDP 149 88,031 9,462 121 97,493
TCP 0.10% 89.99% 10.01% 0.10% 100%

PTB_EchoReply 95 87,732 9,761 94 97,493
TCP 0.51% 91.43% 8.57% 0.40% 100%
ALL 496 89,135 8,358 393 97,493

Table 1: Fragmentation of UDP and TCP in 100K-top
Alexa domains.

To infer the fragment sizes that the vulnerable name-
servers are willing to reduce to, we evaluated ICMP error
messages with varying MTU sizes. We plot the distribution
of the minimum fragment sizes in Figure 2. We find that
domains supporting fragmentation over TCP allow much
smaller fragments than UDP. About 40% of the domains that
allow TCP fragmentation, can be reduced to MTU of 292
bytes or smaller, while 90% of the domains vulnerable to
UDP fragmentation limit the minimum fragment size to at
least 548 bytes.
We also measure the ratio of vulnerable nameservers

within a domain. The results are plotted in Figure 3. Among

0 500 1000 1500
Size of Fragment

0%

20%

40%

60%

80%

100%

C
D

F

UDP
TCP

Figure 2: CDF of TCP and UDP fragment sizes.

the 496 domains with at least one nameserver vulnerable
to fragmentation over TCP, 354 (71%) of them have more
than half of their nameservers vulnerable. More specifically,
all of the nameservers in 170 (34%) domains are vulnerable.
Corresponding numbers for UDP are 9,065 (92%) and 7,706
(78%).

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

0%

20%

40%

60%

80%

100%

C
D

F

UDP
TCP

Figure 3: CDF of ratio of vulnerable nameservers for
all vulnerable domains.

4 IP IDENTIFIER MEASUREMENTS
In this section we describe the IP ID allocation methods and
report on the IP ID results we collected from the popular
nameservers.
To identify the value of the IP ID we send packets from

two hosts (with different IP addresses) to a nameserver.

78

ANRW ’21, July 24–30, 2021, Virtual Event, USA Tianxiang Dai, Haya Shulman, and Michael Waidner

IP Identifier. The 16 bit IP Identifier (IP ID) field in the
IP header is used to identify fragments that belong to the
same original IP packet [RFC791] [23]. The fragments are
then reassembled by the recipient according to source and
destination IP addresses, IP ID value and protocol field (e.g.,
TCP).

Global counter. Initially most operating systems used
a globally incremental IP ID assignment which is easy to
implement and has little requirement to keep state: just a
single counter which is incrementedwith every packet that is
sent. Global counters however were shown to be vulnerable
to off-path attacks, [10]. A global counter is still popular in
the Internet. Our study shows that 5.53% nameservers use
global counter for UDP datagrams and 2.30% nameservers
global counters for IP packets with TCP, see details in Table 2.
To prevent the attacks some operating systems were patched
to randomise their IP ID assignment.

In our work we focus on servers that implement globally
incremental IP ID counters.

Random
Per-Host Global Zero and other N/A Total

UDP 52.60% 5.53% 7.34% 33.40% 1.14% 100%
51,281 5,388 7,152 32,560 1,112 97,493

TCP 14.43% 2.30% 75.92% 1.30% 6.04% 100%
14,072 2,247 74,020 1,266 5,888 97,493

Table 2: IP ID allocation of in 100K-top Alexa.

5 OFF-PATH DNS POISONING OVER TCP
In this sectionwe demonstrate cache poisoning attacks against
DNS responses sent over TCP by injecting DNS records into
fragmented IP packets. This shows that IP fragmentation
attacks on TCP allow off-path attackers to bypass the ran-
domisation with the sequence number and the source ports
of TCP.

5.1 Attack Steps
In the first step of the attack, the adversary sends an ICMP
echo reply message indicating a lower MTU. In the second
step, the adversary finds out the IP ID value that will be as-
signed to the DNS response that the nameserver will send to
the target victim. Next, the adversary crafts a spoofed second
fragment with a TCP segment that contains a DNS record,
and with the correct IP ID value, that matches the IP ID of the
fragments sent by the nameserver. This spoofed fragment is
stored in the IP defragmentation cache of the DNS resolver
for 30 seconds. Note that the spoofed fragments are placed
in advance. Thus there is no race condition. Subsequently,
the adversary triggers a DNS request to the target domain.
When the first genuine fragment of the DNS response ar-
rives it is reassembled with the spoofed second fragment
of the adversary and is moved on to TCP. If the checksum

Figure 4: Traffic flow of the attack.

is correct, the ACK is in window, segment is accepted, and
passed to DNS software. The ACK is in the window since it
is the same sequence number (SN) value that was sent by
the nameserver. Computing the TCP checksum is similar to
computing the UDP checksum and is easy for an off-path
attacker which knows the content of the original second
fragment and knows which bytes it changed. Guessing the
correct IP ID value depends on the rate at which the name-
server receives DNS requests. We explain next how to fix the
TCP checksum and to extrapolate the IP ID value.

5.1.1 Fixing the checksum. Since the spoofed fragment mod-
ifies parts of the payload of the genuine IP packet sent by the
nameserver it also changes the checksum. Hence the adver-
sary needs to adjust the checksum to ensure the checksum
matches the one in the original IP packet, this is simple and
done similarly to UDP [10].

5.1.2 Predicting the IP ID value. We show our measurements
of the IP ID algorithms in nameservers and then explain how
we extrapolate the IP ID value in responses sent by busy
nameservers.

IP ID measurements. Our measurements of the 100K-
top Alexa domains show that 76,267 of the nameservers
use predictable IP ID values in IP packets that contain TCP
segments. In contrast, when communicating over UDP only
12,540 of the servers use predictable IP ID values in outbound
packets.

Extrapolating IP ID. We first measure the rate at which
the packets arrive at the nameserver. We do this by probing
the nameserver’s IP ID value at stable intervals. Let this rate
be𝑀 packets per second. We next do an extrapolation of the
IP ID value assuming that the server receives𝑀 packets per

79

DNS-over-TCP Considered Vulnerable ANRW ’21, July 24–30, 2021, Virtual Event, USA

second. We use the following components: our prober and
a nameserver that uses globally incremental IP ID. We use
linear regression with Ordinary Least Square (OLS) method
to estimate the relation between IP ID and timestamp 𝑡 . Since
IP ID is incremental, we assume:

𝐼𝑃𝐼𝐷 = 𝑎 ∗ 𝑡 + 𝑏 + 𝜖, 𝜖 ∼ 𝑁 (0, 𝜎2)
We send 𝑁 probes to 2.2.2.2 (in step (1)). With 𝑁 probes,

we can estimate 𝑎, 𝑏 and 𝜎 using OLS method in step (2).
We implement this extrapolation algorithm for probing

the IP ID values prior to beginning of the attack.

5.2 Attack Evaluation
We set up an Unbound DNS resolver, and run the attack eval-
uations against the nameservers with global IP ID counters
in 100K-top Alexa domains. Recent as well as more older
approaches on IP ID prediction in old operating systems
[6, 8, 17] demonstrate that our attacks have a much wider
scope. We next show how to construct a second IP fragment
with a malicious DNS record inside it, so that it is reassem-
bled with the first fragment sent by the nameserver and
results in a valid TCP segment.
Figure 5 and Figure 6 are examples of two fragments of

a DNS response over TCP. As we can see, all DNS related
random challenges are in the first fragment, including TCP
port and DNS Transaction ID (TXID). The only challenge the
attacker needs to solve is to match the IPID. As explained
in Section 5.1.2, it can be accomplished by probing and ex-
trapolating. Afterwards, the attacker modifies the second
fragment to include some malicious payload. To make the
checksum pass, he can change few unused bytes in the pack-
ets, just as in [10]. Then he can spoof those second fragments
to the resolver.

Figure 5: First fragment, assuming MTU = 68

We evaluate the DNS cache poisoning attack that were pre-
viously shown to apply to UDP communication [10], against
the servers that we found vulnerable to fragmentation at-
tacks on TCP. The idea of the attacks is to inject a spoofed

Figure 6: Spoofed second fragment, with DNS payload
modified

fragment (with a source IP address of the victim nameserver)
that contains a malicious payload. The spoofed fragment of
the attacker is reassembled with the genuine first fragment
from the nameserver. The resulting DNS response contains
malicious records injected from the second spoofed frag-
ment.

We simulate the success rate of the attacks using our DNS
resolver with an IP defragmentation cache size of 64 packets,
against nameservers with different IP ID increment rates
Figure 7. The hitrate reaches 30% even at very high traffic
rates of 1K packet per second.
The amount of packets sent during the whole attack is

low: 𝑁 probes to estimate server’s IP ID rate and 64 spoofed
second fragments, as showed in Fig. 4. Normally, fewer than
100 packets are required. Besides, the attacker does not need
to repeat the probing phase for every attack. This makes the
attack difficult to be detected.

Figure 7: Attack hit rate for different traffic volumes.
X-axis is the IP ID increment rate at nameserver
(packet per second), Y-axis is success rate.

80

ANRW ’21, July 24–30, 2021, Virtual Event, USA Tianxiang Dai, Haya Shulman, and Michael Waidner

6 CONCLUSION: BUG OR FEATURE?
We show that the attacks which were believed to apply only
to connectionless communication, such as UDP or tunnelling,
also apply to IP communication with TCP. Our work shows
that the recommendations to move to TCP to avoid the frag-
mentation attacks that apply to UDP, do not solve the prob-
lem.
The core issue is that the attacker can exploit ICMP mes-

sages with UDP datagrams as well as ICMP messages with
echo reply packets to trigger fragmentation on TCP. Since
these protocols allow fragmentation and do not trigger ICMP
fragmentation needed error messages, the reaction of the op-
erating systems to ICMP messages in such scenarios should
be clarified in the standard. Our recommendation is that such
ICMP messages are filtered in firewalls or at the servers.
To avoid DNS cache poisoning it is important to sign

the zone files with DNSSEC [RFC4033-RFC4035]. Neverthe-
less, care should be taken as recent research demonstrated
that some cache injections cannot be prevented even with
DNSSEC, [12]. In addition, DNSSEC-signed domains can be
vulnerable when the cryptographic material is weak or mis-
configured, e.g., due to reuse of the shared modulus, [4, 26].

ACKNOWLEDGEMENTS
This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

REFERENCES
[1] 2020. DNS Flag Day 2020. https://dnsflagday.net/2020/
[2] Ron Bonica, Fred Baker, Geoff Huston, Bob Hinden, Ole Troan, and

Fernando Gont. 2019. IP fragmentation considered fragile. Technical
Report. IETF Internet-Draft (draft-ietf-intarea-frag-fragile), work in
progress

[3] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and
Michael Waidner. 2018. Domain validation++ for mitm-resilient pki.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2060–2076.

[4] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mis-
love, and Christo Wilson. 2017. A longitudinal, end-to-end view of
the {DNSSEC} ecosystem. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 1307–1322.

[5] J Dickinson, S Dickinson, R Bellis, A Mankin, and D Wessels. 2016.
RFC7766: DNS transport over TCP-implementation requirements.

[6] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path
TCP Exploits of the Mixed IPID Assignment. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security.
1323–1335.

[7] K Fujiwara and P Vixie. 2020. Fragmentation Avoidance in DNS.
Technical Report. IETF Internet-Draft (draft-fujiwara-dnsop-avoid-
fragmentation-03), work in progress

[8] Yossi Gilad and Amir Herzberg. 2011. Fragmentation considered vul-
nerable: blindly intercepting and discarding fragments. In Proceedings
of the 5th USENIX conference on Offensive technologies. 2–2.

[9] Matthias Göhring, Haya Shulman, and Michael Waidner. 2018. Path
MTU Discovery Considered Harmful. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 866–874.

[10] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered
Poisonous, or: One-domain-to-rule-them-all.org. In 2013 IEEE Confer-
ence on Communications and Network Security (CNS). IEEE, 224–232.

[11] Amir Herzberg andHaya Shulman. 2013. Vulnerable delegation of DNS
resolution. In European Symposium on Research in Computer Security.
Springer, 219–236.

[12] Philipp Jeitner and Haya Shulman. 2021. Injection Attacks Reloaded:
Tunnelling Malicious Payloads over {DNS}. In 30th {USENIX} Security
Symposium ({USENIX} Security 21).

[13] Philipp Jeitner, Haya Shulman, and Michael Waidner. 2020. The Impact
of DNS Insecurity on Time. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 266–277.

[14] Philipp Jeitner, Haya Shulman, and Michael Waidner. 2020. Pitfalls
of Provably Secure Systems in Internet The Case of Chronos-NTP.
In 2020 50th Annual IEEE-IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S). IEEE, 49–50.

[15] Charlie Kaufman, Radia Perlman, and Bill Sommerfeld. 2003. DoS
protection for UDP-based protocols. In Proceedings of the 10th ACM
conference on Computer and communications security. 2–7.

[16] Christopher A Kent and Jeffrey C Mogul. 1987. Fragmentation consid-
ered harmful. Vol. 17.

[17] Amit Klein and Benny Pinkas. 2019. From IP ID to Device ID and
KASLR Bypass. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 1063–1080.

[18] LetsEncrypt. 2018. Mitigating DNS Fragmentation Attack.
https://community.letsencrypt.org/t/mitigating-dns-fragmentation-
attack/74838.

[19] Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg.
2016. Attacking the Network Time Protocol.. In NDSS.

[20] Sophon Mongkolluksamee, Kensuke Fukuda, and Panita Pongpaibool.
2012. Counting NATted hosts by observing TCP/IP field behaviors.
In 2012 IEEE International Conference on Communications (ICC). IEEE,
1265–1270.

[21] Liran Orevi, Amir Herzberg, and Haim Zlatokrilov. 2018. DNS-DNS:
DNS-based de-nat scheme. In International Conference on Cryptology
and Network Security. Springer, 69–88.

[22] Jon Postel. 1981. Internet Control Message Protocol darpa internet
program protocol specification. RFC 792 (1981).

[23] Jon Postel. 1981. Internet protocol—DARPA internet program protocol
specification, rfc 791. (1981).

[24] Haya Shulman and Michael Waidner. 2014. Fragmentation considered
leaking: port inference for dns poisoning. In International Conference
on Applied Cryptography and Network Security. Springer, 531–548.

[25] Haya Shulman and Michael Waidner. 2015. Towards security of in-
ternet naming infrastructure. In European Symposium on Research in
Computer Security. Springer, 3–22.

[26] Haya Shulman and Michael Waidner. 2017. One key to sign them all
considered vulnerable: Evaluation of {DNSSEC} in the internet. In
14th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 17). 131–144.

[27] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. 2015. Connection-oriented DNS to improve pri-
vacy and security. In 2015 IEEE symposium on security and privacy.
IEEE, 171–186.

81

A.6. From IP to Transport and Beyond: Cross-Layer Attacks
Against Applications

[Dai21s]
Tianxiang Dai et al. “From IP to Transport and beyond: Cross-Layer Attacks

against Applications”. In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
SIGCOMM ’21. Virtual Event, USA: Association for Computing Machinery, 2021,
pp. 836–849. isbn: 9781450383837. doi: 10.1145/3452296.3472933. url:
https://doi.org/10.1145/3452296.3472933

Declaration of Contributions
The paper "From IP to Transport and beyond: Cross-Layer Attacks against Ap-
plications" was published as a full research paper at the "ACM SIGCOMM 2021
Conference". It constitutes a joint work of Tianxiang Dai, Philipp Jeitner, Haya
Shulman and Michael Waidner.
Haya Shulman proposed the initial concept and wrote Introduction, Background
and Conclusions, while Philipp Jeitner wrote the rest. After the initial reviews,
Haya Shulman and Philipp Jeitner decided on what to change about the paper and
to add new attack methodologies. Tianxiang Dai and Philipp Jeitner performed the
analysis of applications, more specifically Tianxiang Dai did this for XMPP, Email
and PKI and Philipp Jeitner for RADIUS, NTP, Bitcoin, Tunneling and Intermediate
Devices. Tianxiang Dai and Philipp Jeitner designed, implemented and analysed
the measurements together. More specifically, on the resolver side, Tianxiang Dai
developed the testing infrastructure and performed the SADDNS measurement for
all. Tianxiang Dai did the resolver tests for CAs, VoIP, Email, and Open Resolvers,
while Philipp Jeitner did the resolver tests on Eduroam, CDNs, AdNet and NTP.
On the nameserver side, Tianxiang Dai performed all the measurements. The data
analysis was done by Tianxiang Dai and Philipp Jeitner together, where Philipp
Jeitner did most of the analysis. Tianxiang Dai also built the online tool which
allows everyone in the Internet to test their own resolvers. Michael Waidner was a
general advisor of this work and contributed with continuous feedback during all
phases of the paper writing process. The paper was presented at the conference
by Philipp Jeitner.
All authors agree with the use of their joint paper as part of Philipp Jeitner’s
and Tianxiang Dai’s cumulative dissertation, considering a contribution of 70%
from Philipp Jeitner and 30% from Tianxiang Dai.

82

https://doi.org/10.1145/3452296.3472933
https://doi.org/10.1145/3452296.3472933

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications

Tianxiang Dai
Fraunhofer SIT

Germany

Philipp Jeitner
Fraunhofer SIT
TU Darmstadt

Germany

Haya Shulman
Fraunhofer SIT

Germany

Michael Waidner
Fraunhofer SIT
TU Darmstadt

Germany

ABSTRACT
We perform the first analysis of methodologies for launching DNS
cache poisoning: manipulation at the IP layer, hijack of the inter-
domain routing and probing open ports via side channels. We eval-
uate these methodologies against DNS resolvers in the Internet
and compare them with respect to effectiveness, applicability and
stealth. Our study shows that DNS cache poisoning is a practical
and pervasive threat.

We then demonstrate cross-layer attacks that leverage DNS cache
poisoning for attacking popular systems, ranging from security
mechanisms, such as RPKI, to applications, such as VoIP. In addition
to more traditional adversarial goals, most notably impersonation
and Denial of Service, we show for the first time that DNS cache
poisoning can even enable adversaries to bypass cryptographic
defences: we demonstrate how DNS cache poisoning can facilitate
BGP prefix hijacking of networks protected with RPKI even when
all the other networks apply route origin validation to filter invalid
BGP announcements. Our study shows that DNS plays a much
more central role in the Internet security than previously assumed.

We recommend mitigations for securing the applications and for
preventing cache poisoning.

CCS CONCEPTS
• Security and privacy → Network security.

KEYWORDS
DNS Cache Poisoning, Fragmentation, BGP hijacking, Side Chan-
nels
ACM Reference Format:
Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021.
From IP to Transport and Beyond: Cross-Layer Attacks Against Applications.
In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–28, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3452296.3472933

1 INTRODUCTION
Domain Name System (DNS), [RFC1034, RFC1035] [59, 60], plays
a central role in the Internet. Designed and standardised in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472933

80s to provide lookup services DNS has evolved into a complex
infrastructure and is being increasingly used to support a wide
variety of existing and future applications and security mechanisms.
Given the large dependency of the Internet on DNS it also became
a lucrative target for attacks.

DNS cache poisoning. In a cache poisoning attack an adver-
sary injects malicious DNS records into the cache of a victim DNS
resolver. Poisoning the cache enables the adversary to redirect the
victims using that DNS resolver to malicious hosts instead of the
genuine servers of the target domain. As a result, the adversary
intercepts all the services in the target domain.

In this work we explore how practical off-path DNS cache poi-
soning attacks are and how such attacks can be exploited to launch
cross-layer attacks against applications.

Taxonomy of cache poisoning methodologies. As we ex-
plain in Section 2, off-path DNS cache poisoning is challenging
to launch in practice. Nevertheless, there are methodologies that,
depending on different conditions, can result in practical attacks.
In this work we evaluate such methodologies for launching cache
poisoning attacks: (1) BGP prefix hijacking, (2) transport layer side
channels and (3) injections into IP defragmentation cache. These
methodologies were previously used for issuing fraudulent cer-
tificates, [22] or for hijacking bitcoins [17]. Attacks for issuing
fraudulent certificates were also carried out by [24] using IP frag-
mentation; a method initially proposed in [38]. [57] combined ICMP
error messages and rate limiting of nameservers to create a side
channel for guessing the source port in DNS requests, but have not
evaluated this attack against real Internet systems.

Which of the methods is more effective? Which has higher applica-
bility? Which is stealthier and does not trigger alerts?

To answer these questions we perform the first comparative
analysis of the methodologies for cache poisoning attacks. In addi-
tion, in order to gain a deeper understanding of the methodologies
and their impact on the Internet applications, we also extend the
evaluations in the previous work [22, 24, 57] for Internet scale mea-
surements of applicability and effectiveness of these methodologies
against multiple Internet networks.

Taxonomy of vulnerable applications. The implications of
cache poisoning for the other Internet services and applications
has not been explored. There is evidence of cache poisoning in the
wild, mostly for redirecting victims to impersonating websites [64].
Cache poisoning was also demonstrated in research against the
certificate authorities [22, 24]. But there is no comprehensive study
of exploits of cache poisoning against Internet clients and services.

What applications are at risk due to cache poisoning? How can
an attacker exploit cache poisoning to attack applications? What is

836

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

the fraction of vulnerable applications in the Internet? What are the
challenges and what cache poisoningmethodologies are more suitable?

We answer these questions by evaluating the cache poisoning
methodologies against a range of popular applications. We defined
nine categories of applications, ranging from security mechanisms,
to VoIP, email and intermediate devices; see Table 1. We provide
the first systematic study of cache poisoning against a collection of
popular applications and security mechanisms.

Poisoning is a threat to applications. Our results demon-
strate that, although challenging to launch, off-path DNS cache poi-
soning poses a realistic threat for many Internet applications. Sur-
prisingly, we show that DNS cache poisoning can be applied for
downgrade attacks against securitymechanisms causing the victims
not to perform validation, e.g., RPKI or domain-based anti-spam
validation. Taking RPKI as an example, we developed an attack that
by redirecting the RPKI cache [RFC6810] [25] to a wrong repos-
itory via DNS cache poisoning, the attacker can cause the RPKI
validation to result in status unknown (instead of invalid). As a
result the RPKI cache will not validate correctness of the BGP an-
nouncements that it receives. Suppressing RPKI validation allows
the adversary to perform BGP prefix hijacks even of ASes which
have the corresponding RPKI material (Route Origin Authorization
and resource certificates [54]) in the public repositories and hijack
even the senders which enforce route origin validation [61].

Another example is malware distribution by causing the anti-
spam validation to fail via cache poisoning.

This is the first demonstration of the devastating power of DNS
cache poisoning, which shows that in addition to traditional threats,
such as impersonation, DNS cache poisoning can facilitate much
stronger attacks which were otherwise not possible. We also show
that DNS cache poisoning can be used to inflict Denial of Service
(DoS) on applications and their clients.

In our experimental evaluation against the applications we ex-
ploit DNS cache poisoning to subvert correctness and security of
basic Internet functions, enabling the attackers to take over IP ad-
dresses, to hijack telephony, to de-synchronise local time, and even
prevent victims from connecting to the correct VPN tunnel.

Off-path attacks. Our study is performed with off-path attack-
ers. This is the weakest attacker model in the Internet, it can merely
send packets from spoofed IP addresses, which is a realistic assump-
tion since around 30% of the Internet networks do not enforce egress
filtering [19–21, 55, 56, 58]. Essentially any adversary in the Internet
has off-path capabilities and can select networks which allow it to
send packets with spoofed source IP addresses. Stronger attackers,
most notably the on-path Man-in-the-Middle (MitM), can do more
devastating attacks. Nevertheless, MitM attackers are more rare
and even such attackers have limitations: the strong government
sponsored attackers can be on-path only to some of the Internet
victims depending on the paths that they control but even they do
not control all of the networks. Therefore, it is critical to understand
the threat that an off-path attacker poses to applications.

Disclosure and ethics. Our attacks were tested against remote
networks reliably, yet were ethically compliant. We measured and
evaluated vulnerabilities in the DNS caches of the subjects of our
study and measured which services use the caches but did not
hijack their traffic nor Internet resources and neither did we place
incorrect DNS records for Internet domains that are not under

our control in the caches of our test subjects. Specifically, to avoid
harming Internet customers and domains, we set up a victim AS
and victim domains as well as adversarial AS and adversarial hosts
on that AS, which were used by us for carrying out the attacks
against the victims. Our measurement study for evaluating the
vulnerabilities was performed using our victim domains, which
ensured that the targets of our study would not use the spoofed
records for any “real” purpose.

We believe that in addition to disclosing the vulnerabilities to
the affected entities it is critical to raise awareness to the extent
and the scope of the vulnerabilities.

Contributions. We present the first comprehensive study of
the attack surface that off-path DNS cache poisoning introduces
on the Internet ecosystem.

•We implement three methodologies for launching off-path DNS
cache poisoning attacks: (1) BGP prefix hijacking, (2) side-channels
and (3) fragmentation. We perform the first Internet-scale evalu-
ation of these methodologies against DNS resolvers and compare
them for applicability, stealthiness and success of cache poisoning.

• We apply these methodologies to launch cross-layer attacks
against widely used applications and services (see taxonomy in Ta-
ble 1). Our study shows that cache poisoning can be used to bypass
security mechanisms, to cause DoS attacks, or for impersonation
attacks.

• We provide recommendations for countermeasures for DNS
caches against cache poisoning attacks and for applications against
cross-layer attacks even when using poisoned caches.

Organisation. We review DNS cache poisoning and related
work in Section 2. In Section 3 we present the DNS cache poisoning
methodologies that we use throughout our work. In Section 4 we
demonstrate cross-layer attacks against applications using DNS
cache poisoning.We provide results of our measurements in Section
5 and recommend mitigations in Section 6. We conclude this work
in Section 7.

2 DNS CACHE POISONING OVERVIEW
Domain Name System (DNS) [60] cache poisoning allows an at-
tacker to redirect victims to attacker controlled hosts. Typically
the attackers targets recursive DNS resolvers whose caches serve
multiple clients. A single injection of a malicious DNS record prop-
agates to all the hosts that use that resolver. The attacker can then
intercept the traffic between the services (such as web, email, FTP)
in the victim domain and the hosts that use the poisoned cache.
DNS resolvers use defences to make launching successful cache
poisoning attacks difficult.

2.1 Defences Against Poisoning
The DNS resolvers are required to randomise certain fields in DNS
requests sent to the nameservers, [RFC5452] [43]. These include
a random 16 bit UDP source port and the 16 bit DNS transaction
identifier (TXID); additional defences include nameserver randomi-
sation [43] and 0x20 encoding [29]. The nameservers copy these
fields from the DNS request to the DNS response. DNS resolvers
accept the first DNS response with the correctly echoed challenge
values and ignore any responses with incorrect values.

837

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

To launch a successful cache poisoning attack, the attacker needs
to guess the correct challenge values and make sure that his spoofed
response arrives before the genuine response from the real name-
server. This is easy for an on-path (man-in-the-middle) attacker,
which can simply copy the values from the request to the response.
Cryptographic signatures with DNSSEC [RFC6840] [73] could pre-
vent on-path attacks, however, DNSSEC is not widely deployed.
Less than 1% of the second level domains (e.g., 1M-top Alexa) are
signed, and most resolvers do not validate DNSSEC signatures, e.g.,
[26] found only 12% in 2017. Our measurements indicate that less
than 5% of the domains we studied are signed. There is however
an increase in the resolvers validating DNSSEC: we found 28.6%
validating resolvers via our ad-network study. Deploying DNSSEC
was shown to be cumbersome and error-prone [27]. Even when
widely deployed DNSSEC may not always provide security: a few
research projects identified vulnerabilities and misconfigurations
in DNSSEC deployments in popular registrars [44, 67].

Recent proposals for encryption of DNS traffic, such as DNS over
HTTPS [41] and DNS over TLS [42], although vulnerable to traffic
analysis [65, 68], may also enhance resilience to cache poisoning.
These mechanisms are not yet in use by the nameservers in the
domains that we tested. Nevertheless, even if they become adopted,
they were not designed to protect the entire resolution path, but
only the link between the client and the recursive resolver, and
hence will not prevent DNS cache poisoning attacks.

2.2 History of DNS Cache Poisoning
In 2007 Klein identified vulnerability in Bind9 DNS resolvers [50]
and in Windows DNS resolvers [51] allowing off-path attackers
to reduce the entropy introduced by the TXID randomisation. In
2008 Kaminsky [47] presented a practical cache poisoning attack
even against truly randomised TXID. Vixie suggested to randomise
the UDP source ports already in 1995 [72], subsequently in 2002
Bernstein warned that relying on randomising TXID alone is vulner-
able [18]. Following Kaminsky attack DNS resolvers were patched
against cache poisoning [43], and most randomised the UDP source
ports in queries.

Nevertheless, shortly after new approaches were developed al-
lowing cache poisoning attacks. In 2012 [37] showed that off-path
attackers can use side-channels to infer the source ports in DNS
requests. In 2015 [66] showed how to attack resolvers behind up-
stream forwarders. This work was subsequently extended by [74]
with poisoning the forwarding devices. A followup work demon-
strated such cache poisoning attacks also against stub resolvers
[16]. [57] showed how to use ICMP errors to infer the UDP source
ports selected by DNS resolvers. Recently [52] showed how to use
side channels to predict the ports due to vulnerable PRNG in Linux
kernel. In 2013 [38] provided the first feasibility result for launching
cache poisoning by exploiting IPv4 fragmentation.

For the evaluations in this work we selected three generic cache
poisoning methodologies developed in [22, 38, 57], which are not
specific to implementation or setup and do not result due to bugs
in randomness generation, such as [52]. We perform Internet-wide
measurements of these methodologies testing experimentally DNS
cache poisoning against DNS resolution platforms. We then exploit

these poisoned caches to attack applications that use the poisoned
records we injected.

2.3 DNS Cache Poisoning in the Wild
There is numerous evidence of DNS cache poisoning attempts in
the wild, [7–13, 28, 64, 69], which were predominantly launched
via short-lived BGP (Border Gateway Protocol) prefix hijacks or by
compromising a registrar or a nameserver of the domain.

We consider only attacks done by network attackers by manipu-
lating the protocols remotely but without compromising services
or networks. Hence compromises of registrars or servers is not in
our scope and in the review of works we focus only on BGP prefix
hijacks, side channels and fragmentation attacks.

In 2017 [17] simulated the effects of BGP prefix hijacks on bitcoin
without experimentally evaluating it in the wild. In 2018, [22] ex-
perimentally evaluated the impact of BGP prefix hijacks on domain
validation and [24] evaluated the impact of DNS cache poisoning on
domain validation. In 2020 a recent research project [70] evaluated
BGP prefix hijacks for cross-layer attacks on Tor (the onion routing)
[31] users, domain validation and bitcoin [34].

Except for fragmentation based DNS cache poisoning against
domain validation [24] there were no studies of cache poisoning
using different methodologies and their evaluation against appli-
cations. In this work we perform the first comprehensive study
of DNS cache poisoning against different applications, and using
different methodologies.

3 TAXONOMY OF POISONING METHODS
In our evaluations in subsequent sections we use three methodolo-
gies for poisoning DNS caches, which were shown to be practical
in previous research: (1) intercepting DNS requests with BGP prefix
hijacking [70], (2) guessing challenge values in DNS requests via
side-channel [57] or (3) injecting content into IP defragmentation
cache [38]. In this section we describe these attack methodologies,
their unique properties and explain what attacker capabilities they
assume. We compare effectiveness and stealthiness of each of these
methods for carrying out cache poisoning attacks.

Setup. To test our attacks experimentally in the Internet we
setup a victim AS and associate a /22 prefix with our AS.We register
victim domains and setup nameservers and a DNS resolver.

3.1 Intercepting DNS with BGP Hijacking
A malicious Autonomous System (AS) can exploit vulnerabilities in
BGP to hijack packets of some victim AS. A route hijack happens
when an attacker announces an incorrect prefix belonging to a
different AS. The attacker hijacks the prefix or a sub-prefix which
has the IP address of a DNS nameserver or a resolver. If the hijack
succeeds, the ASes that accepted the hijack will send all their traffic
destined to the victim prefix instead to the attacker. The goal of
the attacker is to intercept a single DNS packet, either a query sent
by the resolver or a corresponding response of the nameserver.
For simplicity in this discussion we focus on sub-prefix hijacks
and assume that the attacker attempts to hijack the DNS query;
see [22] for a taxonomy of BGP prefix hijack attacks. The attacker
intercepts the DNS query and crafts a spoofed DNS response with
malicious records and the correct challenge values, and sends it

838

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

Vicitm

service
30.0.0.0/24

Target

domain
123.0.0.0/24

DNS
30.0.0.1

UDP

source

port

found!

NS
123.0.0.53

Attacker
6.6.6.6

Service
30.0.0.25

4000 queries to mute NS via query flood: abc.vict.im A?, src=30.0.0.1

1
Trigger Query to vict.im

(ie, via SMTP, …)
2

vict.im A?, txid=65432

Rate-limited,

No response

to 30.0.0.13

50 probes to 50 ports,
src=123.0.0.53:53

50 ICMP destination unreachable

1 probe to closed port ICMP limit

reached, no

answer

5

50 probes to 50 ports,
src=123.0.0.53:53

49 ICMP destination unreachable

1 probe to closed port

ICMP destination unreachable
6

216 responses, all txids: vict.im A 6.6.6.6

vict.im A6.6.6.6
7

8

4No

answer:

All 50

ports

closed

Figure 1: DNS Poisoning with side-channel.

to the victim DNS resolver. Additionally, to avoid detection due to
blackholing, the attacker should relay all the traffic to the legitimate
destination, except for the DNS query which it intercepted (to avoid
race condition with the response from the genuine nameserver).
We call this DNS cache poisoning attack method HijackDNS.

3.2 Guessing Challenges with Side-channel
The SadDNS off-path attack [57] uses an ICMP side channel to guess
the UDP source port selected by the victim resolver in its query to
the target nameserver. This is done via a side-channel present in
mostmodern operating systemswhich allows the attacker to test if a
given UDP port open or not. The operating systems have a constant,
global limit of how many ICMP port unreachable messages they
will return when packets are received at closed UDP ports (50 in
the case of linux). The attacker splits the range of ports to sets of N
ports and for every set performs the following: the attacker sends
50 probes with a spoofed source IP address of the nameserver to a
range of UDP ports at the resolver. If the probes arrived at closed
ports only, the returned ICMP error messages reach the global limit,
and further messages will not be issued. The attacker sends a single
probe from the IP address of the attacker to a known-closed port.
If all of the previously probed 50 ports were closed the attacker
will not receive an ICMP message in response to his own message.
However, if one of the 50 probed ports was open, the limit was not
reached, the attacker will receive a ICMP port unreachable message.
The attacker repeats this process until a set containing an open port
is found. Once a set with an open port is found, the attacker applies
divide and conquer with the technique above dividing the ports
until a single open port is isolated. This reduces the entropy of the
challenge-response parameters unknown to the attacker from 32
bit (DNS TXID + UDP port number) to 16 bit.

Once the open port is identified the attacker sends multiple
spoofed DNS responses from a spoofed IP address (of the name-
server) to that open UDP port of the resolver, for each possible TXID
value, total of 216 spoofed responses; e.g., [37, 45, 57]. A packet with
the correct TXID is accepted by the DNS resolver. The attack is
illustrated in Figure 1. The attack applies to only about 18% of the

Vicitm

service
30.0.0.0/24

Target

domain
123.0.0.0/24

DNS
30.0.0.1

Reassemble

with FragAtk1

and cache in

DNS resolver

NS
123.0.0.53

Attacker
6.6.6.6

Service
30.0.0.25

ICMP PTB, MTU=68, src=30.0.0.1
1

FragAtk

vict.im A 6.6.6.6, src=123.0.0.53
2

Trigger Query to vict.im

(ie, via SMTP, …)
3

4

vict.im A?, txid=65432

FragNS1

chksum, txid=65432, Q

FragNS2

vict.im A …

vict.im A

6.6.6.6

5

6

Src

port

Dst

port

chksu

m
len

txid …

Q = vict.im A?

A = vict.im A 6.6.6.6

FragNS1

FragAtk
7

8

Store in

defragmetation

cache

Figure 2: Fragmentation-based DNS poisoning.

domains with nameservers that use rate-limiting. The rate limiting
allows the adversary to delay the response from the genuine name-
server and hence to win the race against it. Additionally, the attack
applies only against resolvers with a global (un-patched) ICMP rate
limit.

3.3 Injecting Records via IP Fragmentation
In this section we describe an attack which exploits IP fragmenta-
tion to inject spoofed fragments into the IP defragmentation cache
on the victim system. The spoofed fragments contain malicious
content, which when reassembled with the genuine fragments, ma-
nipulate the payload of the original IP packet without having to
guess the values in the challenge-response parameters, [38].

We assume that the response from the nameserver is fragmented
and arrives in at least two fragments. The fragment sent by the at-
tacker is reassembled with the first fragment sent by the nameserver.
The attacker replaces the second fragment of the nameserver with
its malicious fragment, which overwrites part of the payload of the
genuine DNS response from the nameserver, with malicious values.
Since the challenge-response values (port, TXID) are in the first
fragment, they remain unchanged. The illustration of the attack is
in Figure 2.

To cause the nameserver to fragment a DNS response the at-
tacker sends to the nameserver a ICMP Destination Unreachable
Fragmentation Needed error message (type 3, code 4) with a DF
bit set, signalling to the nameserver that the Maximum Transmis-
sion Unit (MTU) to the destination is smaller than the packet’s
length. The nameserver reduces the size of the packet accordingly
by fragmenting the IP packet to smaller fragments.

4 EXPLOITING DNS POISONING FOR
CROSS-LAYER ATTACKS

In this section we demonstrate how DNS cache poisoning can be
used to launch cross-layer attacks against popular applications.
In Section 4.1 we explain our methodology for selecting the ap-
plications. We list the categories according to which we selected
the applications in Table 1. Our analysis of the applications is per-
formed according to the key properties related to cache poisoning:
(1) control over the query, (2) which records can be injected, (3)

839

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Category Protocol Use Case query known query trigger Record DNS used for Methodologies Cache Poisoning
impactname method Type loc. fed. auth. Hijack SadDNS Frag

Authentication Radius Peer discovery target ✓1 direct NAPTR, SRV, A ✓ ✓ ✓ ✓ ✓ DoS: no network access
Online Chat XMPP Chat+VoIP target ✓1 bounce A, SRV ✓ ✓ ✓ ✓ ✓ Hijack: eavesdropping

Email
SMTP Mail target ✓1 direct/bounce A, MX ✓ ✓ ✓ ✓ ✓ Hijack: eavesdropping

SPF,DMARC Anti-Spam target ✓1 authentication TXT ✓ ✓ ✓ ✓ Downgrade: spoofing
DKIM Integrity Checking target ✓1 direct/bounce TXT ✓ ✓ ✓ ✓ Downgrade: spoofing

Web HTTP Web sites target ✓1 direct A ✓ ✓ ✓ ✓ Hijack: eavesdropping
SMTP Password recovery target ✓1 direct A, MX, TXT ✓ ✓ ✓ ✓ Hijack: account hijack

Sync NTP Time synchronisation known ✓ connection DoS A ✓ ✓ ✗ ✓2 Hijack: change time
Crypto-currency Bitcoin Peer discovery known ✓ waiting A ✓ ✓ ✗ ✗ Hijack: fake blockchain

Tunnelling
OpenVPN VPN config ✗ connection DoS A ✓ ✓ ✓2 ✓2 DoS: no VPN aceess

IKE VPN config ✗ connection DoS A ✓ ✓ ✓2 ✓2 DoS: no VPN aceess
IKE Opportunistic Enc. target ✓1 bounce IPSECKEY ✓ ✓ ✓ ✓2 ✓2 Hijack: eavesdropping

PKI
DV Domain Validation target ✓1 authentication A, MX, TXT ✓ ✓ ✓ ✗ ✗ Hijack: fraud. certificate
OCSP Revocation checking target ✓1 direct A ✓ ✓ ✓ ✓ Downgrade: no check
RPKI Repository sync. known ✓ waiting A ✓ ✓ ✗ ✗ Downgrade: no ROV

Intermediate
devices

– Firewall filters config ✗ waiting A ✓ ✓ ✓2 ✓2 Downgrade: no filters
HTTP/... Loadbalancers config ✗ on-demand A ✓ ✓ ✓2 ✓2 Hijack: eavesdropping
HTTP CDN’s config ✗ on-demand A ✓ ✓ ✗ ✓2 Hijack: eavesdropping
DNS ANAME/ALIAS[33] config ✗ on-demand A ✓ ✓ ✓2 ✓2 Hijack: eavesdropping

HTTP/Socks Proxies target ✓1 direct A ✓ ✓ ✓ ✓ Hijack: eavesdropping
1 : Depends on the attack scenario. 2 : Requires a third-party application to trigger queries.

Table 1: Evaluation of attacks against popular systems leveraging a poisoned DNS cache.

how the application uses the injected records, and (4) the outcome
of the attack.

4.1 Methodology for Selecting Applications
We select the applications according to the following considera-
tions: application category, usage of DNS by the application and
the impact of DNS cache poisoning on the application.

4.1.1 Category. We categorise the applications to groups, cover-
ing most of the popular applications and security mechanisms in
the Internet (left most column in Table 1). Within each category
we selected a few representative protocols and systems for that
category, see column ‘Protocol’ in Table 1.

4.1.2 Usage of DNS. One of the considerations for selecting the
applications is how the application uses DNS: how the queries are
sent by the application to the DNS resolver and how the results
from the lookups are processed. The column ‘Use-Case’ in Table
1 describes the usage scenarios of the DNS by the application. We
defined the following types:

Location (loc): DNS is used to locate a direct communication
partner, typically in form of a hostname-to-ip (A, AAAA) mapping.

Federation (fed): DNS is used to locate a user’s home-server based
on the domain part of a user address of the form user@domain.

Authorisation (auth): DNS is used to authorise a certain action
or host in the name of the domain’s owner.

4.1.3 Queries. Applications differ in flexibility in allowing external
entities to trigger queries. Our selection of applications aims to
cover the variety of options for triggering queries. To initiate the
attack, our adversary needs to cause the victim resolver to issue the
target query or to predict when the query will have been issued.

Some applications enable the attacker to send arbitrary queries,
e.g., in systems which use DNS for peer discovery in federated
systems like Radius, XMPP and SMTP. This is because in these
systems, the queried domains are part of the user’s ID. This user

ID can be controlled by the attacker to trigger a query to a domain
of its choice. The same applies to all (sub-)systems used as part
of web browsing, like HTTP, DANE and OCSP, since the attacker
can establish direct connection from the victim client to arbitrary
web servers which will trigger a DNS lookup that way. Setting
the domain name is not always possible, e.g., in NTP the query is
selected by the resolver based on the hostname that it receives from
the local NTP server.

We evaluated popular appliances and systems for their query
triggering behaviour. We list some selected systems in Table 2. As
can be seen, some allow external adversaries to trigger queries (in-
dicated with "on-demand" in column Trigger query). Other devices
use timers for issuing queries. Hence the adversaries can often
predict when the query is issued.

4.1.4 Impact of poisoning on applications. We select applications
to demonstrate the impact that cache poisoning on applications
can create: DoS (Denial of Service), downgrade of security or inter-
ception attacks.

4.2 Methodology for Attacking Applications
We developed cross-layer attacks that leverage DNS cache poison-
ing to attack applications listed in Table 1. The steps underlying all
our cross-layer attacks against applications are:

(1) Use the application to send to the victim DNS resolver a
query. In addition to the traditional ways of triggering queries,
such as with a script or Email, we also developed new ways to
trigger queries which were not known prior to our work. Some
of these techniques are specific to appliances and platforms, see
Table 2, while others are application-independent methodologies
for triggering queries. We explain our methodologies for triggering
queries in Section 4.3.

