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Vorwort des Herausgebers

Kontext — Komposition technischer Systeme unter Unsicherheit

Die ersten zwei Phasen einer technischen Entwicklung werden nach Pahl &
Beitz (Konstruktionslehre, Springer, 2021) Konzept und Entwurf genannt.
In der Konzeptphase wird die Funktions- und damit die Wirkstruktur der
Funktionselemente festgelegt. Funktionselemente übernehmen Teilfunktionen,
die sich in der Gesamtstruktur zur Gesamtfunktion aggregieren. In der auf die
Konzeptphase folgende Entwurfsphase werden die cyber-physische Komponen-
ten, die die Teilfunktionen erfüllen, „grobmaßstäblich“ festgelegt. Nach Pahl
& Beitz erfolgt die Bewertung von Nutzen und Aufwand (sog. Nutzwertanal-
yse) in der Konzeptphase. Diese in der VDI-Richtlinie Konstruktionsmethodik
(Technisch- wirtschaftliches Konstruieren VDI 2225) beschriebene Nutzwert-
analyse ist stark von dem Schweizer Ingenieur Fritz Kesselring beeinflusst. Mit
seiner „Technischen Kompositionslehre“ (Springer, 1954) gilt Kesselring als der
westliche Vordenker eines Qualitätsbegriffs, den wir heute mit wirtschaftlicher
Nachhaltigkeit in Verbindung bringen. Das östliche Pendant zu Kesselring ist
Genichi Taguchi, der in den 1950 und 1960er Jahren erstmals die „Kosten
für Gesellschaft“ als Metrik betrachtet und als Begründer der Robust-Design-
Methodik mit den Baukastenelementen Qualitätskostenfunktion, Qualität-
sregelung, statistische Versuchsmethodik, Six-Sigma, Parameterdesign und
Systemdesign gilt.
Das Problem der Konstruktionsmethode von Pahl & Beitz ist das konsekutive
Vorgehen nach dem Prinzip „Teile und Herrsche“. Tatsächlich kann die Qual-
ität mit den Dimensionen a) Ressourcenverbrauch und Emissionen (Aufwand),
b) Verfügbarkeit und c) Akzeptanz (Sicherheit, funktionale Qualität) sowohl
in der Fertigung als auch in der Nutzung erst in der Entwurfsphase beurteilt
werden. Genichi Taguchi war der Erste, der erkannte, dass dies nur gelingt,
wenn phasenübergreifend gestaltet, gefertigt und betrieben wird. Die östliche
Ingenieurschule von Taguchi ist der westlichen Schule von Pahl überlegen,
wenn maximale Nachhaltigkeit bei minimalem Aufwand Kompositionsziel ist.
Die Pahlsche Konstruktionsmethodik versteht man aus der Historie. Professor
Gerhard Pahl, der in meinem Studium einer meiner Lehrer war, wirkte in
den 1960 und 1970er Jahren in der Industrie. Dies war eine Zeit, abgesehen
von der Ölkrise, in der Ressourcenknappheit technische Entscheidungen nur
unwesentlich beeinflussten. Daher stand für Pahl und seine Lehre an erster
Stelle a) Funktion, b) Verfügbarkeit und c) Sicherheit. An zweiter Stelle
standen d) Montage, e) Fertigung und f) Wirtschaftlichkeit. Damit ist
die Pahlsche Konstruktionsmethodik immer noch Sullivan’s „form follows
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function“ aus dem 19ten Jahrhundert verpflichtet.
Anders verhält es sich mit der Robust-Design-Methodik von Taguchi. In den
50er und 60er Jahren des letzten Jahrhunderts herrscht in Japan ein Mangel
an qualitativ hochwertigen Halbzeugen. Kundenakzeptanz durch maximale
funktionale Qualität (invers zur Differenz zwischen realisierter und erwarteter
Funktion) konnte daher — so Taguchi’s Einsicht - nur dann erreicht werden,
wenn Beschaffung, Fertigung und Nutzung ganzheitlich gestaltet wird.
Heute ist die Erfüllung eines essentiellen Bedürfnisses, und damit die Funktion
die Nebenbedingung und minimale private und soziale Kosten sowie maximale
Verfügbarkeit und Sicherheit, die Zielfunktion. Trotz seines Weitblicks war
Taguchi’s Zeit nicht reif genug, das beschränkte Optimierungsproblem unter
Unsicherheit zu lösen, da ihm weder die Modellierungsmethoden noch die
mathematischen Lösungsmethoden zur Verfügung standen.
Dies ist erst heute durch Zusammenarbeit von angewandter Mathematik
und Ingenieurwissenschaft möglich. Die vorliegende Dissertation von Herrn
Philipp Leise ist hierfür ein leuchtendes Beispiel. Im Sonderforschungsbereich
805 erlebten wir im Jahr 2015, dass beim Getriebeentwurf entweder brutale
Rechengewalt z.B. durch die Firma IAV eingesetzt wurde oder Heuristiken,
wie genetische Algorithmen Anwendung fanden, wie am Institut für Mechatro-
nische Systeme der TU Darmstadt. Brutale Rechengewalt scheitert häufig an
den Berechnungskosten, genetische Algorithmen führen häufig nur zu lokalen
Optima und liefern auch keine absolute Qualitätsaussage wie „besser geht’s
nicht“, garantieren keine globale Optimalität. Bei der Komposition haben
wir Ingenieurinnen und Ingenieure mit dem Fluch der Dimension (kombina-
torische Explosion) bei unklarer Sicht (Unsicherheit) zu kämpfen. Unsere
Waffen sind heute mathematischer Methoden und Algorithmen. Herr Leise
war also Waffenschmied.