(2) Inject malicious records to poison the cache of the victim
DNS resolver. We use the methodologies in Section 3 for injecting
malicious records into the cache of the victim DNS resolver. In

840

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

Type Provider Trigger Caching Websites in
query time Alexa 100K

Firewall pfSense timer 500s -
Sophos UTM timer 240s -

Load
balancer

Kemp Technologies timer 1h -
F5 Networks timer 1h -

CDN

Stackpath on-demand TTL 79
Fastly timer TTL 1,143
AWS on-demand TTL 11,057

Cloudflare on-demand TTL 17,393

Managed
DNS

(ALIAS)

DNSimple on-demand TTL 248
DNS Made Easy timer ∼35min 1,192

Oracle Cloud on-demand TTL 1,382
Cloudflare on-demand TTL 20,027

Table 2: Query triggering behaviour atmiddleboxes. Last col-
umn shows the number ofwebsites in 100K-topAlexawhich
use that provider.

Table 1 we summarise the applicability of the cache poisoning
methodologies for cross-layer attacks against each application, and
explain this in Section 4.4.

(3) Exploit the poisoned records to cause a victim application
to divert from the expected behaviour. The outcomes of our cross-
layer attacks against applications range from downgrading security
to denial of service attacks and to more traditional impersonation
attacks, explained in Section 4.5.

4.3 Methodologies for Triggering Queries
4.3.1 Common ways for triggering queries. The most challenging
aspect of cross layer attacks that use DNS cache poisoning is the
ability to trigger or predict DNS requests. Typically an external
adversary does not have access to internal services, such as the DNS
resolver, and hence should not be able to cause the DNS resolver to
issue arbitrary DNS requests. Adversaries can trigger queries via
bounce. For instance, by sending an Email to a non existing recipient
in the target domain the adversary will cause the Email server to
return an error message with Delivery Status Notification. To send
the error the Email server requires the IP address and hostname of
the MX server in the domain that sent the Email message which
triggered the error. This causes queries to the domain specified by
the attacker.

The adversary can also set up a web server and lure clients to
access it, this is a direct query triggering. The clients download the
web objects from the adversary’s domain, and send DNS requests to
the DNS resolvers on their networks. When resolvers receive DNS
requests from servers or clients on their networks they initiate DNS
resolution. However, these approaches are limited. For instance,
only about 18% of the Email servers trigger DNS requests when
receiving Emails, [53]. The limitation with web clients is that the
adversary must wait until the target client visits the malicious web
page. Furthermore, web clients cannot be used to poison resolvers
that are used only by servers, such as Email or NTP. In this section
we develop new approaches for triggering queries.

4.3.2 Cross-applications DNS caches. The adversary may be able to
use one application to trigger queries to inject a record that is meant

to be used for cross-layer attack against a different application that
uses the same DNS cache. For instance, when an adversary cannot
trigger queries via an application that it wishes to attack, it may
often be able to trigger queries via a different application, that
uses the same DNS cache. The adversary may also choose to inject
into such cross-applications caches an application agnostic records;
for instance, a malicious NS record, mapping the nameserver of a
domain of the target application to the attacker’s IP address, is an
example of an application agnostic record.

Such cross-applications DNS cache scenario is not uncommon.
The DNS resolvers often serve multiple applications and the net-
works use the caching of the resolver to reduce traffic and latency for
all the applications. We use open resolvers to check how common
cross-applications DNS caches are. We perform our measurements
against a list of open resolvers from censys [32] and probe their
caches for the well-known domain(s) used by the applications on
our list in Table 1, e.g., pool.ntp.org for NTP. For each application
for which the records are in the cache we consider that the resolver
is used by that application or by the clients of that application. We
found that 69% of the open resolvers are shared between two or
more of the applications on our list.

A recent study [45] analysed how an attacker can find third-party
SMTP servers to trigger queries at typically closed forwarders used
by web clients. By scanning the /24 network block of the resolver’s
outbound IP address, the study found that an adversary could find
an SMTP server which allows triggering queries from the same
resolver in 11.3% of the cases. Additionally 2.3% of the resolvers
were open resolvers in the first place.

4.3.3 Triggering queries via forwarders. In this section we show
how to trigger queries with resolvers when this is not possible from
the target application.

DNS forwarders make up the majority of open resolvers in the
internet. Finding an open forwarder which forwards to the resolver
of choice whose cache the adversary wishes to poison is not difficult.
We explore the prevalence of forwarders through which one can
force a given recursive DNS resolver to trigger a query. We perform
a two step measurement: we first collect the forwarders used by
open DNS resolvers and then which of these forwarders are used
by random clients in the Internet.

In our measurement we use the list of all open DNS resolvers
from Censys [32] (which performs a full IPv4 scan for open re-
solvers). We query all the resolvers for a custom query with a
randomised subdomain under a domain which we control. This al-
lows us upon the arrival of the DNS requests to our nameservers to
map the open resolver’s IP address to the recursive forwarder that
it uses. This forwarder is determined by the outbound IP address
in the DNS query that arrives at our nameserver.

In the second step we run a web ad-based study against random
clients in the Internet that download our object. We trigger DNS
requests via those clients to our own domain. We use a random
subdomain associated with each client. Per client, we then obtain
the list of recursive resolvers’ IP addresses that arrived at our name-
server. We search them in the list of recursive resolvers IP addresses
from our dataset of open resolvers.

Our results are as follows: focusing only on the IP addresses of
the recursive resolvers, we find 4146 addresses out of which 3275

841

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

(79%) addresses are in the open resolver database. Consequently,
assuming that an adversary targets a DNS resolver used by a typical
web client (represented by the ad-net clients in our study), there is a
high probability (79%) that it can find an open forwarder which can
be used to poison the cache of the target victim recursive resolver
used by that web client.

4.4 Applicability to Applications
In this section we explore which cache poisoning methodology is
applicable to which of the applications listed in Table 1.

For all methodologies, the attacker requires the knowledge of
the domain which is queried. In cases where the domain is pre-
configured in the applications configuration ("config" in Table 1),
this information needs to be fetched out of band.

4.4.1 HijackDNS. The adversary can hijack a sub-prefix or same-
prefix of the victim AS. We explain the success probability of cache
poisoning through both methods.

Sub-prefix hijack. The attacker can advertise a sub-prefix of
the victim. The routers prefer more specific IP prefixes over less
specific ones, hence this announcement will redirect all traffic for
that sub-prefix to the attacker.

Same-prefix hijack. Same-prefix hijack occurs when the at-
tacker hijacks a route to an existing IP prefix of the victim. The
attacker can advertise the same prefix as the victim AS and depend-
ing on the local preferences of the ASes will intercept traffic from
all the ASes that have less hops (shorter AS-PATH) to the attacker
than to the victim AS. The success of the hijack depends on the
topological relationship between the attacking AS and the domain
and the victim resolver.

4.4.2 SadDNS. The attack is probabilistic since it depends on the
ability of the adversary to win the race, by correctly guessing the
randomised TXID before the timeout event. A prerequisite to a
successful attack is the ability to trigger a large volume of queries.
Typically, this is the case when the query domain can be set by the
attacker ("target" in Table 1, Column "query name") or when a third
party application is used to trigger the queries (marked with ✓2 in
Table 1, see Section 4.3.3).

4.4.3 FragDNS. FragDNS is also a probabilistic attack since its
success depends on correctly guessing the IP ID value in the spoofed
IP fragment. This is easy when systems have large IP defragmenta-
tion buffers, such as old linux versions which allows the adversary
to send multiple fragments with different IP ID values, or when
systems use incremental IP ID counters which can be predicted. A
successful poisoning with FragDNS typically requires more packets
than with prefix hijacks but less than with SadDNS attack.

4.5 Exploiting Poisoned Caches for Attacks
Applications that use DNS resolvers with poisoned caches are ex-
posed to a range of attacks. In this section we explain the possible
outcomes of the attacks via DNS cache poisoning.

Downgrade attacks. In downgrade attacks the attacker makes
the security mechanism not available, as a result, causing the pro-
cessing of the data to be performed without the additional informa-
tion provided by the securitymechanism. For instance, by poisoning
the responses to queries for SPF or DKIM records the attacker can

trick the victim Email server into accepting phishing Emails or
Emails with malicious attachments. Similarly, by causing the RPKI
validation to fail, the adversary can make a network, that filters
bogus BGP announcements with route origin validation, to accept
hijacked prefixes as authentic. This is due to the fact that RPKI
validation will result in status ‘unknown’ and hence will not be
used.

The attacker can also trick a security mechanism via DNS cache
poisoning. For instance, the attacker can bypass domain validation,
by redirecting the validation to run against attacker’s host [24], and
hence can issue fraudulent certificates.

Hijack attacks. In hijack attacks the victims are redirected to
attacker’s host which impersonates a genuine service in the Inter-
net. Network adversaries can hijack traffic to take over Internet
resources, such as SSO accounts at public providers. For instance,
the adversaries can take over the SSO accounts at Regional Inter-
net Registries (RIRs), by exploiting a combination of DNS cache
poisoning with password recovery [14]. The idea is to poison the
cache of the RIR, and to inject a record that maps the victim LIR to
the host of the attacker. Running a password recovery procedure
causes the password for the victim SSO account to be sent to the
attacker instead of the victim. As a result, the attacker can hijack
the digital resources, such as IP addresses and domains, that belong
to the victim LIR.

DoS attacks. The attacker can block connectivity, e.g., for radius
clients or access to services, such as secure tunnels. The idea is
that if the attacker cannot forge cryptographic material, such as a
certificate to authenticate a radius client, it can redirect the client
to the wrong host via cache poisoning, preventing the client from
connecting to the genuine target service. The adversary will not be
able to provide authenticated material which will result in a failure,
and lack of service for the victim client.

5 INTERNET MEASUREMENTS
In this section, we analyse the fraction of the vulnerable resolvers
and nameservers with respect to each DNS poisoning method. We
evaluate properties which influence the success of the cross-layer
attacks against applications. Our measurements in this section
show that the vulnerabilities do not significantly differ for most of
the application-specific datasets. The outliers can be summarised
as follows:

• Vulnerabilities to BGP sub-prefix hijacking are exceptionally
high for eduroam and low for RPKI domains. The cause may be
inherent in networks’ sizes (large in case of universities and small
for RPKI repository operators) and accordingly use BGP announce-
ments which are larger than /24 for large networks or equal to /24
for small networks.

• Vulnerabilities to fragmentation cache poisoning among open
resolvers is low compared to other resolvers in our dataset. This
may be due to the fact that the distribution of the open resolvers is
skewed towards poorly configured devices which cannot handle
fragmentation.

• Domains with MX, SRV, NAPTR (eduroam) records are more
often vulnerable to fragmentation based cache poisoning than the

842

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

domains in the 1M-top Alexa dataset. One reason is that the re-
sponses to ANY queries result in much larger packets, which often
exceed the minimum MTU limit.

5.1 Vulnerabilities in Resolvers
We test the DNS resolvers for vulnerabilities to the three cache
poisoning methods (Section 3) for different applications. The results
of our evaluations for all datasets and all poisoning methods are
summarised in Table 3.

5.1.1 Dataset. For each application from Section 4, we gather
datasets of resolvers used by the front-end systems (i.e., Web clients,
Alexa MX records, etc.) of that application. To achieve this, we first
look for an appropriate dataset of front-end systems and then trig-
ger queries through those front-end systems. This allows us to
discover and test the corresponding resolver.

For front-end systems, we use the following datasets, listed in
Table 3: (1) Our local university eduroam service. (2) Password
recovery of popular infrastructure service providers, consisting of:
All 5 Regional Internet Registries, popular domain registrars used
by Alexa Top 100K domains and popular cloud providers [1, 2, 4, 5].
(3) Domain validation of most popular Certificate authorities [3].
(4) Popular CDNs in Alexa Top 100K (by mapping A record to
ASN). (5,6) SMTP and XMPP servers of Alexa Top 1M domains. (7)
Web clients gathered via an Ad-network. (8) Open resolvers from
Censys [32] and (9) a subset of those open resolvers who cache
pool.ntp.org. This resulted in a dataset of 89,924 resolvers (back-
end IP addresses) in 13,804 ASes associated with 33,418 prefixes.

We report the dataset size in terms of front-end systems (i.e.,
number of SMTP servers or number of open resolver front-end IP
addresses) in column "Dataset size" of Table 3. For vulnerability, we
report the percentage of vulnerable front-end systems which was
measured as described in Section 5.1.2. When a front-end system
uses multiple resolvers, we consider it vulnerable if any of the
resolvers it uses is vulnerable.

5.1.2 Measuring cache poisoning vulnerabilities in resolvers. The
results of our measurements and evaluations against resolvers for
different poisoning methodology are summarised in Table 3. In the
following sections we explain the measurements we carried out of
each attack methodology against the resolvers in our dataset.

Sub-prefix BGP hijacks (HijackDNS). Since many networks fil-
ter BGP advertisements with prefixes more specific than /24, we
consider an IP address hijackable if it lies inside a network block
whose advertised size is larger than /24. We therefore map all the
resolvers’ IP addresses to network blocks and consider those vulner-
able to sub-prefix hijacks whose advertisement is larger than /24,
since an advertisement with a smaller prefix will always take prece-
dence over a bigger one. For the remaining addresses, a BGP-hijack
may still be possible using same-prefix hijacks. To infer the scope
of DNS platforms potentially vulnerable to cache poisoning via
BGP sub-prefix hijack attacks we perform Internet measurements
checking for DNS platforms on prefixes less than /24. We collect
information on the state of the global BGP table in the Internet with
Routeview [71] and RIPE RIS [63] collectors. We analyse the BGP
announcements seen in public collectors for identifying networks
vulnerable to sub-prefix hijacks by studying the advertised prefixes

sizes. The measurements of resolvers vulnerable to BGP sub-prefix
hijacks are listed in Table 3 and plotted in Figure 3.

Same-prefix BGP hijacks (HijackDNS). We perform simulations
of same-prefix BGP hijacks using a set of randomly selected attacker
and victim AS pairs using a simulator developed in [39] and Inter-
net AS level topology downloaded from CAIDA [6]. The simulator
selects Gao-Rexford policy compliant paths [35], and considers pre-
fix lengths and AS-relationship (provider, customer and peer) and
sizes (stub, small, medium and tier one). The attackers are randomly
selected from all the ASes whereby the victim ASes are selected
from our dataset of DNS resolvers and 1M-top Alexa domains. For
each (attacker, victim)-pair we perform a simulation of same-prefix
hijack that the attacker AS launches against a victim AS. If the
attacking AS is closer to the victim, the attack succeeds. The sim-
ulation shows that the attacking AS was capable of hijacking the
traffic in 80% of the evaluations.

SadDNS. To test resolvers vulnerable to SadDNS, we test the
resolvers back-end IP addresses for a global ICMP message limit
which allows to use the side-channel identified by [57]. To limit
our dataset to functional resolvers which are still reachable, we
furthermore send an ICMP echo-response (‘ping‘) packet to the
resolver first. This is especially important for the open resolvers
dataset, since this dataset tends to include resolvers operating from
dynamic IP addresses, which may have changed since the dataset
was collected.

For the open resolver dataset we measured a vulnerability rate
of 12%, a notable reduction from the 35% vulnerability rate of the
original paper [57]. This difference could be influenced by various
factors including the fact that our dataset contained more resolvers
than [57]. The crucial difference is likely that our study was con-
ducted after the vulnerability which allowed the global rate limit
to be exploited was patched in many systems. For example, all up-
dated versions of Ubuntu should have been patched by the time we
carried out our evaluations1.

FragDNS. To test vulnerability to fragmentation-based DNS
cache poisoning, we use a custom nameserver application which
will always emit fragmented responses padded to a certain size to
reach the tested fragment size limit. The nameserver is configured
to only send CNAME responses in the first fragmented response.
This means that if the resolver receives a fragmented response, it
needs to re-query for the CNAME-alias. This allows us to verify
that the answer arrived at the resolver and thus, that the resolver
is vulnerable to this type of attack.

Using this setup, we test all resolvers by triggering queries to
our nameservers and observe if the fragmented responses are ac-
cepted. In our bigger datasets, vulnerability rates range between
31% for Open resolvers and 91% for Ad-net resolvers. For the smaller
datasets, we still observe many vulnerable services. However, all
certificate authorities’ resolvers in our dataset rejected our frag-
mented responses, maybe attributed to the fact that this attack
method was already evaluated and disclosed to CAs previously
[24]. We report results for all datasets and all poisoning methods
in Table 3.

1https://ubuntu.com/security/CVE-2020-25705

843

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Dataset Protocol
Vulnerable against Dataset

sizeBGP hijack Sad- Frag-
sub-prefix DNS ment

(1) Local university Radius 100% 0% 100% 1

(2) Popular services PW-
recovery 93% 16% 90% 29

(3) Popular CAs DV 75% 0% 0% 5
(4) Popular CDNs CDN 100% 0% 25% 4
(5) Alexa 1M SRV XMPP 73% 1% 57% 476

(6) Alexa 1M MX

SMTP
SPF

DMARC
DKIM

79% 9% 56% 61,036

(7) Ad-net study
HTTP
DANE
OCSP

70% 11% 91% 5,847

(8) Open resolvers All 74% 12% 31% 1,583,045
(9) Cache test NTP 79% 9% 32% 448,521

Table 3: Vulnerable resolvers.

5.2 Vulnerabilities in Domains
In this section we perform measurements of the vulnerabilities in
domains to our cache poisoning methodologies for different ap-
plications. We collect lists of the domains associated with these
applications and test all the nameservers serving each domain ac-
cording to the properties required for each cache poisoning method
(from Section 3). The results of our evaluations and measurements
for all the tested datasets and poisoning methods are summarised
in Table 4.

Dataset Protocol
Vulnerable against DNS

SEC TotalBGP hijack Sad- Fragment
sub-prefix DNS Any Global

(1) Eduroam list Radius 96% 11% 44% 18% 10% 1,152

(2) Alexa 1M
HTTP
DANE
DV

53% 12% 4% 1% 2% 877,071

(3) Alexa 1M MX

SMTP
SPF
DKIM
DMARC

44% 6% 7% 1% 3% 63,726

(4) Alexa 1M SRV XMPP 44% 4% 29% 5% 7% 2,025
(5) RIR whois PW- 59% 9% 14% 4% 4% 58,742
(6) Registrar whois recovery 51% 10% 23% 5% 6% 4,628
(7) Well-known NTP 25% 0% 25% 25% 25% 9

(8) Well-known Crypto-
currency 28% 17% 21% 3% 21% 32

(9) Well-known RPKI 14% 0% 0% 0% 67% 8

(10) Cert. Scan IKE
OpenVPN 51% 11% 5% 1% 7% 307

Table 4: Vulnerable domains.

5.2.1 Dataset. For each application in Section 4, we collect datasets
of typical domains looked up by clients (or servers) of that appli-
cation. We collect such domains from the following data sources,
listed in Table 4:

(1) Eduroam institution lists fromUnited Kingdom [46], Germany
[30] and Austria [15]. (2) Alexa Top 1 Million domains, including

0%
10%
20%
30%
40%
50%

/11 /12 /13 /14 /15 /16 /17 /18 /19 /20 /21 /22 /23 /24

%
 o

f
p

re
fi

x
es

Resolvers: Open resolver
Resolvers: Adnet
Nameservers: Alexa

Figure 3: Announced prefixes.

subsets of domains which have (3) MX and (4) SRV (XMPP) records.
Domains from account email addresses from whois databases of
(5) RIRs and (6) Registrars. (7) Well-known NTP server domains.
(8) Well-known cryptocurrency domains. (9) Well-known RPKI
validator database domains. (10) Domains of IKE and OpenVPN
servers’ certificates. This resulted in 904,555 domains hosted on
200,086 nameservers in 24,353 ASes associated with 60,511 prefixes.

5.2.2 Measuring cache poisoning vulnerabilities in nameservers.

HijackDNS. We perform a similar analysis as in Section 5.1.2,
to check the vulnerabilities to BGP prefix hijacks. The results are
plotted in Figure 3. The differences between the fractions of name-
servers in 1M-top Alexa domains that can be sub-prefix hijacked
are not significantly different than those of the resolvers.

The resilience of the DNS infrastructure to BGP hijack attacks is
also a function of the distribution and the topological location of the
nameservers in the Internet. We measured the characteristics of the
nameservers from the Internet routing perspective. Our findings
show that the nameservers are concentrated in just a few ASes.
Our measurements show that 80% of the ASes host less than 10% of
the nameservers, and the rest of the nameservers are concentrated
on the remaining ASes. This concentration of the nameservers on
a few ASes, typically CDNs, makes it easier to intercept traffic of
multiple nameservers with a single prefix hijack.

SadDNS. For a nameserver to be vulnerable to side-channel at-
tack (Section 3.2), the attacker must be able to ‘mute‘ the name-
server to extend the time-window for the attack. This is achieved by
abusing rate-limiting in nameservers. To find out if a nameserver
supports rate-limiting, we use the following methodology: we
send to the nameserver a burst of 4000 queries in one second,
and see if this stops (or reduces) the subsequent responses received
from this server. We consider a nameserver to be vulnerable if we
can measure a reduction in responses after the burst.

Fragmentation. We evaluate the vulnerability to fragmentation-
based poisoning in nameservers and domains by testing three prop-
erties required to create a sufficiently large fragment in order to
inject malicious records into it: (1) support of IMCP fragmentation
needed, (2) record types for optimising response size, (3) by bloating
the queried domain and (4) fitting the response into the limitation
of EDNS.

PMTUD. We first check for the support of path MTU discovery
(PMTUD) with ICMP fragmentation needed: we send to the name-
server an ICMP fragmentation needed packet, which indicates that
the nameserver should fragment packets sent to our test host. Then
we send queries of different type to that domain. We consider a
nameserver vulnerable if the responses return fragmented.

Record types. We evaluated fragmentation with three record
types: ANY, A and MX. We use DNS requests of type ANY to increase

844

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

Implementation Vulnerable Note
BIND 9.14.0 yes cached

Unbound 1.9.1 no doesn’t support ANY at all
PowerDNS Recursor 4.3.0 yes cached

systemd resolved 245 yes cached
dnsmasq-2.79 no not cached

Table 5: ANY caching results of popular resolvers.

the response size above the fragmentation limit of the nameserver.
We find that for 19.50% of domains in 1M-top Alexa there is at least
one nameserver which emits fragmented DNS responses, which can
be used for cache poisoning attacks via injection of IP fragments.
We plot the minimum fragment size emitted by those nameservers
in Figure 4, which shows that most affected nameservers (83.2%)
fragment DNS responses down to a size of 548 bytes and 7.05%
even down to 292 bytes. We tested ANY response caching in 5 of
the most popular resolver implementations and found that 3 out
of 5 use the contents of an ANY response, to answer subsequent A
queries, without issuing further queries (See Table 5). Namely, the
adversaries can often launch cache poisoning attacks by issuing
queries for ANY record type in the domain.

However, only open resolvers (or forwarders) allow the attacker
to trigger ANY queries. We repeat the same study using queries for
A record type and then for MX record type, which are the query
types typically triggered using the other query-triggering methods,
such as via email or a script in a browser. We get vulnerability rates
of 0.29% and 0.44% respectively due to the smaller response sizes
which are often not sufficiently large to reach the nameserver’s
minimum fragment size. However, these numbers represent the
lower bound.

Bloat query. The attacker can bloat the queries by concatenat-
ing multiple subdomains which increases the responses sizes. The
maximum increase is up to 255 characters. The labels are limited
to max 63 characters (+1 for the label delimiter) and the attacker
can concatenate four subdomains: 4*64 (minus the parent domain).
This increases the vulnerable resolvers to above 10%.

Fitting into response. Additionally to the requirement that the
DNS response size must be big enough to trigger fragmentation
on the nameserver side, it must also be small enough to fit in the
resolvers maximum response size advertised in EDNS.

To evaluate this, we measure the EDNS UDP size of more than
1.5K open resolvers collected from Censys [32] IPv4 Internet scans.
We query each resolver by triggering a query to our own name-
server and measure the EDNS UDP payload size advertised in the
query. The results are shown in Figure 4. Approximately 40% of
the resolvers support UDP payload sizes of up to 512 bytes, while
50% of the resolvers advertise a payload size equal or larger than
4000 bytes. The remaining 10% are between 1232 and 2048 bytes.
Given the minimum MTU size measurement of the nameservers
in 1M-top Alexa domains in Figure 4, this means that the resolver
population is essentially portioned in two groups: one group (40%)
which is vulnerable to poisoning attacks with 7% of all vulnerable
domains and one group (50-60%) which is vulnerable to poisoning
attack with all the vulnerable domains.

0%
20%
40%
60%
80%

100%

68 292 548 1500 2048 3072 4096

%
 o

f
p
o
p
u
la

ti
o
n

size (bytes)

EDNS size of resolvers
minimum fragment size of nameservers

Figure 4: CDF of resolver EDNS UDP size vs. minimum frag-
ment size emitted by nameservers.

45,117
1,787

3,525

5,515

16,672 1,145
1,075

HijackDNS

SADDNS

FragDNS

(a) Resolver

407,483 39,09461,455

29,690

10,178
2652,587

HijackDNS

SADDNS

FragDNS

(b) Domain

Figure 5: Venn diagram of all vulnerable resolvers (by num-
ber of back-end addresses) and domains.

5.3 Comparative Analysis
Our measurements show that the methodologies for DNS cache
poisoning can often result in practical attacks, depending on the
setup, network conditions and server configurations. In this section
we compare the DNS cache poisoning methodologies with respect
to stealthiness, effectiveness and applicability.

The main insights of the experimental measurements that we
performed using each of the methods in Section 3 are summarised
in Table 6. The columns in Table 6 correspond to the attacks we
carried out against the domains and resolvers in our dataset (see
Section 5).

BGP Hijack SadDNS Fragmentation
sub- same- any IPID global IPID

Applicability
Vuln. resolvers 70%

or
80%
or

11%
and

91%
and and

Vuln. domains 53% 70% 12% 4% 1%
Effectiveness

Hitrate 100% 0.2% 0.1% 20%
Queries needed 1 497 1024 5

Total traffic (pkts) 2 987K 65K 325
Stealthiness

Visibility very
visible visible stealthy, but locally de-

tectable (Packet flood) very stealthy

Additional requirements
Additional none none max(resolver EDNS size)

requirements < min(nameserver MTU)
Table 6: Comparison of the cache poisoning methods.

5.3.1 Applicability. A method is applicable against a resolver for
some domain if it results in a practical DNS cache poisoning attack.
The applicability for each method for resolvers and domains is
listed in Table 6.

845

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

To compare the applicability of the methodologies we use the
results of our internet measurements (Tables 3 and 4) and take
the numbers for the ad-Net resolvers and 1M-top Alexa domains
datasets. We also show the absolute number of all vulnerable re-
solvers (according to a back-end address) and domains in all our
datasets in Figure 5. This figure shows that the number of resolvers
and domains vulnerable to HijackDNS is by far the highest, while
SadDNS has more vulnerable domains and FragDNS has more vul-
nerable resolvers. The overlaps between the vulnerable domains
and resolvers can be seen as expected for a distribution of unrelated
properties, i.e., SadDNS and FragDNS have a significant overlap
with HijackDNS, which is due to the fact that 53-70% of the sys-
tems we measured are vulnerable to HijackDNS, while SadDNS
and FragDNS only have a small overlap compared to number of
vulnerable systems in each category. Only 11% of the DNS resolvers
and 12% of the domains are vulnerable to SadDNS attack. Many
more resolvers are vulnerable to injection of content via IPv4 frag-
ments, hence FragDNS attack is more applicable than SadDNS. In
addition, due to its large size, the open resolver dataset dominates
the results in our comparison.

5.3.2 Effectiveness. Attack effectiveness is demonstrated with the
traffic volume needed for a successful attack, which is a function
of the number of queries that should be triggered for a successful
attack. The larger the attack volume, the less stealthy the attack is.
We define hitrate as the probability to poison the target DNS cache
with a single query and calculate the expected number of queries
for each of the poisoning methods by inversion of the hitrate. We
estimate the expected number of packets sent to the resolver by
multiplying this with the traffic volume generated per query. For
SadDNS where the amount of traffic during the attack is not stable,
we analyse the experimental data for the amount of traffic needed.

HijackDNS. If an AS prefers a malicious BGP announcement
of the adversary to the announcement of the victim AS, then the
attack is effective, requiring only a single packet to send a malicious
BGP announcement and then another packet to send a spoofed DNS
response with malicious DNS records.

SadDNS. Using our implementation of SadDNS attack from
Section 3.2 we find that the DNS cache poisoning with SadDNS
succeeds after an average of 471 seconds (min: 39 seconds, max:
779 seconds). This is inline with the results in [57] which report an
average of 504 seconds. To achieve a successful attack we needed
to run 497 iterations on average. This is correlated with the attack
duration since we do not trigger more than two queries per second.
When more queries within one attack iteration are triggered, the
resolvers respond with servfail. By inverting this number we
get a hitrate of 0.2%. Notably however, since most of the queries
do not result in attack windows of meaningful length, an attacker
should be able to optimise the attack by analysing the exact back-
off strategies used by the target resolver, and adjusting the queries
according to this.

Using the results from our SadDNS experiment, we also obtain
statistics for how may packets are sent to the target resolver. On
average, our implementation sent 986,828 packets or 88MB of traffic,
which is again, comparable to the original attack (69MB in [57]).

FragDNS. Only about 1% of the domains allow deterministic
fragmentation-based cache poisoning attacks thanks to slowly in-
cremental global IPID counter in nameservers. More than 4% of the
domains are vulnerable to probabilistic attacks by attempting to
hit an unpredictable IPID counter and to match the UDP checksum.
When the IPID values are not predictable, the probability to hit
the correct value is roughly 0.1%. To match the UDP checksum,
the attacker needs to predict the partial UDP checksum of the sec-
ond fragment of response sent by the nameserver. This means that
the probability to match the UDP checksum is the inverse of the
number of possible second fragments emitted by the nameserver
(assuming equal distribution).

To calculate the per-nameserver hitrate of FragDNS attack for
each domain we calculate the product of both probabilities, match-
ing the IPID as well as matching the UPD checksum. We take the
average of these per-nameserver hitrates to calculate a per domain
hitrate. The results of our evaluation are: when the nameservers
use a single global counter for IPID, depending on the rate at which
queries arrive at the nameserver, the median hitrate over all vul-
nerable domains (for different rates of queries from other sources)
is 20%. When the nameserver selects IPID values pseudorandomly,
the median hitrate is 0.1% which is the probability to correctly
guess the IPID, as most servers to not randomise the records in
DNS responses.

FragDNS attack also requires large traffic volumes with 1024
packets median computed over vulnerable domains with 65K pack-
ets for an unpredictable IPID, and with only 325 packets on average
against a predictable IPID against high load servers, such as the
servers of top-level domains.

In the worst case, the attack requires 64 packets to fill the resolver
IP-defragmentation buffer and another packet to trigger the query.
Combined with a 0.1% success rate, this translates to an average of
65,000 packets.

5.3.3 Stealthiness. In BGP prefix hijacks malicious BGP announce-
ments manipulate the control plane and a single BGP announce-
ment suffices to change the forwarding information in the routers.
BGP prefix hijacks generate lower traffic volume when performing
the hijack but may be more visible in the Internet since the attack
impact is more global. The more networks are affected as a result
of the BGP hijack the higher the chance is that such attacks may
be detected. Same-prefix hijack is more stealthy in control plane
than sub-prefix hijack since it does not affect the global routing
BGP table in the Internet, but causes manipulations only locally at
the ASes that accept the malicious announcement. Furthermore,
as we already mentioned, short-lived BGP hijacks typically are
ignored and do not trigger alerts [23, 48, 49]. In contrast, guessing
the source port with SadDNS method (Section 3.2) or injecting
malicious payload via IPv4 fragmentation (Section 3.3) generate
more traffic than BGP hijacks, but only locally on the network of
the victim DNS resolver or the target nameserver. In contrast to
BGP hijacks the attack is performed on the data plane, and is hence
not visible in the global BGP routing table in the Internet.

SadDNS attack creates a large traffic volume and hence may
be detected by the affected networks. FragDNS attacks against
domains that uses a global sequentially incremental IPID counter
are the stealthiest.

846

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

6 COUNTERMEASURES
Almost all Internet systems, applications and even security mecha-
nisms use DNS. As we showed, a vulnerable DNS introduces not
only threats to systems using it but also to security mechanisms,
such as PKI. We provide recommendations to mitigate that threat.

We also set up a tool at https://crosslayerattacks.sit.fraunhofer.de
to allow clients to check if their networks are operating DNS plat-
forms vulnerable to the cache poisoning attacks evaluated in our
work. In the rest of this section we separately explain our recom-
mendations for DNS servers to prevent cache poisoning attacks
and then for applications to prevent cross-layer attacks.

6.1 DNS servers
In addition to recommendations and best practices for patching
DNS servers, such as those in [RFC5452] [43], we recommend a
new countermeasure we call security by obscurity. Our experi-
ence of cache poisoning evaluation in the Internet showed that the
less information the adversary has, the more hard it becomes to
launch the attacks in practice. Security by obscurity proves effective
not only against off-path but also against on-path MitM attacks.
Although it is a known bad practice in cryptography it turns out
useful in practice. Specifically, for launching the attacks the attack-
ers need to collect intelligence about the target victims, such as
which caching policies are used, which IP addresses are assigned to
the resolver - randomising or blocking this information, will make
a successful attack harder. The network administrators can deploy
countermeasures to make such information difficult to leak, e.g.,
DNS resolvers should use multiple caches with different DNS soft-
ware on each, resolvers should not send ICMP errors, nameservers
should randomise records in responses.

Preventing queries. Server operators might choose to config-
ure systems to do less (or no) DNS lookups, ie. in the case of email
servers. This reduces the chance an attacker can trigger a query to
start the poisoning.

Blocking fragmentation. Resolver operators can block frag-
mented responses in firewalls to reduce the applicability of FragDNS
attacks. Some operators only implement filtering of small fragments
(i.e., Google’s 8.8.8.8) which can prevent the attack since the attacker
might not be able to cause a nameserver response of the size needed
to reach the filtering limit.

RandomiseDNS responses.Randomising nameserver responses
complicates the FragDNS attack as the attacker needs to predict
the UDP checksum of the original nameserver’s response.

0x20 Encoding. 0x20 Encoding adds entropy to the DNS query
which must be matched by the response. This complicates the
SadDNS attack to a point where it is no longer viable (ie. adding
0x20 Encoding to a domain with 16 alphanumeric characters adds
16 bits of entropy to the query). Since this randomness is only
contained in the question section of the DNS packet, it cannot
prevent the FragDNS attack as it will be in the first fragment along
with the TXID.

Securing BGP. Full deployment of RPKI (together with BGPSec)
would prevent the HijackDNS attack. However, because of several
deployment barriers, most of the prefixes are not protected by
RPKI and most ASes do not enforce Route Origin Validation (ROV)

[36, 40, 62]. We refer to [39] for a comprehensive discussion of the
deployment issues.

6.2 Applications
In the rest of this section we provide recommendations for prevent-
ing cross-layer attacks that use DNS cache poisoning.

Separate resolvers and caches. It is common in networks to
use one DNS resolver for multiple services and servers. Our attacks
exploit that. We recommend using different DNS resolvers (each
with a distinct cache) for each system.

Third party authentication (TLS). Third party authentication,
like TLS, can mitigate the attacks against all DNS use-cases which
aim to locate a server (i.e.m federation and address lookup use-
cases). However, even such mechanisms can only reduce the harm
of DNS poisoning, but not completely mitigate it, e.g., adversaries
can use DNS cache poisoning to subvert the security of DV during
certificates issuance. Furthermore, an attacker can still use cache-
poisoning for DoS attacks.

Two factor authentication. Should be enabled by default (and
not optional as it is now). This would prevent the attacker from
getting access to the account even if it has acquired the login cre-
dentials for the victim.

Secure fallback. Instead of allowing a transaction when no in-
formation about its authorisation state can be gathered (like done
currently in SPF and RPKI) a security-mechanism could decide to
not allow it. This however would mean that attacking the availabil-
ity of DNS for a certain domain would allow DoS attacks instead,
preventing a resolver from looking up a domain’s SPF records would
prevent that domain from sending any emails to the servers using
this resolver.

7 CONCLUSIONS
We evaluated methodologies for launching practical DNS cache
poisoning attacks and derived insights on the applicability, effective-
ness and stealth of these attacks.We then applied themethodologies
for a systematic evaluation of cross-layer attacks against popular
applications.

Our work demonstrates the significant role that DNS plays
in the Internet for ensuring security and stability of the applica-
tions and clients. If DNS is vulnerable, our work shows that in
addition to traditional attacks, such as redirection to adversarial
hosts, weak off-path adversaries can even downgrade protection
of security mechanisms, such as RPKI or DV. We provide recom-
mendations for mitigations and developed a public tool at https:
//crosslayerattacks.sit.fraunhofer.de to enable clients to
identify vulnerabilities in DNS platforms on their networks.

ACKNOWLEDGEMENTS
We thank the anonymous referees for thoughtful feedback on our
work. This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Ministry for
Higher Education, Research and Arts within their joint support of
the National Research Center for Applied Cybersecurity ATHENE
and by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) SFB 1119.

847

From IP to Transport and Beyond:
Cross-Layer Attacks Against Applications SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] [n.d.]. Best Infrastructure as a Service (IaaS) Providers. https://www.g2.com/

categories/infrastructure-as-a-service-iaas. Accessed: 2020-10-09.
[2] [n.d.]. Market Share Analysis: IaaS and IUS, Worldwide, 2018.

https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-
says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-
in-2018. Accessed: 2020-10-09.

[3] [n.d.]. Market share trends for SSL certificate authorities. https://w3techs.com/
technologies/history_overview/ssl_certificate. Accessed: 2020-10-09.

[4] [n.d.]. Quarterly Cloud Spending Blows Past $30B; Incremental GrowthContinues
to Rise. https://www.srgresearch.com/articles/quarterly-cloud-spending-blows-
past-30b-incremental-growth-continues-rise. Accessed: 2020-10-09.

[5] [n.d.]. Top IaaS Providers: 42 Leading Infrastructure-as-a-Service Providers to
Streamline Your Operations. https://stackify.com/top-iaas-providers/. Accessed:
2020-10-09.

[6] 2011. The CAIDA AS Relationships Dataset, 2011.
http://www.caida.org/data/active/as-relationships/.

[7] 2015. Hacked or Spoofed: Digging into the Malaysia Airlines Website Incident.
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/hacked-or-
spoofed-digging-into-the-malaysia-airlines-website-compromise. Accessed:
2021-1-19.

[8] 2015. Webnic Registrar Blamed for Hijack of Lenovo, Google Do-
mains. https://krebsonsecurity.com/2015/02/webnic-registrar-blamed-for-
hijack-of-lenovo-google-domains/. Accessed: 2021-1-19.

[9] 2018. DNSpionage Campaign Targets Middle East. https://blog.talosintelligence.
com/2018/11/dnspionage-campaign-targets-middle-east.html. Accessed: 2021-
01-19.

[10] 2019. Global DNS Hijacking Campaign: DNS Record Manipulation
at Scale. https://www.fireeye.com/blog/threat-research/2019/01/global-dns-
hijacking-campaign-dns-record-manipulation-at-scale.html. Accessed: 2021-1-
19.

[11] 2019. Sea Turtle keeps on swimming, finds new victims, DNS hijacking
techniques. https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-
swimming.html. Accessed: 2021-01-19.

[12] 2019. ‘Unprecedented’ DNS Hijacking Attacks Linked to Iran. https://threatpost.
com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/

[13] 2020. Security Incident on November 13, 2020. https://blog.liquid.com/security-
incident-november-13-2020. Accessed: 2021-01-19.

[14] 2021. The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Re-
sources. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Asso-
ciation. https://www.usenix.org/conference/usenixsecurity21/presentation/dai

[15] aconet. [n.d.]. eduroam-Teilnehmer in Österreich. https://www.aco.net/eduroam_
teilnehmer.html. Accessed: 2020-12-02.

[16] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh. 2019.
Collaborative Client-Side DNS Cache Poisoning Attack. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications. 1153–1161. https://doi.org/10.
1109/INFOCOM.2019.8737514

[17] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking bitcoin:
Routing attacks on cryptocurrencies. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 375–392.

[18] Dan J. Bernstein. 2002. DNS Forgery. Internet publication at
http://cr.yp.to/djbdns/forgery.html.

[19] Robert Beverly and Steven Bauer. 2005. The Spoofer project: Inferring the extent
of source address filtering on the Internet. In Usenix Sruti, Vol. 5. 53–59.

[20] Robert Beverly, Arthur Berger, Young Hyun, and K Claffy. 2009. Understanding
the efficacy of deployed internet source address validation filtering. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. 356–369.

[21] Robert Beverly, Ryan Koga, and KC Claffy. 2013. Initial longitudinal analysis of
IP source spoofing capability on the Internet. Internet Society (2013), 313.

[22] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek
Mittal. 2018. Bamboozling Certificate Authorities with BGP. In 27th USENIX
Security Symposium (USENIX Security 18). 833–849.

[23] Peter Boothe, James Hiebert, and Randy Bush. 2006. Short-lived prefix hijacking
on the Internet. In Proc. of the NANOG 36 (2006).

[24] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.
2018. Domain Validation++ For MitM-Resilient PKI. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2060–
2076.

[25] R Bush and R Austein. 2013. RFC 6810: The Resource Public Key Infrastructure
(RPKI) to Router Protocol.

[26] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. 2017.
A Longitudinal, End-to-End View of the DNSSEC Ecosystem. In 26th USENIX
Security Symposium (USENIX Security 17). 1307–1322.

[27] Taejoong Chung, Roland van Rijswijk-Deij, David Choffnes, Dave Levin, Bruce M
Maggs, Alan Mislove, and Christo Wilson. 2017. Understanding the role of
registrars in DNSSEC deployment. In Proceedings of the 2017 Internet Measurement

Conference. 369–383.
[28] D. Madory. 2018. Recent Routing Incidents: Using BGP to Hijack DNS and

more. https://www.lacnic.net/innovaportal/file/3207/1/dougmadory_lacnic_30_
rosario.pdf

[29] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee.
2008. Increased DNS forgery resistance through 0x20-bit encoding: security
via leet queries. In ACM Conference on Computer and Communications Security,
Peng Ning, Paul F. Syverson, and Somesh Jha (Eds.). ACM, 211–222. http:
//doi.acm.org/10.1145/1455770.1455798

[30] DFN-Verein. [n.d.]. Karte der aktuellen eduroam Standorte in Deutschland.
https://www.dfn.de/dienstleistungen/eduroam/. Accessed: 2020-12-02.

[31] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[32] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex
Halderman. 2015. A Search Engine Backed by Internet-Wide Scanning. In 22nd
ACM Conference on Computer and Communications Security.

[33] Tony Finch, Evan Hunt, Peter van Dijk, Anthony Eden, and Willem Mekking.
2019. Address-specific DNS aliases (ANAME). Internet-Draft draft-ietf-dnsop-
aname-03. IETF Secretariat. http://www.ietf.org/internet-drafts/draft-ietf-dnsop-
aname-03.txt.

[34] Pedro Franco. 2014. Understanding bitcoin. Wiley Online Library.
[35] Lixin Gao and Jennifer Rexford. 2001. Stable Internet routing without global

coordination. IEEE/ACM Transactions on networking 9, 6 (2001), 681–692.
[36] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shulman.

2017. Are We There Yet? On RPKI’s Deployment and Security.. In NDSS.
[37] Amir Herzberg and Haya Shulman. 2012. Security of Patched DNS. In Computer

Security - ESORICS 2012 - 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings. 271–288.

[38] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous:
or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The Conference on Com-
munications and Network Security, Washington, D.C., U.S. IEEE.

[39] Tomas Hlavacek, Italo Cunha, Yossi Gilad, Amir Herzberg, Ethan Katz-Bassett,
Michael Schapira, and Haya Shulman. 2020. DISCO: Sidestepping RPKI’s Deploy-
ment Barriers. In Network and Distributed System Security Symposium (NDSS).

[40] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waidner. 2018.
Practical Experience: Methodologies for Measuring Route Origin Validation.
In 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018. 634–641.
https://doi.org/10.1109/DSN.2018.00070

[41] P Hoffman and P McManus. 2018. RFC 8484: DNS Queries over HTTPS (DoH).
[42] Z Hu, L Zhu, J Heidemann, A Mankin, D Wessels, and P Hoffman. 2016. RFC

7858-Specification for DNS over Transport Layer Security (TLS).
[43] A. Hubert and R. van Mook. 2009. Measures for Making DNS More Resilient against

Forged Answers. RFC 5452. RFC Editor.
[44] Philipp Jeitner and Haya Shulman. 2021. Injection Attacks Reloaded: Tunnelling

Malicious Payloads over DNS. In 30th USENIX Security Symposium (USENIX
Security 21).

[45] Philipp Jeitner, Haya Shulman, and Michael Waidner. 2020. The Impact of DNS
Insecurity on Time. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 266–277.

[46] Jisc. [n.d.]. Organisations participating in eduroam in the UK. https://www.jisc.
ac.uk/eduroam/participating-organisations. Accessed: 2020-12-02.

[47] Dan Kaminsky. 2008. It’s the End of the Cache As We Know It. Presentation at
Blackhat Briefings.

[48] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2008. Autonomous security
for autonomous systems. Computer Networks 52, 15 (2008), 2908–2923.

[49] Varun Khare, Qing Ju, and Beichuan Zhang. 2012. Concurrent prefix hijacks: Oc-
currence and impacts. In Proceedings of the 2012 Internet Measurement Conference.
ACM, 29–36.

[50] Amit Klein. 2007. BIND 9 DNS cache poisoning. Report, Trusteer, Ltd 3 (2007).
[51] Amit Klein. 2007. Windows DNS Server Cache Poisoning,”.
[52] Amit Klein. 2020. Cross Layer Attacks and How to Use Them (for DNS Cache

Poisoning, Device Tracking and More). arXiv preprint arXiv:2012.07432 (2020).
[53] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-wide study

of DNS cache injections. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[54] Matt Lepinski, Stephen Kent, and Derrick Kong. 2012. A profile for route origin
authorizations (ROAs). IETF, RFC 6482 (2012).

[55] Qasim Lone, Matthew Luckie, Maciej Korczyński, Hadi Asghari, Mobin Javed,
and Michel van Eeten. 2018. Using Crowdsourcing Marketplaces for Network
Measurements: The Case of Spoofer. In 2018 Network Traffic Measurement and
Analysis Conference (TMA). IEEE, 1–8.

[56] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A Kroll, and
k claffy. 2019. Network Hygiene, Incentives, and Regulation: Deployment of
Source Address Validation in the Internet. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 465–480.

[57] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and
Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with

848

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner

Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for
Computing Machinery, New York, NY, USA, 1337–1350. https://doi.org/10.1145/
3372297.3417280

[58] Jared Mauch. 2013. Open resolver project. In Presentation, DNS-OARC Spring
2013 Workshop (Dublin).

[59] P. Mockapetris. 1987. Domain names - concepts and facilities. STD 13. RFC Editor.
http://www.rfc-editor.org/rfc/rfc1034.txt http://www.rfc-editor.org/rfc/rfc1034.
txt.

[60] P. Mockapetris. 1987. Domain names - implementation and specification. STD 13.
RFC Editor. http://www.rfc-editor.org/rfc/rfc1035.txt http://www.rfc-editor.org/
rfc/rfc1035.txt.

[61] Pradosh Mohapatra, John Scudder, David Ward, Randy Bush, and Rob Austein.
2013. BGP prefix origin validation. In IETF RFC 6811.

[62] Andreas Reuter, Randy Bush, Ítalo Cunha, Ethan Katz-Bassett, Thomas C. Schmidt,
and Matthias Wählisch. 2017. Towards a Rigorous Methodology for Measuring
Adoption of RPKI Route Validation and Filtering. CoRR abs/1706.04263 (2017).
arXiv:1706.04263 http://arxiv.org/abs/1706.04263

[63] RIPE NCC. 2021. RIS Raw Data. https://www.ripe.net/analyse/internet-
measurements/routing-information-service-ris/ris-raw-data

[64] S. Goldberg. 2018. The myetherwallet.com hijack and why it’s risky to hold cryp-
tocurrency in a webapp. https://medium.com/@goldbe/the-myetherwallet-com-
hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278

[65] Haya Shulman. 2014. Pretty bad privacy: Pitfalls of DNS encryption. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society. 191–200.

[66] Haya Shulman and Michael Waidner. 2015. Towards security of internet naming
infrastructure. In European Symposium on Research in Computer Security. Springer,
3–22.

[67] Haya Shulman and Michael Waidner. 2017. One Key to Sign Them All Considered
Vulnerable: Evaluation of DNSSEC in the Internet.. In NSDI. 131–144.

[68] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and Carmela
Troncoso. 2019. Encrypted DNS–> Privacy? A Traffic Analysis Perspective. arXiv
preprint arXiv:1906.09682 (2019).

[69] Jonathan Spring. [n.d.]. Probable Cache Poisoning of Mail Handling Do-
mains. https://insights.sei.cmu.edu/cert/2014/09/-probable-cache-poisoning-of-
mail-handling-domains.html.

[70] Yixin Sun, Maria Apostolaki, Henry Birge-Lee, Laurent Vanbever, Jennifer Rex-
ford, Mung Chiang, and Prateek Mittal. 2021. Securing internet applications from
routing attacks. Commun. ACM 64, 6 (2021), 86–96.

[71] University of Oregon. 2012. Route Views Project. http://bgplay.routeviews.org/.
[72] Paul Vixie. 1995. DNS and BIND Security Issues. In Proceedings of the 5th Sympo-

sium on UNIX Security. USENIX Association, Berkeley, CA, USA, 209–216.
[73] S Weiler and D Blacka. 2013. RFC 6840: Clarifications and Implementation Notes

for DNS Security (DNSSEC). IETF Standard (2013).
[74] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu,

Keyu Man, Shuang Hao, Haixin Duan, and Zhiyun Qian. 2020. Poison Over
Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding
Devices. In 29th USENIX Security Symposium (USENIX Security 20). 577–593.

849

A.7. The Hijackers Guide To The Galaxy: Off-Path Taking Over
Internet Resources

[Dai21u]
Tianxiang Dai et al. “The Hijackers Guide To The Galaxy: Off-Path Taking

Over Internet Resources”. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021, pp. 3147–3164. isbn: 978-1-939133-24-
3. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/dai
Declaration of Contributions
The paper "The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet
Resources" was published as a full research paper at the "30th USENIX Security
Symposium (USENIX Security 21)". It constitutes a joint work of Tianxiang Dai,
Philipp Jeitner, Haya Shulman and Michael Waidner.
Haya Shulman proposed initial concept and structured the paper. Haya Shulman
also wrote Introduction, Background and Conclusions, while Philipp Jeitner wrote
the rest. After the initial round of reviews, Haya Shulman and Philipp Jeitner
decided on what to change about the paper and to add new attack methodolo-
gies and other types of Internet resource providers. Tianxiang Dai and Philipp
Jeitner designed, implemented and analysed the measurements together. More
specifically, on the provider and resolver side, Tianxiang Dai developed the test-
ing infrastructure and performed the SADDNS measurement for all. He did the
resolver tests on RIRs and CAs, while Philipp Jeitner did the resolver tests on
Registrars and IaaS providers. On the customer and nameserver side, Tianxiang
Dai performed all the measurements. The data analysis was done by Tianxiang Dai
and Philipp Jeitner together, where Philipp Jeitner did most of the analysis. Philipp
Jeitner contributed the list of countermeasures. Tianxiang Dai also implemented
a proof-of-concept attack and demonstrated it on one test account of a chosen
RIR. Michael Waidner was a general advisor of this work and contributed with
continuous feedback during all phases of the paper writing process. The paper
was presented at the conference by Philipp Jeitner. The work was later presented
at community event NANOG 83 and RIPE 83 by Tianxiang Dai, also as a guest
post at APNIC Blog.
All authors agree with the use of their joint paper as part of Philipp Jeitner’s
and Tianxiang Dai’s cumulative dissertation, considering a contribution of 60%
from Philipp Jeitner and 40% from Tianxiang Dai.

97

https://www.usenix.org/conference/usenixsecurity21/presentation/dai
https://www.usenix.org/conference/usenixsecurity21/presentation/dai

This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

The Hijackers Guide To The Galaxy:
Off-Path Taking Over Internet Resources

Tianxiang Dai, Fraunhofer Institute for Secure Information Technology SIT;
Philipp Jeitner, Fraunhofer Institute for Secure Information Technology SIT,
Technical University of Darmstadt; Haya Shulman, Fraunhofer Institute for

Secure Information Technology SIT; Michael Waidner, Fraunhofer Institute for
Secure Information Technology SIT, Technical University of Darmstadt

https://www.usenix.org/conference/usenixsecurity21/presentation/dai

The Hijackers Guide To The Galaxy:
Off-Path Taking Over Internet Resources

Tianxiang Dai*, Philipp Jeitner*†, Haya Shulman* and Michael Waidner*†

*Fraunhofer Institute for Secure Information Technology SIT
†Technical University of Darmstadt

Abstract
Internet resources form the basic fabric of the digital so-

ciety. They provide the fundamental platform for digital ser-
vices and assets, e.g., for critical infrastructures, financial ser-
vices, government. Whoever controls that fabric effectively
controls the digital society.

In this work we demonstrate that the current practices of
Internet resources management, of IP addresses, domains,
certificates and virtual platforms are insecure. Over long pe-
riods of time adversaries can maintain control over Internet
resources which they do not own and perform stealthy manip-
ulations, leading to devastating attacks. We show that network
adversaries can take over and manipulate at least 68% of
the assigned IPv4 address space as well as 31% of the top
Alexa domains. We demonstrate such attacks by hijacking the
accounts associated with the digital resources.

For hijacking the accounts we launch off-path DNS cache
poisoning attacks, to redirect the password recovery link to the
adversarial hosts. We then demonstrate that the adversaries
can manipulate the resources associated with these accounts.
We find all the tested providers vulnerable to our attacks.

We recommend mitigations for blocking the attacks that
we present in this work. Nevertheless, the countermeasures
cannot solve the fundamental problem - the management
of the Internet resources should be revised to ensure that
applying transactions cannot be done so easily and stealthily
as is currently possible.

1 Introduction

Internet resources form the cornerstone of modern societies.
The daily activities and services are increasingly digitalised,
from critical infrastructures to medical services and child care.
The society relies on the control over its Internet resources for
availability and stability of digital services and assets. Due to
their importance, Internet resources pose a lucrative target for
adversaries.

Internet resources are at risk. In this work we explore
the security of the Internet management systems of basic

digital assets: IP addresses management with Regional In-
ternet Registries (RIRs) [RFC7020], domains with domain
registrars, virtual machine resources with infrastructure as
a service (IaaS) providers and certification with Certificate
Authorities (CAs), see the list in Table 1. These providers
manage the allocation, registration and operation of the In-
ternet resources for their customers. We study how easy it
is for network adversaries to take over the accounts of these
resource providers and then exploit the resources associated
with the compromised accounts.

We show that the current practices of Internet resources
management are insecure. Adversaries can take control over
digital assets of customers and maintain control over them for
long periods of time without being detected. Although such
attacks are appealing for strong nation state adversaries and
security agencies, we demonstrate that even weak off-path
network adversaries can, through a series of protocol manip-
ulations, take over the accounts of customers and thereby
control the Internet resources associated with them.

Adversaries can hijack accounts. The idea behind our
attacks is the following: the adversary poisons the cache of
the DNS resolver of a resource provider, injecting a malicious
record mapping the Email server of the victim customer to
an adversarial host. The adversary invokes password recov-
ery procedure. The Email server of the provider sends the
password reset link to the IP address of the adversary. Adver-
sary resets the password and hijacks the victim account. We
demonstrate how the adversary can perform manipulations
over the resources associated with the hijacked accounts.

Manipulation of the digital resources. The SSO (Single
Sign On) accounts of the RIRs pose the highest risk: hijacking
an SSO account allows a weak adversary to take over ASes
and IP blocks allocated to the victim. Furthermore, through
the hijacked account the adversary can make manipulations
not only in the control plane of the Internet infrastructure but
also in the Internet Routing Registries (IRR) and in Internet
Addressing Resource Registries. Such modifications in the
IRR can among others also facilitate extremely effective BGP
prefix hijacks. Specifically, IRR records are prerequisite for

USENIX Association 30th USENIX Security Symposium 3147

BGP hijack attacks - without proper records in the IRR the
attacker cannot convince benign upstream providers to accept
and propagate the fraudulent BGP announcements in the input
filters on the BGP sessions. Adversaries without the ability
to modify the IRR, have to use less vigilant and generally
poorly managed networks as upstream providers or have to
utilise path manipulation attacks [35] - both restricting the
success rate and the stealthiness of the attack. Our adversary
can, by modifying the records in the IRR, cause well managed
and reputed upstream providers to unwittingly propagate the
malicious BGP announcements. Hence making BGP prefix
hijacks more effective than the typical control plane BGP
prefix hijacks while at the same time more difficult to identify.
To maintain control over the victim Local Internet Registries
(LIRs) resources over long periods of time the adversary im-
plants itself in the system with elevated privileges.

We also show that hijacking an account under a CA allows
an adversary to revoke certificates, renew a certificate or issue
new certificates for domains registered under the hijacked
account. Renewal of certificates allows to associate a new
key-pair with the certificate. Nevertheless some CAs do not
perform validation of certificate renewal requests issued from
registered accounts.

By hijacking the accounts of domain registrars, the ad-
versary can manipulate records in victim domains, e.g., to
launch phishing attacks. Finally, hijacking accounts of IaaS
providers enables the attackers to take over virtual machines
and the resources that run on those virtual machines, including
databases, applications and computations.

Disclosure and ethics. Our attacks were tested against
providers and customers reliably, yet were ethically compliant.
To avoid harming Internet users, we set up victim domains
and registered victim accounts which were used by us for
carrying out the attacks and for evaluating the vulnerabilities.
This ensured that the providers would not use the spoofed
records for any “real” purpose. In addition to evaluating the
attacks with the “victim” accounts that we set up, we also
evaluated our exploits of hijacked accounts against one large
ISP under RIPE NCC and attacked the real domain of that ISP
in coordination with that ISP. We are disclosing the results of
our work to the providers.

Contributions. We provide the first demonstration of
off-path attacks exploiting hijacked accounts under popular
providers and show that adversaries can perform manipula-
tions in the resources assigned to the accounts over long time
periods without being detected.

Organisation. In Section 2 we review DNS cache poison-
ing and related work. In Section 3 we provide an overview
of our study. In Section 4 we list methodologies for off-path
DNS cache poisoning attacks. In Section 5 we evaluate the
cache poisoning methodologies for taking over customers
accounts in different providers in our dataset. Then, in Sec-
tion 6, we demonstrate how the adversaries can manipulate
digital resources assigned to the accounts they control. In

Section 7 we explain the fraction of the digital resources (IP
address’ blocks and domains) that are at immediate risk due
to being associated with vulnerable accounts. We recommend
countermeasures in Section 8 and conclude in Section 9.

2 DNS Cache Poisoning Overview

DNS. Domain Name System (DNS), [RFC1035], performs
lookup of services in the Internet. Recursive caching DNS re-
solvers receive DNS requests for services in different domains
and send queries to the nameservers authoritative for those
domains. The nameservers respond with the corresponding
DNS records. The DNS records in responses are cached by
the DNS resolvers and are provided to clients and servers
which use that resolver. Subsequent requests for that domain
are responded from the cache. For instance, to send an Email
to alice@example.info the Email server of Bob will ask
the DNS resolver for the IP address of the Email exchanger in
domain example.info. The resolver asks the nameservers
in domain example.info for an IP address and a hostname
(A and MX records) of the Email exchanger and receives:

example.info IN MX mail.example.info
mail.example.info A 1.2.3.4

The resolver will send to the Email server of Bob the IP
address of the Email exchanger of Alice and will also cache
the records from the response for answering future queries
for MX and A in example.info domain.

DNS Cache Poisoning. In a DNS cache poisoning attack
the goal of the adversary is to redirect clients of some resolver
to an IP address of the adversary for queries in a target victim
domain. To do that, the adversary sends a DNS response from
a spoofed source IP address, which belongs to the nameserver
of the victim domain, with malicious DNS records mapping
the victim domain to an IP address of the adversary. For
instance, to intercept the Emails sent to Alice the adversary
injects a DNS record mapping the Email exchanger of Alice
to an adversarial host. If the resolver accepts and caches the
malicious record, its cache becomes poisoned.

example.info IN MX mail.example.info
mail.example.info A 6.6.6.6

The added value of DNS cache poisoning attacks is that
they have a local impact, affecting not the entire Internet
but only the victim network and hence allow for extremely
stealthy attacks, which can go undetected over long time pe-
riods. There is more and more evidence of DNS cache poi-
soning in the wild and the attacks are becoming increasingly
sophisticated. In the recent cache poisoning attacks in the
wild the adversaries attempt to intercept DNS packets by
launching short-lived BGP (Border Gateway Protocol) prefix
hijacks [34]. In such attacks, the adversary advertises a BGP
announcement hijacking the prefix of a victim for a short time

3148 30th USENIX Security Symposium USENIX Association

only to hijack the target DNS packet and then releases the
hijack [15]. This allows the attacker to poison the DNS cache
of a victim resolver and then intercept all the communication
between the victim resolver and the target domain. Recent
research projects showed that the CAs (Certificate Authori-
ties) and the bitcoin infrastructures were not resilient to prefix
hijacks [6, 8, 9].

History of DNS Cache Poisoning. Launching cache poi-
soning in practice is however hard. We explain the evolution
of cache poisoning attacks and the mitigations. In 1995 Vixie
pointed out to the cache poisoning vulnerability and suggested
to randomise the UDP source ports in DNS requests [45].
In 2002 Bernstein also warned that relying on randomis-
ing Transaction ID (TXID) alone is vulnerable [7]. Indeed,
in 2007 [29] identified a vulnerability in Bind9 and in Win-
dows DNS resolvers [30] allowing off-path attackers to reduce
the entropy introduced by the TXID randomisation. In 2008
Kaminsky [26] presented a practical cache poisoning attack
even against truly randomised TXID. Following Kaminsky
attack DNS resolvers were patched against cache poisoning
[RFC5452] by randomising the UDP source ports in queries.
Nevertheless, shortly after different approaches were devel-
oped to bypass the source port and the TXID randomisation
for launching off-path cache poisoning attacks. In 2012 [17]
showed that off-path adversaries can use side-channels to infer
the source ports in DNS requests. In 2015 [41] showed how to
attack resolvers behind upstream forwarders. This work was
subsequently extended by [47] with poisoning the forwarding
devices. A followup work demonstrated such cache poisoning
attacks also against stub resolvers [5]. [33] showed how to use
ICMP errors to infer the UDP source ports selected by DNS
resolvers. Recently [31] showed how to use side channels to
predict the ports due to vulnerable PRNG in Linux kernel. In
2013 [18] provided the first feasibility result for launching
cache poisoning by exploiting IPv4 fragmentation. IPv4 frag-
mentation based attacks were applied to shift time on NTP
servers [11, 23, 32], these attacks are not practical anymore
since the nameservers in NTP domains were patched to avoid
fragmentation. The study in [11] used fragmentation based
cache poisoning for bypassing domain validation with CAs.
However, most CAs patched the vulnerabilities which [11] ex-
ploited to attack domain validation, e.g., Let’sEncrypt blocked
fragmentation. Let’sEncrypt also deployed domain validation
from multiple vantage points [9, 25], which makes the previ-
ous off-path attacks [8, 11] impractical.

In addition to other attacks in this work, we also show
another way to attack the CAs, by taking over customers’
accounts with the CAs and not by bypassing domain vali-
dation. As we show this allows even more effective attacks
that were presented in [11]: (1) when controlling a compro-
mised account the adversary can renew existing certificates
to use a new key-pair. Since some CAs do not apply domain
validation during certificates’ renewal this attack allows to
issue fraudulent certificates without the need to attack DV.

Furthermore, in our work we use a number of off-path DNS
cache methodologies from [14] to take over accounts with
providers.

Cache poisoning attacks could be prevented with DNSSEC
[RFC6840] [46] which uses cryptographic signatures to au-
thenticate the records in DNS responses. However, DNSSEC
is not widely deployed. Less than 1% of the second level
domains (e.g., 1M-top Alexa) domains are signed, and most
resolvers do not validate DNSSEC signatures, e.g., [12] found
only 12% in 2017. Our measurements show that the DNSSEC
deployment in our datasets is not better: the resolvers of 19
out of 35 tested providers do not validate DNSSEC signatures
(see Table 2) and less than 5% of the customers’ domains are
signed. Deploying DNSSEC was showen to be cumbersome
and error-prone [13]. Even when widely deployed DNSSEC
may not always provide security: a few research projects
identified vulnerabilities and misconfigurations in DNSSEC
deployments in popular registrars [12, 42]. However, even
correctly deployed DNSSEC does not prevent recent cache
poisoning attacks [24]. The idea behind these attacks is to
encode injections into the DNS records in DNS responses.
When the resolver parses the records, a misinterpretation oc-
curs, such that when the record is stored a different domain
name is used. Since DNSSEC validation is applied prior to
the misinterpretation, the validation of DNSSEC succeeds,
and the DNS cache poisoning occurs afterwards. Preventing
these attacks requires validating or escaping records from
DNS lookups.

Recent proposals for encryption of DNS traffic, such as
DNS over HTTPS [21] and DNS over TLS [22], although vul-
nerable to traffic analysis [40,43], may also enhance resilience
to cache poisoning. These mechanisms are not yet in use by
the nameservers in the domains that we tested. Nevertheless,
even if they become adopted, they will not protect the entire
resolution path, but only one link on which the transport is
protected and hence will not completely prevent DNS cache
poisoning attacks.

3 Attack Overview

In our study we explore the security of the services which
provide access to and management of the key digital assets in
the Internet: domains, IP prefixes and ASes, virtual machines
and certificates. In Table 1 we list the resources, as well as the
public service providers of these resources, that we studied in
this work. Access and management of these digital resources
is performed with the accounts that the providers offer to the
customers via their web portals. In this section we provide an
overview of our study from the perspective of the adversary
for hijacking the accounts of the customers under different
resource providers.

Find the target. Assume for example that the adversary
wishes to hijack the DNS servers hosted on a victim prefix
205.251.192.0/18 – this was a real attack launched against

USENIX Association 30th USENIX Security Symposium 3149

an LIR Amazon route53 in April 2018. First, the adversary
needs to find an account to which these resources are assigned
and through which these resources can be managed. Then,
the adversary needs to find the username associated with that
account. In Section 5.2 we show how to find the needed in-
formation: the owner, the public service provider, the Email
which is associated with the account through which the digital
resources can be managed. In the case of our example, the pre-
fix is allocated by ARIN to an LIR with OrgId AMAZON-4, aka
Amazon.com, Inc. and has 3 origin ASNs (Autonomous Sys-
tem Numbers) registered: AS16509, AS39111 and AS7224.
We thereby learn that the responsible RIR for Amazon is
ARIN and that Amazon has an LIR agreement with ARIN.
We also find the Email address ipmanagement@amazon.com
used by Amazon for managing its resources via the SSO
account with ARIN.

Poison DNS of public service provider. The adversary
uses one of the methodologies in Section 4 to launch off-
path DNS cache poisoning attack against the DNS resolver of
the service provider ARIN. During the attack the adversary
injects a malicious DNS record mapping the Email server
of domain amazon.com to the IP addresses controlled by the
adversary (step 1 , Figure 1). As a result, the Emails sent by
ARIN to Amazon will be received by the adversary.

Hijack victim account. The adversary triggers password
recovery for Email ipmanagement@amazon.com. This Email
is associated with the SSO account at ARIN. In order to send
the password recovery link, the Email server at ARIN needs
the IP address of the Email server of Amazon. The resolver at
ARIN already has a corresponding record in the cache, which
it provides to the Email server. This IP address was injected
by the adversary earlier in step 1 . ARIN sends the Email
with password recovery instructions to the adversary (step 2 ,
Figure 1). The attacker resets the password and takes control
over the account. We experimentally evaluate such attacks
against the providers and their customers in our dataset in
Section 5 for details.

Manipulate the resources. The adversary manipulates the
resources assigned to the victim account, say of Amazon, and
can sell the IP prefixes and ASes owned by Amazon (step 3 ,
Figure 1). In Section 6 we describe the exploits we evaluated
against the resources assigned to our victim accounts. We
show that among others, the attacker can create additional
accounts for itself with arbitrary privileges, and hence even
if the real owner resets the password back, the attacker still
maintains control over the resources. In some cases these ma-
nipulations generate notification Emails to the Email address
associated with the resources. This Email address is however
hijacked by the adversary, hence the adversary receives the
notifications. As a result the attack will not be detected and
can stay under the radar over a long period of time.

DNS

web

NS

mail

Internet

Attacker
6.6.6.6

Provider
Network
AS 30

30.0.0.0/24

Customer
Network
AS 123

123.0.0.0/24

1

2

3

Poison provider’s DNS resolver
via Hijack/Sad/FragDNS

Trigger password recovery Email
and change customer’s password

Log-in and exploit resources in
customer’s account

1

2

3

2

1

2

3

2

Figure 1: Attack overview

4 Off-Path DNS Cache Poisoning

The key contribution in our work is to show that once an
adversary controls an account with a resource provider, it can
in an easy and stealthy way manipulate the digital resources
associated with that account. But, how easy is it to take over
accounts? We show how to take over accounts by injecting
a poisoned DNS record into the caches in DNS resolvers of
providers. When the adversary triggers the password recovery
procedure for the victim account, the reset email is sent to the
adversarial host at the IP address in the injected DNS record.

How easy is it to launch off-path DNS cache poisoning?
In this section we use methodologies from [14] to launch off-
path DNS cache poisoning attacks: BGP prefix hijacks [8],
side-channels [33], and IPv4 defragmentation cache poison-
ing [18]. We do not consider attack methodologies which are
effective only against specific operating systems, say due to
poor random number generators. We implement cache poi-
soning attacks using these methodologies and evaluate them
against the providers and the customers in our dataset. We
describe the experimental setup in Section 4.1. We explain
our study methodology in Section 4.2. Then in Sections 4.3,
4.4 and 4.5 we present the DNS cache poisoning methodolo-
gies and the experimental evaluations against the targets in
our dataset.

4.1 Setup

To test our attacks experimentally in the Internet we setup
a victim AS. To purchase the victim AS we registered a
secondary LIR account with RIPE NCC for our organisation
(which has a primary account with RIPE NCC). We purchased
a /22 prefix for our AS for 20,000USD. We connected our
AS to DE-CIX internet exchange point in Frankfurt. This
AS hosts the servers which we use for our evaluation of the
attacks.

We set up an Unbound 1.6.7 DNS resolver on Linux
4.14.11, whose cache we poison with the records of the cus-
tomer domains. We registered a victim domain and set up two
nameservers in our domain and an Email server. We use our
victim domain to register accounts with the services that we
test in this work. We call this domain the victim customer
domain. We also set up a border router which represents our
attacker. The attacker’s BGP router issues bogus BGP an-

3150 30th USENIX Security Symposium USENIX Association

nouncements that claim the prefix assigned to our victim AS.
This allows us to evaluate the viability of attacks with BGP
prefix hijacks against our domains hosted on our victim AS
without affecting services and domains not under our control
and without affecting the global BGP routing table in the
Internet.

To evaluate cache poisoning attacks with side-channels
we configure the nameservers in our domain to support rate-
limiting and the DNS resolver to issue ICMP errors. To evalu-
ate fragmentation based cache poisoning attacks we configure
nameservers in our domain to reduce the MTU according
to the value in ICMP fragmentation needed messages. The
nameservers in our victim domain use a globally incremental
IPID counter.

4.2 Study Methodology
Our experimental evaluation of the attacks is performed reli-
ably yet without disrupting the functionality of the customers.
To achieve this we evaluate the attacks in two steps: (1) We
evaluate vulnerabilities to cache poisoning in providers. For
this we set up victim domains and register victim accounts
with the providers. We experimentally test the attack method-
ologies against providers by poisoning their DNS caches with
malicious records mapping the Email server in our victim
domain to the adversarial hosts that we control. We then hi-
jack our victim accounts by triggering the password recovery
procedures and changing their passwords. This enables us to
validate vulnerabilities to cache poisoning yet without risking
that the providers use poisoned records for genuine customers.
The ability to take over the accounts of the real customers
depends not only on vulnerabilities in providers’ infrastruc-
ture but also on properties in customers’ domains. (2) Hence,
in this step we set up a victim DNS resolver and poison its
cache with malicious records mapping the genuine customer
domains to our adversarial hosts. The combination of both
evaluations against the providers and against the customers
enables us to estimate the extent of the vulnerable accounts
that can be hijacked.

4.3 BGP Prefix Hijack
BGP (Border Gateway Protocol) allows ASes to compute the
paths to any Internet destination. Since BGP is currently not
protected, adversaries can send bogus BGP announcements to
hijack victim prefixes, hence intercept the communication of
victim ASes that accept the malicious BGP announcements.
In our attacks we hijack the prefix of our AS: once in the
evaluation against providers to intercept the responses from
our nameservers sent to the DNS resolvers of the providers
and then again during the evaluation of the customers, to
intercept requests from our DNS resolver to the customers’
domains. After our AS accepts the bogus BGP announcement,
all the communication between the servers on our AS and the

servers of the targets in our dataset traverse our adversarial
BGP router.

We launch short-lived hijacks. Such hijacks are common
[37] and allow the attacker to stay below the radar [4, 16].
It is believed that short-lived traffic shifts are caused by the
configuration errors (that are quickly caught and fixed) and
since they do not have impact on network load or connectivity,
they are largely ignored [10, 27, 28]. We evaluate our attacks
using short-lived same prefix hijacks and sub-prefix of the
victim prefix.

Our experimental evaluation reflects a common BGP hi-
jacking attacker: the attacker controls a BGP router or an AS,
and issues BGP announcements hijacking the same-prefix or
a sub-prefix of a victim AS in the Internet.

4.3.1 Attack evaluation against providers

The adversary announces to our victim AS a prefix of the
network of the provider where the target DNS resolver is
located. The bogus BGP announcement is sent only on the
interface that is connected to our AS and is not sent to other
destinations in the Internet. As a result, the responses from the
nameservers of our victim domain are sent to the adversarial
host instead of the DNS resolver of the provider. The adver-
sary initiates password recovery procedure for an account of
our victim customer domain. This triggers a DNS request to
our victim domain. The corresponding nameserver sends a
response, which is instead redirected to the adversary’s host.
The adversary manipulates the response, and injects a DNS
record that maps the Email server of our victim domain to the
IP address of the adversary. The response is then sent to the
provider and the BGP hijack is released. The DNS resolver
caches the response and returns it to the Email server, which
sends the password recovery link to the IP address of our ad-
versary. The adversary resets the password and takes control
over the account.

4.3.2 Attack evaluation against customers

The adversary announces to our victim AS prefixes of the
networks that host the nameservers in the target customers’
domain. The bogus BGP announcements are sent only on
the interface that is connected to our AS and not to other
destinations in the Internet. As a result, the DNS requests from
the DNS resolver on our victim AS are sent to the adversarial
host instead of the nameservers of the customer’ domain. The
attacker releases the hijacked prefix, and additionally crafts
a spoofed DNS response to our DNS resolver mapping the
IP address of the adversary to the Email server of the victim
customer’s domain. The records from the DNS response are
cached by our resolver.

USENIX Association 30th USENIX Security Symposium 3151

4.4 Side-channel Port Inference
SadDNS off-path attack [33] uses an ICMP side channel to
guess the UDP source port used by the victim resolver in the
query to the target nameserver. This reduces the entropy in
a DNS request from 32 bit (DNS TXID & UDP port) to 16
bit. The adversary then uses brute-force to match the TXID
by sending spoofed packets for each possible TXID value to
the resolver.

4.4.1 Attack evaluation against providers

We verify the existence of the ICMP global-rate limit: we
send a single UDP probe to the resolver to verify that it emits
ICMP port unreachable messages. Then, we send a burst of 50
spoofed UDP packets to closed ports at the resolver and follow
up with a single non-spoofed UDP packet and observe if an
ICMP port unreachable message is received by our sender.
If the ICMP global rate-limit is present no message will be
received because the global rate-limit is already reached.

The adversary initiates password recovery procedure with a
provider for an account of our victim customer domain. This
triggers a DNS request to our victim domain. The adversary
mutes the nameservers on our victim AS, to prevent the re-
sponse from being sent to the resolver of the provider, then
runs the procedure for inferring the source port in the DNS
request. Once the source port is found, it sends 216 spoofed
responses for each possible TXID values with malicious DNS
records in payload. The records map the nameservers of the
victim domain to attacker controlled IP addresses. If the re-
sponse is accepted by the resolver of the public service, it is
cached and used by the service for sending an Email with
the password or the reset link. The attacker now controls the
account.

4.4.2 Attack evaluation against customers

We configure our DNS resolver to send ICMP errors on closed
ports. We use our own implementation of the SadDNS port
scanning application with binary search and attempt to poison
the resolver with a malicious record pointing the domain of
the customer to our adversarial host. Due to a high failure
rate, evaluation of each tuple (resolver, domain) takes up to
30 minutes, hence evaluating SadDNS on all the domains in
our dataset is not practical. We therefore perform the measure-
ment on a dozen randomly selected customers in our dataset.
Our implementation performs the complete attack from trig-
gering the queries to muting the nameservers and scanning
the ports (using the ICMP side-channel) and in the last step
sending the spoofed DNS responses with malicious records.

The high failure rate of the SadDNS attack is due to the
fact that most of the queries do not generate a useful attack
window, since the resolver times out after less than a second.
The attacker can further improve this via manual attack by
analysing the back-off strategies of the target resolver. The

timeout of the resolver is implementation dependent, e.g., the
timeout value of Unbound is a dynamically computed value
based on RTT to the nameserver, while Bind uses 0.8 seconds.
The DNS software increases the timeout value after each
retransmission.

4.5 Injection into IP-Defragmentation Cache

The off-path adversary uses a spoofed IPv4 fragment to ma-
nipulate the fragmented response from the nameserver, [18].
The idea is to send a spoofed fragment which is reassembled
with the first genuine fragment of the nameserver. The adver-
sary replaces the second fragment of the nameserver with its
malicious fragment, hence overwriting some parts of payload
of a DNS response with new (attacker’s injected) content. As
a result, the reassembled IP packet contains the legitimate
DNS records sent by the genuine nameserver with the mali-
cious records from the fragment sent by the adversary. Since
the challenge values (port, TXID) are in the first fragment
of the response from the nameserver, they remain intact, and
hence correct.

4.5.1 Attack evaluation against providers

We evaluate FragDNS attack against the resolvers of the
providers with our victim domain. For our nameservers we
use a custom application that we developed, which always
emits fragmented responses padded to a certain size to reach
the tested fragment size limit. The nameservers are config-
ured to send CNAME records in the first fragmented response.
As a result, when the resolver of the provider receives a frag-
mented response and reassembles it, the DNS software will
issue a subsequent query for the CNAME-alias. This allows us
to verify that the spoofed fragment arrived at the resolver and
was reassembled correctly and cached, which is an indicator
that the cache poisoning via fragmentation attack succeeded.
Throughout the attack we use our adversarial host to trigger
password recovery procedures and to inject malicious DNS
records into the caches of the providers, mapping the Email
servers in our domains to the IP addresses allocated to our
adversary.

The adversary sends two spoofed fragments (for each name-
server’s IP address) to the resolver of the public service. The
fragments are identical except for the source IP addresses:
one is sent with a source IP address of one nameserver and
the other is with the source IP address of the other name-
server. The fragments are constructed so that they match the
first fragment in the response that will have been sent by our
nameserver. In the payload the fragments contain malicious
DNS records mapping the Email server to the IP address of
the adversary. The adversary initiates password recovery for
our victim account. This triggers a DNS request to one of the
nameservers in our victim domain. We do not know in ad-
vance which nameserver that will be, and hence initially send

3152 30th USENIX Security Symposium USENIX Association

two spoofed fragments (for each nameserver). The response
from the nameserver is sent in two fragments. Once the first
fragment reaches the IP layer at the resolver of the provider
it is reassembled with one of the second fragments of the
adversary (it is already waiting in IP defragmentation cache).
The reassembled packet is checked for UDP checksum and if
valid, passed on to the DNS software on the application layer.
If the records from the DNS packet are cached by the resolver
of the public service, the password recovery link will be sent
to the host controlled by the attacker.

When to send the spoofed ‘second’ fragment? The stan-
dard [RFC791] recommends caching the IP fragments in IP
defragmentation cache for 15 seconds. If there is no match-
ing fragment after 15 seconds, the fragment is removed from
IP defragmentation cache. The actual caching time exceeds
15 seconds in most implementations. For instance in Linux
/proc/sys/net/ipv4/ipfrag_time is set to 30 seconds.
For attack to succeed the total time between the moment
that the fragment enters the IP defragmentation cache at the
provider’s resolver and the moment at which the first fragment
from the genuine nameserver arrives should not exceed 15
seconds (to ensure that the attack is effective not only against
resolvers running on Linux but also against standard compli-
ant operating systems). We show that in practice 15 seconds
suffice to launch the attack. We measure the latency from
the moment that we trigger the password recovery procedure
via the web interface of the provider and the moment that a
DNS request from the resolver of the provider arrives at our
nameservers. The measurements for different providers are
plotted in Figure 2. As can be seen, except for two providers,
all the latencies are below 30 seconds. The results for the
attack window across all the providers, plotted in Figure 2
show that the latencies are stable, and are within the inter-
val which provides for successful attacks. For instance, for
AFRINIC RIR the attacker learns that after issuing the pass-
word recovery procedure the DNS query will be sent to the
victim nameserver at a predictable time interval (between 0.1
and 0.2 seconds).

 0.01

 0.1

 1

 10

 100

 1000

A
F
R

IN
IC

A
P

N
IC

A
R

IN
L
A

C
N

IC
R

IP
E

 N
C

C
g
o
d
a
d
d
y

n
a
m

ec
h
ea

p
n
et

w
o
rk

so
lu

ti
o
n
s

en
o
m

n
a
m

e.
co

m
A

li
b
a
b
a
 C

lo
u
d

A
m

a
zo

n
 A

W
S

g
a
n
d
i

n
a
m

es
il
o

G
o
o
g
le

 C
lo

u
d

O
V

H
C

lo
u
d

M
ic

ro
so

ft
 A

zu
re

IB
M

 C
lo

u
d

T
en

ce
n
t

C
lo

u
d

O
ra

cl
e

C
lo

u
d

D
ig

it
a
lO

ce
a
n

L
in

o
d
e

IO
N

O
S

H
o
st

w
in

d
s

V
u
lt
r

C
lo

u
d
S
ig

m
a

d
ig

ic
er

t.
co

m
se

ct
ig

o
.c

o
m

Figure 2: Avg. latency (in seconds) between registration and resolver query,
excluding outliers outside ±1σ.

4.5.2 Attack evaluation against customers

Our evaluation is performed with the domain of a victim
customer against our DNS resolver. The DNS resolver is con-
figured to allow fragmentation. We look-up the nameservers
in the domain of the customer and check if we can force

them to fragment responses: (1) for each nameserver, our
DNS resolver sends requests to the nameserver and receives
responses. (2) From the adversarial host we send to these
nameservers ICMP fragmentation needed errors indicating
Packet Too Big (PTB) for the source IP address of our DNS
resolver. (3) We send DNS requests from our resolver and
check if the responses arrive fragmented according to the
MTU indicated in the ICMP errors.

We then run FragDNS attack against the nameservers that
fragment DNS responses following our ICMP PTB errors: (4)
The adversarial host crafts spoofed second fragments, one for
each nameserver in customer’s domain. Since the adversary
does not know to which nameserver the resolver will send
a DNS request (the nameserver selection depends on DNS
resolver software) it will send spoofed second fragments for
each of the nameserver in that domain. Each fragment con-
tains an identical payload: a malicious DNS record that maps
the Email server of the customer domain to the IP address of
our adversary. Each fragment has a different spoofed source
IP address corresponding to each of the nameserver in the
target domain. The adversary sends all these fragments to our
DNS resolver. (5) The adversary causes our DNS resolver
to issue a DNS request for a MX record in victim customer’s
domain. The nameserver which received the request responds
with a fragmented DNS packet. The first fragment is reassem-
bled with the matching second fragment that is waiting in the
IP defragmentation cache. (6) The adversary receives a DNS
response from our resolver. If the Email server in the response
is mapped to the IP address of our adversary, then the attack
succeeded.

5 Hijacking Accounts

In this section we evaluate DNS poisoning attacks against
the providers and the customers using the methodologies in
Section 4.

After collecting the target providers and their customers in
Section 5.1, we analyse the password recovery mechanism
at each provider in Section 5.2. Then we collect the DNS
resolvers at those providers in Section 5.3.1. We evaluate
off-path cache poisoning attacks against the DNS resolvers of
providers in Section 5.3.2. Finally we measure the percentage
of vulnerable customers of those providers in Section 5.4.

5.1 Datasets
In our measurements and attacks’ evaluations we use two
datasets: of providers and of their customers.

Providers. The providers that we study are listed in Table 1.
For each class of resource providers (RIRs, Registrars, IaaS
providers, CAs) we select a set of most popular examples.
Our methodology for selecting the providers is: (1) all the five
RIRs, (2) we scan the whois data of 100K-top Alexa domains
and select the top 15 registrars according to the number of

USENIX Association 30th USENIX Security Symposium 3153

domains each registrar is managing, (3) to select the IaaS
providers, we use market share data and supplement it with
additional selected providers1, (5) we select the top 5 CAs
which cover 97% of the market share2, all other CAs have
less than 1% market share.

For registrars and IaaS providers these datasets include
providers which we could not test, because they do not allow
creation of user accounts. For example, publicdomainregistry
does not offer accounts to end-users directly, but only man-
ages domain registration for webhosters. Providers where we
could not register accounts are: tucows.com, publicdomainreg-
istry, cscglobal, markmonitor, Rackspace cloud, CenturyLink
Cloud and Joyent Triton.

We obtain a list of 32 resource providers which use 1,006
resolvers for sending Email (back-end IP addresses) on 44
ASes associated with 130 prefixes. Some resource providers
use only a small amount of Email servers and resolvers on
their own networks, while other providers use large pools of
Email servers and resolvers provided by third-party Email
services like Mailchimp and Sendgrid. We list this technical
information in Table 2.

Customers. We extract account information for customers
of RIRs and domain registrars from whois databases. We
parse the Email addresses in whois records to extract the do-
mains of the customers and query the nameservers responsible
for those domains.

Because of data protection settings, not all whois records
contain Email addresses, or only contain masked Email ad-
dresses which point to a registrar’s Email proxy. We were able
to find Email addresses for 74.62% of the ASes from RIR
whois databases and for 10.60% of the domains owners in
100K-top Alexa list from domain registrar whois databases
(see Table 3). We collected 94,997 user accounts hosted in
59,322 domains and 69,935 nameservers.

We were not able to retrieve user account information for
IaaS accounts and CAs as this is not possible ethically in an
automated way. An adversary can obtain this information,
e.g., by enumerating usernames as described in Section 5.2.

Our dataset of domain registrars is also representative for
other types of resources hosted under that domain. Organisa-
tions which own domains also own cloud resources at IaaS
providers and certificates at CAs and use the same domain
for their Email addresses and therefore are vulnerable to the
same attack at those providers.

1https://www.srgresearch.com/articles/quarterly-cloud-spending-blows-
past-30b-incremental-growth-continues-rise, https://stackify.com/top-iaas-
providers/, https://www.g2.com/categories/infrastructure-as-a-service-iaas

2https://w3techs.com/technologies/history_overview/ssl_certificate: this
market share data lists most of Let’sEncrypt certificates as issued by IdenTrust
as Let’sEncrypt certificates are cross signed by IdenTrust. We do not test
Let’sEncrypt itself because it does not offer traditional user accounts and
therefore does not support password recovery.