Dargestellte und nichtdargestellte Forschung

Die Arbeit von Herrn Leise entstand im Sonderforschungsbereich (SFB)
805 der Deutschen Forschungsgemeinschaft. Der im Jahr 2021 nach 12
Jahren Forschung abgeschlossene SFB hatte Beherrschung von Unsicherheit
in lasttragenden Systemen des Maschinenbaus zum Thema.
Unsicherheit ist bei der Komposition technischer Systeme immer präsent.
Dies betrifft die Modelle, Strukturen (Funktions- und Bauteilstrukturen)
und insbesondere die Nutzungsszenarien. Für jeden Ingenieur bzw. jede
Ingenieurin ist es Aufgabe, die Unsicherheit zu quantifizieren und Strategien
für die Beherrschung von Unsicherheit zu entwickeln und zu implementieren.
Herr Leise gibt mit seiner Arbeit eine Antwort auf die Frage, wie das von
Taguchi angedachte Systemdesign aussieht, insbesondere wenn Unsicherheit
zu berücksichtigen ist. Wie gesagt, fehlten Taguchi noch die notwendigen
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Modelle und mathematischen Methoden.1 Herr Leise entwickelt, ertüchtigt
und nutzt Methoden um alle drei Unsicherheitskategorien, nämlich Daten-,
Modell- und Strukturunsicherheit bei der Komposition zu berücksichtigen.
Mittels Clustering-Verfahren und stochastischer Optimierung werden un-
sichere Nutzungsszenarien betrachtet.
Beides betrifft Daten- und Modellunsicherheit. Phänomenologische und
Skalierungsmodelle technischer Komponenten wie Pumpe, Triebwerk, Pro-
peller und Elektromotor in den Ingenieurwissenschaften sind häufig Monome
(Produkte von Potenzen). Der tiefergehende Grund liegt im Bridgman-
Postulat („absolute Bedeutung relativer Größen“) und dem Buckingham-Pi-
Theorem. Dadurch sind Optimierungsprobleme häufig nichtlinear und nicht
konvex, was exakte Optimierungen sehr erschwert.
Herr Leise zeigt wie durch „Geometric Programming“ Konvexität erreicht
werden kann und damit typische technische Systeme wie ein Antriebsstrang
exakt optimiert werden können. Fragt man Herrn Leise, dann würde er
dies sicherlich als seine größte Leistung benennen, nämlich das Potential des
„Geometric Programming“ für die Ingenieurwissenschaften entdeckt zu haben.
Dadurch wird die Strukturunsicherheit erst beherrschbar, dass nämlich der
vollständige Designraum durch ein exaktes Verfahren exploriert werden kann.
Übliche Ingenieur-Heuristiken wie Partikelschwarm oder genetische Methoden
bleiben i.d.R. weit hinter dem exakten Verfahren zurück. Interessant ist, dass
die Designmethode an sich, nämlich die beschränkte Optimierung, wiederum
ein Optimierungsproblem ist, bei dem minimale Rechenzeit und minimale
Modellunsicherheit im Zielkonflikt stehen. Herr Leise geht darauf in seiner

1 Im Kontext des SFB 805 wird das Systemdesign Sustainable-Systems-Design (SSD)
genannt. Sullivan’s Paradigma „form follows function“ ist dabei durch das beschränkte
Optimierungsproblem „maximise quality subject to functionallity“ ersetzt. Aus
der Nachhaltigkeitssicht ist dies allerdings noch nicht ausreichend. Es gibt drei
komplementäre Nachhaltigkeitsstrategien, nämlich Suffizienz, Effizienz und Konsistenz.
Die Suffizienz ist die Beschränkung auf wesentliche Bedürfnisse, die Effizienz und die
Konsistenz wird in „maximise quality subject to functionallity“ bereits ausreichend
dargestellt.

Ein sehr knappes und schönes Leitbild ist das von Dieter Rahms, nämlich
„less but better“. Mit „less ... “ ist die Suffizienz dargestellt, mit „... but better“ die
Effizienz und Konsistenz. Effizienz ohne Suffizienz führt nicht zur Nachhaltigkeit. Dies
zeigt die Zunahme der Emissionen durch Wohnen obgleich Isolation und Heizungen
immer besser bzw. effizienter werden. Grund ist die Zunahme des Wohnraums
pro Person. Im Verkehr lassen sich ähnliche Beispiele finden. So werden Motoren
effizienter die Suffizienz ist aber nicht erreicht, wenn Motoren immer größer werden.
So wie Gestalt und Größe auseinandergehalten werden müssen und an die Stelle
der Geometrie treten, muss Effizient und (notwendige) Größe bzw. Menge getrennt
werden.
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Arbeit ein.
Herr Leise betrachtet vier Anwendungen von denen nur zwei in der vor-
liegenden Arbeit diskutiert sind, nämlich erstens eine Wasserinfrastruktur
(Kapitel 3) und zweitens den Antriebsstrang eines elektrischen Fahrzeuges
mit mechanischem Getriebe, vgl. Kapitel 4 der Arbeit. Drittens taucht in der
Arbeit immer wieder ein Beispiel auf, das er zitiert aber nicht weiter ausführt,
nämlich den nachhaltigen Flugzeugentwurf eines elektrischen Flugzeugs mit
einer großen Anzahl verteilter Propulsoren und viertens der Prüfstand, den
Herr Leise in seiner Arbeit aufgebaut hat. An diesem Prüfstand, einem
generischen Wasserversorgungssystem, hat Herr Leise die vier Resilienzfunk-
tionen eines kybernetischen Systems, nämlich Überwachen, Reagieren, Lernen
und Antizipieren realisiert und dynamische Strategien und Resilienzmetriken
validiert.
Es ist notwendig den Prüfstand zu nennen, da uns allen bewusst ist, wie
aufwendig und zeitraubend es ist, einen mechatronischen Prüfstand zu planen,
bauen, in Betrieb zu nehmen und damit produktiv Forschung zu betreiben,
die über reine Konzepte hinausgeht. Neben dynamischen Resilienz-Metriken
und -Eigenschaften findet sich in der Arbeit auch statische Resilienz-Metriken
wie z.B. die Nehmerqualität eines Netzwerks. Auch dies ist mir wichtig zu
erwähnen. Der Begriff Resilienz ist derzeit so modern, dass er allenthalten zu
hören ist, ohne dass eine Begriffsbildung stattgefunden hat. Begriffsbildung
ist eine wesentliche Aufgabe von Wissenschaft.2 Herr Leise leistet einen
wesentlichen Beitrag hierzu - bei einem Wort, dass leider häufig unreflektiert
verwendet wird.

Darmstadt, im Oktober 2022

Peter Pelz

2 Die begriffsbildende Aufgabe wurde schon als nichts nützliche Scholastik z.B. von
Francis Bacon kritisiert. Dies ist durchaus berechtigt, nämlich dann, wenn Wis-
senschaft sich nur um sich selbst kreist und zu einem geschlossenen und autistischen
System mit eigner Sprache degeneriert. Die Begriffsbildung muss genutzt werden für
Kommunikation, Selbstorganisation, Analyse und Synthese. Dies erfordert Offenheit
und Reibung und ist damit gerade Voraussetzung für die moderne wissenschaftliche
Methode, die Francis Bacon auf den Weg gebracht hat.
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Kurzfassung

Die vorliegende Dissertation ist im Rahmen des Sonderforschungsbereichs 805 am Institut

für Fluidsystemtechnik im Fachbereich Maschinenbau der TU Darmstadt entstanden. Be-

trachtet wird die konzeptionelle Auslegung technischer Systeme unter Berücksichtigung von

Unsicherheit mithilfe exakter Optimierungsalgorithmen. Diese eignen sich insbesondere für

eine systematische Auslegung, da sie zur Auffindung global-optimaler Systemstrukturen

führen und damit Strukturunsicherheit reduzieren. Die hinsichtlich einer definierten Ziel-

funktion optimierte Systemgestalt hängt maßgeblich von der gewählten Parametrisierung ab.

Da diese Parametrisierung jedoch während der konzeptionellen Entwicklung mit Unsicher-

heit behaftet ist, entstehen bei Nutzung unterschiedlicher Parametrisierungen in der Regel

unterschiedliche Lösungsstrukturen. Darüber hinaus findet die Lösungssuche für technische

Systeme mithilfe global-optimaler Optimierungsalgorithmen in einem Spannungsfeld zwis-

chen der Nutzung effizienter Lösungsalgorithmen, einer effizienten Modellentwicklung und

einer zweckmäßigen Approximation der relevanten Wirklichkeit mithilfe des entwickelten

Systemmodells statt. Oben genannte Punkte werden in der Arbeit daher adressiert. Anhand

von zwei technischen Systemen wird aufgezeigt, wie eine gemischt-ganzzahlige nichtlineare

Modellierung zum konzeptionellen Design unter Unsicherheit genutzt werden kann. Betra-

chtet werden als Anwendungsfälle die dezentrale Wasserversorgung in Hochhäusern sowie

der Antriebsstrang von batterieelektrisch betriebenen Fahrzeugen mit Mehrganggetriebe.

Die entwickelten gemischt-ganzzahligen Programme werden mithilfe gängiger Software

gelöst. Um die Lösungszeit zur Auffindung effizienter Lösungen zu reduzieren, werden

darüber hinaus für beide Anwendungsfälle neue problemspezifische Heuristiken vorgestellt.