5.2 Collecting Accounts’ Information
The first step in our attack is to trigger the password recov-
ery procedure at the provider. This step requires collecting
information of the target customer whose account the attacker
attempts to hijack, such as the Email account required to log
into the target account, a username or a handle. We study
for each service provider which information is needed for
password recovery and how to collect that information for our
targets; the data is summarised in Table 1. We found that the
customers’ Email addresses can often be retrieved from the
public whois records. We were able to extract the Email ad-
dresses associated with the accounts at the providers for 41%
of the customers in our study. For instance, the Emails for the
SSO accounts of 74.62% of the LIRs (i.e., the customers of
RIRs) can be retrieved via whois.

For victim customers whose details cannot be publicly ac-
cessible via whois we find the required information with
manual research and dictionary attack. To carry out the dic-
tionary attack we used the observations we derived from
our data collection from public sources: the data we col-
lected through whois shows that more than 24% of the
Email addresses use one of ten well-known username parts,
like domains@email.info, hostmaster@email.info, etc.,
which enables an informed attacker to find the Email ad-
dresses in less than ten attempts when these details are not
publicly available through whois. We apply dictionary attack
to also recover other details: for example, our study shows
that about 1 in 10 LIRs (customers of RIRs) use usernames
that are identical to the Email address that is registered in the
whois records; e.g., username operator is associated with
Email address operator@email.info.

5.3 Attacking Providers
The adversary needs to poison the DNS cache of the provider,
by injecting a record into the resolver’s cache that maps the
domain of the provider to the adversarial IP addresses. We
therefore collect the IP addresses of the DNS resolvers of the
providers.

5.3.1 Identify the target DNS resolvers

In order to poison the DNS cache of the provider the adversary
needs to find the IP addresses of the DNS resolvers which are
used for looking up the Email servers of the customers during
requests for password recovery.

We register accounts with the providers via the web portal
of each provider. For our evaluation we register 20 accounts
with each provider, each account is associated with a unique
domain that we registered for that purpose. We use these
registered accounts to learn about the infrastructure of the
provider. We trigger the password recovery procedure for
our registered accounts. To stay under the radar we limit the
amount of password recovery requests to ten for each account.

3154 30th USENIX Security Symposium USENIX Association

Ty
pe Provider

Details needed
for PW recovery

Pu
bl

ic
-k

no
w

n
C

ap
tc

ha

Fr
ag

m
en

t

Sa
dD

N
S

B
G

P
hi

ja
ck

R
IR

s

AFRINIC NIC-handle 3 7 3 7 3
APNIC Email 3 7 3 7 7
ARIN Email, Username 7 3 3 - 7
LACNIC Username 3 7 3 7 3
RIPE NCC Email 3 3 3 7 3

D
om

ai
n

re
gi

st
ra

rs

godaddy Email, Domain name 3 7 3 - 3
namecheap Email 3 3 3 7 3
networksolutions Email 3 7 3 7 3
enom.com Login ID, Sec. question 7 3 3 7 3

name.com Username1 3 7 3 - 3
Alibaba Cloud Username, 2-FA 7 3 3 7 3
Amazon AWS Email 3 3 3 7 3
gandi.net Email 7 7 3 7 3
namesilo.com Email, Sec. question 7 3 3 7 3
Google Cloud Last password, 2-FA 7 3 3 7 3
ovh.com Email 3 7 3 7 3

C
lo

ud
m

an
ag

em
en

t(
Ia

aS
)

Amazon AWS Email

Ty
pi

ca
lly

no
fo

ra
ll

Ia
aS

pr
ov

id
er

s

3 3 7 3
Microsoft Azure Email 7 7 7 3
Alibaba Cloud Username, 2-FA 7 3 7 3
Google Cloud Last password, 2-FA 7 3 7 3
IBM Cloud Email (’id’) 7 3 3 3
Tencent Cloud Email 3 3 7 3
Oracle Cloud Email 7 7 7 3
DigitalOcean Email 7 3 7 3

Linode Username1 7 3 3 3
IONOS Email, id or domain 7 3 3 3
Hostwinds Email 7 7 7 3
OVHcloud Email 3 3 7 3
Vultr Email 3 3 3 3
CloudSigma Email 7 3 - 3

C
A

s

IdenTrust Account number 7 7 3 - 3

DigiCert Username1 7 7 3 7 3
Sectigo Email 7 7 3 7 3

GoDaddy Username1, customer No.1 7 7 3 - 3
GlobalSign Username 7 7 3 - 3

-: No response. 1: Can be retrieved using domain name/Email.
Table 1: Password recovery at each provider.

The Email server of the provider requests the DNS resolver
to look up the MX and A records for our Email exchanger -
this is required in order to send the password, or the link
to reset the password. We monitor the requests arriving at
the nameservers of our domains and collect the IP addresses
which sent DNS requests for records in domains under which
we registered our accounts. These IP addresses belong to the
DNS resolvers used by the providers. We repeat this for each
provider on our list in Table 2.

For every provider, we list in Table 2 the service providers
of the Email servers and the DNS resolvers (by mapping
the observed IP addresses to ASNs). Additionally, we also
performed measurements if the resolvers of the providers in
our dataset support DNSSEC and the default EDNS size in
DNS requests.

5.3.2 Poison providers’ DNS caches

To understand the vulnerabilities to cache poisoning across
the providers, we evaluate the DNS cache poisoning method-
ologies against the DNS resolvers of the providers in our
dataset. Our evaluations are done as described in Section 4
using the victim domains that we set up and the accounts that
we registered. During the evaluations the adversary triggers
password recovery procedure and applies the DNS cache poi-
soning methodologies (one during each test) to inject into the
DNS cache of the provider malicious records mapping the
Email servers of our victim domains to the hosts controlled
by the adversary. In this section we report on the results of
our evaluations and the extent of the vulnerabilities among
the providers.

HijackDNS. To infer the scope of providers vulnerable
to the attack in Section 4.3 we perform Internet measure-
ments checking for vulnerabilities that allow sub-prefix hi-
jacks. Since many networks filter BGP advertisements with
prefixes more specific than /24, we consider an IP address vul-
nerable if it lies inside a network block whose advertised size
is larger than /24. We therefore map all resolvers’ IP addresses
to network blocks. Then, to obtain insights about the sizes of
the announced BGP prefixes for providers’ network blocks
with resolvers we use the BGPStream of CAIDA [2] and re-
trieve the BGP updates and the routing data from the global
BGP routing table from RIPE RIS [38] and the RouteViews
collectors [44]. We analyse the BGP announcements seen
in public collectors for identifying networks vulnerable to
sub-prefix hijacks by studying the advertised prefix sizes. The
dataset used for the analysis of the vulnerable sub-prefixes
was collected by us in January 2021. Our analysis in Table
2 shows that the networks of 29 providers are vulnerable to
sub-prefix hijacks.

To understand the viability of same-prefix hijack attacks we
perform experimental simulations using the target providers
and customers in our dataset. For creating the topological
map of the AS-relationship dataset of the customer domains
and the providers in our dataset we use CAIDA [3]. We sim-
ulate the attacks using a simulator developed in [19]. We
evaluate HijackDNS attack for each provider with respect to
customer domains of the corresponding provider and an AS
level adversary on an Internet topology. In our simulations we
consider attacks from 1000 randomly selected ASes against
the domains of the customers and providers. The adversary
can succeed at the attack against 80% of the Alexa customer
domains with 60% success probability. One of the reasons
for the high success probability is the concentration of the
nameservers in few ASes: 10% of the ASes host 80% of the
nameservers in Alexa domains and 1% of ASes host 80% of
the domains. The customers of the LIRs are slightly more
resilient since they mostly use at least two nameservers on
different prefixes. This means that to succeed the attacker
would need to hijack both. Furthermore, the distribution of

USENIX Association 30th USENIX Security Symposium 3155

0%
10%
20%
30%
40%
50%

/11 /12 /13 /14 /15 /16 /17 /18 /19 /20 /21 /22 /23 /24

%
 o

f
p
re

fi
x
es

RIR account nameservers
Alexa registrar account nameservers

Figure 3: IP prefix distribution of customer accounts’ nameservers

the nameservers across ASes is more uniform in contrast to
Alexa domains.

SadDNS & FragDNS. To test vulnerabilities in the
providers to SadDNS and FragDNS we perform the eval-
uations in Sections 4.4 and 4.5. Out of 31 tested providers,
28 (90%) are vulnerable to FragDNS attack and four of the
providers are vulnerable to SadDNS attack. Vulnerabilities
for each provider are listed in Table 1.

5.4 Measurements of Vulnerable Customers

The success of the attack against a specific victim customer
depends not only on the vulnerabilities in the DNS resolver
of the provider but also on the properties in the domain of the
customer. For instance, say a DNS resolver of some provider
is vulnerable to FragDNS attack but the nameservers of the
customer’s domain do not fragment UDP packets and packets
that are too large are transmitted over TCP. In that case, the
FragDNS attack is not effective against that customer. To
understand the extent of the vulnerabilities in customers we
evaluate the attack methodologies in Section 4 against the
DNS resolvers that we own and control using the responses
from the domains of the customers in our dataset. Using
results from this evaluation we can reliably determine if the
attack methodology is effective against a customer or not.

The results of our experimental evaluations of attacks in
Section 4 and measurements of the customers’ domains and
their nameservers are summarised in Table 3.

HijackDNS. We analyse the prefixes of the customers sim-
ilarly to Section 5.3.2. The results are plotted in Figure 3.
Our findings are that more than 60% of the domains have
all their nameservers on prefixes less than /24. Furthermore,
above 20% of the domains host all the nameservers of each
domain on a single prefix, as a result, by hijacking one prefix
the adversary immediately hijacks the entire domain. Out of
these, 17% host all the nameservers on a prefix that is less
than /24. 10% of the domains have a single nameserver in
the domain. To conclude: more than 40% of the domains are
vulnerable to HijackDNS attack via sub-prefix hijack.

SadDNS. Based on the implementation in Section 4.4 we
develop an automated simulation of the SadDNS attack, and
run it on our dataset of customer domains to compute the
success probability of SadDNS attack against our victim DNS
resolver. When running the attack for domains that have the
required properties (e.g., support rate limiting), poisoning suc-
ceeds after an average of 471s (min 39s, max 779s) which is

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500

C
D

F

Fragment size (bytes)

 0 500 1000 1500

Figure 4: Cumulative distribution of lowest fragment size of nameservers
(left) and domains (right) after sending ICMP PTB.

comparable to the original SadDNS results (avg 504s, min
13s, max 1404s, [33]). Our test implementation triggers 497
queries on average for each domain, which is strongly corre-
lated with the attack duration due to the fact that we do not
trigger more than two queries per second; the resolvers return
SRVFAIL when receiving more than two queries per attack
iteration. By inverting this number we get a hitrate of 0.2%.

Our results of an automated evaluation of SadDNS show
that 8,469 accounts from the RIRs dataset and 11% of the
accounts from the Alexa dataset could be hijacked via the
SadDNS method.

FragDNS. We measured the victim customers’ name-
servers for support of ICMP errors and fragmentation. We
send a DNS request to the nameserver for ANY type DNS
record. After a DNS response, we follow with an ICMP PTB
error, that indicates different MTU values, and repeat the re-
quest. We check if the response arrived in fragments accord-
ing to the MTU value indicated in the ICMP error message.
We performed evaluations with the following MTU values of
1280, 576, 296 and 68 bytes.

Figure 4 (Left) shows cumulative distribution of frag-
mented packet size we received after sending ICMP PTB.
Right side shows the percentage of the domains where at least
one nameserver supported a MTU smaller than the plotted
size. As can be seen, for more than 90% of the domains with
PMTUD-configured nameservers, at least one nameserver is
willing to reduce the fragment size (in response to ICMP PTB)
to almost 548 bytes, for roughly 35% domains to 296 bytes
and for 10% to 68 bytes. This essentially allows to inflict
fragmentation to any size needed. Our evaluations in Section
4.5 indicate that 11964 RIR customer accounts (13.6%) and
2352 Alexa domain holder accounts (22.2%) are vulnerable
to the FragDNS attack.

We analyse the attacker’s success probability of crafting
the spoofed second fragment with the correct UDP checksum
and the correct IPID value. To compute the success rate to hit
the correct UDP checksum we performed the following evalu-
ation. For each customer domain in our dataset, we query the
nameservers of each domain multiple times sending the same
DNS request (with the domain of the customer’s email and
type MX), and check if the DNS responses from the name-
servers contain the same DNS records and the same order of
DNS records, during each iteration. The computation of the
UDP checksum for each domain is described in pseudocode
in Algorithm 1. Our evaluation shows that for 1748 domains

3156 30th USENIX Security Symposium USENIX Association

Provider Mail
service

provided
by

Resolver Seen Via Accept Fragment BGP DNSSEC EDNS
size

R
an

k

#
service
provided by

Si
gn

up

PW
R

ec
.

15
00

12
80

57
6

29
2

68

pr
efi

x-
si

ze do

va
lid

at
e

R
IR

s

- AFRINIC Self 3 Self 3 3 3 3 3 3 3 /23 3 3 4096
- APNIC Self 1 Self 3 3 3 3 3 3 3 /24 3 3 4096
- ARIN Self 4 Self 3 3 3 3 3 3 3 /24 3 3 4096
- LACNIC Self 1 Self 3 3 3 3 3 3 3 /22 3 3 1280
- RIPE NCC Self 3 Self 3 3 3 3 3 3 3 /12-/23 3 3 4096

R
eg

is
tr

ar
s

1 godaddy Self 3 Self 3 3 3 3 3 3 3 /19-/21 3 7 4096
2 namecheap SendGrid 64 SendGrid 3 3 7 7 3 3 3 /12-/23 3 7 1232
3 networksolutions Self 1 Self (3) 3 - - - 3 3 /20 7 (1) 512 (2)
6 enom Self 17 Self, Google 3 3 3 3 3 3 3 /20 3 7 4096
9 name.com Self (AWS) 8 Self (AWS) 3 3 3 3 3 3 3 /12 3 7 4096

10 Alibaba cloud Self 11 Self 3 3 3 3 3 3 3 /16-/21 3 7 4096
11 AWS Self 46 Self 3 3 3 3 3 3 3 /12-/21 3 7 4096
12 gandi Self 3 Self 3 3 3 3 3 3 3 /23 3 3 4096
13 namesilo Self 2 Self 3 (1) - - - 3 3 /16-/19 7 7 512 (2)
14 Google Cloud Self 120 Self 3 (1) - 3 3 7 7 /16-/22 7 7 1232
15 OVHCloud Self 4 Self 3 3 3 3 3 3 3 /18-/24 3 3 4096

Ia
aS

Pr
ov

id
er

s

1 Amazon AWS Self 46 Self 3 3 3 3 3 3 3 /12-21 3 7 4096
2 Microsoft Azure outlook.com 373 outlook.com 3 3 - - - 7 7 /13-19 7 7 512 (2)
3 Alibaba Cloud Self 11 Self 3 3 3 3 3 3 3 /16-/21 3 7 4096
4 Google Cloud Self 120 Self 3 (1) - 3 3 7 7 /16-/22 7 7 1232
5 IBM Cloud SendGrid 51 SendGrid 3 (1) 7 7 3 3 3 /12-/23 3 7 1232

(7) Tencent Cloud Self 13 Self 3 3 3 3 3 3 3 /12-/19 3 7 4096
(8) Oracle Cloud Self 9 Self 3 (1) 7 7 7 7 7 /17-/23 3 3 1372

- DigitalOcean Mailchimp 8 Mailchimp 3 3 3 3 3 3 3 /17-/22 3 7 4096
- Linode Self 2 Self 3 3 3 3 3 3 3 /17 3 3 4096
- IONOS Self 2 Self 3 (1) - - - 3 3 /16 3 3 1220
- Hostwinds Postmark 15 OpenDNS (3) 3 7 7 7 7 7 /19-/21 3 3 1410
- OVHCloud Self 4 Self 3 3 3 3 3 3 3 /18-/24 3 3 4096
- Vultr Self 8 Self 3 3 3 3 3 3 3 /18-/20 3 3 4096
- CloudSigma Mailchimp 6 Mailchimp 3 3 3 3 3 3 3 /17-/22 3 7 4096

C
A

s

1 IdenTrust Trend Micro 114 Trend Micro 3 (1) 3 3 3 3 3 /15 3 (1) 4096
2 digicert.com Self 137 Self 3 3 3 3 3 3 3 /16-/22 3 (1) 4096
3 sectigo.com SendGrid 10 SendGrid (3) 3 7 7 3 3 3 /12-/23 3 7 1232
4 godaddy Self 3 Self 3 3 3 3 3 3 3 /19-/21 3 7 4096
5 globalsign.com (1) 35 Google 3 (1) 3 3 3 7 7 /20 3 3 4096

Table 2: Measurement study of provider’s DNS resolvers and Email servers. (1): Could not test. (2): No EDNS. (3): No Email after sign-up. -: Does not apply.

Resources Vulnerable to
Account Total found # Acc- BGP Sad- FragDNS
Provider e-mail ounts sub same DNS any global

Scanned resources Vulnerable Accounts

RIRs 92,857 69,287 87,547 47,840 n/a 8,469 14,136 1,193
75% 56% n/a 11% 17% 1.5%

Regis- 100,000 10,597 7,450 3,308 n/a 666 1,560 85
trars 11% 45% n/a 10% 21% 1.2%

Both 192,857 79,884 94,997 51,148 n/a 9,135 15,696 1,278
41% 56% 80% 11% 17% 1.4%

Vulnerable resources
IP Addresses 81% n/a 30% 51% 21%
AS Numbers 60% n/a 12% 20% 3%

Domains 47% n/a 10% 27% 1%

Attack success probability
Success probability 100% 60% 0.2% 0.1% 20%

Table 3: Customer-side vulnerability data

(62%), nameservers always return the same DNS response
(with the same records and sorted in the same order); see

Algorithm 1: Predictability of records in responses.
for each (domain, nameserver) do

initialise set of different DNS responses as empty;
for batch = 1,2, . . . ,25 do

for iteration = 1,2,3,4 do
send the same DNS request;
if new response arrived then

add the new response to the response set;
end

end
if no new responses in last batch then

break;
end

end
record number of different DNS responses;

end

Figure 5. For our measurement of the IPID allocation meth-
ods supported by the nameservers of the customers we use
the following methodology. We issue queries from two hosts
(with different IP addresses). Data per nameserver is listed in

USENIX Association 30th USENIX Security Symposium 3157

50%

60%

70%

80%

90%

100%

 10 20 30 40 50 60 70 80 90 100

D
o

m
ai

n
s

Number of different DNS responses (MX)

Figure 5: CDF of number of observed DNS MX responses per customer
email address domain (each nameserver was queried 100 times).

Table 4. Our measurements show that 290 vulnerable name-
servers (4.88%) use a globally incremental IPID assignment.
The computation of the IPID allocation for each domain are
described in pseudocode in Algorithm 2.

Algorithm 2: IPID allocation in nameservers.
for each (domain, nameserver) do

for batch = 1,2,3,4 do
send DNS request from Prober1;
record IPID in DNS response as IPID2∗i−1;
send DNS request from Prober2;
record IPID in DNS response as IPID2∗i;

end
if IPIDi, i = 1,2, . . . ,8 is incrementing then

globally incrementing;
end
if IPIDi, i = 1,3,5,7 or IPIDi, i = 2,4,6,8 is incrementing then

per-dest incrementing;
end
if IPIDi == 0, i = 1,2, . . . ,8 then

zero;
else

random and other;
end

end

Random
Per-Dest Global Zero and other N/A Total

All 64.58% 8.31% 4.89% 11.92% 10.30% 100%
45308 5829 3434 8364 7223 70158

Frag 53.96% 4.88% 13.75% 23.67% 3.74% 100%
3206 290 817 1406 222 5941

Table 4: IPID allocation of all nameservers and of fragmenting nameservers.

We automate the attack in Section 4.5 and execute the
entire FragDNS attack against all the vulnerable customer do-
mains, by injecting malicious records mapping Email servers
of customers to an IP address of our adversarial host. Our
evaluation combines the data we collected on DNS records in
responses (randomisation of the DNS records or of their order
in responses) and the IPID allocation of the nameservers. We
also used Algorithm 2 to estimate the IPID increment rate,
by recording the timestamp of each response and calculating
the average increment rate of IPID value. We then extrapolate
the value of IPID and calculate the probability of our adver-
sary to correctly place at least one out of 64 fragments3 with
the matching IPID in the resolver’s defragmentation cache.
We use different values for IPID increment rate and delay

364 fragments is the minimal size of the IP-defragmentation cache.

0%

2%

4%

6%

0.1% 1% 10% 100%

D
o
m

ai
n

s

IPID Hitrate, minimum is 2
-16

 ≈ 0.1%

ARIN RIPE Open Resolver Alexa 100K

Figure 6: Reverse CDF to correctly guess the IPID for all customers’ domains.

between the query, which probes the IPID value, and the IPID
value that was de-facto assigned to the DNS response by the
nameserver. Results are plotted in Figure 6. For example, the
IPID prediction success rate is over 10% for roughly 3% of
RIPE, 2% of ARIN and 1% of 100K-top Alexa customers.
Success rates for ARIN and 100K-top Alexa customers are
lower mostly because of the higher latencies of those, see Fig-
ure 2. For nameservers which do not use globally incremental
IPID, we assume a hitrate of 64/216 which is achieved by just
randomly guessing the IPID.

The probability to compute the correct checksum is capped
at a minimum of 1/216 in case of nameservers which generate
responses with different records or with random ordering of
records. Finally the probabilities to correctly compute both,
the IPID value and the order of records to get the correct UDP
checksum, are multiplied resulting in the combined hitrate.
Our automated attack against all the customers shows that
around 2% of the domains (5 for RIPE, 17 for ARIN) have a
success probability higher than 10%. Furthermore, for about
20% of the domains, success probability is over 0.1% which
is a consequence of non-predictable IPID allocation and the
stable DNS records in responses generated by these domains.
When the DNS response can be predicted, even with a random
IPID allocation method, an attacker has a hitrate of about
64/216 ≈ 0.1%. At this hitrate, when the attacker performs
the attack multiple times, the probability to conduct the attack
successfully at least once is 50% at around 700 repetitions.

Our automated evaluation provides a lower bound for suc-
cessful attacks against a randomly chosen domain – this is a
worst case analysis since it also considers domains which are
much more difficult to attack, e.g., since they use servers with
random IPID allocation, servers with high traffic rate, and
servers which return different number and order of records in
responses. Adjusting the attack parameters manually against
a given victim customer domain results in a much higher at-
tack rate. Furthermore, against many customer domains with
low traffic volume, incremental IPID values and fixed number
and order of DNS records, the attacker can reach above 90%
success rate.

6 Manipulation of Digital Resources

In this section we demonstrate exploits that the adversary can
perform when controlling an account of a (victim) customer.
Most of the actions are similar across the providers, even
providers of different infrastructure, such as RIRs and the

3158 30th USENIX Security Symposium USENIX Association

A
dd

ito
na

l
V

al
id

at
io

n

Attack

R
IR

s
R

eg
is

tr
ar

s

Ia
aS

C
A

s Outcome /
Attacker use

RIRs Account transfer/delegation 3 3 3 7 permanent control
No Changing the account details 3 3 3 3 permanent control

RIRs Close the account permanently 3 3 3 3 DoS
No Disabling Email alerts 3 3∗ 7 3∗ remain stealthy

RIRs Resource transfer 3 3 3 7 permanent control
3 3 7 7 sell resources

No Resource return / deletion 3 3 3 3 DoS

CAs Purchase new resources 3 3 3 3 financial Damage
3 3 3 3 anonymous usage

No Control / Modify
Resources

Whois DB 3 3 7 7 facilitates hijacking
VMs 7 7 3 7 various

NS records 7 3 7 7 traffic hijacking

No Create new ROAs/certificates 3 7 7 3 facilitates hijacking
No Create invalid ROAs 3 7 7 7 DoS
No Revoke certificates 7 7 7 3 DoS

Table 5: Actions an attacker can carry out after hijacking a customer’s account.
∗The Email address where the alert is sent can be changed. Additional
validation requires either that additional documents are sent, or in case of
issuing a new TLS certificate, that a domain validation must be passed.

domain registrars. Hence, we in details explain our demon-
stration of the exploits by taking over a victim LIR account,
and then briefly describe the exploits we evaluated by taking
over our victim accounts with the other providers. For our
demonstration we select RIPE NCC RIR, GoDaddy domain
registrar, Microsoft Azure IaaS provider and DigiCert CA. In
order to evaluate the exploits using an account of a network
operator, we cooperate with a large customer under RIPE
NCC. We cooperate with that LIR and use a real account that
has an operator/administrator role4. For domain registrars,
IaaS and CAs, we used our own accounts which were used to
buy test resources to test the possibilities of the account. We
summarise the exploits for different providers in Table 5.

For our evaluation of the exploits, we first carry out our
attacks in Section 4 to take over the victim accounts, and then
carry out the exploits. We do this in order to understand what
notifications are sent to the genuine account owners during
such attacks, what actions can be performed, and which are
prevented.

6.1 Regional Internet Registries

We show that adversary, controlling an SSO account of a vic-
tim LIR, can manipulate all the Internet resources associated
with that LIR, e.g., the IPv4 and IPv6 addresses, ASNs, re-
verse DNS names to IP addresses mappings. The amount of
resources managed by LIRs can vary enormously. There are
small LIRs that manage just own AS, one IPv6 prefix and one

4RIPE NCC Single Sign-On (SSO) accounts are general authentication
mechanism for all web-based services provided by RIPE NCC that include
customer portal and other harmless services - for example RIPE Meeting
facilitation.

or a very few IPv4 prefixes of minimal allocation size. There
are also large LIRs managing vast PA address pools (Provider
Aggregatable Addresses) for multiple clients. For instance,
RIPE NCC has cumulative allocation of 587 202 560 IPv4
addresses.

The adversary impersonating an administrator with the
RIPE NCC SSO account holder can initiate different actions
that lead to disruption or degradation of the services that are
tied to the IP resources managed by the victim LIR. The
adversary can even initiate transfer of IPv4 addresses that
belong to the victim LIR to obtain direct financial benefit
from that process. Our experimental evaluation with an SSO
account under RIPE NCC RIR shows that the actions of the
attacker do not trigger alerts and can be detected when the
LIRs realises that its digital resources are gone. The access to
RIPE NCC SSO account with operator or administrator roles
for the victim’s LIR opens to a range of possible exploits. We
explain selected exploits with an example victim LIR under
RIPE NCC below (also summarised in Table 5); the attacks
similarly apply to the other RIRs.

RPKI administration. Attacker creates/deletes/modifies
Route Origin Authorizations (ROAs) in hosted RPKI sys-
tem. This has two purposes: (1) to disrupt the propagation
of the legitimate BGP updates of the resources managed by
the victim LIR and (2) to facilitate BGP hijacking by autho-
rising attacker’s ASN to originate any subset of IP prefixes
that are managed by the victim LIR. Networks which have
deployed RPKI and perform filtering of BGP announcements
with ROV will not trigger any alerts when the attacker issues
a BGP announcement for a sub-prefix with a valid (yet fraud-
ulent) ROA. We consider creation of ROA with origin set to
ASN0 ("always drop" as per [RFC7607]) for a specific prefix
within the resource pool managed by the victim LIR to be a
special case of the malicious ROA intended to disrupt routing
and cause DoS for the services tied to the IP addresses in ques-
tion. Our measurements found that currently the Route-Origin
Validation (ROV) is far from being universally deployed, with
only 2190 ASes filtering invalid BGP announcements. Never-
theless, this is an increase in contrast to measurements from a
few years ago, which found 71 ASes to validate ROV [20,36].
Even with 2000 validating ASes, this type of attack is likely
to cause only minor disruption in service availability and will
remain unnoticed for extended period of time.

RIPE DB modifications. Attacker manipulates records in
RIPE DB - the Internet addressing resource registry of the
region and Internet Routing Registry (IRR) in one converged
database. Modification of records in resource registry allows
impersonation of the victim LIR’s representatives in order
to transfer resources from the victim LIR to unsuspecting
recipient.

IRR records are prerequisite for BGP hijacking attacks,
because without proper records in IRR the attacker would not
be able to persuade any well-managed upstream provider that
is consistent with AS operation best practices to accept the

USENIX Association 30th USENIX Security Symposium 3159

fraudulent BGP announcements in the input filters on the BGP
sessions. Attackers without the ability to modify IRR have
to use less vigilant and generally poorly managed networks
as upstream providers or have to utilise path manipulation
attacks - both restrict success rate and stealthiness of the
attack.

Creating the IRR records contradictory to the state in BGP
is a way to partially disrupt route propagation and thus traffic.
It can also de-stabilise network and significantly complicate
network operation for the legitimate administrators. Route
servers in majority of Internet Exchanges and major networks
use IRR data in automatically generated filters that are applied
on incoming BGP announcements. As a result of the contra-
dicting IRR records these networks will drop or de-prefer the
announcements from the legitimate resource holder. More-
over, well-managed networks keep manually generated import
filters on small-scale BGP sessions for both peering and down-
stream customers. When a new session is set up or when a
new prefix is about to be propagated from the neighbouring
AS that is subject to filtering, the administrators manually
check the IRR and resource registry to verify that the an-
nouncement is legitimate. Failing to have the proper records
in IRR and in resource registry leads to refused BGP peerings,
excessively strict BGP filters and therefore to dropped routes
and overall degradation of the Internet connectivity for the
victim network.

Initiating IPv4 addressing resource transfer. Attacker
sells the resources managed by the victim LIR. The poten-
tial gain from successfully completed attacks of this type is
determined by the amount of the addresses managed by the
LIR and the expected monetary value of IPv4 addressing re-
sources. After the IPv4 regular pool depletion on 4 September
2012 each LIR is eligible for allocation of a single /22 (1024
IPv4 addresses) prefix as per current IPv4 Address Allocation
and Assignment Policies for the RIPE NCC Service Region
(ripe-720) [1]. We performed IPv4 /22 prefix transfer of an
LIR under RIPE NCC which has not triggered alerts. This is
not surprising since the IPv4 addresses’ transfer is performed
regularly by the RIRs, e.g., RIPE NCC and ARIN perform
thousands of transfers per year, see statistics on IP transfer
(PI and PA) we collected from the RIRs in Figure 7.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 2012 2014 2016 2018 2020

#
 T

ra
n
sf

er
s

ARIN
RIPE
APNIC

Figure 7: IPv4 resource transfers per year (PI & PA).

To sell the IPv4 addresses belonging to the victim LIR, we
needed to perform the following:

(1) modify the relevant LIR contacts (Emails, phone num-
bers) in the RIR database and the IRR to receive the commu-

nication from the RIR intended to the genuine LIR, the buyer
as well as the other parties relevant to the IP resource transfer
and prevent the victim to learn about the resource transfer
process. This is performed via the victim SSO account which
the attacker took over.

(2) find the buyer for the resources and to impersonate the
victim representatives to successfully close an IPv4 resource
transfer contract; we used the compromised SSO account to
sell and transfer the resources to an LIR that we set up for
that purpose. In practice, the attacker can also collude with a
malicious adversary, which will perform the transaction and
afterwards will legally own the resources. The victim will
need to prove to not have authorised the payment. In fact the
resolution outcome of such a case is not clear since the RIRs
have not faced this attack before.

(3) release the IPv4 prefix from the BGP routing table.
This needs to be done so that the buyer believes that the
resources are free and are being legitimately sold. This is
done by sending an Email (via the Email address that the
attacker modified in IRR and registry DB) to the upstream
provider of the victim. The list of the upstream providers is
available and can be obtained from the IRR. In the Email the
attacker instructs the upstream provider to update the input
filters and drop the network (that the attacker wishes to sell).
Such requests are common, and do not require authentication
or verification of requester’s identity (e.g., with PGP/PKI)
and the sole source of truth that is checked prior applying the
filters is RIPE DB which, as we mentioned, the attacker can
update via the SSO account.

Notice that if the buyer is colluding with the attacker - this
step is not needed.

(4) Email a scanned IPv4 resource transfer contract to RIPE
NCC. The contract has to match the company details of the
victim and contain all formalities and certifications appropri-
ate to the legal system in which the contract has been made.
Moreover the contract has to be supplemented by extract from
chamber of commerce or appropriate commercial registry that
makes it possible to establish that the contract is signed by the
eligible persons on both sides. This is simple to forge - the
attacker can find and copy the signatures of the owner LIR
online and paste them into the scanned contract document
that the attacker prepares.

Extract from chamber of commerce is also simple to forge
- for instance, in Czech Republic (CZE) the attacker has to
go to any post office, pay 1 EUR and get either paper version
with a stamp or PDF with PKI signature of state-operated CA.
In any case, since the attacker only needs to send a scanned
version of the document to RIPE, the attacker can get the
document for any company and adjust it using Photoshop and
it is accepted.

Finally, notice that the RIRs have limited personnel which,
depending on the RIR, may need to deal with tens of transfers
per day, see Figure 7. As a result, the adversary may often
manage to sell the resources without raising alarms even

3160 30th USENIX Security Symposium USENIX Association

when not satisfying these simple four steps. For instance,
RIPE NCC has just 24 employees responsible for IP address
distribution5 and there are more than 20 transfers per day, see
Figure 7.

User and role management. Attacker that controls an ac-
count with administrator role assigns other newly created
users either operator or administrator roles for the victim
LIR. This effectively hides the activities of the attacker for
long periods of time even though the legitimate holder is
actively operating the LIR.

Modification of the LIR contacts and details. There are
two sets of Email and postal addresses and phone numbers
related to the LIR - the first set is published in IRR and RIPE
DB and it is tied to the resources and published to facilitate
operation of the network and solving technical problems and
those contacts are also used by the RIPE DB software itself
for generating notifications about changes in RIPE DB. The
second set contains the designated LIR contact information,
namely the primary point of contact for the LIR and a contact
for billing-related matters. Moreover, there is a postal address,
that may differ from legal address of the LIR company and
it can be modified in LIR portal. The attacker can redirect or
change the LIR contact information to avoid detection by the
victim LIR staff when activities that result in notifications or
follow-up Emails are to be executed. Modifying LIR contacts
will also make any attempt to rectify damages caused by the
attack, when detected, harder.

Termination of LIR membership. Attacker initiates ter-
mination of LIR membership with the RIPE NCC by submit-
ting a forged termination request via a written notice sent by
Email. Forgery cases are not new and have already been seen
in the past6.

Modification of LIR organisation name, legal address
and VAT number. The attacker steals the LIR and all its IP
addressing resources by pretending a transfer of ownership to
other company. A scan of (the forged) contract of company
acquisition has to be attached to the request in electronic
form.

Requesting new or voluntarily returning IP addressing
resources. The attacker requests or returns IP addressing
resources from or to RIPE NCC. If the LIR is eligible for
allocation of any scarce resources, the attacker obtains a new
IP prefix that is not used in default-free zone (DFZ) and thus
fulfils the prerequisite for transfer of not being announced.
However, according to the current policy the newly obtained
allocation of scarce resources (IPv4 addresses, 16-bit ASN)
can not be transferred within 24 months from the allocation.
The attacker can nonetheless hijack the resources for own
purposes immediately and attempt to sell the resources after
the grace period.

5https://www.ripe.net/about-us/staff/structure/registration-services
6https://mailman.nanog.org/pipermail/nanog/2011-August/039379.html

6.2 Domain Registrars

Domain registrars handle the ownership of domains in name
of the customer. We map the 100K-top Alexa domains to
registrars with whom these domains are registered in Table 1.
We demonstrate exploits that the attacker can perform when
taking over an account with GoDaddy7. The adversary can
change the nameservers’ IP addresses, which allows it to
hijack the victim customer domain. This can be exploited
to redirect clients to phishing websites. The adversary can
delegate account access to itself or perform intra-and inter-
registrar8 domain transfer. The adversary can change the
Email forwarding settings of the account which would al-
low it to hijack the Emails forwarded to the owner of the
Email address. The adversary can also delete the domains
associated with the compromised account and even close the
account. The account owners can enable two-factor authen-
tication for manipulation of resources associated with their
account. However, this is not enabled by default, and is up to
each customer to enable it.

6.3 Infrastructure as a Service

We evaluated the exploits that the adversary can carry out on
resources associated with accounts at cloud providers. The
adversary can manipulate virtual resources associated with
the account, such as virtual machines, network interfaces, disk.
The adversary can also exploit these resources to carry out
attacks against victims in the Internet or victims located on the
same cloud platform, e.g., via side channels [39]. In addition
the adversary can create new accounts with owner privileges
or transfer subscription to another Azure account.

6.4 Certificate Authorities

When controlling an account of a customer with a CA the ad-
versary can revoke certificates and reissue existing certificates
that were issued under that account. This allows to change
the key-pair associated with a certificate. Nevertheless, some
CAs, do not enforce any validation on reissuing certificates, in
contrast to validation (domain validation, organisation valida-
tion or extended validation) that is enforced when requesting
to issue a certificate for the first time. Therefore, instead of
attacking domain validation procedure of the CAs it is more
profitable to hijack a victim customer account and change
the keys associated with the certificates for domains that the
adversary targets. DigiCert and GoDaddy do not perform ad-
ditional validation on requests to reissue certificates. Sectigo,
GlobalSign, IdenTrust validate all requests to reissue certifi-
cates.

7The other domain registrars allow similar actions.
8It takes 60 days for an inter-registrar transfer to finalise.

USENIX Association 30th USENIX Security Symposium 3161

7 Vulnerable Digital Resources

The large fraction of the accounts under different providers
that can be hijacked is alarming. Even more disturbing are
the exploits that the adversaries can do with the resources
assigned to the accounts. What is the extent of the Internet
resources that are at immediate risk due to the vulnerable
providers and vulnerable customers?

To answer this question we perform a correlation between
the accounts that our study found to be vulnerable to hijacks
via any of the attack methodologies in Section 4 and the digital
resources (domain names, IP addresses and ASNs) that the
attacker can take over as a result of hijacking that account. In
our analysis we consider only the domain registrars and the
RIRs and their customers. Since there is no public database
of customers of cloud providers and certificate authorities
we exclude them from this analysis9. We list the correlation
between the vulnerable resources and the vulnerable accounts
in Table 6.

IP resources. We compute the fraction of the assigned
AS Numbers (ASNs) as well as assigned IPv4 address space
which could be taken over by hijacking the vulnerable ac-
counts of customers of RIRs. For this purpose, we combine
IP-to-ASN and ASN-to-LIR mappings with our customer vul-
nerability data, which allows us to evaluate vulnerabilities in
73% of the assigned IPv4 address space (for 27% we could
not extract LIR account information). Our results show that us-
ing any of the attack methodology in Section 4 the adversary
could take over 68% of the IPv4 address space. This consti-
tutes 93% of the address space assigned to the accounts in
our dataset. Even the weaker attack methodologies (FragDNS
and SadDNS), which do not require controlling a BGP router,
allow the adversaries to take over 59% of the address space.
Similarly, 74% of the ASNs are associated with the accounts
that can be hijacked via any of the DNS cache poisoning at-
tacks in Section 4 and 30% with the SadDNS or FragDNS
attack. The difference between the vulnerability volume for
IP addresses and ASNs is due to the fact that large parts of
the IPv4 address space is owned by a small number of ASes,
e.g., 21% of the assigned IPv4 address space is attributed to
the top 10 LIR accounts.

Domain resources. We use our domain-to-account map-
ping to determine user accounts at registrars. This includes
11% of the accounts for which we were able to extract cus-
tomer account information. We believe however that the frac-
tion of the vulnerable accounts is representative of all the
1M-top Alexa domains since the vulnerabilities only depend
on the nameservers of the customers’ domains. Our study
shows that 65% of the domains could be hijacked via any
of HijackDNS, SadDNS or FragDNS, while 35% could be
hijacked via SadDNS or FragDNS.

9These can be collected via a dictionary attack against the provider: the
adversary inputs usernames and checks for error messages. Such a study
however creates a significant load on the infrastructure of the provider.

HijackDNS SadDNS FragDNS Any
SadDNS or
FragDNS

IP addresses 81% 30% 51% 93% 59%
Domains 47% 10% 27% 65% 35%

Table 6: Vulnerable resources mapped to accounts in our dataset.

Countermeasure Layer
Provider- /
Customer-

side Fr
ag

D
N

S

Sa
D

D
N

S
H

ija
ck

D
N

S

2-FA TAN with out-of-band notif. Web portal both1 3 3 3
2-FA login Web portal provider 3 3 3
IP-level account access restrictions Web portal both 3 3 3
DNSSEC signing and validation DNS both 3 3 3
Disable/Patch ICMP rate-limit IP provider 7 3 7
Disable NS rate-limit DNS customer 7 3 7
Disable PMTUD IP customer 3 7 7
Blocking Fragments IP provider 3 7 7

MTA-STS [RFC8461] Email both 3 3 3

Hide public account details General both 3 3 3
Request rate-limiting Web portal provider 3 3 7
Captchas Web portal provider 3 3 7
Separate systems Web portal provider 3 3 7
Resolver hardening DNS provider 3 3 7
Non-predictable IPID increment IP customer 3 7 7

Out-of-band notifications Web portal provider 3 3 3

Table 7: Countermeasures against different types of attackers. 1: requires the
user to verify the out-of-band delivered transaction details before entering
the TAN.

8 Recommendations for Countermeasures

The fundamental problem that our attacks outline is the
stealthiness and ease with which the adversaries can apply
changes and manipulations over the Internet resources of
providers of digital resources. Since Internet resources form
the foundations for the stability and security of democratic
societies, our work calls for a revision of the current prac-
tices of resource management and development of techniques
that would secure the transactions over the Internet resources.
For instance, selling Internet blocks should not happen im-
mediately, and should require more than merely a scanned
document over Email (which is easy to fake). In addition to
the standard recommendations for hardening the DNS caches
or blocking ICMP error messages, which we summarised in
Table 7, we also provide recommendations for best practices
for providers and customers.

Separate system for high privileged users. Currently,
any user can create an account with most of the providers. The
accounts can be used for managing Internet resources (high
privileged) as well as for registering for events or mailing lists
(low privileged). Low privileged accounts in the user manage-
ment system have access to the same infrastructure (Email
servers, DNS resolvers, etc) as the high privileged accounts,
such as those of network operators. This enables adversaries
to open low privileged accounts and use them to collect infor-
mation about the infrastructure of the provider. The providers

3162 30th USENIX Security Symposium USENIX Association

should use separate user management systems and a separate
set of servers for users which own digital resources vs. users
that, e.g., are registered to mailing lists or events.

Two-factor authentication. Two factor authentication (2-
FA) systems must be enabled by default. The two authentica-
tion factors must be independent of each other and an attacker
should not be able to compromise both factors within a single
attack. This for instance, rules out Email-based 2-FA for pass-
word recovery which is available at some of the providers we
tested.

Deploy captchas. Our study shows that most providers
do not use captchas, e.g., three out of five RIRs do not use
captchas. Although captchas do not prevent the attack, they
force the attacker to run manual tests making the attack more
expensive to launch. Resolving the captchas is tedious and
burdensome for the attacker (as well as for the researchers) to
carry out in contrast to automated study of the victims. For
instance, for studying vulnerabilities in DNS caches and for
performing cache poisoning attacks we needed to run multiple
password recovery procedures for triggering DNS requests to
our domain. This study could not be automated in RIRs that
use captchas.

Notifications of modifications. Changes performed over
the resources of providers either do not generate any notifica-
tions or generate notifications to the Email configured in the
compromised account. First, the Email notifications will be re-
ceived by our adversary, since it hijacked the victim domains
in the resolver of the provider, and second, the adversary can
change the contact Email in the account, and even disable
notifications. The accounts with providers should be associ-
ated with contact Email which cannot be changed through the
account and which is different than the one used to access the
account.

Email address masking. The Email addresses in the
whois records of the domains should be masked. Some of the
domain registrars are already following this practice.

Account level IP address access restriction. The regis-
trars should restrict account access to only few static IP ad-
dresses belonging to the domain’s owner.

Deploy DNSSEC. DNSSEC ([RFC4033] to [RFC4035])
would essentially make the attack methodologies in Section 4
practically impossible. Unfortunately, only 3.78% domains
of customers of RIRs and 5.88% domains of customers of
registrars are correctly signed. For instance, out of 1832 LIR
domains under AFRINIC, only 58 are signed, and 27 of these
domains are still vulnerable since the DNS resolvers cannot
establish a chain of trust to them from the root anchor. Fur-
ther, 12 use weak cryptographic keys (below 512 bits) and
12 use weak (vulnerable) hash functions. The remaining 95
domains out of those 1832 domains were not responsive. Un-
fortunately, even when the domain is signed and the resolver
validates DNSSEC, as long as the human factor is in the loop,
there is risk for vulnerabilities and misconfigurations, [12,42].
Hence we recommend that the providers and customers de-

ploy additional measures that we list in this section to harden
their infrastructure.

9 Conclusions

Each provider maintains a database that defines which cus-
tomer owns which Internet resources and offers tools for the
customers to manage their resources. We showed that these
databases are poorly protected - the adversaries can take over
the accounts for managing the Internet resources and can
manipulate the databases, e.g., creating new or removing ex-
isting objects - stealthily and causing immediate changes to
the customers’ resources.

For our attacks we used different DNS cache poisoning
methodologies and compared their applicability and effective-
ness for taking over accounts. Our work shows that while chal-
lenging, our attacks are practical and can be applied against
infrastructure of a large fraction of the resource providers
to hijack accounts. Our results demonstrate feasibility even
with weak off-path adversaries. Certainly, accounts asso-
ciated with Internet resources are an attractive target also
for stronger Man-in-the-Middle adversaries, such as cyber-
criminal groups or nation state attackers.

We described countermeasures for mitigating our off-path
attacks for taking over the accounts of customers. Addressing
the fundamental problem - easy manipulation of the Internet
resources - requires creating policies and revising the Internet
management infrastructure as well as techniques for securing
the transactions applied over Internet resources.

Acknowledgements

This work has been co-funded by the German Federal Min-
istry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

References
[1] ripe-720: Ipv4 address allocation and assignment policies for the ripe

ncc service region. https://www.ripe.net/publications/docs/ripe-720.
Accessed: 2019-6-13.

[2] BGPStream by CAIDA. https://bgpstream.caida.org/, July 2016.
[3] The CAIDA AS Relationships Dataset. http://www.caida.org/data/as-

relationships/, January 2016.
[4] Louis Poinsignon. BGP leaks and cryptocurrencies, 2018.
[5] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh.

Collaborative client-side dns cache poisoning attack. In IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications, 2019.

[6] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin:
Routing attacks on cryptocurrencies. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 375–392. IEEE, 2017.

[7] Dan J. Bernstein. DNS Forgery. http://cr.yp.to/djbdns/forgery.html,
November 2002.

USENIX Association 30th USENIX Security Symposium 3163

[8] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and
Prateek Mittal. Bamboozling certificate authorities with BGP. In 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[9] Henry Birge-Lee, Liang Wang, Daniel McCarney, Roland Shoemaker,
Jennifer Rexford, and Prateek Mittal. Experiences deploying multi-
vantage-point domain validation at let’s encrypt. December 2020.

[10] Peter Boothe, James Hiebert, and Randy Bush. Short-lived prefix
hijacking on the internet. In Proc. of the NANOG, 36, 2006.

[11] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and
Michael Waidner. Domain Validation++ For MitM-Resilient PKI. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2060–2076. ACM, 2018.

[12] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mis-
love, and Christo Wilson. A longitudinal, end-to-end view of the dnssec
ecosystem. In USENIX Security, 2017.

[13] Taejoong Chung, Roland van Rijswijk-Deij, David Choffnes, Dave
Levin, Bruce M Maggs, Alan Mislove, and Christo Wilson. Under-
standing the role of registrars in dnssec deployment. In Proceedings of
the 2017 Internet Measurement Conference, pages 369–383, 2017.

[14] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner.
From IP to Transport and Beyond: Cross-Layer Attacks Against Appli-
cations. In SIGCOMM ’21: Proceedings of the 2021 Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August, 2021. ACM, 2021.

[15] Chris C Demchak and Yuval Shavitt. China’s maxim–leave no access
point unexploited: The hidden story of china telecom’s bgp hijacking.
Military Cyber Affairs, 3(1):7, 2018.

[16] Doug Madory. Recent Routing Incidents: Using BGP to Hijack DNS
and more, 2018.

[17] Amir Herzberg and Haya Shulman. Security of Patched DNS. In
Computer Security - ESORICS 2012 - 17th European Symposium on
Research in Computer Security, Pisa, Italy, September 10-12, 2012.
Proceedings, pages 271–288, 2012.

[18] Amir Herzberg and Haya Shulman. Fragmentation Considered Poi-
sonous: or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The
Conference on Communications and Network Security, Washington,
D.C., U.S. IEEE, October 2013.

[19] Tomas Hlavacek, Italo Cunha, Yossi Gilad, Amir Herzberg, Ethan Katz-
Bassett, Michael Schapira, and Haya Shulman. Disco: Sidestepping
rpki’s deployment barriers. In Network and Distributed System Security
Symposium (NDSS), 2020.

[20] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waid-
ner. Practical experience: Methodologies for measuring route origin
validation. In 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2018, Luxembourg City, Lux-
embourg, June 25-28, 2018, pages 634–641, 2018.

[21] P Hoffman and P McManus. Rfc 8484: Dns queries over https (doh),
2018.

[22] Z Hu, L Zhu, J Heidemann, A Mankin, D Wessels, and P Hoffman. Rfc
7858-specification for dns over transport layer security (tls), 2016.

[23] P. Jeitner, H. Shulman, and M. Waidner. the impact of dns insecurity
on time. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

[24] Philipp Jeitner and Haya Shulman. Injection Attacks Reloaded: Tun-
nelling Malicious Payloads over DNS. In 30th USENIX Security Sym-
posium (USENIX Security 21). USENIX Association, August 2021.

[25] Josh Aas and Daniel McCarney and and Roland Shoemaker. Multi-
Perspective Validation Improves Domain Validation Security, 2020.

[26] Dan Kaminsky. It’s the End of the Cache As We Know It. Presentation
at Blackhat Briefings, 2008.

[27] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Autonomous
security for autonomous systems. Computer Networks, 52(15), 2008.

[28] Varun Khare, Qing Ju, and Beichuan Zhang. Concurrent prefix hi-
jacks: Occurrence and impacts. In Proceedings of the 2012 Internet
Measurement Conference, pages 29–36. ACM, 2012.

[29] Amit Klein. Bind 9 dns cache poisoning. Report, Trusteer, Ltd, 3, 2007.
[30] Amit Klein. Windows dns server cache poisoning,”, 2007.
[31] Amit Klein. Cross layer attacks and how to use them (for dns cache

poisoning, device tracking and more). arXiv:2012.07432, 2020.
[32] Aanchal Malhotra and Sharon Goldberg. Attacking NTP’s Authenti-

cated Broadcast Mode. ACM SIGCOMM Computer Communication
Review, 46(1):12–17, May 2016.

[33] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun
Huang, and Haixin Duan. DNS Cache Poisoning Attack Reloaded:
Revolutions with Side Channels. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

[34] Carolyn Duffy Marsan. Six worst internet routing attacks, 2009.
[35] Asya Mitseva, Andriy Panchenko, and Thomas Engel. The state of

affairs in bgp security: A survey of attacks and defenses. Computer
Communications, 124:45–60, 2018.

[36] Andreas Reuter, Randy Bush, Ítalo Cunha, Ethan Katz-Bassett,
Thomas C. Schmidt, and Matthias Wählisch. Towards a rigorous
methodology for measuring adoption of RPKI route validation and
filtering. CoRR, abs/1706.04263, 2017.

[37] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp routing
stability of popular destinations. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 197–202. ACM,
2002.

[38] RIPE NCC. RIS Raw Data, 2021.
[39] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 199–212, 2009.

[40] Haya Shulman. Pretty bad privacy: Pitfalls of dns encryption. In
Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 191–200, 2014.

[41] Haya Shulman and Michael Waidner. Towards security of internet nam-
ing infrastructure. In European Symposium on Research in Computer
Security, pages 3–22. Springer, 2015.

[42] Haya Shulman and Michael Waidner. One key to sign them all con-
sidered vulnerable: Evaluation of dnssec in the internet. In NSDI,
2017.

[43] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez,
and Carmela Troncoso. Encrypted dns–> privacy? a traffic analysis
perspective. arXiv preprint arXiv:1906.09682, 2019.

[44] University of Oregon. Route views project. http://bgplay.routeviews.
org/, 2012.

[45] Paul Vixie. DNS and BIND security issues. In Proceedings of the 5th
Symposium on UNIX Security, pages 209–216, Berkeley, CA, USA, jun
1995. USENIX Association.

[46] S Weiler and D Blacka. Rfc 6840: Clarifications and implementation
notes for dns security (dnssec). IETF Standard, 2013.

[47] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou,
Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan, and Zhiyun Qian.
Poison over troubled forwarders: A cache poisoning attack target-
ing DNS forwarding devices. In 29th USENIX Security Symposium
(USENIX Security 20), pages 577–593, 2020.

3164 30th USENIX Security Symposium USENIX Association

A.8. Let’s Downgrade Let’s Encrypt

[Dai21c]
Tianxiang Dai, Haya Shulman, and Michael Waidner. “Let’s Downgrade Let’s

Encrypt”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’21. Virtual Event, Republic of Korea: Association
for Computing Machinery, 2021, pp. 1421–1440. isbn: 9781450384544. doi: 10.
1145/3460120.3484815. url: https://doi.org/10.1145/3460120.
3484815

117

https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815

Let’s Downgrade Let’s Encrypt
Tianxiang Dai

ATHENE Center

Fraunhofer SIT

Germany

Haya Shulman

ATHENE Center

Fraunhofer SIT

Germany

Michael Waidner

ATHENE Center

TU Darmstadt & Fraunhofer SIT

Germany

ABSTRACT
Following the recent off-path attacks against PKI, Let’s Encrypt
deployed in 2020 domain validation frommultiple vantage points to

ensure security even against the stronger on-path MitM adversaries.

The idea behind such distributed domain validation is that even

if the adversary can hijack traffic of some vantage points, it will

not be able to intercept traffic of all the vantage points to all the

nameservers in a domain.

In this work we show that two central design issues of the dis-

tributed domain validation of Let’s Encrypt make it vulnerable to

downgrade attacks: (1) the vantage points are selected from a small

fixed set of vantage points, and (2) the way the vantage points select

the nameservers in target domains can be manipulated by a remote

adversary. We develop off-path methodologies, based on these ob-

servations, to launch downgrade attacks against Let’s Encrypt. The
downgrade attacks reduce the validation with ‘multiple vantage
points to multiple nameservers’, to validation with ‘multiple vantage
points to a single attacker-selected nameserver’. Through experi-

mental evaluations with Let’s Encrypt and the 1M-Let’s Encrypt-
certified domains, we find that our off-path attacker can successfully

launch downgrade attacks against more than 24.53% of the domains,

rendering Let’s Encrypt to use a single nameserver for validation

with them.

We then develop an automated off-path attack against the ‘single-

server’-domain validation for these 24.53% domains, to obtain fraud-

ulent certificates for more than 107K domains, which constitute

10% of the 1M domains in our dataset.

We also evaluate our attacks against other major CAs and com-

pare the security and efforts needed to launch the attacks, to those

needed to launch the attacks against Let’s Encrypt. We provide

recommendations for mitigations against our attacks.

CCS CONCEPTS
• Security and privacy → Network security.

KEYWORDS
PKI, BGP hijacks, DNS Cache Poisoning, Server Selection

ACM Reference Format:
Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. Let’s Down-

grade Let’s Encrypt. In Proceedings of the 2021 ACM SIGSAC Conference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484815

on Computer and Communications Security (CCS ’21), November 15–19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 20 pages.

https://doi.org/10.1145/3460120.3484815

1 INTRODUCTION
Identifying the legitimate owner of a domain plays a central role in

the security of Public Key Infrastructure (PKI). It prevents criminals

from obtaining fraudulent certificates for domains that they do not

own. Prior to issuing certificates the Certificate Authorities (CAs)

run domain validation (DV) against services in a domain that is

to be certified, to verify that the domain owner de-facto controls

the domain. To verify control a CA generates a challenge which

the domain owner should integrate into the selected service in a

domain, e.g., add the challenge in a TXT record to the zonefile of

the domain or add the challenge to a directory of the website in

the domain. The CA then checks the presence of the challenge

by querying the selected service in the target domain. Since the

challenge was sent to the domain, a genuine owner can receive it

and hence can respond correctly. In contrast, an off-path adversary

that does not control the domain, cannot receive the challenge and

therefore should not be able to respond correctly.

Domain validation from single vantage point is vulnera-
ble. Recently [14] showed an off-path attack against domain valida-

tion of popular CAs: the attacker hijacks the challenge sent by the

CA to the domain during the validation of control over the domain.

This allows the attacker to respond with the correct challenge and

demonstrate control over a domain that it does not legitimately

own. The significance of PKI for Internet security, coupled with the

risks that the attacks introduced, triggered efforts to improve the

security of domain validation.

Man-in-the-Middle secure distributed domain validation.
Let’s Encrypt was the first CA to react quickly to the disclosed

vulnerabilities. It initiated efforts to enhance the security of DV

even against on-path Man-in-the-Middle (MitM) adversaries, stan-

dardising a mechanism called ACME in 2019, [RFC8555] [13], and

in 2020 it deployed in production environment a mechanism called

multiVA [36] - domain validation with multiple Validation Author-

ities (VAs). Initially Let’s Encrypt set up four VAs, each running

a DNS resolver software for looking up resources in domains and

for validating control over domains. Upon request for a certificate,

the VAs perform lookup of the target domain by sending queries

to the nameservers and then concurrently validate control over

the domain. Each VA receives the set of nameservers and their IP

addresses from the parent domain. The VA then randomly selects a

nameserver to which the query is sent. If the majority of the VAs

receive the same results, DV succeeds, and the certificate is issued.

Otherwise, the request fails. Let’s Encrypt shows that their setup
with multiVA provides security for DV even against MitM adver-

saries: the intuition is that realistic MitM adversaries are limited in

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1421

their power, and can control or hijack some, but not many of the

Internet networks. Recently [15] performed simulations to show

that the diverse vantage points of multiVA allow to detect 94% of

the BGP prefix hijack attacks during DV, making more than 90% of

the ASes in the Internet topologically incapable of launching BGP

attacks against the majority of domains. This is in contrast to the

previous deployment of Let’s Encrypt, where most domains were

vulnerable to prefix hijacks during DV.

What about themultiple nameservers? In this workwe show
that in addition to considering the vantage points as in [14, 15], it

is important to also consider the domain side of domain validation.
The analysis in [15] used a single IP address for each domain. Nev-

ertheless, instead of intercepting the query from the vantage point,

the adversary can also intercept the response from the domain.

This appears to expose domains to practical attacks during DV. In

practice, however, hijacking the domain is challenging: domains

have multiple nameservers, in fact, some domains have even more

than 30 nameservers, see Figure 1 in Section 2. Hence the situation

becomes very complex even for a MitM adversary. To demonstrate

control over a target domain the attacker would need to hijack

multiple challenges, sent by the vantage points. To complicate the

situation further, these challenges are not sent all to the same name-

server, but each vantage point selects the nameserver, to which

the challenge is sent, uniformly at random. If the attacker cannot

anticipate which vantage point sends a query to which nameserver,

to beat the domain validation it would have to craft multiple differ-

ent responses. That indeed should make the attack against all the

vantage points for all the nameservers impractical, even for strong

on-path adversaries.

‘TheDowngrade’ attack. In this work we develop a downgrade
attack that reduces the multiVA validation against real domains

that have multiple nameservers, to a validation against domains

with a single nameserver. Our attack is based on two observations:

(1) a functionality in VAs, designed to enhance security and per-

formance, can be manipulated by network adversaries remotely

and (2) Let’s Encrypt uses a small and fixed set of VAs. The former

manipulates the server selection by the VAs, causing the multiVA
to execute against a single nameserver, one which all the VAs select

for validation and lookups. The latter allows launching targeted

efficient attacks against the VAs in advance, as a preprocessing step,

before initiating the attack to obtain fraudulent certificates.

We show that combining our two observations the network ad-

versaries can eliminate the multiple VAs to multiple nameservers
effect, creating a ‘multiple VAs to single nameserver’ situation...

which is no longer secure against MitM adversaries. In the course

of the attack we cause the VAs to eliminate the nameservers from

the list of usable servers, leaving only a single available name-

server. Worse, we show that the attacker can not only reduce the

validation to one arbitrary nameserver, but force all the VAs to

query a specific nameserver of attacker’s choice, one which has

a vulnerability that can be exploited by the attacker, e.g., server

with unpatched software or server that can be attacked with side

channels or fragmentation, [18, 46]. In this work, as an example,

we select servers whose BGP prefix the attacker can hijack via

sub-prefix hijack attacks.

Off-path attacks against Let’s Encrypt. The core issues which
expose domains to downgrade attack are a side effort of server

selection functionality of Let’s Encrypt. To exploiting them against

a specific victim domain the adversary needs to introduce a pattern

into the responses from the nameservers. When the VAs receive a

certain pattern of missing responses they block the nameservers.

We explain that there are different ways to exploit this vulnerability

and introduce a pattern into the responses, e.g., with a compromised

router which selectively drops or manipulates some specific packets.

We show how to exploit this vulnerability even with an off-path
adversary.

We develop ‘server-elimination’ methodologies to introduce

losses according to specific intervals, causing all the VAs to query

just one nameserver, selected by the attacker. Some of our method-

ologies assume specific properties in domains, such as rate limiting,

and hence can be launched only against the domains which have

these properties, e.g., 24.53% of Let’s Encrypt-certified domains, see

Section 3. We also developed a generic server-elimination method-

ology, which applies to all the domains. This method however

requires generating much more traffic than the other methods. Fur-

thermore, as we mentioned the vulnerability in the CAs that allows

downgrading the number of nameservers in a domain can also be

exploited with stronger adversaries.

Fraudulent Let’s Encrypt certificates. After downgrading val-

idation with domains to a single nameserver, we launch attacks to

prove control over domains that off-path adversaries do not own

and obtain fraudulent certificates for these domains.

We compare the security of Let’s Encrypt to that of other pop-
ular CAs and show that the downgrade attack eliminates the se-

curity benefits introduced by multiVA. In fact, we found all the

CAs equally vulnerable to our attacks. This implies that the vali-

dation of all the CAs in our dataset can be downgraded to a single

server in any Internet domain. We run a complete attack against

the domains in our dataset that have properties which allow our

off-path server-elimination, and force the validation to run against

a single nameserver, which sub-prefix can be hijacked. This con-

stitutes 10.6% of our 1M dataset. We proceed to obtain fraudulent

certificates for these 108K domains.

Ethical considerations. Our attacks, evaluations and measure-

ments were ethically carried out against CAs and domains in our

dataset. We notified Let’s Encrypt about the downgrade attacks.
Contributions.We make the following technical contributions:

• We develop a taxonomy of nameserver elimination method-

ologies which force the VAs of Let’s Encrypt to query a nameserver

of attacker’s choice. One methodology is generic, it uses low-rate

bursts to cause packet loss and applies to any nameserver in any
domain. We did not evaluate this methodology in the Internet since

it adversely affects communication from other sources with the

nameservers. The other two methodologies require that the name-

servers apply rate-limiting or fragment responses, and generate less

traffic. We evaluate them on our dataset of domains to show that

more than 20% of 1M-top Alexa domains
1
and 24.5% Let’s Encrypt

domains are vulnerable. We show that our methodologies, with

slight modifications, apply also to other popular CAs. Our server

elimination methodologies potentially have a wider application

scope. For instance, they can be applied to redirect clients to the

1
Of 1M-top Alexa domains, 857K-top domains were responsive, without errors.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1422

wrong server, introducing traffic fluctuations to the load balancing

that the CDNs and cloud platforms use.

• Our server-elimination methodologies exploit properties in

nameserver selection of DNS implementations. We perform anal-

ysis of nameserver selection in Unbound, ‘reverse engineer’ its

behaviour and show that it can be remotely manipulated to cause

DNS resolvers to block nameservers.

•To evaluate our attacks ethicallywe develop a two-sidedmethod-

ology. In contrast to prior work which performed simulations or

evaluated attacks only in a lab setup, our evaluation methodol-

ogy allows to launch and validate real attacks in two steps. We

first attack the target CA with a victim domain that we own. Our

adversarial host, located on a different network than the victim

domain, obtains a fraudulent certificate for the victim domain. This

allows us to evaluate the vulnerability and applicability of the attack

against Let’s Encrypt, yet without issuing fraudulent certificates

for real victim domains. In a second step, we reproduce the setup of

Let’s Encrypt on our networks, with all the relevant components,

and launch automated attacks against our dataset of Let’s Encrypt-
certified victim domains, issuing fraudulent certificates for these

domains with a CA controlled by us. This second step allows us to

identify victim domains to which our attacks apply. If the attack

applies in both steps, it also applies when launched against the CA

and the victim domain in real life. Our evaluation methodology

has wider applicability, it can enable ethical evaluations of other

attacks yet without causing damage to real victims. For instance, it

can be used to evaluate different types of Denial of Service (DoS)

attacks, such as fragmentation based DoS attacks.

• Our work shows that validation from multiple locations, al-

though the right way to go, is not trivial, and requires care to avoid

pitfalls. We provide recommendations for preventing our attacks.

Organisation. In Section 2 we develop our downgrade attack

against Let’s Encrypt. We develop and evaluate nameserver elim-

ination methodologies in Section 3. In Section 4 we demonstrate

attacks against Let’s Encrypt to issue fraudulent certificates and

evaluate them against a dataset of 1M domains certified by Let’s
Encrypt. We provide recommendations for countermeasures in Sec-

tion 5. Comparison to related work is in Section 6. We conclude

this work in Section 7.

2 THE DOWNGRADE ATTACK
We develop a downgrade attack against Let’s Encrypt to reduce

the ‘multiple VAs to multiple nameservers’ validation to ‘multiple

VAs to attacker selected nameserver’ validation. Our attack is based

on an observation that a functionality in VAs, which is used to

increase security and performance, can be manipulated by a re-

mote adversary. Specifically, the DNS software at each VA selects

uniformly at random the nameserver to which queries are sent.

This is required in order to distribute the load from all the VAs

evenly among all the nameserver as well as to create unpredictable

selection of nameservers by the VAs, and finally, to ensure good

performance by avoiding poorly performing nameservers.

The fact that the VAs are selected from a small and a fixed set of

nodes, which is known to the attacker, allows the attacker to manip-

ulate the server selectionmechanism in advance, prior to requesting

a fraudulent certificate for domain that it does not control. As a

result, the validation of control over the victim domain, during the

certificate issuance, is performed against a single attacker-selected

nameserver.

In this section we explain the server selection mechanism (Sec-

tion 2.1), and its implementation in the VAs of Let’s Encrypt (Section
2.2). Surprisingly, we show that off-path adversaries can influence

the server selection function at the VAs. To manipulate the server

selection we develop a server-elimination attack, forcing all the VAs

of Let’s Encrypt to query a nameserver of attacker’s choice (Section

2.3). Server-elimination attack not only reduces the entropy from

server selection, but also forces all the VAs to communicate with a

server of attacker’s choice.

0 5 10 15 20 25 30
Number of Nameservers

0%

20%

40%

60%

80%

100%

C
D

F

Let's Encrypt
Alexa Top-1M
All

Figure 1: Number of nameservers per domain.

2.1 Server Selection
Traditionally, there were up to 13 nameservers in each domain,

to fit DNS responses in 512 bytes UDP packet. After the adoption

of EDNS [RFC6891] [25] the limit on number of nameservers per

domain was removed, allowing each domain to configure arbitrary

number of nameservers. Our measurements show that on average

domains have more than 3 unique IP addresses and that there are

domains with more than 30 nameservers, Figure 1.

To ensure performance as well as to balance the load of queries

among the nameservers, the DNS resolver implementations use

different logic for selecting the nameservers in the target domain.

The implementations typically prefer most available servers with

low latency. To select the server the DNS resolver monitors the

performance of each nameserver in a domain and applies a compu-

tation over the responsiveness of individual nameservers as well as

the latency.

A number of studies explore the impact of DNS server selection

on load distribution [59, 61] and attempt to optimise performance

by only selecting fast nameservers and quickly reacting to changes

in nameserver performance [26]. Server selection also has implica-

tions for security of DNS, making it more difficult to launch cache

poisoning attacks since an off-path adversary cannot anticipate

which nameserver a target resolver will query [RFC5452] [34].

2.2 Analysis of Let’s Encrypt Server Selection
We perform an analysis of server selection behaviour of the VAs by

triggering queries to our domain and record the query behaviour

of the VAs. We then reproduce the same experiment in a lab envi-

ronment using popular DNS software and compare produced DNS

requests pattern to the one exhibited by the DNS software on the

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1423

VAs of Let’s Encrypt. We then can determine the software used on

the VAs.

2.2.1 Experiment with Let’s Encrypt. We describe the setup, our

evaluation and the results.

Setup. In this experiment we use 20 domains that we registered.

We set up 5 nameservers, and configure each domain with these

5 nameservers. Each nameserver has 20 zonefiles, one for each

domain. The nameservers are placed in different regions: NS1 on our

AS 1, registered under RIPE NCC, NS2 on region USAwest (Oregon),

NS3 on region USA west (north California), NS4 on region Canada

(central) and NS5 on region USA east (Ohio). The latencies between

the VAs of Let’s Encrypt to our nameservers ranges between 50ms

and 200ms. We set the TTL (Time to Live) of our nameservers to

10 seconds.

Evaluation.We use the Certbot to request certificates for our

20 domains and monitor the DNS requests received on our name-

servers. This causes the four VAs
2
of Let’s Encrypt to issue DNS

lookups to our nameservers and then to perform validation against

our domains with DNS TXT/CAA. We repeat the evaluation 20

times, one iteration for each domain, and continually monitor the

requests from the VAs on our nameservers. The evaluation is carried

out in two phases. In the first phase we evaluate server selection

during normal conditions. In the second phase we introduce losses

and additional latency (between 300ms and 500ms) to responses of

some of the nameservers. We monitor the DNS requests from the

VAs on the nameservers. After the 20 iterations are concluded we

analyse the queries sent by each of the VAs to the nameservers in

our domains.

Results. Our findings are that the queries are distributed among

the nameservers independent of the geo-location and of the net-

work block on which the nameservers are placed. During the first

phase, each VA sends a query to each of the nameservers with

equal probability, and each of the nameservers receives roughly

an equivalent portion of the queries from each VA. During the sec-

ond phase, we observe that the VAs distribute the queries among

the nameservers which have latency below 400ms uniformly at

random. VAs avoid querying poor performing nameservers (with

latency above 400ms) as well as nameservers from which a VA ex-

perienced two-three consecutive packet losses. These nameservers

are avoided for more than 10 minutes. Afterwards, the VAs probe

the nameserver again to see if its performance improved. We also

find that the DNS software on the VAs of Let’s Encrypt imposes

an upper bound of 60 seconds on the cached records, irrespective

of the TTL on the DNS records that the nameservers return. This,

however, does not impact the time that the DNS software avoids

querying poorly performing nameservers, since this information is

stored in a different cache, called the infrastructure cache, as we

explain below.

2.2.2 Analysis on Experimental Platform. In this section we com-

pare the queries pattern in our experiment with Let’s Encrypt to
patterns generated by popular DNS software, to identify the soft-

ware used by Let’s Encrypt. We reproduce our experiments against

2Let’s Encrypt currently requires responses to only three out of four VAs for a DV and

lookup to be successful.

Let’s Encrypt described in Section 2.2.1 in a controlled environ-

ment using the DNS maze
3
open-source platform, which offers a

reproducible test environment for DNS servers. We set up the name-

servers with the same zonefiles as we used in our experiment with

Let’s Encrypt. We also set up 4 DNS resolvers (that correspond to

the 4 VAs of Let’s Encrypt). We use network emulator
4
to introduce

latencies and losses to responses from the nameservers (identical

to our experimental evaluation with Let’s Encrypt). During the

executions we run the same set of queries as we did against Let’s
Encrypt.

We execute the tests in an automated way, each time using

a different DNS resolver software on the VAs (using Knot, Bind,

Unbound, PowerDNS and MS DNS). The results are listed in Table

1. The query distribution, the blocking time, and the distribution

of queries to poorly performing nameservers provides a distinct

fingerprint allowing to identify the DNS resolver software. We

found that the Unbound DNS had the exact same pattern of queries

and server selection as those exhibited by the VAs of Let’s Encrypt.

DNS Software Query distribution to servers Block % queries to
(min) t.o. servers

Unbound queries all 𝑛 servers with <400ms 15 1%

with probability 1/𝑛
Knot >35% queries to fastest server 10 5%

& 10% to others

Bind >95% queries to fastest server 30 1%

& 1% to others

PowerDNS >97% queries to fastest server 3 1%

& 1% to others

Windows DNS uniform query distribution <1 1%

to available servers

Table 1: Server selection in popular DNS implementations.

2.2.3 Code Analysis of Unbound DNS. The server selection proce-

dure of UnboundDNS software is defined in function iter_server_selection

of iter_util.c. Unbound implements timeout management with

exponential backoff and keeps track of average and variance of the

response times. For selecting a nameserver, Unbound implements

an algorithm in [RFC2988]: it randomly selects any server whose

smoothed RTT is between the lowest one and the lowest one +

400ms. If a nameserver becomes unresponsive, a probing phase is

performed where a couple of queries probe that nameserver. If time-

out occurs, the nameserver is blocked for 900 seconds (infra-ttl)

and re-probed with one query after that time interval. We provide a

more detailed explanation of server selection in Appendix, Section

D.1, Figure 14.

2.3 Downgrade by Elimination
Our downgrade attack is carried out by reducing the number of

available servers each VA of Let’s Encrypt can query, leaving just a

single nameserver.

The attacker uses Certbot to request a certificate. This triggers

lookups from the DNS resolvers at the four VAs of Let’s Encrypt
to the nameservers in the target domain. The attacker causes the

requests to all the nameservers except one nameserver to timeout

- we explain how to do this in next Section. Following a timeout

3
https://gitlab.nic.cz/knot/maze/

4
NetEm tc qdisc.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1424

the VAs go into exponential backoff, and the DNS requests are

retransmitted after RTO, i.e., 376ms. The attacker repeats the attack

every 376ms. After 2 consecutive losses the nameserver is moved to

infra_cache and its infra_ttl is set to 900sec. The attacker causes

the VAs to block the 𝑛−1 nameservers, and to only send the queries

to the one nameserver of attacker’s choice.

Challenge: how to hit the correct nameserver? Each time a VA sends

or resends a query the attacker does not know to which nameserver

the query is sent. Hence, the attacker needs to cause the queries

to 𝑛 − 1 nameservers to timeout, except the queries sent to the

one nameserver that the attacker wants the VAs to be forced to

select. After experiencing a timeout the VAs go into exponential

backoff, and will resend the queries after RTO
5
(2 ·376ms in the case

of Let’s Encrypt); for detailed explanation of RTO see Appendix,

Section D.2. The strategy of the attacker is therefore to launch the

attack every RTO, in order to cause the queries to timeout every

RTO=376ms. This strategy always ‘hits’ the queries from all the

VAs, both from VAs that are in exponential backoff as well as from

VAs that are sending queries for the first time to a nameserver and

not as a result of a retry attempt.

Challenge: how many attack iterations required? How many times

should the attack be repeated to block 𝑛 − 1 servers and how many

queries are required until all the𝑛−1 nameservers are removed from

the list of usable servers at all the VAs? To answer these questions

we analyse the query retransmission behaviour in Unbound, see

Appendix, Section D.2, Figure 15. We find that with a single query

the attacker can generate up to 32 timeouts, which result in 32

retries by the DNS software, and can be used to block 6 nameservers

in a domain. Since 95% of the domains have up to 6 nameservers,

a single query suffices to block nameservers of most domains. In

addition, since each VA sends at least two DNS requests (for TXT

and CAA records) during each certificate request invocation
6
, with

a single certificate request the attacker can block 12-13 nameservers

per domain. To block domains with more nameservers the attacker

can submit more certificate requests.

Challenge: how to cause responses to timeout? In the next section

we develop methodologies that enable even weak off-path attackers

to eliminate nameservers in domains during validation with Let’s
Encrypt. The idea is to make it appear as if the target server has poor

connectivity. In one methodology we use IP fragment reassembly

to cause mis-association of IP fragments [32, 55]. The resulting

(reassembled) UDP packet is discarded by the target resolver itself.

Nevertheless, this event is perceived as packet loss by the resolver.

In anothermethodologywe use the rate-limiting of the nameservers,

to cause the query from the resolver to be filtered. We find both

these properties (fragmented DNS responses and rate limiting)

in 24.53% of Let’s Encrypt-certified domains. We also develop a

generic methodology, which does not assume any properties in the

nameservers nor domains. The idea is to send low rate bursts to

5
The RTO is the timeout including the exponential backoff. It is used for server selection

and as a timeout for the transmitted request.

6
Each VA can also send more queries and the exact upper bound of queries depends on

the responses from the nameservers. For instance, if the nameserver sends a response

with the NS type records with hostnames of the nameservers but without the A type

records. The resolver will issue a subsequent request for the A records with the IP

addresses of the nameservers.

cause packet loss at the router which requests of the target resolver

traverse.

3 SERVER-ELIMINATION METHODOLOGIES
Our key contribution in this section is a taxonomy of methodolo-

gies that we develop for off-path server elimination. These method-

ologies introduce packet losses on the communication between

the nameservers and the VAs. The lost packets signal to the DNS

software at the VA connectivity problems at the nameserver. The

nameserver is then blocked by the VA for 900 seconds. We use these

methodologies to launch downgrade attacks against Let’s Encrypt.
One methodology is generic and applies to any domain and all

nameservers without assuming any properties. The idea is to send

bursts to the router that connects the network of the nameserver to

the Internet. The traffic bursts never reach the nameserver network,

so the attack is stealthy and cannot be detected. We evaluated this

methodology ethically in a controlled environment that we set

up. The other two methodologies require less traffic but assume

that the nameservers in a domain have specific properties. One

methodology requires that the nameserver enforces rate limiting

on the inbound DNS requests. The other assumes that the responses

of the nameserver can be fragmented. We experimentally evaluated

these two methodologies against our dataset of domains and found

that they apply to 24% of Let’s Encrypt-certified domains and 20%

of 857K-top Alexa domains.

Since the evaluation is carried out against a large set of almost

2M domains, we automate it. This automated evaluation provides a

lower bound on the number of vulnerable domains, since it misses

out potentially vulnerable domains; we explain this in Section 3.6

below.

3.1 Dataset
Our dataset contains domains certified with Let’s Encrypt as well
as 1M-top Alexa domains; the dataset is listed in Table 2. Out of

1M-top Alexa domains only 857K domains were valid with respon-

sive nameservers. We use these 875K-top Alexa domains in the

rest of our work. In our study we use domains with Let’s Encrypt
certificates to infer the fraction of vulnerable customers of Let’s
Encrypt. We use the popular Alexa domains to infer the overall

attack surface of vulnerable domains. The Let’s Encrypt and Alexa

domains have only a small overlap of 12K domains.

#Domains #Nameservers #ASes Vuln.
Let’s Encrypt 1,014,056 98,502 8,205 24.53%

Alexa 856,887 171,656 15,899 20.92%

Total 1,858,165 227,734 17,864 22.76%

Table 2: Dataset of domains.

3.2 Elimination via Fragmentation
IP fragmentation allows routers to adjust packets to the maximum

size that the networks support. Packets that exceed the maximum

transmission unit (MTU) are fragmented into smaller fragments

by the source or by the routers enroute. The receiver reassembles

the fragments back into the original IP packets. To identify the

fragments that belong to the same IP packet the receiver uses a 16

bit IP identifier (IP ID) in the IP header of the fragments.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1425

Figure 2: Nameserver elimination via (a) fragmentation, (b) rate-limiting, (c) low-rate bursts.

3.2.1 Attackmethodology. The idea is to create fragments-misassembly:

the attacker injects a spoofed fragment which the IP layer at the VA

reassembles with a genuine fragment, sent by the nameserver. The

attacker ensures that the resulting IP packet is invalid and hence is

discarded by the VA. This can be done by violating the resulting

length or the transport-layer checksum. The genuine second frag-

ment from the nameserver does not have a matching first fragment,

and hence is discarded after a timeout of 30 seconds. This causes

the pending query to timeout, and is perceived by the DNS software

on the VA as a loss event.

Elimination via fragmentation is illustrated in Figure 2 (a). In

step A○ we send a fragment to the VA, from a spoofed IP address

of the nameserver. This fragment can be even one byte long. We

set the offset of this fragment so that it fits as a second fragment

in the sequence of fragments sent by the nameserver. In step B○
this fragment is stored in IP defragmentation cache and stays there

for 30 seconds (the default value supported by popular operating

systems, such as Linux, FreeBSD and Windows). In step C○ we send

a request for a certificate for the target domain. This causes the VA

to initiate DNS lookup requests in step D○. For simplicity assume

that the nameserver returns a response in two fragments, in step

E○. In step F○ the first genuine fragment enters the IP defragmen-

tation cache and is reassembled with the second fragment from

the adversary that was waiting in the IP defragmentation cache.

For both fragments to be reassembled the spoofed fragment needs

to contain the correct IP ID value. The transport-layer processing

and checks on the reassembled packet. Since our spoofed second

fragment has a different payload than the genuine second fragment,

it alters the transport-layer checksum of the packet, which results

in an invalid value. The packet is discarded in step G○. In step H○
the second genuine fragment enters the cache; after 30 seconds it

is evicted if no matching first fragment arrives. In step I○ timeout

is triggered and a loss is registered. The query is resent.

Servers that fragment responses. To cause the nameservers

to send fragmented responses we use an ICMP fragmentation

needed packet (type: 3, code: 4) indicating that the path to the

DNS resolver has a smaller MTU. The nameserver then fragments

the response according to the MTU in the ICMP error message

and returns it in smaller fragments. Using ICMP error messages

with UDP header and ICMP echo reply, we identified that 3% of the

domains in our dataset can be forced to fragment responses.

Servers with predictable IP ID. We find 13% of the name-

servers with predictable IP ID allocation. For these nameservers

the attacker can predict the value of IP ID that the nameservers

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F
Let's Encrypt
Alexa Top-1M
All

Figure 3: Nameservers per domain vulnerable to frag.

assign to the responses, and use it in the spoofed fragments. We

explain how we match the IP ID in the spoofed fragment and how

we measured IP ID assignment algorithms in servers in Appendix,

Section E.

3.2.2 Measurements. We find that 1.88% of Let’s Encrypt-certified
domains, and 4.39% of 857K-top Alexa domains fragment responses;

the results are plotted in Figure 3. The x axis plots the fraction

of nameservers per domain that are vulnerable to elimination via

fragmentation.

3.3 Elimination via Rate Limiting
Nameservers enforce rate limiting on queries to reduce load and

to make it not attractive to abuse them in reflection attacks: after

inbound queries
7
exceed a predefined threshold the nameserver

starts dropping packets.

Attack methodology. We devise a methodology that uses ‘rate limit-

ing nameservers’ to cause the nameserver to filter requests from the

victim DNS resolver. The victim DNS resolver perceives the lack of

responses as an indication of poor performance of the nameserver

and avoids querying it. Elimination via rate limiting is illustrated

in Figure 2 (b). The attacker sends multiple requests to the target

nameserver using a spoofed IP address of the victim resolver in

step A○. The nameserver starts filtering the requests from the DNS

resolver. In step B○ the attacker requests a certificate of the tar-

get domain. In step C○ the DNS resolver sends DNS query to the

nameserver.

7
Nameservers can apply rate limiting per IP address or overall independent of the IP

address.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1426

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F

Rate Limiting
Fragmentation
Vulnerable

Figure 4: Nameservers per domain vulnerable to frag or rate-
limiting.

The nameserver filters that request in step D○. After a timeout is

reached, the loss event is registered in step E○, and the resolver re-

transmits the query. After three consecutive losses, the nameserver

is blocked for 15 minutes and will not be queried.

We conduct a study of the nameservers in Alexa domains that

limit the rate at which the clients can send DNS requests.We explain

our measurement methodology and then report the results.

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F

Let's Encrypt
Alexa Top-1M
All

Figure 5: Nameservers per domain vulnerable to rate-limiting.

3.3.1 Measurement of rate limiting. To identify servers that apply

rate limiting we use the same setup as described in [46] and perform

a similar experiment. Since response rate limiting (RRL) is applied

per query per /24 block we capture all the nameservers that start

filtering traffic from the victim IP address. In our experiment we

send requests with the same query for an A record in the domain of

the nameserver concatenated with a non-existent subdomain. Using

the same query name reduces the processing overhead imposed on

the nameserver and does not cause the nameserver to block other

clients sending queries to that domain. We send to each nameserver

4K queries distributed over a time period of a second. We use 4K

packet per second (pps), which is roughly 2.5Mbps, to reduce the

imposed load on the servers. Recent measurements of traffic rate to

servers show that 4K pps is an ethical traffic rate that does not affect

the operation of nameservers [46]. We use the overall packet loss

as an indicator for rate limit, setting the threshold at 66%, which

suffices to cause the nameserver to filter queries from a victim

resolver.

We find that the rate limit is typically reached within a second

and is enforced in the following 15 seconds. Even with this modest

rate of 4K pps, we find that more than 24% of the nameservers

in TLDs (Top Level Domains), as well as 23% of the nameservers

in Let’s Encrypt-certified domains and 17% of the nameservers in

857K-Alexa domains, are vulnerable to elimination via rate limiting

attack. We plot the results for our dataset of domains in Figure 5.

3.4 Elimination via Low Rate Bursts
If the packets arrive at the router faster than they can be transmitted,

they are buffered. Routers are configured for best-effort packet

forwarding and typically the packets are processed using first come

first served model. A packet loss in networks occurs due to queuing

of packets in routers and overflowing routers’ buffers.

3.4.1 Attack methodology. The idea is to cause packet loss on a

router that connects the nameserver to the Internet, slightly before

the arrival of the DNS request at the nameserver. We create loss by

sending low-rate bursts to the router that connects the nameserver

to the Internet. Targeting the router allows that attacker to avoid

detection. To identify the target router the attacker runs traceroute

to the nameservers. Nameserver elimination via low rate bursts

is illustrated in Figure 2 (c). After requesting a certificate for the

victim domain, step A○, the attacker sends a burst of packets to

the target router at the estimated time that the request from the

DNS resolver is sent to the nameserver in step B○ and C○. The burst

causes the request to be discarded.

3.4.2 Synchronising the bursts with the queries. A crucial aspect of

the accuracy of this methodology is to compute the exact time point

when the burst should be sent. We measure the latencies between

the attacker and the VA (Δ𝐴−𝑉𝐴) by pinging the services of Let’s
Encrypt, and the attacker and the target nameserver (Δ𝐴−𝑁𝑆) by

querying the nameserver. We need to infer the processing delays

at Let’s Encrypt.
Inferring processing delay at Let’s Encrypt. The time be-

tween the submission of the request with Certbot and the time

when the queries from the VAs arrive to the nameserver of the at-

tacker is:Δ𝐴−𝑉𝐴−𝑁𝑆𝐴 . Since this is the nameserver of the attacker, it

holds: Δ𝐴−𝑉𝐴 == Δ𝑉𝐴−𝑁𝑆𝐴 . Since the attacker knows Δ𝐴−𝑉𝐴 and

Δ𝑉𝐴−𝑁𝑆𝐴 , the attacker can estimate the processing delays incurred

at Let’s Encrypt: 𝑡𝑑𝑒𝑙𝑎𝑦 = Δ𝐴−𝑉𝐴−𝑁𝑆𝐴 − Δ𝐴−𝑉𝐴 − Δ𝑉𝐴−𝑁𝑆𝐴 = 𝜖 .