Zur Beherrschung der Unsicherheit wird die Nutzungsphase in beiden Anwendungsfällen

mithilfe von Szenarien in einem deterministischen Äquivalent eines stochastischen Opti-

mierungsprogramms abgebildet. Für den Anwendungsfall Antriebsstrangauslegung wird

ein neues Verfahren zur automatisierten Erstellung von Szenarien basierend auf einem

Ansatz des unüberwachten Lernens vorgestellt. Für den Anwendungsfall Wasserversorgung

wird auf die algorithmische Auslegung resilienter Systeme eingegangen. Für beide Anwen-

dungsfälle werden die Effizienzgewinne durch die beschriebene systematische Auslegung

quantifiziert und am Beispiel der Antriebsstrangauslegung wird eine Verifikation des

Modells vorgestellt. Darüber hinaus wird ein allgemein gültiger Modellierungs- und Lö-

sungsansatz aufgezeigt, der auf geometrischer Programmierung beruht. In der Literatur

wurde diese Modellierung bisher vorwiegend bei Modellen mit kontinuierlichen Variablen

eingesetzt. Für die Antriebsstrangauslegung wird gezeigt, wie dieser Ansatz auch bei

Modellen mit gemischt-ganzzahligen Variablen eingesetzt werden kann. Zur Lösung des

jeweils zugrunde liegenden gemischt-ganzzahligen Programms wird ein Lösungsalgorithmus

basierend auf einer Generalisierten Benders Dekomposition vorgestellt. Im Vergleich zur

vollständigen Enumeration der diskreten Variablen kann gezeigt werden, dass der Ansatz

die global-optimale Lösung bei deutlich geringerer Lösungszeit findet.
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Abstract

This dissertation is located within the Collaborative Research Center 805 at the Chair of

Fluid Systems within the Department of Mechanical Engineering at TU Darmstadt. It

examines the conceptual design of technical systems under consideration of uncertainty with

the help of exact optimization algorithms. These are particularly suitable for a systematic

design, since they lead to the identification of globally optimal system structures and thus

reduce structural uncertainty. The system design optimized with respect to a defined

objective function depends significantly on the selected parameterization. However, since

this parameterization is subject to uncertainty during the conceptual design, the use of

a different parameterization usually results in different solution structures. Furthermore,

the search for solutions for technical system designs is situated within a field of conflicting

goals. These are the use of efficient solution algorithms, an efficient model development and

an appropriate approximation of the relevant reality with the help of the developed system

model. These above-mentioned points are addressed in the thesis. Based on two technical

systems, it is shown how mixed-integer nonlinear modeling can be used for conceptual design

under uncertainty. The use cases considered are a decentralized water distribution system

in high-rise buildings and the powertrain of battery electric vehicles with a multi-speed

transmission. The developed mixed-integer programs are solved with the help of common

software. Furthermore, in order to reduce the solving time for finding efficient solutions,

new problem-specific heuristics are presented for both use cases. To master uncertainty,

the usage phase is modeled with multiple scenarios within a deterministic equivalent of

a stochastic optimization program each in both use cases. For the powertrain design use

case, a new method for an automatic generation of scenarios based on an unsupervised

learning approach is presented. For the water supply use case, the algorithmic design

of resilient systems is addressed. For both use cases, the efficiency gains realized by the

described systematic design are quantified. Additionally, a verification of the model is

presented for the powertrain design. Furthermore, a generally applicable modeling and

solving approach is shown, which is based on geometric programming. In the literature,

this modeling approach has so far mainly been used for models with continuous variables.

For the powertrain design, it is shown how this approach can also be used for models

with mixed integer variables. For the solution of the respective underlying mixed-integer

program, a solution algorithm based on a Generalized Benders Decomposition is presented.

In comparison to the complete enumeration of the discrete variables, it can be shown that

the approach finds the global-optimal solution with significantly less solution time.
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In fact the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar
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NOMENCLATURE XV

Nomenclature

The following comprises a summary of the symbols used in mathematical and
physical expressions in this thesis. The first column contains the symbols
themselves, the second column gives a verbal description of its meaning. In
the third column the dimensions of each property are given as a product of
the fundamental dimensions length (L), mass (M), time (T), and currency
(C). If no dimension is mentioned, the dimension varies, depending on the
selected use case.

Dimensional quantities:

Symbol Description Dimension

a matrix entry of A
A matrix
A† pseudo-inverse of matrix A
Ad hyperbole domain restriction parameter 1
Ac cross-sectional area L2

b binary variable 1
B big-M constant
cB battery capacity M L2 T-2

cw drag coefficient 1
C cost C
d diameter L
d+ diameter ratio 1
e generic function
f generic function
fm monomial function
f p posynomial function
g gravitational acceleration L1 T-2

h pressure head L
∆h pressure increase by a pump L
∆H pressure loss L
H heuristic
i transmission ratio 1
I transmission ratio bound parameter 1
k scaling factor 1
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K wall roughness parameter L
L distance L
L Lagrange function
m mass M
M mass M
n motor speed T-1

N motor speed T-1

p power M L2 T-3

P power M L2 T-3

P problem
q volume flow L3 T-1

Q volume flow L3 T-1

r residual
rW wheel radius L
R range L
s slope 1
S Stirling number 1
t torque M L2 T-2

T torque M L2 T-2

v speed L T-1

v̇ acceleration L T-2

x generic variable
y generic variable
Y generic variable / parameter
z generic variable / parameter
Z number of parallel pumps 1

Greek Symbol Description Dimension

α regression parameter
β regression parameter
γ regression parameter
δ regression parameter
ζ generic variable
η efficiency 1
λ generic coefficient
λh hydraulic resistance coefficient 1
λi inertia coefficient 1
λr rolling resistance coefficient 1
λLa,(k) Lagrange multiplier



NOMENCLATURE XVII

Λ load values 1
µB lower bound variable
µ mean value
ν kinematic viscosity L2 T-1

νLa,(k) Lagrange multiplier
π probability value 1
ρe electric density L2 T-2

̺ air density M L-3

ϕ̇ normalized angular speed 1
φ basis function
ψ normalized torque 1
ω rotational speed T-1

Ω rotational speed T-1

Subscripts Description

B Benders
c cross-sectional
const constant
d domain
i inertia
In input
L loss
M model
main main
max maximum
post posterior
pre previous
r rolling
ref reference
sub sub
w wind
+ normalized

Superscripts Description

A additional
avg average
B battery
e electric
energy energy
G transmission
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h pressure head
in input
k iterator
L loss
La Lagrange
load load
M motor
max maximum
out output
p power
P passenger
part partial
pipe pipe
pump pump
R recuperation
W wheel

Symbols Description

�̃ approximation
� lower bound
�̂ log-space
�

∗ optimum
� upper bound

Set Description

B pump types
C convex set
D diameters
E edges
F desired fractional loads
G graph
H clusters
J optimality cuts
K EM domains
M efficiency map
N grid points in EM domain
P polyhedron
R operating points on convex hull
S scenarios
T transmissions
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U active scenarios
V vertices
X generic set
Y binary variables
Z selected fractional loads
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Abbreviations

AAO all-at-once optimization
BEV battery electric vehicle
CC convex combination
CRC collaborative research center
CVT continuous variable transmission
EM electric machine
FTP federal test procedure
GA genetic algorithm
GBD generalized Benders decomposition
GP geometric program
ILP integer linear program
LB lower bound
LP linear program
MAX maximum
MDO multi-disciplinary design optimization
MIN minimum
MINLP mixed-integer nonlinear program
MIP mixed-integer program
MILP mixed-integer linear program
MIT Massachusetts Institute of Technology
NLP nonlinear program
NP non-deterministic polynomial-time
NYCC New York city cycle
PMSM permanent-magnet synchronous motor
PWL piecewise linearization
SA sensitivity analysis
SAA sample average approximation
SAND simultaneous analysis and design
SCIP solving constraint integer programs
SOS special ordered sets
STD standard deviation
TOR technical operations research
UB upper bound
WLTC worldwide harmonized light-duty vehicles test cycles



Chapter 1

Introduction and Motivation

Technology has ever been a key driver for societal improvements. Today we are
surrounded by products of industrial processes, which all required engineers
to a certain extent for a design, verification and validation. Hence, it can be
summarized with the words of Günther Ropohl: “We have made the world we
inhabit ourselves: our biotope has become a technotope”1. On the one hand,
the technological improvements over time and especially starting with the
first Industrial Revolution2, lead to great societal prosperity. For instance the
improvements in agricultural, medical and information technology since then
lead to a widespread societal growth in most economies on the world. On
the other hand, this technological progress fostered the occurrence of global
challenges, like the human-induced climate change. Hence, it is an obligation
for current engineers to design sustainable systems, which support societal
improvements and reduce societal challenges.
A guideline for sustainable systems design is given by the United Nations
Sustainable Development Goals3, but the implications for an engineering
design of sustainable technical systems is still a young research field with
many open research questions.
This thesis therefore focuses on the development of algorithmic design ap-
proaches to support engineers within the process of designing more sustainable
systems.
Within this work, the focus lies on two different key technological areas. First,
the municipal water supply. Already in 2018, more people lived in cities than

1 Günter Ropohl, Allgemeine Technologie : eine Systemtheorie der Technik, ([70], 2009,
p. 15)

2 This describes the time between approximately 1760 and 1840, with a high per-capita
economic growth caused by new technological changes and an increasing industrialization.

3 United Nations Development Program, Sustainable Development Goals, ([187],
2015)

1
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in rural environments4. Furthermore, the unstopped trend of urbanization will
potentially lead to an increase of megacities and simultaneously to an increase
of high-rise buildings as already shown by the Council on Tall Buildings and
Urban Habitat5. These buildings require a significant amount of energy to
enable a fresh water supply on each floor, which can be improved up to 50%
with an optimized system design6.
Second, this work addresses the development of battery-electric vehicles.
To reduce the environmental impact of transport, it is beneficial to have a
technological shift from traditional combustion engines to a battery-electric
powertrain design7. To ensure a highly efficient system design all components
must be sized together based on realistic requirements from the usage phase8.