When to send the burst. Next, the attacker measures the la-

tency to the nameserver in a target domain 2Δ𝐴−𝑉𝐴−𝑁𝑆 . The time

at which the attacker needs to send the burst is: Δ𝐴−𝑉𝐴−𝑁𝑆 =
2·Δ𝐴−𝑉𝐴−𝑁𝑆−𝜖

2
= Δ𝐴−𝑉𝐴−𝑁𝑆 − 𝜖 , which the attacker can compute

since it knows 𝜖 and 2 · Δ𝐴−𝑉𝐴−𝑁𝑆 .

Let 𝑥 = Δ𝐴−𝑉𝐴−𝑁𝑆 − Δ𝐴−𝑁𝑆 . If 𝑥 < 0, the attacker waits 𝑥ms

and then sends the burst. Alternately, if 𝑥 > 0 attacker sends the

burst 𝑥ms at Δ𝐴−𝑉𝐴−𝑁𝑆 − 𝑥 .

3.4.3 Measuring burst size. The burst size is a function of the buffer
size on the router as well as communication from other sources

that traverses the router. Since we carry out ethical experiments we

do not send bursts to the routers in the Internet. Our evaluation is

performed in a controlled environment on a platform that we set up,

using default buffer sizes on popular routers. These measurements

provide a worst-case analysis. In practice the other communication

that goes through the router will keep the buffer on the router also

occupied, which means that even a smaller burst can achieve a

similar effect.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1427

We compare the effectiveness of bursts when sent from one host,

from two hosts and from three hosts. We also evaluate the impact

of packet sizes on the loss rate.

Setup. Our setup is illustrated in Figure 6. For our experiment

we set up a platform, with five end hosts, each on a different net-

work, connected to the Internet via a router. One host is a DNS

resolver that sends DNS requests, the other is a DNS nameserver.

The three remaining hosts are used to generate traffic bursts. We set

up a router which connects all the clients and servers. This router

simulates the Internet and is connected with 100Gbps links, all the

other devices are connected through 10Gbps output links. Since

the transmission rates on the router, that simulates the Internet,

are ten times higher than the transmission rates on the routers

that connect the end devices (i.e., 100Gbps vs 10Gbps), it will not

experience packet loss. This ensures that the only packet loss can

occur on the routers that connect the end hosts to the Internet.

All the routers are configured to add latency to every packet on

outbound interface. The latency is selected at random in the range

between 30ms and 50ms. This results in an RTT (round trip time)

between 60ms and 100ms; similar to the typical RTT in the Internet.

To add latency we use NetEm tc qdisc.

Figure 6: Simulated evaluation setup.

Experiments.Wemeasure the optimal burst size that causes the

arriving packets to be discarded. We also aim to infer the maximal

sequence of packets that will be discarded after a given burst. What

burst size and characteristics will result in the largest sequence

of packets to be discarded. Our evaluations are performed using

different buffer sizes, listed in Table 3. The timing of the attack

bursts are illustrated in Figure 7.

Figure 7: RTO timeline with low-rate bursts.

We test sending the burst from one vs two vs three hosts. Ad-

ditionally, we create bursts using packets of: (1) identical size of

500 bytes, (2) randomly selected sizes between 68 and 1500 bytes,

and (3) packets of two sizes 68 or 1500 bytes, both sizes are selected

with equal probability.

The DNS resolver is sending a set of queries to the nameserver

and the nameserver responds. To generate traffic bursts from the

attacking hosts we use iperf3. During the experiment the three

attacker hosts synchronise and send a burst of packets to the name-

server. The loss rate depends on the buffer sizes that are on the

routers as well as the additional traffic from other sources. Since

in our experiment there is no additional traffic from other clients,

our evaluation provides a lower bound. In practice in the Internet

the burst would be much more effective due to traffic from other

sources which also traverses the router.

Our experiment showed that the higher the latency variance is

between the packets, the more overhead the burst introduces on the

processing, resulting in higher loss ratio. We also find that (3) re-

sulted in the largest sequence of packets dropped one after another,

it is 7 times as large as the sequence of packets lost in experiments

with bursts (1) and (2). Furthermore, bursts from multiple clients

result in a packet loss more effectively. In fact our evaluations show

that the load on the system and the period of time during which

additionally arriving packets will be dropped is proportional to the

number of attacking hosts that send the burst. Namely, the same

burst volume split among multiple end hosts is more effective than

when sent from a single client. This is due to the fact that when

sent concurrently from different sources the inter-packet delay in a

burst is reduced.

Routers Buffer sizes Burst size Loss rate
Brocade MLXe 1MB >1550 packets 100%

Cisco Nexus 3064X 9MB >10
4
packets 100%

Juniper EX4600 12MB >15 · 103 packets 92%

Cisco 6704 16MB 18 · 103 packets 89%

Table 3: Burst evaluation on popular routers.

Our results are listed in Table 3. For effective packet loss the

bursts can be even smaller in volume than the buffer size - packets

are nevertheless discarded.

Buffer sizes. Typically routers with large buffers are used in the

core of the Internet where cross traffic can cause large queues, but

routers that connect networks to the Internet have smaller buffers,

sufficient for a 10 Gbps traffic rates. The reason for avoiding large

buffers is ‘bufferbloat’ which is too high latency that results due

to network devices buffering too much data, leading to link under-

utilisation. Typical buffer sizes is megabytes of buffer per 10Gbps

port and for 10Gbps links, 10Mb of buffers, [11]. In our experiment

we evaluate bursts on popular routers with default buffers’ sizes

that are set by the vendors, these of course can be resized to smaller

sizes by the operators. Our set of routers covers typical routers that

connect networks to the Internet as well as large routers at the

Internet core.

3.5 Applicability of Frag. & Rate-Limit
We find that 22.76% of the domains in our dataset are vulnerable

to either fragmentation or rate-limiting nameserver-elimination

methodologies, see Table 2. We also find that in 15% of the domains

more than 50% of the nameservers enforce rate limiting or return

fragmented responses, and hence are vulnerable to either elimina-

tion via rate limiting or via IP defragmentation cache poisoning;

the results are plotted in Figure 4.

3.6 No False Positives, Some False Negatives
Our automated evaluation provides a lower bound on the number of

vulnerable domains since it may miss out potentially vulnerable do-

mains. This introduces false negatives, namely, domains which are

vulnerable to our off-path server-elimination methodologies, but

we have not detected this. The reason is that automated evaluation

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1428

is not sensitive to slightly different behaviours or implementations.

For instance, by manually adjusting the IP ID value prediction (see

more details in Appendix, Section E) the attacker has a higher suc-

cess rate to hit the correct IP ID value. An automated evaluation

may not predict the IP ID correctly, due to, say sudden change in

outbound traffic rate from the nameserver. Similarly, nameservers

employ different methodologies for limiting the rate of incoming

queries, e.g., per query, or per source IP, or may simply require a

slightly higher rate of incoming packets. Furthermore, our evalua-

tion against each domain is performed once, to avoid interfering

with the normal functionality of the domain. Our attacker host per-

ceives any losses or noise as a failed evaluation, without repeating

it again.

We do not have false positives. We only mark a successful down-

grade attack in the event when all the VAs in our setup are querying

a single nameserver which our attacker selected.

4 ATTACKS AGAINST LET’S ENCRYPT
In this section we combine the off-path downgrade attack with BGP

same- and sub-prefix hijacks, to obtain fraudulent certificates of

Let’s Encrypt for victim domains. To launch our attacks against

real Internet targets we develop an ethical ‘two-sided’ evaluation

methodology. In Section 4.1 we introduce our experimental setup.

Then, in Section 4.2, we launch our combined attack to issue fraudu-

lent Let’s Encrypt certificates for our own victim domains (whichwe

registered for that purpose). This demonstrates the vulnerabilities

in Let’s Encrypt. Second, in Section 4.3, we evaluate our combined

attack against our dataset of domains (Section 3.1). Since these are

real domains, in order to evaluate the attack against them ethically

we reproduce the exact setup of Let’s Encrypt in a controlled ex-

perimental environment set up by us. We create our own CA, issue

certificates for the domains in our dataset with our CAs, and then

launch the combined attack to obtain fraudulent certificates signed

by our CA for those domains. This enables us to identify domains

with which the VAs of Let’s Encrypt can be forced to query a server

of attacker’s choice, such that, that nameserver can either be same-

or sub-prefix hijacked by the attacker; because it is hosted on a

network block that can be sub-prefix hijacked, or because of a topo-

logical proximity between the attacker and the target nameserver.

The hijacking BGP announcements are sent locally only to the

router that connects the network with our CA to the Internet, and

are not distributed in the Internet, to avoid impacting the global

routing.

We extend our automated experimental evaluation in Section 3,

and as a next step to the evaluations in 3, we also evaluate prefix

hijack attacks of the nameservers that the VAs query, to obtain

fraudulent certificates, signed by our CA for the victim domains.

We then compare the security of Let’s Encrypt to other popular

CAs in the PKI ecosystem, in Section 4.4. We show that the down-

grade attacks apply to all other CAs. Although, in contrast to Let’s
Encrypt, the other CAs do not guarantee security against MitM

adversaries, our attack nevertheless makes it easier to attack them

even for off-path adversaries.

In Appendix, Section G we show how to exploit fraudulent cer-

tificates signed by our own CA to launch attacks against Email

servers and Web clients.

4.1 Control Setup
We prepare a control plane setup for experimental evaluation of

all our attacks in this section. Our setup of the control plane with

the relevant entities and components is illustrated in Figure 8. We

purchase under RIPE NCC two ASes: AS 1 and AS 6. AS 1 is as-

signed prefix 2.2.4.0/22 and AS 6 is assigned 6.6.6.0/24
8
. AS 6 is the

network controlled by our attacker, which we use for hijacking

the prefix of the network on which the nameserver of our victim

domain is installed. The victim domain has three nameservers, two

nameservers, NS2 and NS3, are on AWS cloud and one nameserver

NS1 is hosted on 2.2.4.0/22. We also set up an Unbound 1.6.7 DNS

resolver on Linux 4.14.11 on 2.2.4.0/22.

From layer 3 point of view AS 6 is connected with a BGP router

to DE-CIX routeserver in Frankfurt through which we have peering

with many (mostly) small partners. AS 1 is connected via a different

upstream provider to the Internet. We configured the BGP routers

on both AS 1 and AS 6 as follows: the BGP router is a Dell run-

ning Ubuntu OS. The router is setup to handle 10Gbps traffic, the

NICs are prepared for XDP (eXpress Data Path), which enables it to

process tens of millions of packets per second per core with com-

modity hardware. We installed Bird 2 on both BGP servers since it

is configurable and provides MRT files (BGP message dumps) that

are easy to dump. We set up BGP sessions, such that the router for

AS 1 announces 2.2.4.0/22 and the router for AS 6 is announcing

the attacker’s prefix 6.6.0.0/24. The Validation Authorities (VAs) of

Let’s Encrypt are located on different network prefixes assigned to

two ASes: AS 16509 and AS 13649. Without the prefix hijack, the

traffic from AS 1 flows to Let’s Encrypt (AS 16509).

Issuing fraudulent Let’s Encrypt certs for our victim domains.

Figure 8: Experimental setup.

4.2 Fraudulent Let’s Encrypt Certificate for Our
Victim Domain

In this section we launch attacks against Let’s Encrypt using our
victim domains.

4.2.1 Setup. We setup a victim domain with three nameservers:

two nameservers NS2 and NS3 are on AWS cloud and one name-

server NS1 is hosted on 2.2.4.0/22, see Figure 8.

4.2.2 Attack. The attack proceeds in three steps. We illustrate the

conceptual components of the attack in Figure 13 in Appendix, Sec-

tion B. In step (A) the adversary applies methodologies in Section 3

to force all the VAs of Let’s Encrypt to perform lookups and domain

8
The network prefixes used in the paper are anonymised.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1429

1000 1200 1400 1600 1800 2000 2200 2400
Latency

0%

20%

40%

60%

80%

100%

C
D

F

VA-Primary
VA-EU
VA-US-EAST
VA-US-WEST

Figure 9: Obtaining fraudulent certs with each VA in Let’s Encrypt
(ms).

validation against a nameserver of its choice. In our evaluation

we select NS 1, on prefix 2.2.0.0/16 (this is the network which we

own and control). In second step (B) the adversary uses Certbot to

submit request for a certificate for our victim domain. Notice that

step (A) is also initiated with a certificate request for the victim

domain. However, since Figure 13 illustrates logical steps of the

attack, we omit this from the illustration; these steps are described

in detail in Section 3. In step (C) the attacker launches BGP prefix

hijacks to redirect the DNS packets to the attacker’s network (AS

6). The attacker concludes the validation and receives a fraudulent

certificate for our victim domain.

4.2.3 Evaluation. We ran multiple executions of the attack against

our victim domains. Our plot of the duration of the attack in Figure

9 shows that in 99% of the evaluations the attack completes within

2 seconds. The plot measures the time from the issuance of a hi-

jacking BGP announcement and until the fraudulent certificate is

received. The attack, starting with a certificate request submission

with Certbot (after the attacker eliminated the nameservers from

the list of usable nameservers at the VAs) and until the certificate

is received is automated. The duration of the attack is dominated

by the propagation of the malicious BGP announcement and the

convergence delays.

To understand the delays involved in propagation of BGP updates

and routing convergence and their contribution to the overall attack

duration, in addition to evaluations in the wild, we also evaluate

convergence of BGP updates on common routing platforms in a

controlled environment in Section 4.5.

4.2.4 Measurements. All the VAs of Let’s Encrypt are located on

prefixes smaller than /24, which makes them vulnerable to sub-

prefix hijack attacks. We plot the CAs and the domains vulnerable

to sub-prefix hijacks in Figure 10; ‘LE VAs’, in legend, refer to VAs of

Let’s Encrypt, ‘Other CAs’ refer to CAs we evaluated in Section 4.4,

‘LE Domains’ refer to Let’s Encrypt-certified domains, and ‘Alexa

Domains’ refer to our list of 857K-top Alexa domains. Sub-prefix

hijacks succeed deterministically irrespective of the location of

the attacker, however, since they affect the Internet globally they

are more visible. Nevertheless, such attacks often stay under the

radar over long time periods [2, 28]. Since our hijacks are short-

lived, their risk of exposure is significantly reduced. For details on

sub-prefix hijacks see Appendix, Section A.

4.3 Attacking Let’s Encrypt-Certified Domains
In previous section we executed attacks against Let’s Encrypt and
issued fraudulent certificates for our own victim domains. During

the evaluation we showed that off-path adversaries can bypass the

validation of the multiVA of Let’s Encrypt, by eliminating name-

servers in a victim domain and forcing all the VAs to perform the

lookup and validation against the attacker-selected nameserver. In

this section we ask do our attacks apply against customer domains
of Let’s Encrypt? In particular, do the domains have the properties

needed for our attacks?

To answer these questions we develop an automated attack to

assess the attack surface of the domains that have certificates with

Let’s Encrypt. We execute our automated attack to perform the first

large scale evaluation of the domains for which off-path adversaries

can issue fraudulent certificates with Let’s Encrypt using our attack
methodologies. The challenge is, however, to develop and evaluate

real attacks, yet ethically, without issuing fraudulent Let’s Encrypt
certificates for real customer domains of Let’s Encrypt. To perform

a realistic execution of our attacks yet consistent with the ethics

we reproduce the deployment of Let’s Encrypt using only the com-

ponents that are relevant to validation and issuance of certificates.

In that setup we configure DNS resolvers on the VAs which we

control. We use these DNS resolvers to execute attacks against real

domains in an ethical way. We explain the setup below.

4.3.1 Setup. On the three
9
VAs we set up an Unbound 1.6.7 DNS

resolver on Linux 4.14.11. The VAs are placed on three distinct pre-

fixes, that belong to AS 1. We setup an open-source Boulder ACME

(Automated Certificate Management Environment) implementa-

tion [13] used by Let’s Encrypt. ACME is used by Let’s Encrypt to
automate certificate issuance and management. The components of

Boulder relevant for our evaluation are Registration Authority (RA),

Validation Authority (VA) and Certificate Authority (CA). During

certificate issuance the client (we use Certbot [29]) submits a re-

quest for a certificate. The RA forwards the request to VAs. The

VAs perform validation and return the result to the RA. If validation

succeeds, RA requests the CA to sign the certificate. The RA returns

either a failure, if validation did not succeed, or a signed certificate

to the client that sent the request.

To simulate Let’s Encrypt and issue our own certificates to real

domains we need to set up a CA. We do this with step-ca10, which
is an online CA supported by ACME. This enables us to use ACME

APIs to issue certificates from our own private CA. To set up the

ACME client we configure the URL and our root certificate. The

certificate issuance is similar to Let’s Encrypt: ACME client creates

an account with ACME server, and uses Certbot to request a certifi-

cate. Our client uses Certbot to send a certificate request to the RA.

The RA performs the domain validation using our three VAs.

4.3.2 Dataset. We search domains that have certificates of Let’s
Encrypt in CT (Certificate Transparency) with crt.sh

11
, checking

for CA commonName: R3. We only collect certificates issued in a

single day, by limiting the search to ValidityNotBefore >= 01.04.2021

9Let’s Encrypt uses one primary and three remote VAs and validation succeeds when

correct responses are received at three VAs. Hence, in our evaluation of attacks three

VAs reflect the success of the attacks against the setup of Let’s Encrypt.
10
https://github.com/smallstep/certificates

11
https://crt.sh/

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1430

00:00:00 and ValidityNotBefore < 02.04.2021 00:00:00. This resulted

in 1,014,056 domains issued by Let’s Encrypt on a single day in April.
We then extract the commonNames in the certificates and lookup

the nameservers for each commonName. For each nameserver we

map its IP address to the IP prefix and origin AS, using the BGP

updates in BGPStream of CAIDA [20] on 1 April.

4.3.3 Attack. The adversary receives a list of domains with name-

servers in an input. For each nameserver in each domain we include

information to which attacks (from Section 3) the nameserver is

vulnerable, the latency to each nameserver, and if the nameserver

is vulnerable to sub-prefix hijack attacks.

For each domain the adversary executes the following attack

steps: (1) submits a request for a certificate, (2) performs nameserver

elimination against the nameservers in the victim domain, (3) hijack

the DNS packet, (4) conclude DV, (5) obtain fraudulent certificate

for a real victim domain signed by our CA.

4.3.4 Measurements of attack surface of vulnerable domains. To
obtain insights about the sizes of the announced BGP prefixes in

the Internet we use the BGPStream of CAIDA [20] and retrieve the

BGP updates and the routing data from the global BGP routing table

from RIPE RIS [53] and the RouteViews collectors [58]. The dataset

used for the analysis of vulnerable sub-prefixes was collected by us

in April 2021.

There are currently 911,916 announced prefixes in the Internet.

From these prefixes we extracted all the announcements with pre-

fixes of ASes which host nameservers of the domains in our dataset

(Table 2). Then, we take the domains that we found vulnerable

to frag. and rate-limit server elimination attacks (Table 2 column

"#Vuln."), and check which domains have nameservers that are on

network blocks smaller than /24 or networks which are topologi-

cally closer to the attacker than to the VAs of Let’s Encrypt. The
former set contains domains on networks that can be hijacked via

a more specific BGP announcement which makes them vulnerable

to sub-prefix hijacks. We obtain 10.6% of the Let’s Encrypt certified
domains and 11.75% Alexa domains. Namely, against these domains

our off-path attacker can force Let’s Encrypt to query a nameserver

of its choice, which can be sub-prefix hijacked since it is on a net-

work block less than /24, see Figure 10; the legend is explained in

Section 4.2.4.

The latter contains domains on networks which can be inter-

cepted via same-prefix BGP hijacks. We find that our attacker can

intercept the prefixes from above 30% of the ASes with victim do-

mains, causing the network with the VAs in our setup to accept the

hijacking BGP announcements of the attacker and as a result send

DNS packets through the attacker.

4.4 Comparison to Other Popular CAs
We evaluated our attack methodologies also with other CAs that

control more than 95% of the certificates market, listed in Table

4. Our evaluation was performed against the popular 857K-top

Alexa domains. The results are listed in Table 4. For success, only

Let’s Encrypt requires that multiple vantage points receive the

same responses. In contrast, other CAs, even when selecting an IP

address from a large prefix, such as Certum-Google, perform the

validation with a single IP address.

12 13 14 15 16 17 18 19 20 21 22 23 24
Prefix Length

0.0%

10.0%

20.0%

30.0%

40.0%

Pe
rc

en
ta

ge

LE VAs
Other CAs
LE Domains
Alexa Domains

Figure 10: Network prefixes of CAs’ resolvers and of domains’ name-
servers vulnerable to sub-prefix hijacks.

CA #Vantage Sub-prefix #Time Block MultiVA
Points attack outs (min)

Digicert 1 ✗ 1 5 ✗
Sectigo 1 ✗ 2 10+ ✗

GoDaddy 1 ✓ 10 10+ ✗
GlobalSign 1 ✓ 4 10+ ✗

Certum-Google 20+ ✓ 2 10+ ✗
Certum-Cloudflare 1 ✗ 16 10+ ✗

Let’s Encrypt 4 ✓ 2 15 ✓
Actalis 1 ✓ 2 10+ ✗

Table 4: Infrastructure of popular CAs and our evaluations.

All our blocking methodologies apply to other CAs as well. We

only needed to apply slight modifications according to the be-

haviour of the DNS software at each CA. For instance, the number

of the required timeout differs (column ‘#Timeouts’), as well as

the length of the blocking interval (column ‘Block’), during which

the DNS software avoids querying the blocked nameserver. We

conclude that all the CAs are vulnerable to nameserver-elimination,

which exposes them to extremely effective off-path attacks.

Similarly to the analysis in Section 4.3.4, we obtain that 11.75%

of the 857K-Alexa domains, for which the CAs (in Table 4) can

be forced to query a specific nameserver, that is on a network

vulnerable to sub-prefix hijack.

4.5 How Fast is Short-Lived Hijack?
The goal of our attacker is to do a short-lived hijack to avoid detec-

tion. It is believed that short-lived traffic shifts are caused by the

configuration errors (that are quickly caught and fixed) and since

they do not have impact on network load or connectivity, they are

largely ignored [17, 37, 38].

There are a number of factors which contribute to the overall

latency of the attack, nevertheless, how fast the attacker can carry

out such attack depends predominantly on the speed at which

the malicious BGP announcements propagate to the forwarding

plane at the target victim AS. The main role in this latency play the

updates of the received BGP announcements at the Autonomous

System Boundary Router (ASBR), which is used to exchange routing

information with the ASes. There is a rule that a BGP announce-

ment should be delayed until the local route is installed in BGP

Forwarding Table (FIB), so the announcement is not causing tem-

porary blackholing. For instance, if the receiving router is much

faster to pick up on the new announcement and starts sending the

traffic before the FIB is fully converged. That is the main factor

of the propagation delay and it is a delay introduced by a BGP

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1431

timer, which limits the rate at which routing announcements are

transmitted.

In this experimentwe evaluate the ability to process route changes

on popular routing platforms, in response to a new BGP announce-

ment, measuring the time it takes for the new route to be installed

and used in the FIB on the line card. During the experiment we

populate the routing and forwarding tables with data, generate and

send BGP announcements and initiate the measurements. We mea-

sure convergence delay, i.e., the latency between the time that the

BGP announcement is sent by the originator until the propagation

of the information into the forwarding plane at ASBR with each

box. In our evaluations we send BGP announcements with 300,000

IPv4 prefixes, hence measuring convergence between control and

data plane at high load. The resulting latency is in the order of tens

of seconds, and is device dependent. The slowest was CISCO 7600

platform with above 30 seconds and was representative among old

platforms we tested. Newer platforms, such as Cisco ASR 9901 and

Juniper MX204, are much faster with overall time being between 5

and 10 seconds, even when routers have multiple full BGP feeds.

The fastest results were obtained with Arista 7280R3, which had an

almost instant propagation time of a second. Our findings show that

the convergence delay depends on CPU power and efficiency of the

implementation and our evaluations results demonstrate high vari-

ance (between one second and tens of seconds). For instance, the

Cisco 7600 platform tested by us was released in 2000s with control-

plane module Sup720 with just 2x 600MHz MIPS CPUs. Modern

platforms, like Junipers MX204, have 8-core Xeon-D @2.2GHz and

they run soft-real time Linux kernel and on top of that are two vir-

tualised instances of JunOS control-plane in QEMU/KVM, resulting

in much faster processing times, not only because the box has more

CPU power but also because of the more efficient software stack.

The evaluation results are summarised in Table 5.

Year BGP router FIB Convergence
2001 CISCO 7600 >30sec

2005 CISCO IOS XR 9000 500ms

2006 Juniper MX204 5-10sec

2008 CISCO ASR 9001 5-10sec

2009 Alcatel Lucent 7750SR 3sec

2010 Arista 7280R3 1sec

Table 5: BGP convergence on popular routing platforms.

5 COUNTERMEASURES
Unpredictable VAs selection. Our attacks used the fact that the

adversary knows in advance the set of VAs that perform the val-

idation: the network blocks of the VAs are publicly known. The

network blocks and the set of the VAs is small. This allowed our

downgrade attack to be carried out against each VA, forcing the

VAs to query attacker-selected nameserver for the next 15 minutes.

This provides the adversary sufficient time to obtain fraudulent cer-

tificates. If the VAs are selected from a large set of network blocks

at random, such that the adversary cannot efficiently attack them

in advance, the downgrade attack would be much more challenging

to launch in practice. This would enhance the security of DV with

multiVA even against MitM adversaries.

Resilient nameserver-selection. The nameserver selection

algorithms of the CAs should be made robust by selecting the

nameservers uniformly at random, even those with poor perfor-

mance. If a nameserver does not respond, the query is resent to

another nameserver after a timeout. This would prevent our off-

path server-elimination methodologies. The additional latency to

the certification would not be significant.

Turning off caches. Turning off caches does not prevent the

cache poisoning attack [35] but makes it more difficult to launch.

Caches allow to inject a malicious mapping between the victim

domain and the IP address of the attacker, which is subsequently

used for running domain validation against the target domain. Al-

though Let’s Encrypt limits the caching duration to 60 seconds, it

still suffices for attacking the lookup phase to redirect to attacker’s

hosts. The validation is then run against the hosts of the attacker.

The entire attack concludes within two minutes. If there are no

caches the attacker has to keep the hijacked prefixes over longer

time periods, which may make the attack more visible.

DNSSEC against domain hijacks. DNSSEC [RFC4033-4035]

could prevent the attacks, however, recent works showed that more

than 35% of signed domains are vulnerable to key recovery attacks

[21, 56].

Preventing BGP hijacks with RPKI. If fully deployed RPKI

[RFC6480] would prevent prefix hijack attacks. Our measurements

show that most networks do not filter hijacking BGP announce-

ments with Route Origin Validation (ROV). The ASes of Let’s En-
crypt do not apply ROV, hence even if the domains have a valid

ROA, it does not prevent the hijacks. In addition, only 86 out of

17,864 ASes on our dataset of domains (2M Alexa and Let’s Encrypt
domains, Table 2) apply ROV. Worse, 57% ASes have ROAs, out

of which 32.4% ROAs are invalid, and hence can be hijacked. A

full adoption of RPKI (both the prefix certificates with ROAs and

validation with ROV) although would not prevent all the possible

attacks against DV, it would prevent the prefix hijack attacks.

Detecting FraudulentCertificateswithCT.ACertificate Trans-

parency (CT) log [42] could expose a fraudulent certificate and

allow a CA to quickly revoke it. We measured the rate at which our

fraudulent certificates with Let’s Encrypt appear in the logs of CT

monitors. We registered with the notification third party services

which continuously monitor CT logs and notify via email when a

certificate for required domain is issued. We also registered with

search services which provide API for retrieving logged certificates

by domain name.

We observed that it took some monitors a few hours to fetch our

fraudulent certificates. Furthermore, some of the monitors exhibited

failures and did not detect the fraudulent certificates. Our results

are aligned with the recent study which found that the monitors

provide unreliable service [45]. The damage of our attack would

have been done by the time the attack is detected. Indeed, the

damage of such attacks is the highest in the first hour, e.g., [54].

6 RELATED WORK
Domain validation. Domain validation plays a central role in

the PKI ecosystem and in Internet security. Flaws in DV can be

exploited to obtain fraudulent certificates. Some CAs were shown

to use buggy domain validation, e.g., to establish control over a

domain WoSign
12

tested control of any TCP port at the target

12https://wiki.mozilla.org/CA:WoSign_Issues#Issue_L:_Any_Port_.28Jan_-
_Apr_2015.29

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1432

domain, in contrast to requiring control over services, such as

Email, HTTP, or TLS. In other cases, CAs were validating control

over domains by sending email verification to addresses belonging

to ordinary users instead of domain administrators
13
. There are

also design specific flaws, which were exploited to bypass DV and

issue fraudulent certificates [14, 18]. Following these attacks Let’s
Encrypt standardised domain validation [RFC8555] and deployed

a production grade validation with multiVA. Followup works [9,

15, 36] on Let’s Encrypt evaluated performance and demonstrated

security of validation from multiple locations with multiVA.
Distributed domain validation. Distributed validation is a

known concept. In 2004 [50] proposed CoDNS to improve the avail-

ability and performance of DNS lookups. ConfiDNS [52] extends

CoDNS with peer agreements and majority vote. Perspectives’ [60]

verifies a server’s identity by using a new infrastructure of notary

servers. DoubleCheck [10] aims to prevent attacks against clients

that retrieve a certificate of the target service for the first time.

However, in contrast to multiVA of Let’s Encrypt these proposals
are not deployed due to the modifications required to the existing

infrastructure and the lack of specific use cases motivating adoption.

We explore the security of multiVA since it is deployed by one of

the largest and rapidly growing CAs.

BGP prefix hijacks. [23, 24, 57] evaluated applicability of BGP

prefix hijacks against different applications in the Internet. There is

numerous evidence of DNS cache poisoning attempts in the wild [1–

7, 22, 54], which are predominantly launched via short-lived BGP

prefix hijacks or by compromising a registrar or a nameserver of the

domain. In this work we apply BGP prefix hijacks for intercepting

the DNS communication between the VA and the nameserver, in

order to create a spoofed DNS response with records that map the

nameservers in the victim domain to attacker’s IP addresses. Once

cached, these records poison the caches of the DNS resolvers at the

VAs. Notice that are also other attacks on BGP, such as poisoning

AS paths [16], defences against these are path security with BGPsec

proposals, [12, 44], none of which are deployed. In our work we

show that even merely applying origin hijacking already leads to

devastating attacks against a large fraction of Internet domains

and their clients, and our evaluations show that the attacks are a

practical threat.

Countermeasures against BGP hijacks. To mitigate prefix

hijacks, the IETF designed and standardised Resource Public Key

Infrastructure (RPKI) [RFC6810] [19]. RPKI uses Route Origin Au-

thorizations (ROAs) to bind Autonomous Systems (ASes) to the

network prefixes that they own via cryptographic signatures. In

order for this binding to deliver on its security promise, the own-

ership over prefixes has to be correctly validated and configured

in the resource certificates (RCs) and Route Origin Authorizations

(ROAs), which are then placed in global RPKI repositories man-

aged by five Regional Internet Registries (RIRs). These ROAs are

fetched and validated, e.g., using the implementation of RIPE NCC

validator [51]. The RPKI validator fetches the ROAs from the global

RPKI repositories and applies Route Origin Validation (ROV) to

create a local validated cache. This cache is then provided to a BGP-

speaking routers via the RPKI to Router (RTR) protocol. Recent

research [33, 40] showed that about 600 networks apply ROV. In

13https://bugzilla.mozilla.org/show_bug.cgi?id=556468

our measurements of the ASes with domains in our dataset, we find

that very few ASes apply ROV, only 86 out of 17,864!

There are also proposals for detection of hijacks based on changes

in the origin, [41], which is not yet in use in the Internet. SCION

[62] proposes to replace BGP with a new routing architecture and is

already deployed in production of a number of ISPs, but is not used

by the vast majority of the Internet and none of the ASes which

host the domains in our datasets or the CAs.

7 CONCLUSION
Domain validation is essential for bootstrapping cryptography on

the Internet. After validating control over a domain, a CA generates

a certificate which can be used to establish cryptographic material

and protect communication between the clients and the correspond-

ing server. In contrast to other means for verifying control over

a domain, domain validation is automated, and hence is fast and

cheap (or even free, e.g., as in the case of Let’s Encrypt). These
benefits are the reason why the CAs that offer domain validation

collectively control more than 99% of the certificates market.

Unfortunately, the benefits of domain validation are coupled

with insecurity. The attacks in 2018 [14, 18] showed that the do-

main validation used by many CAs was vulnerable. Let’s Encrypt
was the first CA to deploy in production mode validation from

multiple vantage points, to provide security even against strong

MitM adversaries [36]. Followup security analysis and simulations

showed that MitM adversaries cannot attack multiple VAs of Let’s
Encrypt concurrently [15].

In this work we developed off-path downgrade attacks to reduce

the domain validation to be performed against a single, attacker-

selected nameserver. The experimental evaluation that we carried

out found Let’s Encrypt vulnerable to our downgrade attack. After

forcing the VAs of Let’s Encrypt to query a single nameserver that

resides on a network vulnerable to sub-prefix hijacks we carried

out ethical attacks and successfully issued fraudulent certificates

for 10.60% of the domains in our dataset. They demonstrate that

Let’s Encrypt is not only insecure against MitM adversaries but

also against off-path adversaries.

We showed that other CAs were also vulnerable to downgrade

attacks, and off-path attackers can launch efficient and effective

attacks to obtain fraudulent certificates with them.

Our work demonstrates that domain validation, although seem-

ingly simple, is not a resolved problem. An interesting and an

important question that we leave for future research is under what

conditions and assumptions (on topology, adversary capabilities,

etc.) can domain validation be made secure.

ACKNOWLEDGEMENTS
We are grateful to Jennifer Rexford for her helpful comments on

our work. This work has been co-funded by the German Federal

Ministry of Education and Research and the Hessen State Min-

istry for Higher Education, Research and Arts within their joint

support of the National Research Center for Applied Cybersecu-

rity ATHENE and by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) SFB 1119.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1433

REFERENCES
[1] 2015. Hacked or Spoofed: Digging into the Malaysia Airlines Website Incident.

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/hacked-

or-spoofed-digging-into-the-malaysia-airlines-website-compromise. Accessed:

2021-1-19.

[2] 2015. Webnic Registrar Blamed for Hijack of Lenovo, Google Do-

mains. https://krebsonsecurity.com/2015/02/webnic-registrar-blamed-for-

hijack-of-lenovo-google-domains/. Accessed: 2021-1-19.

[3] 2018. DNSpionage Campaign Targets Middle East. https:

//blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-

east.html. Accessed: 2021-01-19.

[4] 2019. Global DNS Hijacking Campaign: DNS Record Manipulation at

Scale. https://www.fireeye.com/blog/threat-research/2019/01/global-dns-

hijacking-campaign-dns-record-manipulation-at-scale.html. Accessed: 2021-1-

19.

[5] 2019. Sea Turtle keeps on swimming, finds new victims, DNS hijacking

techniques. https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-

swimming.html. Accessed: 2021-01-19.

[6] 2019. ‘Unprecedented’ DNS Hijacking Attacks Linked to Iran. https:

//threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/

[7] 2020. Security Incident on November 13, 2020. https://blog.liquid.com/security-

incident-november-13-2020. Accessed: 2021-01-19.

[8] Louis Poinsignon. 2018. BGP leaks and cryptocurrencies. https://

blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

[9] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric

Rescorla, et al. 2019. Let’s Encrypt: An Automated Certificate Authority to

Encrypt the Entire Web. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2473–2487.

[10] Mansoor Alicherry and Angelos D Keromytis. 2009. Doublecheck: Multi-path

verification against man-in-the-middle attacks. In 2009 IEEE Symposium on Com-
puters and Communications. IEEE, 557–563.

[11] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router

buffers. ACM SIGCOMM Computer Communication Review 34, 4 (2004), 281–292.

[12] Rob Austein, Steven Bellovin, Russ Housley, Stephen Kent, Warren Kumari, Doug

Montgomery, Chris Morrow, Sandy Murphy, Keyur Patel, John Scudder, et al.

2017. RFC 8205-BGPsec Protocol Specification. (2017).

[13] R Barnes, J Hoffman-Andrews, D McCarney, and J Kasten. [n.d.]. RFC 8555:

Automatic Certificate Management Environment (ACME), Mar. 2019. Proposed
Standard ([n. d.]).

[14] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek

Mittal. 2018. Bamboozling certificate authorities with {BGP}. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 833–849.

[15] Henry Birge-Lee, Liang Wang, Daniel McCarney, Roland Shoemaker, Jennifer

Rexford, and Prateek Mittal. 2021. Experiences Deploying Multi-Vantage-Point

Domain Validation at Let’s Encrypt. USENIX Security (December 2021).

[16] Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. Sico:

Surgical interception attacks by manipulating bgp communities. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
431–448.

[17] Peter Boothe, James Hiebert, and Randy Bush. 2006. Short-lived prefix hijacking

on the Internet. NANOG.

[18] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.

2018. Domain Validation++ For MitM-Resilient PKI. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2060–

2076.

[19] Randy Bush and Rob Austein. 2013. The resource public key infrastructure (RPKI)

to router protocol.

[20] CAIDA. 2021. BGP Stream. https://bgpstream.caida.org/

[21] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David

Choffnes, Dave Levin, Bruce MMaggs, Alan Mislove, and ChristoWilson. 2017. A

Longitudinal, End-to-End View of the {DNSSEC} Ecosystem. In 26th {USENIX}
Security Symposium ({USENIX} Security 17). 1307–1322.

[22] D. Madory. 2018. Recent Routing Incidents: Using BGP to Hijack

DNS and more. https://www.lacnic.net/innovaportal/file/3207/1/

dougmadory_lacnic_30_rosario.pdf

[23] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021. From

IP to transport and beyond: cross-layer attacks against applications. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. 836–849.

[24] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021. The

Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources. In

30th {USENIX} Security Symposium ({USENIX} Security 21). 3147–3164.
[25] Joao Damas, Michael Graff, and Paul Vixie. 2013. Extension mechanisms for DNS

(EDNS (0)). IETF RFC6891, April (2013).
[26] Supratim Deb, Anand Srinivasan, and Sreenivasa Kuppili Pavan. 2008. An im-

proved DNS server selection algorithm for faster lookups. In 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops

(COMSWARE’08). IEEE, 288–295.
[27] Chris C Demchak and Yuval Shavitt. 2018. China’s Maxim–Leave No Access

Point Unexploited: The Hidden Story of China Telecom’s BGP Hijacking. Military
Cyber Affairs 3, 1 (2018), 7.

[28] Frank Denis. 2013. The GOOGLE.RW Hijack.

http://labs.umbrella.com/2013/10/25/google-rw-hijack-nobody-else-noticed/.

[29] EFF, the Electronic Frontier Foundation. [n.d.]. Certbot. https://certbot.eff .org/

[30] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path TCP

Exploits of the Mixed IPID Assignment. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1323–1335.

[31] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer. js:

A remote software-induced fault attack in javascript. In International conference
on detection of intrusions and malware, and vulnerability assessment. Springer,
300–321.

[32] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous:

or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The Conference on Com-
munications and Network Security, Washington, D.C., U.S. IEEE.

[33] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waidner. 2018.

Practical experience: Methodologies for measuring route origin validation. In

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 634–641.

[34] A Hubert and R Van Mook. 2009. Measures for making DNS more resilient

against forged answers. In RFC 5452. RFC.
[35] Philipp Jeitner and Haya Shulman. 2021. Injection Attacks Reloaded: Tunnelling

Malicious Payloads over DNS. In 30th {USENIX} Security Symposium ({USENIX}
Security 21). 3165–3182.

[36] Josh Aas and Daniel McCarney and and Roland Shoemaker. 2020. Multi-

Perspective Validation Improves Domain Validation Security. https://

letsencrypt.org/2020/02/19/multi-perspective-validation.html

[37] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2008. Autonomous security

for autonomous systems. Computer Networks 52, 15 (2008), 2908–2923.
[38] Varun Khare, Qing Ju, and Beichuan Zhang. 2012. Concurrent prefix hijacks: Oc-

currence and impacts. In Proceedings of the 2012 Internet Measurement Conference.
29–36.

[39] Amit Klein and Benny Pinkas. 2019. From {IP}{ID} to Device {ID} and

{KASLR} Bypass. In 28th {USENIX} Security Symposium ({USENIX} Security
19). 1063–1080.

[40] John Kristoff, Randy Bush, Chris Kanich, George Michaelson, Amreesh Phokeer,

Thomas C Schmidt, and Matthias Wählisch. 2020. On Measuring RPKI Relying

Parties. In Proceedings of the ACM Internet Measurement Conference. 484–491.
[41] Mohit Lad, Daniel Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and Lixia Zhang.

2006. PHAS: A Prefix Hijack Alert System.. In USENIX Security symposium, Vol. 1.

3.

[42] Ben Laurie. 2014. Certificate transparency. Commun. ACM 57, 10 (2014), 40–46.

[43] Francois Le Faucheur, A Vedrenne, P Merckx, and T Telkamp. 2004. Use of Interior

Gateway Protocol (IGP) metric as a second MPLS traffic engineering metric. IETF
Request for Comments RFC3785 (2004).

[44] Matt Lepinski and Kotikalapudi Sriram. 2017. BGPSEC protocol specification.

Internet Engineering Task Force (IETF) (2017).
[45] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and

Congli Wang. 2019. Certificate Transparency in the wild: Exploring the reliability

of monitors. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2505–2520.

[46] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and

Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with

Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for

Computing Machinery, New York, NY, USA, 1337–1350. https://doi.org/10.1145/

3372297.3417280

[47] D McPherson, V Gill, D Walton, and A Retana. 2002. RFC3345: Border Gateway

Protocol (BGP) Persistent Route Oscillation Condition.

[48] Lucas Noack and Tobias Reichert. 2018. Exploiting Speculative Execution (Spec-

tre) via JavaScript. Advanced Microkernel Operating Systems (2018), 11.
[49] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D

Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript

and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1406–1418.

[50] KyoungSoo Park, Vivek S Pai, Larry L Peterson, and Zhe Wang. 2004. CoDNS:

Improving DNS Performance and Reliability via Cooperative Lookups.. In OSDI,
Vol. 4. 14–14.

[51] Tashi Phuntsho. 2019. How to Install an RPKI Validator. https://labs.ripe.net/

Members/tashi_phuntsho_3/how-to-install-an-rpki-validator

[52] Lindsey Poole and Vivek S Pai. 2006. ConfiDNS: Leveraging Scale and History to

Improve DNS Security.. InWORLDS.
[53] RIPE NCC. 2021. RIS Raw Data. https://www.ripe.net/analyse/internet-

measurements/routing-information-service-ris/ris-raw-data

[54] S. Goldberg. 2018. The myetherwallet.com hijack and why it’s risky to hold cryp-

tocurrency in a webapp. https://medium.com/@goldbe/the-myetherwallet-com-

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1434

hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278

[55] Haya Shulman and Michael Waidner. 2014. Fragmentation considered leak-

ing: port inference for dns poisoning. In International Conference on Applied
Cryptography and Network Security. Springer, 531–548.

[56] Haya Shulman and Michael Waidner. 2017. One key to sign them all considered

vulnerable: Evaluation of DNSSEC in the internet. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17). 131–144.

[57] Yixin Sun, Maria Apostolaki, Henry Birge-Lee, Laurent Vanbever, Jennifer Rex-

ford, Mung Chiang, and Prateek Mittal. 2020. Securing Internet Applications

from Routing Attacks. arXiv preprint arXiv:2004.09063 (2020).
[58] University of Oregon Route Views Project. 2021. Route Views Project. http:

//www.routeviews.org/routeviews/

[59] Zheng Wang, Xin Wang, and Xiaodong Lee. 2010. Analyzing BIND DNS server

selection algorithm. International Journal of Innovative Computing, Information
and Control 6, 11 (2010), 5131–5142.

[60] D Wendlandt, D Andersen, and A Perrigo Perspectives. 2008. Improving SSH-

style Host Authentication with Multi-path Network Probing. In USENIX Annual
Technical Conference.