1.1 Sustainable Systems Design

At the core of this sustainable systems design9 lies the engineering design.
Within the following, the term engineering design is used as defined by
Pahl/Beitz et al.10. As noted there, design “is used synonymously (...)”10

for design and development. A technical system fulfills a predefined set of
functions. “What belongs to a system is determined by the system boundary.”11

All already mentioned systems that are considered within this thesis show
different characteristics, but can all be evaluated in a coherent manner and
show all a specific function that must be fulfilled within their usage phase.
Besides this definition of a technical system the definitions of a mechatronic
system, shown by Isermann12, are also applicable in this context.

4 United Nations Secretariat, Population Division, 2018 Revision of World
Urbanization Prospects, ([188], 2018)

5 CTBUH, 2018 Tall Building Year in Review, ([36], 2018)
6 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of

energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

7 Esser, “Realfahrtbasierte Bewertung des ökologischen Potentials von Fahrzeugantrieb-
skonzepten”, ([50], 2021)

8 Silvas, Hofman, Murgovski, Etman, and Steinbuch, “Review of Optimization
Strategies for System-Level Design in Hybrid Electric Vehicles”, ([172], 2016)

9 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, pp. 16)

10 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, pp. 1)

11 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, p. 27)

12 Isermann, Mechatronische Systeme: Grundlagen, ([85], 2007, pp. 3)
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socio-technical reality
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reality
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data

model

Figure 1.1 – Euler diagram for depiction of the model, model horizon, and
the relevant reality, given by Pelz et al. [148, p. 9]

The entire process of work during the design of a technical system can be
subdivided in13:

1. Planning and Task Clarification,

2. Conceptual Design,

3. Embodiment Design, and

4. Detail Design.

The focus of this thesis lies on the conceptual design, since this part is a crucial
step towards more sustainable system designs. In this phase the principal
solution is determined13. “This is achieved by abstracting the essential
problems (...).”13 Within this phase a technical artifact14 is conceptually
designed and evaluated. Since multiple possible solutions for the technical
system at hand should be evaluated and compared on a given objective until
the artifact is finalized, it is mandatory to use a systematic approach.
Mathematical modelling of the given system is therefore a promising approach
within the conceptual design phase.

13 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, pp. 131)

14 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, p. 27)
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As shown in Fig. 1.1, a derived model can only represent a specific part of the
relevant reality, where the omitted part is called ignorance15. “The boundary
between the model and the relevant reality is named model horizon.”15 A
detailed introduction about mathematical modeling is given by Pelz et al.16.
Returning to the conceptual design of technical systems one key statement
is: “In systematic respects, designing is the optimisation of given objectives
within partly conflicting constraints”17. Mathematical optimization methods
are therefore a suitable approach to derive technical system designs that
maximize or minimize given objectives18,19.
The interdisciplinary approach of Technical Operations Research20 (TOR)
combines exact mathematical optimization with the engineering sciences to
systematize the conceptual design. The major goal of this approach is “to
derive sustainable systems designs that follow the statement”20:

“Maximize quality, subject to functionality.”21

The combination of multiple components that are only optimized individually
often leads to system designs with a lower performance than if all components
and subsystems are designed concurrently. Hence, the combined system-level
based design can provide artifacts with a better performance, measured by
their respective objective(s). As described by Fügenschuh, Lorenz and Pelz20

the four major steps in a conceptual engineering design process are

1. “the formulation of the desired task and quality,

2. defining the design space,

3. deriving the composition, and

15 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 9)

16 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, pp. 8)

17 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, p. 2)

18 Suhl and Mellouli, Optimierungssysteme: Modelle, Verfahren, Software, Anwendun-
gen, ([178], 2009)

19 Kallrath, Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis: Mit Fall-
studien aus Chemie, Energiewirtschaft, Papierindustrie, Metallgewerbe, Produktion und
Logistik, ([89], 2013)

20 Fügenschuh, Lorenz, and Pelz, “OPTE Special Issue on Technical Operations
Research (TOR)”, ([59], 2021)

21 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 215)
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4. the evaluation of realized task, quality and acceptance.”22

Each step can be used as a leading principle to derive a structured system
design23. This general approach is described briefly within the following. In
the first step, the needs for the technical system result in a quality descrip-
tion based on effort, availability, and acceptability24. Here, effort should be
minimized, while the availability and acceptability should be maximized to
derive a Pareto optimal solution of these partly conflicting objectives. “Effort
is measured, for example, by the total cost of ownership”23. It can be approx-
imated by only considering the material costs and/or energy costs in specific
use cases. The availability is measured for instance by the mean operating
time between failures25 or the anticipated service life. The acceptability is
given by the compliance of the derived design solution with regulations, but
also with a positive user experience. It is the fuzziest objective, which is hard
to be cast in a mathematical depiction.
Within the second step “defining the design space”, available resources like
material, components or technologies are specified to be available for the
system design process. They are bounded by technical requirements of the
desired system design. Within this step the selection of discrete components
is often required to be able to describe the design space more accurately.
In the third step, the most promising solution is derived by means of mathe-
matical optimization to ensure a feasible and efficient system design.
This proposed design is then evaluated in the final step. Here, detailed system
simulation models or experiments are required for instance to ensure a proper
system design.
Since the required models for description of technical systems, as the two
already introduced example systems, usually require a nonlinear and partly
discrete or integral description of the design space, this approach automatically
results in a Mixed-Integer Nonlinear Program26 (MINLP), which has to be
evaluated efficiently to derive the best possible system design.
Within the design process there is one important circumstance to consider:
uncertainty. Uncertainty is ubiquitous within the design process, as shown in

22 Fügenschuh, Lorenz, and Pelz, “OPTE Special Issue on Technical Operations
Research (TOR)”, ([59], 2021)

23 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 17)

24 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 16)

25 Birolini, Reliability Engineering: Theory and Practice, ([17], 2017, p. 6)
26 Lee and Leyffer, Mixed Integer Nonlinear Programming, ([97], 2011)
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Figure 1.2 – Sustainable systems design as a closed loop with uncertainty
localization, given by Pelz et al. [148, p. 18]

Fig. 1.2 by Pelz et al.27.
It can be distinguished between “model uncertainty, structural uncertainty,
and data uncertainty”27 for technical systems. Furthermore, there are also
uncertain specifications given by the different stakeholders.
“Data uncertainty is present, if the amount, type and distribution of required
data, such as model parameters, is incomplete, unknown or insufficient (...).”28

Model uncertainty29 focuses on the uncertainty that arises in the model
selection process. As noted earlier, the models are usually only approximations
of the reality. Two types of ignorance can be distinguished within this scope.
First a lack of knowledge, where some objects or processes are unknown.
Second, disregard of knowledge, where simplified models are chosen based on
other benefits within the model evaluation phase, like for instance a more
rapid model evaluation.
Structural uncertainty30 describes the uncertainty that arises by only con-

27 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 18)

28 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 29)

29 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, pp. 33)

30 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, p. 38)
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sidering a limited number of design variants. Then only a subspace of the
design space is evaluated explicitly, which leads to a structural uncertainty by
neglecting further design variants and their respective uncertainty. The com-
parison of multiple design variants with different system configurations leads
on a system level rapidly to a “combinatorial explosion” of variants, which is
not completely evaluable by humans by hand31. The usage of mathematical
optimization for the system design can be used to reduce the structural un-
certainty and consider broader parts of the design space analytically instead
of manually.
One approach to master uncertainty beyond structural uncertainty is the
consideration of resilience32,33. Within the collaborative research center (CRC)
805, where the main part of this thesis research was conducted in, the
following definition arose for technical systems32 within numerous discussions
and meetings of a multidisciplinary team:

“A resilient technical system guarantees a predetermined min-
imum of functional performance even in the event of disturbances
and failures of system components, and a subsequent possibility
of recovering.”32

If the resilience of a technical system is already considered within the con-
ceptual design, its performance within the usage phase can benefit especially
within severe failure scenarios. This goes beyond the approach to use safety
factors for dimensioning system components. The consideration of resilience
within the design phase also leads to a more holistic design approach. A
more detailed description of the derived integration of resilience will be shown
throughout the thesis.

1.2 Research Questions

The design of technical systems by using mathematical optimization meth-
ods enables a faster and broader evaluation of different design decisions in
comparison to manual evaluations. Nevertheless, this benefit is only valid,
if a solution can be found in a fast, reliable and understandable way. Since

31 Miller, “The Magic Number Seven Plus or Minus Two: Some Limits on our Capacity
for Processing Information”, ([125], 1956)

32 Altherr et al., “Resilience in Mechanical Engineering - A Concept for Controlling
Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures”,
([3], 2018)

33 Leise et al., “Potentials and Challenges of Resilience as a Paradigm for Designing
Technical Systems”, ([107], 2021)
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the domain-specific knowledge of an engineer can lead in the manual design
process to a fast avoidance of unfavorable solutions in the overall design space,
it is not assured that it will lead to a global optimal solution, and it is usu-
ally unknown how good this solution can be, in comparison to unconsidered
solutions. On contrary, the usage of mathematical optimization methods
considers the whole design space which is modelled with no preference of
specific solutions, but it is usually unaware of domain-specific knowledge.
This leads in case of binary decisions, where the curse of dimensionality leads
to a fast growth of design decisions often to a long evaluation time, if a global
optimal solution should be found. To reduce the computational burden the
number of binary decisions is therefore often limited to a low number and
long computational evaluations on high-performance hardware are required.
Therefore, most approaches rely on the usage of (meta-)heuristics, like for
instance genetic algorithms or particle swarm optimization to enable a faster
solution without an explicit evaluation of its global optimality34.
When a global optimal solution approach is considered, the relevant algo-
rithmic requirements and system model requirements can not be neglected.
Even more, they have to be balanced against each other to derive a fast and
technically reliable system design. Therefore, within this thesis, the following
research questions are answered and exemplified on the already identified
reference systems of a residential water supply and the powertrain design of
battery electric vehicles:

How does the technical system model granularity - solution proce-
dure - interaction affect the efficiency to derive a global optimal
solution?