[61] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority server

selection in DNS caching resolvers. ACM SIGCOMM Computer Communication
Review 42, 2 (2012), 80–86.

[62] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,

and David G Andersen. 2011. SCION: Scalability, control, and isolation on next-

generation networks. In 2011 IEEE Symposium on Security and Privacy. IEEE,
212–227.

A HIJACKING DOMAIN VALIDATION
In this section we show BGP prefix hijack attacks against a single

VA of Let’s Encrypt that was used until 2020. We start by explaining

and evaluating same-prefix hijacks and sub-prefix hijacks using a

victim domain that we setup for this purpose. We evaluate attacks

and their effectiveness and efficiency on popular router boxes. We

explain why the attacks become challenging against the multiVA

DV (domain validation) of Let’s Encrypt.

A.1 Setup and Attacker Model
A.1.1 Attacker Model. Most attackers are not located on the path

between the nameservers of a victim domain and the VAs of Let’s
Encrypt but are off-path to the victims that they wish to attack.

BGP prefix hijacks enable off-path attackers to become on-path

for the communication exchanged with the hijacked prefix. In this

section we show how to apply BGP prefix hijacks for intercepting

the communication between the nameservers and the VAs when the

attacker is off-path and is not located on the communication path.

Our BGP prefix hijacks are short-lived and are aimed at hijacking

the DNS packets exchanged between the DNS resolver software at

the VAs and the nameservers of victim domains. Short-lived BGP

hijacks are common attack in the Internet [8, 22, 27].

Our attacker model is the same as the one against which Let’s
Encrypt guarantees security [15]. This is also the attacker that was

used in [14] to demonstrate insecurity of a single node DV. The

attacker controls a BGP router and issues BGP announcements

hijacking the same-prefix or a sub-prefix of a victim AS in the

Internet. We show how the attacker can perform same-prefix and

sub-prefix BGP hijacks of the VAs and the nameservers, explain the

differences, and the implications of both these hijacks on the traffic

that is intercepted during the interaction with Let’s Encrypt.
The attacker sets up a malicious DNS nameserver with a zonefile,

that corresponds to the resources in the victim domain all mapped

to the IP addresses of the attacker.

The victim AS is either a network hosting one or more of the

nameservers of the target domain or the network hosting the VA.

The target domain is the domain for which the attacker wishes to

issue a fraudulent certificate. The target domain has nameservers

which serve records from the DNS zone of that domain. The goal

is to hijack the same-prefix or a sub-prefix either of one or more

nameservers of the target domain or to hijack the VAs. If the hijack

succeeds, the attacker will receive all the traffic destined to the

victim AS. To avoid blackholing the attacker should relay the traffic

to the destination. In our attack against Let’s Encrypt the goal of the
attacker is to intercept the DNS queries sent by the VAs, or the DNS

responses sent by the nameservers. The attacker configures a filter

for matching the IP addresses of the hijacked AS, in order to catch

the target DNS packet. The attacker forwards all the remaining

traffic to the legitimate destination.

We next explain how our attacker launches sub-prefix hijacks in

Figure 12 and same-prefix hijacks in Figure 11 and how it impacts

the traffic flow.

A.2 Same-Prefix vs. Sub-Prefix BGP Hijack
A.2.1 Same-prefix BGP hijack. The attacker advertises the same

prefix as the victim AS and as a result can intercept traffic from

all the ASes that have less hops (shorter AS-PATH) to the attacker

than to the victim AS. Example same-prefix hijack attacks, for

intercepting a DNS request or a DNS response is illustrated in

Figure 11.

How effective are same-prefix attacks? The limitation of the same-

prefix hijack is that it only affects the traffic of the ASes that prefer

the attacker’s announcement, and does not propagate to all parts

of the Internet. Hence, the effectiveness of the same-prefix hijack

attacks depends on the local preferences of the ASes and the loca-

tion of the attacker’s AS. In particular, the same-prefix attack only

attracts traffic from ASes that have shorter path (i.e., less hops) to

the attacker. Namely, the closer the attacker is to the victim (i.e.,

the shorter the AS-PATH is), the more effective the attack is. Hence

the success of our hijack attack against the multiVA based DV of

Let’s Encrypt depends on the topological relationship between the

attacking AS, the target domain and the victim resolver. If the AS

prefers the path announced by the attacker to the nameserver, then

the hijack succeeds.

Figure 11: Same-prefix hijack: (a) Request and (b) Response.

A.2.2 Sub-prefix BGP hijack. The attack is illustrated in Figure 12

(a). The attacker can advertise a subprefix 2.2.2.0/24 of the victim

AS 1. The routers prefer more specific IP prefixes over less specific

ones, hence the longest-matching prefix (/24) gets chosen over the

less-specific prefix (/16). Nevertheless, the adversary cannot adver-

tise arbitrary long prefixes, e.g., (/32), since BGP routers typically

discard prefixes which are more specific than 24 bits to reduce the

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1435

Figure 12: Sub-prefix hijack: (a) Request and (b) Response.

size of the internal routing tables. Therefore, only prefixes with

less than 24 bits are vulnerable to sub-prefix hijacks. Once an AS

accepts the hijacking announcement it sends all the traffic for that

sub-prefix to the attacker.

How effective are sub-prefix attacks? Sub-prefix attack is highly

effective since in contrast to same-prefix hijacks, all the traffic from

any Internet AS globally is sent to the attacker, irrespective of the

location of the attacking AS. To support these huge traffic volumes

the attacker needs to set up a large infrastructure to relay traffic to

the real destination ASes in the Internet. Otherwise, the attack will

result in a blackhole and the attacker risks detection.

The effectiveness and applicability of the attack depends on the

victim prefix size, a subset of which the attacker wishes to hijack.

Our measurement evaluations of the networks of the VAs and of the

nameservers showing vulnerabilities to sub-prefix hijack attacks

are in Figure 10.

A.3 DNS Response vs. Request Interception
Our attacker makes malicious BGP announcements for a same-

prefix or a sub-prefix containing the victim domain, for intercept-

ing the DNS request sent by the CA, or containing the prefix of

the victim resolver for intercepting the DNS response sent by the

nameserver in the domain. In Section A.5 we explain that hijacking

one direction, say communication sent from the CA to the domain,

does not imply hijacking the other direction, since the routing paths

in the Internet are asymmetric. In our attack, it suffices to hijack

either the requests or the responses.

A.3.1 DNS request interception. The same-prefix hijack attack for

intercepting a DNS request is illustrated in Figure 11 (a). The victim

network announces its prefix 2.2.0.0/16. In step 1○ the attacker

starts by originating a malicious BGP announcement which maps

prefix 2.2.0.0/16 to AS 6. We wait between 1 to 3 minutes for the

announcement to propagate; see our evaluation on the conver-

gence duration in Section 4.5. When the announcement reaches AS

16509 its border router applies preferences to decide if to accept the

announcement. In our example illustration in Figure 11 since AS

16509 has less hops to 2.2.0.0/16 through AS 6 than through AS 1, it

decides to route the packets for IP addresses in prefix 2.2.0.0/16 to

AS 6. To avoid blackholing the attacker sets up forwarding to relay

all the packets to AS 1. Our attacker configures rules to intercept

DNS packets sent to port 53 to an IP address in block 2.2.0.0/16 (i.e.,

DNS requests). Once the attacker captures the target DNS request,

in step 2○, Figure 11), it creates a corresponding DNS response with

the malicious DNS records that map the nameservers in the victim

domain to the IP addresses controlled by the attacker. In step 3○
the attacker sends the DNS response to the VA from a spoofed IP

address (of one of the nameservers in the victim domain).

When launching a sub-prefix hijack attack, Figure 12 (a), the

difference is that the attacker announces a more specific prefix of

the nameservers of the victim domain than the victim AS.

Successful cache poisoning occurs once a DNS resolver at the

VA accepts and caches the malicious records from the spoofed DNS

response. The VA with the poisoned DNS resolver performs the

domain validation against the hosts controlled by the attacker. In

addition, all the subsequent DNS records will be queried from the

hosts controlled by the attacker, including the services (e.g., HTTP,

Email) against which the domain validation is performed.

A.3.2 DNS response interception. In a symmetric attack, illustrated

in Figure 11 (b) in order to intercept the DNS response sent by the

nameserver the attacker hijacks the traffic sent by the nameserver

to the VA. In step 1○ the attacker announces the prefix 54.202.0.0/15

on which the VA is hosted. ASes that are closer to the attacker

than to AS 16509 start routing the traffic for IP addresses in prefix

54.202.0.0/15 to AS 6. In Figure 11 (b) this includes AS 1 where the

nameserver is hosted. The attacker configures forwarding rules,

to relay all the traffic to 54.202.0.0/15 to AS 16509. The attacker

also sets filtering rules to capture DNS responses from AS 1 sent to

54.202.0.0/15. Notice that in contrast to previous attack, the DNS

request from the VA reaches the nameserver and the attacker cannot

intercept it. The nameserver issues a response following the request.

In step 2○ the attacker intercepts the response, changes the value

of the DNS record to point at the IP addresses controlled by the

attacker, and sends the modified response to the VA.

A.4 Attacks Against Single Point DV
Previous work [14] demonstrated BGP hijack attacks against sin-

gle point DV: the attacker used fraudulent BGP announcements,

mapping the prefix of the victim domain to the AS number of the

attacker. If the network of the VA accepted that BGP announcement,

the DNS lookup requests as well as DV, were performed against

the hosts controlled by the attacker. The evaluations in [14] used

a domain with a single nameserver and the hijacks were aimed at

intercepting only the communication with that nameserver. For

instance, the sub-prefix hijack attack was aimed at intercepting

the sub-prefix with the victim nameserver, while the same-prefix

hijacks used the fact that the attacker was located topologically

closer to the VA than the victim domain. In reality, domains have

multiple nameservers, and the DNS resolvers select a nameserver to

which they send a query in an unpredictable fashion. Our measure-

ments show that there are an average of more than 3 nameservers

per domain and that there are even domains with more than 30

nameservers. Furthermore, following best practices for resilience

typically each nameserver in a domain is located on a different

network. For attack in [14] to be practical against realistic domains

in the Internet it needs to be extended: since the attacker does not

know which nameserver the VA will select, it has to hijack the

communication channels between the VA to all the nameservers.

Therefore, the attacker needs to issue multiple hijacking BGP an-

nouncements, per prefix of each nameserver.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1436

Figure 13: Attacking DV with MultiVA.

Following [14], Let’s Encrypt was the first to deploy multiple

domain validation with four VAs (called multiVA), which since Feb-

ruary 2020 runs in production mode. Recently [15] demonstrated

the security of multiVA of Let’s Encrypt and showed that it sig-

nificantly raises the bar for attackers, making attacks against DV

impractical. The reason is that every VA selects the nameserver to

which it sends the query at random and independently of other

VAs. The lookup and the validation succeed, if at least three of the

responses arrived, and they are identical. Since the attacker does

not know to which nameserver each VA sends its query, it has to

attack the communication from every VA to any nameserver. For

instance, given a domain with 3 nameservers, each VA can send

its query to any of the 3 nameservers. Therefore, for a successful

hijack of a query the attacker would have to make the network

of every VA accept a fraudulent BGP announcement for a prefix

of every nameserver, and for a successful hijack of the response,

the attacker would have to make the network of every nameserver

accept a fraudulent BGP announcement mapping the prefix of the

VA to the AS of the attacker. Such attacks are not practical even

with very strong attackers.

A.5 Asymmetric Routing Paths
A.5.1 Forward and backward paths. Let the path, that the requests
from the VA to the nameserver take, be the forward path, and let

the path that the responses from the nameserver to the VA take

be the backward path. Both forward and backward paths are com-

puted individually by each BGP router along the path and inserted

into the routing tables along the paths. Each AS in the forward

and backward paths may have different local preferences and can

use various communities and filter configurations for selecting the

routes based on the received BGP announcements. This computa-

tion often results in asymmetric forward and backward paths.

A.5.2 Reasons for asymmetric routing paths. There are many fac-

tors for differences in forward and backward routing paths. During

our measurements we identified the following reasons for asym-

metric routing:

•Manually configured preference of paths going through cheaper

links: typically smaller networks prefer paths to peerings with

higher local preference. The best path selection algorithm of BGP

assigns higher priority to the local preference than to the “select

shortest path” rule. We explain this with the following example: as-

sume we have two possible paths between AS A and AS B: A-X-Y-B

and A-Z-B. If sending traffic fromAS A to AS X is much cheaper (for

AS A) than sending it to AS Z, it could and likely would configure

the local preference of AS A to override the shortest path. Hence,

the path from AS A to AS B would be A-X-Y-B. In contrast, if AS

Y and AS Z have the same price from the perspective of AS B, it

is likely that AS B would not change local preference and would

therefore use the shortest path B-Z-A for sending traffic to AS A.

Every AS can apply local preference to set precedence of incom-

ing routes and therefore direct outgoing traffic. But the opposite

direction for directing incoming traffic is much less controllable,

and can be done by coordinating between multiple ASes a special

configuration (using always-compare-med 14
, [RFC3345] [47] or

14
Configures the device always to compare the Multi-Exit Discriminators (MEDs),

regardless of the autonomous system (AS) information in the paths.

on arranging communities that all the ASes on the path would

accept and interpret as external triggers for local preference).

• The best path selection algorithm of BGP uses end-rules that de-

cide according to Interior Gateway Protocol (IGP) metric [RFC3785]

[43] or router ID
15

if all important metrics (local preference, MED,

AS-path length) are equal. From an external perspective it is not

possible to know which parameters an AS uses for computing the

best path.

Implications of asymmetric routing on our attack. Which network

the attacker will hijack in a real attack in the Internet depends

on the location of the attacker and on the topological location of

the victim. If the network of the nameserver accepts a bogus BGP

announcement of the attacker claiming to originate the prefix of

the VA, the responses from the nameserver will be sent through

the attacker.

Launching symmetric hijacks. Such scenarios are quite easy to

achieve in practice and it is quite a common form of “business

intelligence gathering”: A network X wants to eavesdrop on traffic

between networks A and B. Network A has peerings in one IXP (say

London) and network B in another IXP (for example Amsterdam).

The legitimate path from A to B goes through upstream providers

that both networks A and B prefer less than their peerings. Network

X has peerings with both A and B in the proper IXPs (London and

Amsterdam). So the only thing that X needs to do to intercept traffic

between A and B is to propagate routes from A to B and vice-versa.

It means that the traffic between A and B starts flowing over X

(since A and B prefer peerings over upstreams), so X can eavesdrop

on it. However, X has to carry the traffic between Amsterdam

and London for free (since it was just peering on both sides) and

therefore both A and B were benefiting from the redirection by

saving some money on transit connectivity.

B ATTACK COMPONENTS
We illustrate the conceptual components of the attack in Figure 13.

The attacker first eliminates the nameservers by removing them

from the VAs’ list of usable servers. The attacker then launches the

prefix hijacks against a network of NS3, and injects a malicious

DNS records into a spoofed DNS response.

C VULNERABLE DOMAINS
Through experimental evaluations we found 23.27% Let’s Encrypt-
certified domains with nameservers that apply rate limiting, and

15
A router ID is a 32-bit IP address that uniquely identifies a router in an AS.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1437

UNKNOWN_SERVER_NICENESS = 376ms
RTT_BAND = 400ms

rtt_lost(s){
s.RTO *=2
}

iter_fill_rtt(){
for each server s in servers:
RTO = infra_get_lame_rtt(s)
If s is new:

RTO = UNKNOWN_SERVER_NICENESS
FastestRTO = compute_fastest_rto()

}

iter_filter_order(){
for each server s in servers:
if (RTO - FastestRTO <= RTT_BAND)

move s to front
}

send_query(){
s = randomly_choose_server(servers)
if (query(s) = timeout)
s.TO +=1 // increase timeouts for s
s.RTO = s.RTO*2 // double s RTO
if (s.RTO == 12 sec && s.TO = 2)

// enter probing regime
// not more than 1 query per RTO
set_probing_regime(s)

if (s.RTO > 120sec)
// enter blocking regime
// block 900sec until s expires from infra_cache
infra-host-ttl = 900sec
infra_cache <- s

}

Figure 14: Server selection algorithm of Unbound.

2% of Alexa domains that fragment responses. These are domains

with nameservers that the VAs of Let’s Encryptcan be forced to

query. As an example case study in our work we count nameservers

vulnerable to sub-prefix hijacks. Out of 35% nameservers 10.60% are

vulnerable to sub-prefix hijack attacks. Alternately, the adversary

may select nameservers with some other vulnerability, e.g., depend-

ing on the topological location of the attacker, it can also select

nameservers that can be same-prefix hijacked. We list vulnerable

domains in our dataset in Table 6.

D ANALYSIS OF UNBOUND
D.1 Server Selection
In the first step (function iter_fill_rtt) the DNS software uses

function infra_get_lame_rtt() to read the Round Trip Time (RTT)

information for each nameserver from the infrastructure cache,

called infra_cache (this is where the information about the servers

is cached). If this is a new nameserver for which Unbound does not

have information about RTT, its RTO is set to 376ms. The fastest

Round Trip Timeout (RTO) is then marked. The RTO is the timeout

including the exponential backoff, it is used for server selection and

as a timeout for the transmitted request. The exponential backoff

is implemented in function rtt_lost() in file rtt.c.

In the second step Unbound rearranges the list of servers, moving

all the servers that satisfy (RTO-FastestRTO <= 400ms) to the front of

the server list, this is implemented in function iter_filter_order().

In the next step Unbound randomly chooses a nameserver from

the list created in second step, and sends a query to it. If the re-

sponse times-out, the RTO of that server is doubled. When the

RTO exceeds 12 seconds after 2 consecutive time-outs, the server

enters a ‘probing regime’. This allows not more than a single query

to that nameserver per RTO period. If the RTO further exceeds

120 seconds, it enters the ‘blocking regime’. This means that the

nameserver is moved to infra_cache for 900 sec (15 minutes) and

will not be queried during that time period.

The pseudocode for server selection mechanism in Unbound is

described in Figure 14.

D.2 Query Retransmissions
Unbound has two parameters for limiting the number of times

that a DNS resolver will retry to resend the query for which no

response arrived. Both parameters are defined in iterator.h con-

figuration file. The max_sent_count parameter is the limit on

maximal number of queries per DNS request, which is set to 32.

The other is the number of retries per nameserver, defined with

outbound_msg_retry, and set to 5. The values of both parameters

are hardcoded and cannot be modified.

When the Unbound DNS resolver does not have RTO (retrans-

mission time-out) information about the nameservers in a domain

to which it needs to send a query, it sets the RTO of all the name-

servers to 376ms and selects a server at random. If any server was

queried previously and the response arrived, the RTO reflects the

previous RTT value; see server selection analysis in Section 2.2.3. A

nameserver is selected at random among all the servers with RTO

below 400ms. If the fastest nameserver is 400ms faster than any

other server, it is the only one that can be selected.

If the response arrived, the resolution is done, the query is re-

moved from pending queue. If the response does not arrive, the time-

out is triggered after the RTO period. The RTT value for that server

is updated and the attempt_count parameter for that server is in-

cremented. If outbound_msg_retry is reached, remove the server

from the list of usable servers. Increment the total_sent_count
for that query. Once max_sent_count is reached, return server

fail. Return to step 1. We provide the pseudocode of Unbound re-

transmission behaviour in Figure 15.

MAX_SENT_COUNT = 32
OUTBOUND_MSG_RETRY = 5

SET request_sent_count = 0
WHILE request_sent_count < MAX_SENT_COUNT
select server by calling iter_server_selection()
get server_timeout from infra_cache
send query to selected server
wait for server_timeout period
IF success THEN

update SRTT info in infra_cache
return

ELSE
server_timeout *= 2
update SRTT info in infra_cache
server_attempts++
IF server_attempts >= OUTBOUND_MSG_RETRY

remove this server from usable server list
ENDIF
request_sent_count++
IF request_sent_count >= MAX_SENT_COUNT

return SERVFAIL
ENDIF

ENDIF
ENDWHILE

Figure 15: Query retransmission behaviour in Unbound.

E HITTING IP ID
In this section we describe the IP ID allocation methods and report

on the IP ID results we collected from the popular nameservers.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1438

#Rate Limit #Fragmentation #Frag. or Rate-Limit #Vuln. to sub-prefix hijack #Total
Let’s Encrypt 235,991 19,060 248,763 107,517 1,014,056

23.27% 1.88% 24.53% 10.60%

Alexa 145,280 37,624 179,242 100,709 856,887

16.95% 4.39% 20.92% 11.75%

Total 377,540 55,229 423,004 207,393 1,858,165

20.32% 2.97% 22.76% 11.16%

Table 6: Server-elimination attacks and attacks to obtain fraudulent certificates against domains in our dataset.

To identify the value of the IP ID we send packets from two hosts

(with different IP addresses) to a nameserver.

IP Identifier. The 16 bit IP Identifier (IP ID) field in the IP header
is used to identify fragments that belong to the same original IP

packet [RFC791]. The fragments are then reassembled by the recip-

ient according to source and destination IP addresses, IP ID value

and protocol field (e.g., TCP).

Global counter. Initially most operating systems used a globally

incremental IP ID assignment which is easy to implement and

has little requirement to keep state: just a single counter which

is incremented with every packet that is sent. Global counters

however were shown to be vulnerable to off-path attacks, [32]. A

global counter is still popular in the Internet. Our study shows that

5.53% nameservers use global counter for UDP datagrams and 2.30%

nameservers global counters for IP packets with TCP, see details

in Table 7. To prevent the attacks some operating systems were

patched to randomise their IP ID assignment.

Counter-based bucket. One of the popular algorithms that

was also standardised in [RFC7739] is the counter based bucket

algorithms. The idea is that an index computed by hash function

over the source and destination IP addresses and key, is mapped

to an entry in a table. The IP ID value is calculated by choosing

a counter pointed to by the hash function. Observing some IP ID

values for a pair of source and destination IP addresses does not

reveal anything about the IP ID values of the pairs in the other

buckets. This algorithm, implemented into recent versions of Win-

dows, Linux and Android. Recently [39] reverse engineered parts

of tcpip.sys driver of 64-bit Windows RedStone 4, which allowed

breaking this IP ID assignment algorithm. The attack requires the

attacker to control 𝑖 IP addresses in the same class B prefix. The goal

of the attacker is to receive the keys used by the IP ID generation

algorithm: a 320 bit vector, with two keys 𝐾1 and 𝐾2 that are 32

bits each. During the offline preprocessing phase the attacker uses

Gaussian elimination to calculate a matrix using the IP addresses:

𝑍 ∈ 𝐺𝐹 (2)15(𝑖−1)×15(𝑖−1)

subsequently, the attacker sends packets to the target server

from the 𝑖 IP addresses that it controls and obtains the IP ID values

from the 𝑖 response packets. The attacker applies the computation

to recover the values of the keys, which can be used to predict the

IP ID values in Windows 8 and above versions.

The Linux versions 3.0 and above use separate IP ID allocation

algorithms for UDP and TCP communication. For TCP the IP ID

value is computed per connection, while for UDP [39] demonstrated

an attack for predicting the IP ID value similar to Windows. The

evaluations demonstrated practical attack times of up to 1.5 minutes

at most, see also [39]. Furthermore, in a study which included 69

networks the IP ID values, of the servers that used counter-based

bucket algorithm for IP ID values calculations, could be predicted.

In a subsequent work, [30] demonstrated approaches for recover-

ing the IP ID value computed for the TCP communication. Their

evaluation also demonstrated practical attacks, which apply to 20%

of 100K-top Alexa domains.

Random. Another algorithm selects random IP ID values from

a pool of least recently used IP ID values. This algorithm requires

maintaining a lot of state, corresponding to the pool of the used

IP IDs, however ensures unpredictability of IP ID selection. This

approach is implemented in iOS and MacOS.

Random

Per-Host Global Zero and other N/A Total

UDP

52.60% 5.53% 7.34% 33.40% 1.14% 100%

51281 5388 7152 32560 1112 97493

TCP

14.43% 2.30% 75.92% 1.30% 6.04% 100%

14072 2247 74020 1266 5888 97493

Table 7: IP ID allocation of in 100K-top Alexa.

F OVERVIEW OF DOMAIN VALIDATION
Validating ownership over domains plays a central role in PKI se-

curity. It enables CAs to ensure that a certificate is issued to a

real domain owner and prevents attackers from issuing fraudulent

certificates for domains that they do not control. Prior to issuing

certificates the CAs validate that the entity requesting a certificate

for a domain de-facto controls the domain by running domain vali-

dation (DV) procedure. This is done by sending challenges to the

domain and verifying that the domain correctly echos the chal-

lenges. The methods for verifying challenges all depend on DNS,

and can be based on: email, whois, zonefile and HTTP/S.

HTTP/S: the user adds to the root directory of the website run-

ning at the domain a challenge provided by the CA during DV.

email: an email is sent to an administrator’s email address at the

domain, requiring the administrator to visit a challenge URL.

The idea underlying these methods is that the owner of the

domain adds to the domain a challenge he receives from the CA

after submitting the request for a certificate. The CA can then verify

the presence of the correct challenge by sending a query to the

domain. An attacker that does not see the challenge and does not

control the domain, should not be able to add the correct challenge

value to the domain’s zonefile or web server, nor will it be able to

echo the challenge via email.

F.1 Single Node DV
The idea behind single node DV is that the validation is performed

from a single node, which sends queries to one of the nameservers of

the target domain. For instance, the CA, at domain ca.com, receives

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1439

a CSR for domain example.info, and creates a challenge $ value
which has to be entered as a DNS CNAME record to the zonefile

of the domain, e.g., $www.example.info. CNAME $.ca.com. The

resolver of the CA queries the domain of the applicant, and checks

the presence of the CNAME record.

F.2 Multiple Location DV with multiVA
Following the attacks against DV Let’s Encrypt deployed a multiVA

mechanism, i.e., performing validation from multiple nodes. The

nodes are called Validation Authorities (VAs). MultiVA uses four

Validation Authorities (VAs) for validating control over domains.

Each VA uses DNS resolver library for looking up resources in the

target domains and for validating control over domains during DV.

All the VAs are located on an AWS cloud. The CA sends a domain

to validate or to lookup over an encrypted connection to the VAs.

The VAs perform validation and return the result of the validation

over an encrypted channel to the CA. If the validation is successful,

the CA issues the requested certificate. For DV to succeed at least

three of the four VAs must succeed. The VAs of Let’s Encrypt are
set up on four network blocks:

• set 1: two IP addresses owned by Flexential Colorado Corp. on

AS13649.

• set 2: five IP addresses located on AWS us-east-2 data center.

• set 3: five IP addresses, on AWS eu-central-1 data center.

• set 4: five IP addresses, on AWS us-west-2 data center.

During each lookup or during DV, multiVA selects one IP from

each set. The process of multiVA concludes successfully if at least

three of four VAs return identical responses. Responses are cached.

The DNS software of the Let’s Encrypt caps the TTL at 60 seconds.

G DECRYPTING ENCRYPTED TRAFFIC
We perform a MitM (man-in-the-middle) attack on two types of

applications: web browser and SMTPMX server, where the attacker

functions as a proxy and relays packets between the genuine target

server and the victim client application. The attacker first launches

a DNS cache poisoning attack or a BGP prefix hijack attack against a

victim, to redirect it to the attacker’s host for the target domain. We

launch DNS cache poisoning attack by intercepting a DNS request

from the client via a short lived BGP prefix hijack. We return to

the victim resolver a DNS response mapping the target domain

to the nameservers controlled by the attacker. The attacker then

responds to subsequent lookup requests for services in the target

domain with malicious records. In particular, the attacker maps the

web server and the email exchanger (MX) in the target domain to

attacker’s IP addresses. We then evaluate two attacks: (1) we use

our client to access the webserver and (2) we send an email to the

email exchanger in the target domain.

In the first attack the attacker functions similarly to a web proxy,

and relays every packet it receives to the target webserver. De-

pending on the webserver, the attacker may leave the source IP

address of the real client intact (e.g., if this information is reflected

in the objects returned by the webserver, e.g., printed on the page

and is visible to the client). The attacker establishes a TLS channel

with the client, using the fraudulent certificate to impersonate the

target webserver. The attacker poses as a client and establishes a

TLS channel with the target server. Within these connections it

relays the HTTP objects between the client to the server. In our

evaluation we experienced timeouts since the client has to wait

until the request from the attacker reaches the real server and the

responses from the real server reach the attacker and then the client.

To avoid timeouts we introduce latency to every response we send

to the client that is proportional to the time required to send the

request from the client to the server and receive a response. We

add latency to every packet starting with the TCP SYN ACK. This

causes the RTO in TCP of the client to be much longer, and not

timeout.

Using this attack, the attacker can not only read and intercept

all the exchanged communication but it can also modify the re-

turned objects to inject scripts that will be persistently running in

a sandbox on the client and can execute a range of attacks, such

as Rowhammer attacks against RAM exploiting charges leak of

memory cells via privilege escalation, [31] or Spectre attack [48, 49]

against the CPU cache via timing side channels to read data in the

cache.

In the latter attack we setup an SMTP server that relays packets

between an outbound SMTP server and an MX exchanger (an in-

bound SMTP server) in the target domain. The latency introduced

by this attack is not significant since the victim client does not

directly experience the latency introduced by our attacking proxy.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1440

A.9. SMap: Internet-wide Scanning for Spoofing

[Dai21ac]
Tianxiang Dai and Haya Shulman. “SMap: Internet-Wide Scanning for Spoof-

ing”. In: Annual Computer Security Applications Conference. ACSAC. Virtual
Event, USA: Association for Computing Machinery, 2021, pp. 1039–1050. isbn:
9781450385794. doi: 10.1145/3485832.3485917. url: https://doi.
org/10.1145/3485832.3485917

138

https://doi.org/10.1145/3485832.3485917
https://doi.org/10.1145/3485832.3485917
https://doi.org/10.1145/3485832.3485917

SMap: Internet-wide Scanning for Spoofing
Tianxiang Dai

ATHENE Center, Germany
Fraunhofer SIT, Germany

Haya Shulman
ATHENE Center, Germany
Fraunhofer SIT, Germany

ABSTRACT
To protect themselves from attacks, networks need to enforce
ingress filtering, i.e., block inbound packets sent from spoofed IP
addresses. Although this is a widely known best practice, it is still
not clear how many networks do not block spoofed packets. In-
ferring the extent of spoofability at Internet scale is challenging
and despite multiple efforts the existing studies currently cover
only a limited set of the Internet networks: they can either measure
networks that operate servers with faulty network-stack imple-
mentations, or require installation of the measurement software on
volunteer networks, or assume specific properties, like traceroute
loops. Improving coverage of the spoofing measurements is critical.

In this work we present the SpoofingMapper (SMap): the first
scanner for performing Internet-wide studies of ingress filtering.
SMap evaluates spoofability of networks utilising standard proto-
cols that are present in almost any Internet network. We applied
SMap for Internet-wide measurements of ingress filtering: we found
that 69.8% of all the Autonomous Systems (ASes) in the Internet
do not filter spoofed packets and found 46880 new spoofable ASes
which were not identified in prior studies. Our measurements with
SMap provide the first comprehensive view of ingress filtering de-
ployment in the Internet as well as remediation in filtering spoofed
packets over a period of two years until May 2021.

We set up a web service at https://smap.cad.sit.fraunhofer.de to
perform continual Internet-wide data collection with SMap and
display statistics from spoofing evaluation. We make our datasets
as well as the SMap (implementation and the source code) publicly
available to enable researchers to reproduce and validate our results,
as well as to continually keep track of changes in filtering spoofed
packets in the Internet.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
Ingress Filtering, Spoofing, PMTUD, IPID, DNS
ACM Reference Format:
Tianxiang Dai and Haya Shulman. 2021. SMap: Internet-wide Scanning
for Spoofing. In Annual Computer Security Applications Conference (ACSAC
’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3485832.3485917

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485917

1 INTRODUCTION
Source IP address spoofing allows attackers to generate and send
packets with a false source IP address impersonating other Internet
hosts, e.g., to avoid detection and filtering of attack sources, to
reflect traffic during Distributed Denial of Service (DDoS) attacks,
to launch DNS cache poisoning, for spoofed management access
to networking equipment and even to trigger services which can
only be accessible to internal users [8, 11, 13, 32, 39]. The best way
to prevent IP spoofing is by enforcing Source Address Validation
(SAV) on packets, a practice standardised in 2000 as BCP38 [19]:
ingress filtering for blocking inbound packets and egress filtering for
blocking outbound packets sent from spoofed IP source addresses.
In contrast to egress filtering which has been extensively mea-
sured in the last 15 years, only a couple of recent studies provided
measurements on the extent of ingress filtering.

Ingress filtering. To enforce ingress filtering the networks
should check the source address of an inbound packet against a set
of permitted addresses before letting it into the network. Otherwise,
the attackers using spoofed IP addresses belonging to the network
can trigger and exploit internal services and launch attacks. For
instance, by spoofing internal source IP addresses the attackers can
obtain access to services, such as RPC, or spoofed management ac-
cess to networking equipment [RFC3704], the attackers can cause
DoS amplification by triggering the ICMP error messages from
the attacked hosts to other internal hosts whose IP addresses the
attacker spoofed. Enforcing ingress filtering is therefore critical
for protecting the networks and the internal hosts against attacks.
Nevertheless, despite efforts to prevent IP spoofing, it is still a sig-
nificant problem. Attacks utilising IP spoofing remain widespread
[8, 10, 18, 35, 38, 41].

How widespread is the ability to spoof? There are signif-
icant research and operational efforts to understand the extent
and the scope of (ingress and egress)-filtering enforcement and to
characterise the networks which do not filter spoofed packets; we
discuss these in Related Work, Section 2. Although the existing
studies and tools, such as the Open Resolver [34] and the Spoofer
[5–7, 28, 30] projects, provide a valuable contribution for inferring
networks which do not enforce spoofing, they are nevertheless
insufficient: they provide a meager (often non-uniform) coverage
of the Internet networks and are limited in their applicability as
well as effectiveness.

SMap (The Spoofing Mapper). In this work we present the
first Internet-wide scanner for networks that filter spoofed inbound
packets, we call the Spoofing Mapper (SMap). We apply SMap for
scanning ingress-filtering in more than 90% of the Autonomous
Systems (ASes) in the Internet. The measurements with SMap show
that more than 80% of the tested ASes do not enforce ingress filter-
ing (i.e., 72.4% of all the ASes in the routing system), in contrast to
2.4% identified by the latest measurement of the Spoofer Project

1039

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

[30]. The reason for this significant difference is the limitation of
the previous studies of ingress filtering to a small set of networks.

Limitations of filtering studies. The measurement commu-
nity provided indispensable studies for assessing “spoofability”
in the Internet, and has had success in detecting the ability to
spoof in some individual networks using active measurements, e.g.,
via agents installed on those networks [28, 34], or by identifying
spoofed packets using offline analysis of traffic, e.g., [29, 30]. The
need to install agents on networks or the ability to obtain traces
only from some networks limits the studies to non-uniform cov-
erage of the Internet. Therefore it is not clear how representative
these statistics are. Unfortunately, this limitation to a small set of
networks creates a bias in the assessments of the overall number
of spoofable networks. The extrapolation from the small set of net-
works to the entire Internet typically result in assessment that at
least 30% of the Internet networks do not filter spoofed packets
[30, 32]. As we show, the number of spoofable networks is above
72% which is significantly higher than what was previous believed.

Requirements on Internet studies. The key requirements for
conducting Internet studies upon which conclusions can be drawn
include scalable measurement infrastructure, good coverage of the
Internet and a representative selection of measurement’s vantage
points. We summarise the limitations of the previous studies below
and in Table 1, and compare to SMap.

• Limited coverage. Previous studies infer spoofability based on
measurements of a limited set of networks, e.g., those that operate
servers with faulty network stack [26] or networks with volun-
teers that execute the measurement software [5–7, 28, 30, 34], or
networks that agree to cooperate and volunteer their traffic logs
for offline analysis, e.g., [30]. In contrast, the measurements with
SMap use standard protocols supported by almost any network
with Internet connectivity, for the first time providing studies of
ingress filtering that cover the entire IPv4 space.

• Limited scalability. Previous approaches require installing agents,
need to reproduce loops in traceroutes, or use misconfigurations in
networks which limits their scalability. SMap is more scalable than
any previous approach, since it merely exchanges requests/responses
with networks using a fixed infrastructure of probers. The mea-
surement infrastructure of SMap is not a function of the measured
networks, hence adding more networks to the study does not re-
quire extending the measurement infrastructure.

• Limited representativeness.Volunteer or crowd-sourcing studies,
such as the Spoofer Project [28], are inherently limited due to bias
introduced by the participants. These measurements are performed
using a limited number of vantage points, which are set up in
specific networks, and hence are often not representative of the
entire Internet. Increasing the coverage and selecting the networks
more uniformly is imperative for collecting representative data;
[22] showed that the measured network significantly influences
the resulting data as well as the derived conclusions. Since SMap
measures almost all the IPv4 networks the results are representative
of the entire Internet.

• Limited stability. Current measurement studies use unstable
infrastructures: volunteers running agents can reinstall computers
or move to other networks [34]; misconfigured servers [28] (e.g.,
with open resolution or with faulty network stack) can be updated
– all causing the network to “disappear from the radar” although

Figure 1: SMap measurements between July’19 and May’21.
Domain-based (left) and IPv4-based (right).

it may still be spoofable. Hence, longitudinal studies, such as the
Spoofer Project, are biased by the stability of the vantage points, and
cannot accurately track deployment of ingress filtering in individual
networks. A few works [34] pointed out that the instability of the
infrastructure creates discrepancy in the statistics. In particular,
repeating the measurements a few weeks later generates other
different results.

What SMap improves. The infrastructure of SMap is more
stable than those used in previous studies, e.g., we do not risk vol-
unteers moving to other networks. Our measurements do not rely
on misconfigurations in services which can be patched, blocking
the measurements. The higher stability also allows for more accu-
rate reproduction and validation of our datasets and results, and
enables to perform reliable longitudinal studies. We ran ingress
filtering measurements with SMap every week over a period of two
years (between 10 July 2019 and 10 May 2021). Our results plotted
in Figure 1 demonstrate that the number of spoofable ASes is stable
and proportionally increases with the growth in the overall number
of ASes in the Internet. This is in contrast to previous studies, e.g.,
[27–29], in which a repeated evaluation even a week later provided
different statistics. Our two year long measurements between 2019
and 2021 of more than 90% of Internet’s ASes we found 50,023 new
ASes that do not enforce ingress filtering, which were not known
before, and confirmed all the other ASes that were found spoofable
in prior studies.

Ethical Considerations. Internet-wide scans are important for
security research [16, 31] and have proven valuable in improving the
security landscape of the Internet, including exposing new vulnera-
bilities, tracking adoption of defences. Nevertheless, Internet-wide
scans introduce also ethical challenges. We communicated with
network operators to understand and consider the ethical implica-
tions of Internet-wide scans. We identified two issues as particularly
important for our measurements: traffic load and consent.

• Traffic load. Network scans, such as [16, 26, 31], require ex-
changing packets with a large number of Internet networks as well
as IP addresses inside the networks. To avoid scanning the Internet
we periodically download a dataset of a full scan of the Internet
done by Sonar.

• Consent of the scanned. It is often impossible to request permis-
sion from owners of all the tested networks in advance, this chal-
lenge similarly applies to other Internet-wide studies [15, 16, 26, 31].
Like the other studies, [15, 16], we provide an option to opt out of
our scans. To opt out the network has to provide either its network

1040

SMap: Internet-wide Scanning for Spoofing ACSAC ’21, December 6–10, 2021, Virtual Event, USA

block (in CIDR notation), domain or ASN through the contact page
at https://smap.cad.sit.fraunhofer.de. Performing security scans is
important - the networks that do not enforce filtering of spoofed
packets pose a hazard not only to their operators but also to their
users, customers and services, as well as other networks. Due to the
importance of identifying such networks, in their recent study [30]
even make public the (“name-and-shame”) lists of providers with
missing or misconfigured filtering of spoofed packets; [30] also
discuss stronger measures against spoofable networks, including
liability for damages, and various types of regulation. Inevitably,
due to the risks that such networks pose to the Internet ecosystem,
it is of public interest to know who those networks are. We do
not make the identity of the networks, that do not filter spoofed
packets, publicly available, but inform the general public on the
fraction of such networks and provide their characterisation (i.e.,
size, geo-location, business type) in Section 5.

Undoubtedly, filtering spoofed packets is critical and networks
have to deploy best practices, such as BCP38 [19] and BCP84 [3],
to ensure security of the Internet ecosystem. Understanding the
extent of filtering is also significant for devising future policies,
defence mechanisms or estimating threats and risks to attacks.

Organisation. Our work is organised as follows: we compare
our study and SMap to related work in Section 2. In Section 3
we present the design and the implementation of SMap and the
measurement techniques that it uses. In Section 4 we report on the
data collected with SMap and the statistics that we derived from
it. We characterise the networks which we found not to enforce
ingress filtering in Section 5. We conclude this work in Section 6.

2 OVERVIEW OF SPOOFING STUDIES
2.1 Egress vs. Ingress
Although there are a few studies of ingress filtering, most studies
of spoofing focus on egress filtering. What can be inferred from
egress filtering on igress filtering and vice versa?

In their recent measurement of ingress and egress filtering [30]
conclude that filtering of inbound spoofed packets is less deployed
than filtering of outbound packets, despite the fact that spoofed
inbound packets pose a threat to the receiving network. [25] anal-
ysed the networks from Spoofer and open resolver projects and
found that 74% of the networks that do not filter outbound spoofed
packets, do not filter inbound spoofed packets. A more recent study
[24] of 515 ASes found that ingress filtering of inbound spoofed
packets is more widely deployed than egress filtering of outbound
packets.

The correlation between egress and ingress filtering in previous
work shows that the measurements of ingress filtering also provide
a lower bound on the number of networks that enforce egress
filtering of spoofed outbound packets. Therefore our results on
networks that do not enforce ingress filtering imply that at least as
many networks do not perform egress filtering.

2.2 Measurements of Spoofability
Measurements of networks that filter spoofed packets in the In-
ternet was previously done using network traces or using vantage
points. We summarise the results of the previous studies in Table 1,
and briefly explain them below.

Vantage Points.Measurement of networks which do not per-
form egress filtering of packets with spoofed IP addresses was first
presented by the Spoofer Project in 2005 [5]. The idea behind the
Spoofer Project is to craft packets with spoofed IP addresses and
check receipt thereof on the vantage points operated by the volun-
teers, i.e., participants who run a “spoofer” software provided by the
authors. Based on the data collected by the Spoofer Project many
reports were published providing statistics on the deployment of
egress filtering in the Internet [6, 7, 28, 30]; we list the statistics in
Table 1.

The downside of this approach is that the Spoofer Project re-
quires users to download, compile and execute a software - which
also needs administrative privileges to run - once per measurement.
This requires not only technically knowledgeable volunteers that
agree to run untrusted code, but also networks which agree to
operate such vantage points on their premises. [22] argues that
extending the limited coverage of the Spoofer Project is difficult:
the operators are unlikely to volunteer or conduct measurements
that could leak a negative security posture of their networks, in-
cluding lack of support of BCP38 [19]. Hence, [22] propose that the
most viable method to measure filtering of spoofed packets in more
networks is by crowd-sourcing. In 2018 [28] performed a one-time
study of the Spoofer Project by renting a 2,000 EUR crowd-sourcing
platforms with workers that executed the Spoofer software over
a 6 weeks period. Their measurements included additional 342
ASes which were not covered by the Spoofer Project previously.
Crowd-sourcing studies, in addition to being expensive, are also
limited by the networks in which workers are present and do not
provide longitudinal and repetitive studies that can be validated
and reproduced.

In a recent longitudinal data analysis by the Spoofer Project
[30] the authors observed that despite increase in the coverage of
ASes that do not perform ingress filtering in the Internet, the test
coverage across networks and geo-locations is still non-uniform.

Closely related to volunteers is the vantage points measurements
with faulty or misconfigured servers. [34] noticed that some DNS
resolvers do not change the source IP addresses of the DNS requests
that they forward to upstream resolvers and return the DNS re-
sponses using the IP addresses of the upstream resolvers - a problem
which the authors trace to broken networking implementations.
[26] used this observation to measure egress filtering in networks
that operate suchmisconfigured DNS resolvers. Suchmeasurements
are limited only to networks which operate DNS servers with bro-
ken networking implementations: out of 225,888 networks that [26]
measured, they could find such DNS servers only in 870 networks.

Since the Open Resolver and the Spoofer Projects are the only
two infrastructures providing vantage points for measuring spoof-
ing - their importance is immense as they facilitated many research
works analysing the spoofability of networks based on the datasets
collected by these infrastructures. Nevertheless, the studies using
these infrastructure, e.g., [22, 30], point out the problems with the
representativeness of the collected data of the larger Internet. Both
projects (the Spoofer and the Open Resolver) acknowledged the
need to increase the coverage of the measurements, as well as the
challenges for obtaining better coverage and stable vantage points.

Network Traces. To overcome the dependency on vantage
points for running the tests, researchers explored alternatives for

1041

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

Study Coverage Spoofable Type Year Longitudinal Reproducible Scalable
(scanned ASes) ASes

Spoofer Project [5] 202 of 18,000 (1.1%) 52 Egress 2005 ✓ X X
Spoofer Project [7] 1,586 of 44,000 (3.6%) 390 Egress 2013 ✓ X X

Misconfigured servers [26] 2,692 of 48,000 (5.6%) 870 Ingress 2014 X ✓ ✓
Traceroute [29] 1,780 of 56,000 (3.2%) 703 Ingress 2017 X X (✓)
IXP traces [27] 700 of 56,000 (1.3%) 393 In & Eg 2017 X X X

Amazon Turk Spoofer Project [28] 784 of 56,000 (1.4%) 48 Egress 6w. in 2017 ✓ X X
Spoofer Project [30] 5,178 of 66,000 (7.8%) 1,631 In & Eg 2019 ✓ X X

SMap 63,522 of 70,468 (90%) 51,046 Ingress 2019-21 ✓ ✓ ✓

Table 1: Comparison between SMap and other studies.

inferring filtering of spoofed packets. A recent work used loops in
traceroute to infer ability to send packets from spoofed IP addresses,
[29]. This method detects lack of ingress filtering only on provider
ASes (i.e., spoofable customer ASes cannot be detected). The study
in [29] identified loops in 1,780 ASes, which is 3.2% of all the ASes,
and 703 of the ASes were found spoofable. Although a valuable
complementary technique for active probes with vantage points,
this approach has significant limitations: in the absence of loops
ingress filtering cannot be inferred, alternately a forwarding loop
in traceroute does not imply absence of filtering at the edge, since a
loop resulting from a transient misconfiguration or routing update
can occur anywhere in the network. Therefore, to identify a lack of
ingress filtering reliably one needs to detect a border router and,
more importantly, the traceroute loops need to be reproduced - a
difficult problem in practice. Furthermore, reproducing or validat-
ing the dataset after some time is virtually impossible as the odds
for failures rapidly increase. Running traceroutes is also challeng-
ing: black-holes in traceroutes, whereby the routers do not respond
to probes or when routers have a limit for ICMP responses, are
common in Internet [33].

[27] developed a methodology to passively detect spoofed pack-
ets in traces recorded at a European IXP connecting 700 networks.
The limitation of this approach is that it requires cooperation of
the IXP to perform the analysis over the traffic and applies only
to networks connected to the IXP. Allowing to identify spoofing
that defacto took place, the approach proposed in [27] misses out
on the networks which do not enforce filtering but which did not
receive packets from spoofed IP addresses (at least during the time
frame in which the traces were collected).

A range of studies analysed network traces for ingress filtering
using IP address characteristics [4, 9, 10, 14, 36], or by inspecting
on-path network equipment reaction to unwanted traffic, [44]. In
addition to a limited coverage, the studies do not support longi-
tudinal and repeating data collection and analysis, and cannot be
reproduced as they do not make the datasets of their studies public.

3 SCANNING FOR SPOOFABLE NETWORKS
3.1 Dataset
SMap architecture consists of two parts: dataset scan and ingress
filtering scan. The dataset scan collects the popular services using
two methods: domain-based scan and IPv4 based scan. In IPv4 scan
to locate the services SMap probes every IP, checking for open

ports that correspond to the services that we need; for instance,
port 25 for Email, 53 for DNS, 80/443 for Web. To reduce the traffic
volume of the scan, instead of probing each IP address for target
ports, SMap enables also query of the input domains for services.
For every domain, it queries the IP and hostname of the services,
e.g., (A, MX) for Email server, A for Web server, (A, NS) for name
server.

3.2 Methodology
Themeasurementmethodology underlying SMap uses active probes,
some sent from spoofed as well as from real source IP addresses
to popular services on the tested networks. The spoofed source IP
addresses belong to the tested networks (similarly to the Spoofer
Project [5]). The idea behind our methodology is that if the packets
with spoofed addresses reach the services in the tested networks,
they trigger a certain action. This action can be measured remotely.
If the action was not triggered, we conclude that spoofed packets
did not reach the service.

We develop three techniques to detect if networks filter spoofed
traffic based on our methodology: DNS lookup, IPID and PMTUD
based. Using popular services ensures that our measurements apply
to as many Internet networks as possible.

SMap consists of the orchestrator which coordinates and syn-
chronises the prober hosts. The prober hosts receive the dataset of
networks to be scanned for spoofability from the orchestrator. The
probers then run IPID, PMTUD and DNS lookup tests against the
services on the dataset list. SMap applies one test at a time for each
AS in the dataset. Each successful test indicates that packets from a
spoofed IP address reached the destination on the target network,
implying that the target AS does not filter spoofed packets. On the
other hand, a failed test may indicate that one of the ASes on the
path between the probers and the service on the target AS may be
filtering spoofed packets.

The results from the tests are stored in the backend database. The
GUI displays the results of the measurements at https://smap.cad.
sit.fraunhofer.de. We next explain each measurement technique.
In our measurements in Section 4 we compare the success and
applicability of each technique.

3.3 IPID
Each IP packet contains an IP Identifier (IPID) field, which allows
the recipient to identify fragments of the same original IP packet.

1042

SMap: Internet-wide Scanning for Spoofing ACSAC ’21, December 6–10, 2021, Virtual Event, USA

The IPID field is 16 bits in IPv4, and for each packet the Operating
System (OS) at the sender assigns a new IPID value. There are
different IPID assignment algorithms which can be categorised as:
random and predictable. Predictable category uses either a global
counter or multiple counters per designation IP address, such that
the counter is incremented in predictable quotas. Random category
selects each IPID value at random from a pool of values.

Recent work showed that even TCP traffic gets fragmented under
certain conditions [12]. Fragmentation has long history of attacks
which affect both the UDP and TCP traffic [21, 23, 40].

Methodology.We use services that assign globally incremental
IPID values. The idea is that globally incremental IPID [RFC6864]
[42] values leak traffic volume arriving at the service and can be
measured by any Internet host. Given a server with a globally
incremental IPID on the tested network, we sample the IPID value
(send a packet to the server and receive a response) from the IP
addresses controlled by us. We then generate a set of packets to the
server from spoofed IP addresses, belonging to the tested network.
We probe the IPID value again, by sending packets from our real IP
address. If the spoofed packets reached the server, they incremented
the IPID counter on the server - an event which we infer when
probing the value from our real IP address the second time.

The challenge here is to accurately probe the increments rate
of the IPID value (caused by the packets from other sources not
controlled by us), in order to be able to extrapolate the value that
will have been assigned to our second probe from a real source IP.
This allows us to infer if the spoofed packets incremented the IPID
counter.

Identifying serverswith global IPID counters.We send pack-
ets from two hosts (with different IP addresses) to a server on a
tested network. We implemented probing over TCP SYN, ping and
using requests/responses to Name servers and we apply the suitable
test depending on the server that we identify on the tested network.
If the responses contain globally incremental IPID values - we use
the service for ingress filtering measurement with IPID technique.
We located globally incremental IPID in 63.27% of the measured
networks. There are certainly more hosts on networks that support
globally incremental IPID values, yet our goal was to validate our
measurement techniques while keeping the measurement traffic
low - hence we avoided scanning the networks for additional hosts
and only checked for Web, Email or Name servers with globally
incremental IPID counters via queries to the tested domain.

Statistics of IPID values distribution among tested servers are
plotted in Figure 2. When ICMP is filtered, it results in ERROR,
when run with TCP, the IPID values are often zero (i.e., ZERO IPID
in graph) in Figure 2. To improve coverage of the IPID technique
we merge the ICMP&TCP and ICMP&UDP results for each server
in our measurements.

Measuring IPID increment rate. The traffic to the servers is
stable and hence can be predicted, [43].We validate this by sampling
the IPID value at the servers which we use for running the test.
One example evaluation of IPID sampling on one of the busiest
servers is plotted in Figure 3. In this evaluation we issued queries
to a Name server at 69.13.54.XXX during three minutes, and plot
the IPID values received in responses in Figure 3 - the identical
patterns demonstrate predictable increment rates. Which means
that the traffic to the server arrives at a stable rate.

Figure 2: IPIDs on servers in dataset.

0 20 40 60 80 100 120 140 160 180
Time (Second)

0

20000

40000

60000
IP

ID

Figure 3: IPID of Name server 69.13.54.XXX during 180sec.

Accuracy of IPID measurements. The IPID techniques are
known to be difficult to leverage, requiring significant statistical
analyses to ensure correctness. Recently, [17, 37] developed statisti-
cal methods for measuring IPID. However, in contrast to our work,
the goal in [17, 37] is different - they use IPID to measure censor-
ship and have additional sources of inaccuracy, which do not apply
to our measurements: (1) the measurements are applied against
client hosts, which results in significantly higher noise than our
measurements against servers - the clients move between networks,
change IP addresses, the clients are located behind intermediate
devices, such as Network Address translators (NAT) and firewalls -
which also prevents direct measurements; (2) inaccuracies in geolo-
cation tools, which do not apply to our study since we do not need
to know the location to measure ingress filtering, (2) additional
network mechanisms (anycast, rerouting, traffic shaping, transient
network failures). All these can only cause us to classify the server
as not ’testable’, but do not impact ’spoofable’ outcomes. Further-
more, the IPID measurement methods in prior workss use TCP-RST
packets to increment IPID, which are often blocked in firewalls. In
contrast, we use packets which are not blocked such as DNS queries
or TCP-SYN.

Inferring spoofing. We use the following components: the
prober at IP address 7.7.7.7 and a server at IP address 1.2.3.7
that uses globally incremental IPID, illustrated in Figure 4. Us-
ing the prober at 7.7.7.7, we measure the value of the IPID and
the rate at which IPID increments. We use linear regression with

1043

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

Ordinary Least Square (OLS) method to estimate the relation be-
tween IPID and timestamp t . Since IPID is incremental, it holds:
IPID = a ∗ t + b + ϵ, ϵ ∼ N (0,σ 2)

We send N probes to 7.7.7.7 (in step (1)). With N probes, we
can estimate a, b and σ using OLS method in step (2). In step (3) in
Figure 4 we send a set ofM = 6∗σ packets from a spoofed source IP
address 1.2.3.6 (belonging to the probed network). In step (4) at
time TM+N+1 we sample the IPID value Z = IPIDr eal

M+N+1 from the
server from the prober’s real IP address 7.7.7.7 - this is needed in
order to receive the response. We check the IPID value Z in step (5)
in Figure 4. Taking the linear regression model into consideration,
we can calculate IPIDest i

M+N+1 at time TM+N+1. If the M spoofed
packets are filtered, according to 3-sigma rule, there is a 99.73%
possibility that: IPIDest i

M+N+1 − 3 ∗ σ ≤ Z ≤ IPIDest i
M+N+1 + 3 ∗ σ .

However, if the spoofed packets are not blocked, a.k.a. there is
no ingress filtering, the IPID counter should have an additional
increment of M . Thus Z > IPIDest i

M+N+1 + 3 ∗ σ , which is also
Z > IPIDest i

M+N+1 +M/2.

Figure 4: Sequence diagram for IPID technique.

We define outcomes of a test with IPID technique as spoofable,
applicable, non-applicable, N/A; see Table 2. The IPID technique is
not applicable if the IPID counter is constant zero or if the IPID
counter is not globally incremental.

Category IPID PMTUD DNS
Spoofable no filtering no filtering no filtering
Applicable server w/globally

incremental IPID
host supports
PMTUD

has DNS
server

Non-applicable random IPID
or per-dest IPID
or IPID=0

(DF≡0 & MF≡0) or
(DF≡1 or MF≡1)
& no change

N/A host unreachable
or firewall
or packet loss
or load balancer

host unreachable or
misconfigured service
or firewall
or packet loss

no DNS
server
found

Table 2: Outcomes of tests.

3.4 PMTUD
Path Maximum Transmission Unit Discovery (PMTUD) determines
the MTU size on the network path between two IP hosts. The
process starts by setting the Don’t Fragment (DF) bit in IP headers.
Any router along the path whose MTU is smaller than the packet
will drop the packet, and send back an ICMP Fragmentation Needed
/ Packet Too Big (PTB). The payload of the ICMP packet contains the
IP header and the first 8 bytes of the original packet that triggered
the error as well as the MTU of the router that sent the ICMP
message. After receiving an ICMP PTB message, the source host
should either reduce its path MTU appropriately or unset the DF
bit.

A study of CAIDA datasets in 2017 found 3M ICMP fragmenta-
tion needed packets sent by routers in the Internet, with about 1K
routers sending ICMP error message with next hop MTU of less
than 500 Bytes [20].

Figure 5: Sequence diagram for PMTUD technique.

Methodology. The core idea of the Path MTU Discovery (PM-
TUD) based tool is to send the ICMP Packet too Big (PTB) message
from a spoofed source IP address, belonging to the tested network,
and in the 8 bytes payload of the ICMP to insert the real IP address
belonging to the prober. If the network does not enforce ingress
filtering, the server will receive the PMTUD message and will re-
duce the MTU to the IP address specified in the first 8 bytes of the
ICMP payload. We first probe the MTU to a service on the tested
network, then send ICMP PTB from a spoofed IP address. If the
packet arrives at the service, it will reduce the MTU to our prober,
and we will identify this event in the next packet from the service -

1044

SMap: Internet-wide Scanning for Spoofing ACSAC ’21, December 6–10, 2021, Virtual Event, USA

this event implies that the tested network does not apply ingress
filtering.

Identifying servers that support PMTUD.Wemeasured net-
works that support PMTUD (i.e., do not filter ICMP Fragmentation
Needed (Type 3, Code 4) messages), and found that 85.92% of the
tested networks support PMTUD.

Inferring spoofing. The PMTUD test is illustrated in Figure 5.
We establish a TCP connection to a server on the tested network.
Then we send Request1 and receive Response1. If DF bit is not
set, the server does not support PMTUD. Otherwise, we send an
ICMP PTB with smaller MTU. Following that, we request again
and get Response2. If DF1 == 1 and (DF2 == 0 or size2 ≤ size1),
the server supports PMTUD. Now we can proceed to test if ingress
filtering is enforced. We spoof an ICMP PTB with smallest MTU,
using server’s neighbour IP as source IP address. Once that is done,
we make another request. The server is not protected by ingress
filtering if following condition applies: size3 ≤ size2 or (DF2 ==
1 and DF3 == 0).

We define outcomes of a test with PMTUD technique as spoofable,
applicable, non-applicable, N/A; see rightmost column in Table 2.

3.5 DNS Lookup
DNS provides lookup services to networks. Upon receiving a DNS
request, the resolver performs the lookup of the requested domain
name and returns the response with the requested record.

Methodology. We send a DNS request to the tested network
from a spoofed IP address belonging to the tested network. If the
network does not enforce ingress filtering, the request will arrive at
the DNS resolver on that network. A query from a spoofed source
IP address will cause the response to be sent to the IP address from
which the request was sent, i.e., the spoofed IP address. Since we do
not control the spoofed IP address, we will not be able to observe
this event and hence will not be able to infer if the DNS resolver
received our request or if the request was filtered due to spoofing.
To obtain insights into the traffic arriving at the resolver in the
tested network we utilise the payload of the DNS request: the query
contains the domain which we own, set up on Name servers that we
control. Namely, eventhough the response from the DNS resolver
will be returned to the spoofed IP address and will not be received
by us, the DNS request will be issued to our Name servers, which is
an indication that the DNS resolver on the tested network received
our DNS request, sent from spoofed IP address.

Identifying DNS resolvers. The main challenge here is to lo-
cate the DNS resolvers within a domain/network and to trigger a
DNS request to our Name servers. We use Email service in the target
networks (retrieved via theMX type request in the target domain) to
find the DNS resolvers. We send an email to target domain’s Email
server from one of our unique subdomains with a non-existing
recipient set in the destination. This causes the Email server on the
tested network to generate a Delivery Status Notification (DSN)
error message [RFC3464] to our Email server. To be able to send us
the DSN, the Email server will request the resolver on the tested
network, to provide it the MX and A/AAAA records of our Email
exchanger. At the same time, it may also trigger anti-spam checking,
which requests (SPF/TXT, PTR, DKIM, DMARC)-type records in
domains under our control. By monitoring the DNS queries at our

Name servers, we collect the IP addresses of the resolvers. Using
this methodology we identified 49,252 DNS resolvers in 7,141 net-
works. However, in our regular IPv4 scan, to reduce Email traffic in
the Internet, we use the list of servers with UDP port 53 open from
Project Sonar as input.

Figure 6: Sequence diagram for DNS lookup technique.

Inferring spoofing. Given a DNS resolver at IP 1.2.3.7, we
send a DNS query to 1.2.3.7 port 53 asking for a record in domain
under our control. The query is sent from a spoofed source IP
address belonging to the tested network. We monitor for DNS
requests arriving at our Name server. If a query for the requested
record arrives from 1.2.3.7, we mark the network as not enforcing
ingress filtering. The process is illustrated in Figure 6, steps (1-4)
locate the IP address of the DNS resolver, and steps (5,6) test for
ingress filtering on that network.

4 INTERNET MEASUREMENTS
In this section we report on our Internet-wide measurement of
ingress filtering with SMap. Our dataset collection with SMap has
been initiated on July 2019 continually collected data over a period
of one year, of over 6M domains and an entire IPv4 address block.

4.1 Dataset
SMap first collects the dataset of services.Our dataset is constructed
as follows: we periodically download the entire IPv4 scan from
Sonar Project [2]. We use the scan results on UDP port 53 as input
for Name servers and DNS resolvers, scan data on TCP port 25
for Mail servers and scan results on TCP port 80 for Web servers.
Besides, we also make use of forward DNS responses and reverse
DNS responses from Sonar Project to help find hostnames of servers.
In the latest dataset from Sonar, we have services hosted in 63,522
ASes (Table 3) with 4,256,598 DNS servers in 38,838 ASes, 16,478,938
Email servers in 38,937 ASes, and 62,455,254 Web servers in 61,535
ASes; see Table 4.

4.2 Ingress Filtering Results
Domain-scan and IPv4-scan both show that the number of spoofable
ASes grows with the overall number of the ASes in the Internet,
see Figure 1. Furthermore, there is a correlation between fraction

1045

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

Technique_Service Spoofable Applicable Non-Applicable N/A Total ASes
IPID_NS 8,752 23.07% 12,056 31.78% 25,881 25,585 63,522
IPID_MX 4,355 21.48% 6,861 33.84% 13,416 43,245 63,522
IPID_WWW 30,963 51.83% 39,370 63.27% 22,891 2,608 63,522
IPID_ANY 32,248 56.25% 41199 67.52% 22,853 1,299 63,522
PMTUD_NS 9,054 24.16% 11,592 30.93% 25,885 26,045 63,522
PMTUD_MX 23,078 68.69% 27,127 80.74% 6,471 29,924 63,522
PMTUD_WWW 41,959 76.91% 47,524 87.11% 7,034 8,964 63,522
PMTUD_ANY 43,473 75.98% 49,161 85.92% 8,053 6,308 63,522
DNS lookup 25,407 40.00% 44,577 70.18% - - 63,522
ANY 51,046 80.90% 58,432 92.61% 4,662 428 63,522

Table 3: Collected data and analysis per AS view.

Name
Server

Email
Server

Web Server

#IPs 4,256,598 16,478,938 62,455,254
#Blocks 697,851 748,406 3,207,393
#Prefixes 229,981 217,334 542,983
#ASes 38,838 38,937 61,535

Table 4: Servers in tested networks.

of scanned domains and ASes. Essentially the more domains are
scanned, the more ASes are covered, and more spoofable ASes are
discovered; see Figure 7. This result is of independent interest as it
implies that one can avoid scanning the IPv4 and instead opt for
domains-scan, obtaining a good enough approximation. This not
only reduces the volume of traffic needed to carry out studies but
also makes the study much more efficient.

0 1 2 3 4 5 6
Number of Domains 1e6

0

10000

20000

30000

40000

N
um

be
r

of
 A

Se
s

Spoofable
Applicable
Scanned

Figure 7: As we scanmore domains, we cover more ASes and
discover more spoofable ASes.

Further, to avoid single point of failure it is recommended that
the Name servers of a domain are hosted in multiple networks.
This is also our observation when correlating between domains
and ASes. Essentially we find that when testing one domain for
each server we can obtain different results, depending on the AS
that the server is hosted on.

The results of the ingress filtering measurements with SMap
are summarised in Table 3. The techniques that we integrated into
SMap (IPID, PMTUD, DNS lookup) were found applicable to more
than 92% of the measured ASes. Using SMap we identified 80%

0 2 4 6 8 10 12 14 16 18 20
Number of ASes per Domain

0%

20%

40%

60%

80%

100%

C
D

F

Figure 8: Fraction of domains hosted in multiple ASes. We
check how many ASes host services of one domain: 70% of
the domains are hosted in one or two ASes.

of the ASes that do not enforce ingress filtering. In what follows
we compare the effectiveness of the techniques, explain causes for
false negatives and failures. In the rest of this section we explain
and analyse the applicability of our results and the success of the
different techniques, discuss errors and compare to the results in
previous studies.

4.3 Applicability and Success
As can be seen in Table 3 the most applicable technique is PMTUD
against Web servers, which applies to a bit more than 87% of the
ASes, yielded the highest fraction of spoofable ASes. This is not
surprising, since the number of web servers is much larger than the
others and it is recommended not to block ICMP to Web servers to
allow for path MTU discovery.

We next compare the success and applicability of tests with
PMTUD and IPID techniques against Email, Name and Web servers.
In order to compare the effectiveness of the PMTUD and IPID
measurement techniques as well as their applicability, we define
the spoofable and applicable rates, as follows:

Ratespoof able =
Nspoof able

Ntotal − NNA
,Rateapplicable =

Napplicable

Ntotal − NNA

The spoofable rate reflects the fraction of the networks found not
to apply ingress filtering and the applicable rate means applicability
of the test technique. The coverage of each of the three techniques
for different types of servers (Web, Name, and Email) is plotted in
Figure 9.

1046

SMap: Internet-wide Scanning for Spoofing ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Figure 9: Coverage of the measurement techniques.

Figure 9 shows that PMTUD technique (listed as “PMTUD_ANY”
in Figure 9) has a better test rate than either of the IPID and DNS
tests, which indicates that PMTUD is still widely supported. Be-
tween the other two, DNS test has a slightly higher applicability
than IPID test, which shows that globally sequential IPID is less
supported now. In Figure 11 we similarly see that the fraction of
spoofable networks that can be fonud through IPID and PMTUD
is higher than when measured with the other methodologies; Fig-
ure 11 plots the networks found spoofable via IPID vs PMTUD
excluding "N/A" networks.

In general, tests against Web servers have a higher applicability
rate than the tests with Email or DNS servers, regardless of which
techniquewas used (IPID or PMTUD). The number ofWeb servers is
much larger than the others. It is much easier to setup a Web server
than Email server or DNS server. Considering that DNS servers and
Email servers are more likely to be hosted by providers, they also
have higher probability to get new system updates. Furthermore,
we find that when a Web server is not available (“N/A”), both Email
and DNS servers cannot be tested, either. This also results in much
higher N/A outcomes for tests against Email and DNS servers as
opposed to Web servers.

The higher applicability of the tests against web servers also cor-
relates with a higher number of spoofable networks. In Figure 10,
we show the relationships between the applicability of SMap mea-
surement techniques to different services and the overlap between
them.

4.4 Errors
We define the result of SMap evaluation successful (i.e., true posi-
tive) if at least one of the three tests outputs that the tested network
does not filter spoofed packets: either the IPID value on the server
in the tested network was incremented as expected (IPID test) or
we receive a query at our domain (DNS test) or the server on the
tested network reduced the MTU of the packets sent to us (PMTUD
test). When either of the three techniques provides a positive result,
we mark the network as not filtering.

SMap does not make mistakes when reporting a network as not
filtering. However, it can have false negatives: when the scan does
not report network as not filtering when a network does not filter
spoofed packets.

Figure 10: Number of Applicable (left) and Spoofable (right)
ASes according to service type.

Figure 11: Comparison of spoofability via IPID and PMTUD.

4.4.1 No False Positives. Our techniques are not susceptible to false
positives, that is, classification of the tested network as filtering
spoofed packets when in fact it does not do so. This is a side effect
of our methodology - only when spoofing is not filtered will the
“test action” be triggered.

IPID technique.When spoofing is not filtered the counter on
the server will be incremented - which is the test action. At the
probing phase the counter’s value will equal or large than the ex-
pected value after the increment phase. The repeated measurements
ensure that we do not accidentally interpret noise (i.e., packets from
other sources to the same server) as lack of ingress filtering.

DNS technique.When spoofing is not filtered the DNS resolver
on the tested network will receive a DNS request from a spoofed
IP address to our domain. Hence a query at our domain is the test
action that spoofed packets are not filtered.

PMTUD technique. Reduction of the MTU of the packets sent
from the test server to our network is the action which indicates
that spoofing filtering is not enforced.

4.4.2 False Negatives. False negatives in our measurements mean
that a network that does not perform filtering of spoofed packets
is not marked as such. We next list the causes of false negatives for
each of our three techniques. Essentially the false negatives cannot
be resolved, and therefore our measurement results of networks
that enforce ingress filtering introduce a a lower bound. The net-
works that we classify as those that do not apply ingress filtering -

1047

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

definitely allow packets from spoofed IP addresses into the network.
The networks which were not classified as “not enforcing ingress
filtering”, could still be “not enforcing ingress filtering”, but this
cannot be determined using our techniques.

IPID technique. Load balancing can introduce a challenge in
identifying whether a given network enforces ingress filtering. As
a result of load balancing our packets will be split between multiple
instances of the server, hence resulting in low IPID counter values.
There are different approaches for distributing the load to different
instances, e.g., random or round robin, which makes it impossible
to identify whether a “load-balanced-server” is on a network which
applies ingress filtering or not.

Anycasted server instances can also introduce a challenge in
inferring ingress filtering enforcement. We identified such cases by
performing traceroutes to the server.

DNS technique. Firewalls, blocking incoming packets on port
53, would as a result generate a similar effect as ingress filtering on
our servers: we would not receive any DNS requests to our domain.
However, such a setting does not indicate that the tested network
actually performs ingress filtering.

PMTUD technique. Firewalls are often configured to block
ICMP packets. In such case the evaluation result is similar as when
a tested network does not enforce ingress filtering: our PMTUD
packets will be blocked by the firewall, but not because they orig-
inate from an IP address that belongs to the tested network but
because the firewall blocks ICMP packets. This case can be identi-
fied by sending ICMP PMTUD packets from an IP address that does
not belong to the network. If the ICMP packets are not blocked
(but were blocked when the packets were sent from a spoofed IP
address) then the network does not block ICMP packets and does
enforce IP spoofing filtering. On the other hand if the packets are
blocked then one cannot determine if the blocking is done because
of ICMP or because of filtering of spoofed IP addresses.

4.5 Comparison with Other Measurements
To understand the effectiveness of our methodologies we compare
the results of our measurements with the active measurements of
ingress filtering performed by the CAIDA Spoofer Project. These
include two types of measurements: using traceroute and using
agents. The spoofer project is the only measurement study that
makes the datasets from their scans available online. The traceroute
approach and the agents approach are the only two other active
measurements of enforcement of ingress filtering (see RelatedWork
Section 2). We crawled all the 217,917 session reports in 2019 of
CAIDA Spoofer Project. These included 2,867 ASes with Spoofer
Project agents, and 2,500 ASes with Spoofer Project traceroute
loops (total of 5,367 ASes). Using our methodologies we measured
63,522 ASes, which is substantially more than the previous studies
all together. We compare between our results and the other two
methodologies below.

Traceroute Active Measurements. We analyse the datasets
from the traceroutemeasurements performed by the CAIDA Spoofer
Project within the last year 2019, [29]. The measurements identified
2,500 unique loops, of these 703 were provider ASes, and 1,780
customer ASes. The dataset found 688 ASes that do not enforce
ingress filtering. Out of 688 ASes found with traceroutes by the

Spoofer Project, we could not test 4 ASes (none of our tests applied)
and 36 ASes were not included in our tests (those ASes could not be
located from domain names - due to our attempt to reduce traffic
and not to scan IPv4 but to collect the services via domain names).
The rest of the ASes agree with our measurement results.

AgentsActiveMeasurements.Agentswith active probes found
608 ASes that were found not to be enforcing ingress filtering using
the agents approach of the Spoofer Project (these include duplicates
with the traceroute loops measurements). Those contain some of
the duplicates from traceroute measurements: together both ap-
proaches of the Spoofer Project found 1,113 ASes to be spoofable.
Apart from 57 ASes not included in our tests, we could not test 9
ASes, the rest were also identified by our tests.

Although the agents provide the optimal setup for testing filter-
ing, with control over the packets that can be crafted and sent from
both sides, as we explain in Related Work Section 2, this approach
is limited only to networks that deploy agents on their networks.
In contrast, SMap provides better coverage since it is potentially
applicable to every network that has one of the services that are
required in our tests.

In total, our results identified 51,046 ASes to be spoofable, which
is more than 80% of the ASes that we tested. This is also 50,023
ASes more than that both the traceroute and the agents approaches
found.

These findings show that SMap offers benefits over the existing
methods, providing better coverage of the ASes in the Internet
and not requiring agents or conditions for obtaining traceroute
loops, hence improving visibility of networks not enforcing ingress
filtering.

5 NETWORKS ANALYSIS
In order to understand if there are differences in enforcement of
ingress filtering between different network types and different
countries, we perform characterisation of the networks that we
found to not be filtering spoofed packets. Specifically, we ask the
following questions: Does business type of networks or geo-location
of networks influence filtering of spoofed packets?

To derive the geo-location of ASes we used MaxMind GeoLite2
GeoIP database [1]. The results are listed in Table 5. The tested ASes
are distributed across different countries, with most ASes being in
large countries, like US and Russia. The ration of spoofable ASes
ranges between 67% and 84%, with Ukraine leading with the fraction
of spoofable networks, with 84%. Surprisingly the ratio between the
geolocation and spoofed packets is similar across different countries,
with USA and Russia leading with 32% of the networks and 33% of
the networks respectively, that do not filter spoofed packets.

We also want to understand the types of networks that we could
test via domains-wide scans. To derive the business types we use
the PeeringDB. We classify the ASes according to the following
business types: content, enterprise, Network Service Provider (NSP),
Cable/DSL/ISP, non-profit, educational/research, route server at
Internet Exchange Point (IXP)1 We plot the networks that do not
enforce ingress filtering according to business types in Figure 12.

1A route server directs traffic among Border Gateway Protocol (BGP) routers.

1048

SMap: Internet-wide Scanning for Spoofing ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Country Tested ASes Spoofable
ASes

Spoofable
Ratio

US 16,138 12,385 76.74%
BR 7,692 6,447 83.81%
RU 4,906 4,221 86.04%
PL 2,092 1,739 83.13%
DE 2,171 1,677 77.25%
GB 2,231 1,648 73.87%
UA 1,776 1,547 87.11%
IN 1,970 1,480 75.13%
ID 1,412 1,236 87.54%
AU 1,625 1,234 75.94%
CA 1,484 1,184 79.78%
FR 1,310 1,036 79.08%
NL 1,308 1,026 78.44%
IT 1,013 850 83.91%
ES 1,001 783 78.22%
AR 918 733 79.85%
RO 962 720 74.84%
JP 782 606 77.49%
HK 743 565 76.04%
CZ 673 560 83.21%
Table 5: Top-20 Countries with most tested ASes.

Figure 12: Spoofable ratio across ASes’ types. AS type is
queried from PeeringDB.

According to our study enterprise and non-profit networks en-
force ingress filtering more than other networks. In contrast, NSPs
contain the most networks that do not enforce ingress filtering.

There is a strong correlation between the AS size and the en-
forcement of spoofing, see Figure 13. Essentially, the larger the AS,
the higher the probability that our tools identify that it does not
filter spoofed packets. The reason can be directly related to our
methodologies and the design of our study: the larger the network
the more services it hosts. This means that we have more possibil-
ities to test if spoofing is possible: for instance, we can identify a
higher fraction of servers with a globally incremental IPID counters,
which are not “load balanced”. In Figure 14 we plot the statistics of
the tested networks according to their size and type. The results
show a correlation between the size of the network and its type.

Figure 13: Spoofable ratio according to networks’ sizes. Net-
work size is calculated from GeoLite2-ASN database.

For instance, most NSP networks are large, with CIDR/6. This is
aligned with our finding that among NSP networks there was the
highest number of spoofable networks.

Figure 14: Distribution of networks’ sizes vs types.

6 CONCLUSIONS
Much effort is invested to understand the extent of spoofability in
the Internet. However, current measurement studies have limited
applicability, providing results that apply to a small set of Internet
networks.

Our work provides the first comprehensive view of ingress fil-
tering in the Internet. We showed how to improve the coverage
of the Internet in ingress filtering measurements to include many
more ASes that were previously not studied. Our techniques al-
low to cover more than 90% of the Internet ASes, in contrast to
best coverage so far of 7.5% of the ASes performed by the Spoofer
Project. This coverage can be further extended to include 100% of
the Internet’s ASes by scanning the IPv4 range instead of opting
for the dataset of [2], that we used in our study.

The most significant aspect of our methodologies is that they
do not require coordination with the scanned networks. SMap can
measure spoofability in any TCP/IP network with standard and
widely supported services, such as Email and web. We integrated
into SMap three techniques for testing ingress filtering: DNS-based,

1049

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Tianxiang Dai and Haya Shulman

IPID-based and PMTUD-based. Our experimental comparison of
the effectiveness of the techniques demonstrated that DNS-based
technique has a wider applicability rate on networks that operate
DNS resolvers than the other two techniques, while the detection
of the spoofability of networks is more accurate with PMTUD.

We set up SMap as a public service for continuous collection and
analysis of the ingress filtering in the Internet at
https://smap.cad.sit.fraunhofer.de.

ACKNOWLEDGMENTS
This work has been co-funded by the German Federal Ministry of
Education and Research and the Hessen State Ministry for Higher
Education, Research and Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE and
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) SFB 1119.

REFERENCES
[1] [n. d.]. MaxMind GeoLite2 Database. https://dev.maxmind.com/geoip/geoip2/

geolite2/
[2] [n. d.]. Rapid7 Labs Open Data. https://opendata.rapid7.com/
[3] F. Baker and P. Savola. 2004. Ingress Filtering for Multihomed Networks. http:

//tools.ietf.org/rfc/rfc3704.txt RFC3704.
[4] Paul Barford, Rob Nowak, RebeccaWillett, and Vinod Yegneswaran. 2006. Toward

a model for source addresses of internet background radiation. In Proc. of the
Passive and Active Measurement Conference.

[5] Robert Beverly and Steven Bauer. 2005. The Spoofer project: Inferring the extent
of source address filtering on the Internet. In Usenix Sruti, Vol. 5. 53–59.

[6] Robert Beverly, Arthur Berger, Young Hyun, and K Claffy. 2009. Understanding
the efficacy of deployed internet source address validation filtering. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. 356–369.

[7] Robert Beverly, Ryan Koga, and KC Claffy. 2013. Initial longitudinal analysis of
IP source spoofing capability on the Internet. Internet Society (2013), 313.

[8] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.
2018. Domain validation++ for MitM-resilient PKI. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2060–2076.

[9] Zesheng Chen, Chuanyi Ji, and Paul Barford. 2008. Spatial-temporal characteris-
tics of internet malicious sources. In IEEE INFOCOM 2008-The 27th Conference on
Computer Communications. IEEE, 2306–2314.

[10] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael
Bailey, and Manish Karir. 2014. Taming the 800 pound gorilla: The rise and
decline of NTP DDoS attacks. In Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 435–448.

[11] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021. The
Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources. In
30th USENIX Security Symposium (USENIX Security 21). 3147–3164.

[12] Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. DNS-over-TCP
considered vulnerable. In ANRW ’21: Applied Networking Research Workshop,
Virtual Event, USA, July 24-30, 2021. ACM, 76–81.

[13] Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. Let’s Downgrade
Let’s Encrypt. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. ACM.

[14] Alberto Dainotti, Karyn Benson, Alistair King, KCClaffy,Michael Kallitsis, Eduard
Glatz, and Xenofontas Dimitropoulos. 2013. Estimating internet address space
usage through passive measurements. ACM SIGCOMM Computer Communication
Review 44, 1 (2013), 42–49.

[15] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. 475–488.

[16] Zakir Durumeric, EricWustrow, and J Alex Halderman. 2013. ZMap: Fast Internet-
wide scanning and its security applications. In Presented as part of the 22nd
{USENIX} Security Symposium ({USENIX} Security 13). 605–620.

[17] Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and Jedidiah R Crandall. 2014.
Detecting intentional packet drops on the Internet via TCP/IP side channels. In
International Conference on Passive and Active Network Measurement. Springer,
109–118.

[18] Paul Ferguson. 2000. Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing. (2000).

[19] P. Ferguson and D. Senie. 2000. Network Ingress Filtering: Defeating Denial of
Service Attacks which employ IP Source Address Spoofing. http://tools.ietf.org/

rfc/rfc2827.txt RFC2827.
[20] Matthias Göhring, Haya Shulman, and Michael Waidner. 2018. Path MTU Discov-

ery Considered Harmful. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 866–874.

[21] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous:
or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The Conference on Com-
munications and Network Security, Washington, D.C., U.S. IEEE.

[22] Gokay Huz, Steven Bauer, KC Claffy, and Robert Beverly. 2015. Experience in
using mturk for network measurement. In Proceedings of the 2015 ACM SIGCOMM
Workshop on Crowdsourcing and Crowdsharing of Big (Internet) Data. 27–32.

[23] Christopher A Kent and Jeffrey C Mogul. 1987. Fragmentation considered harmful.
Vol. 17.

[24] Maciej Korczyński, Yevheniya Nosyk, Qasim Lone, Marcin Skwarek, Baptiste
Jonglez, and Andrzej Duda. 2020. The Closed Resolver Project: Measuring the
Deployment of Source Address Validation of Inbound Traffic. arXiv preprint
arXiv:2006.05277 (2020).

[25] Maciej Korczyński, Yevheniya Nosyk, Qasim Lone, Marcin Skwarek, Baptiste
Jonglez, and Andrzej Duda. 2020. Don’t forget to lock the front door! inferring
the deployment of source address validation of inbound traffic. In International
Conference on Passive and Active Network Measurement. Springer, 107–121.

[26] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. 2014.
Exit from Hell? Reducing the Impact of Amplification DDoS Attacks. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14). 111–125.

[27] Franziska Lichtblau, Florian Streibelt, Thorben Krüger, Philipp Richter, and Anja
Feldmann. 2017. Detection, classification, and analysis of inter-domain traffic
with spoofed source IP addresses. In Proceedings of the 2017 Internet Measurement
Conference. ACM, 86–99.

[28] Qasim Lone, Matthew Luckie, Maciej Korczyński, Hadi Asghari, Mobin Javed,
and Michel van Eeten. 2018. Using Crowdsourcing Marketplaces for Network
Measurements: The Case of Spoofer. In 2018 Network Traffic Measurement and
Analysis Conference (TMA). IEEE, 1–8.

[29] Qasim Lone, Matthew Luckie, Maciej Korczyński, and Michel van Eeten. 2017.
Using loops observed in traceroute to infer the ability to spoof. In International
Conference on Passive and Active Network Measurement. Springer, 229–241.

[30] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A Kroll, and
k claffy. 2019. Network Hygiene, Incentives, and Regulation: Deployment of
Source Address Validation in the Internet. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 465–480.

[31] Gordon Fyodor Lyon. 2009. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure.

[32] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and
Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with
Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS. ACM.

[33] Pietro Marchetta, Antonio Montieri, Valerio Persico, Antonio Pescapé, Ítalo
Cunha, and Ethan Katz-Bassett. 2016. How and how much traceroute confuses
our understanding of network paths. In 2016 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN). IEEE, 1–7.

[34] Jared Mauch. 2013. Open resolver project. In Presentation, DNS-OARC Spring
2013 Workshop (Dublin).

[35] Rui Miao, Rahul Potharaju, Minlan Yu, and Navendu Jain. 2015. The dark menace:
Characterizing network-based attacks in the cloud. In Proceedings of the 2015
Internet Measurement Conference. ACM, 169–182.

[36] David Moore, Colleen Shannon, Douglas J Brown, Geoffrey M Voelker, and Stefan
Savage. 2006. Inferring internet denial-of-service activity. ACM Transactions on
Computer Systems (TOCS) 24, 2 (2006), 115–139.

[37] Paul Pearce, Roya Ensafi, Frank Li, Nick Feamster, and Vern Paxson. 2017. Augur:
Internet-wide detection of connectivity disruptions. In 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 427–443.

[38] Terrance A. Roebuck. 2005. Network security: DoS vs DDoS attacks.
http://www.crime-research.org/articles/network-security-dos-ddos-attacks/5.

[39] Christian Rossow. 2014. Amplification Hell: Revisiting Network Protocols for
DDoS Abuse.. In NDSS.

[40] Haya Shulman and Michael Waidner. 2014. Fragmentation considered leak-
ing: port inference for dns poisoning. In International Conference on Applied
Cryptography and Network Security. Springer, 531–548.

[41] Stephen M Specht and Ruby B Lee. 2004. Distributed Denial of Service: Tax-
onomies of Attacks, Tools, and Countermeasures.. In ISCA PDCS. 543–550.

[42] J. Touch. 2013. Updated Specification of the IPv4 ID Field. http://tools.ietf.org/
rfc/rfc6864.txt RFC6864.

[43] Duane Wessels, Marina Fomenkov, et al. 2003. Wow, that’sa lot of packets. In
Proceedings of Passive and Active Measurement Workshop (PAM).

[44] Guang Yao, Jun Bi, and Athanasios V Vasilakos. 2014. Passive IP traceback:
Disclosing the locations of IP spoofers from path backscatter. IEEE Transactions
on Information Forensics and Security 10, 3 (2014), 471–484.

1050

	Abstract
	Contributions
	Acknowledgements
	Contents
	Introduction
	Thesis Outline
	Contributions
	Papers and Posters

	Evaluations on DNS Vulnerabilities
	IP Fragmentation
	Related Works
	Contributions

	Response Rate Limiting
	Related Works
	Contributions

	DNSSEC
	Related Works
	Contributions

	Evaluations on PKI Security
	Related Works
	Contributions

	Evaluations on Ingress Filtering
	Related Works
	Contributions

	Summary and Future Work
	Summary
	Future Work

	Bibliography
	Appendix
	Papers and Posters
	DNSSEC Misconfigurations in Popular Domains
	Domain Validation++ For MitM-Resilient PKI
	Poster: Off-path Attacks Against PKI
	Poster: Fragmentation Attacks on DNS over TCP
	DNS-over-TCP Considered Vulnerable
	From IP to Transport and Beyond: Cross-Layer Attacks Against Applications
	The Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources
	Let’s Downgrade Let’s Encrypt
	SMap: Internet-wide Scanning for Spoofing