How should a conceptual design model be built to fulfill the tech-
nical requirements and additionally allow for an efficient solving
procedure?

How can we master the uncertainty within the conceptual system
design when using a global-optimal optimization procedure?

1.3 Contributions and Thesis Structure

This thesis is located in the interdisciplinary research field of technical op-
erations research (TOR) with a clear view from an engineering perspective.

34 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)
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The focus lies on a trade-off between the model granularity for conceptual
design models of technical systems and the applicability of global-optimal
mathematical mixed-integer nonlinear programming.
To answer the introduced research questions, the two already mentioned
reference use cases of a water distribution system design and a powertrain
design have been selected. For both use cases, newly developed conceptual
design models are presented that can be solved by using common MINLP
solvers and which explicitly consider uncertainty. Furthermore, newly devel-
oped algorithmic approaches are shown to derive global optimal solutions
or near-optimal solutions. For the former, specific modeling approaches are
presented and compared. For the latter, problem-specific heuristics that still
rely on solving underlying mathematical optimization programs are presented
within the following chapters.
To derive successfully conceptual design models, it is also required to inte-
grate a concept of operation35 for the usage phase. Hence, newly developed
heuristic approaches that can be embedded in the global-optimal optimization
procedure are shown for each use case. For the powertrain use case a model-
ing approach that results in efficiently solvable MINLPs is also introduced
in detail. This modeling approach has the great advantage to be not only
problem-specific, but also more generally applicable. A further use case could
be the design of aircraft under uncertainty.
Parts of the newly developed models and solution procedures that are shown
in this thesis were already published in (peer-reviewed) conference and journal
publications. A summary of all publications that show some specific aspects
of the research in this thesis is given in the Appendix. Additionally, in each
chapter references to the own publications are included.
The thesis is structured as follows: The required fundamentals will be shown
in Chapter 2. It is followed by the first use case of a water distribution system
design in Chapter 3. In Chapter 4, the modeling and solving approach for
the second use case of a conceptual design for a powertrain of battery electric
vehicles with multi-speed transmission is presented. The thesis is rounded
off by a discussion in Chapter 5 and a summary and outlook in Chapter 6.
Further relevant information is given in the Appendix. Each relevant Figure
is labeled with an identifier, which links it to a digital representation. Further
information about this procedure is also given in the Appendix.

35 National Aeronautics and Space Administration, NASA Systems Engineering
Handbook, ([137], 2016, pp. 4)
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Chapter 2

Fundamentals

2.1 Engineering Design Optimization

The solving of engineering design problems, especially within the concep-
tual design phase, can be supported by using mathematical optimization
approaches. A general overview about the engineering design optimization
is shown in Fig. 2.1. In this process, it is required to either maximize or
minimize a given objective f0(xd, xh, U), which depends on design variables1

xd = [xd
1, x

d
2, . . . , x

d
n
], hidden state variables xh = [xh

1, x
h
2, . . . , x

h
m

], and pa-
rameters U = [U1, U2, . . . , Ur]. These parameters U are usually subject to
uncertainty, which is represented in Fig. 2.1 by using multiple cumulative
distribution functions. These distributions can be arbitrary, for simplicity
they are all shown as Gaussian in this figure. A specification of these parame-
ters results in a concrete instance of the optimization program, which can
be solved by using a mathematical optimization solver. The hidden state
variables xh affect the objective f0 and are given by the underlying physical
model.
The system modeling and optimization program generation is not unique
for a specific design problem. Multiple approaches are possible to derive a
system model description, with for instance a diverging model fidelity and
different computational requirements. Therefore, the interaction between
mathematical optimization and engineering abstraction is important to derive
models that are capable to predict the system behavior within the desired
domain and be able to be optimized as efficiently as possible. For models
with solely continuous variables, a multitude of approaches exist to derive

1 Design variables are also known as decision variables.

11
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Figure 2.1 – Description of an engineering design optimization problem.
Adapted from [147], which was based on [121].

optimized results2,3.
But in engineering, especially mechanical engineering, models on a system
scale often require the definition of further binary or integer decisions or hidden
state variables4. This then results in a Mixed-Integer Programming model,
which is usually nonlinear and nonconvex for engineering design problems5. In
terms of complexity, a general nonconvex Mixed-Integer Nonlinear Program
(MINLP) is non-deterministically polynomial-time hard6 (NP-hard), which
means that its solution is easily verifiable, but finding it is hard (as long as P
6= NP). This worst-case computational complexity therefore often leads to the
usage of heuristics that are often based on meta-heuristics7 like the genetic

2 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

3 Martins and Ning, Engineering Design Optimization, ([123], 2021)
4 Kallrath, Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis: Mit Fall-

studien aus Chemie, Energiewirtschaft, Papierindustrie, Metallgewerbe, Produktion und
Logistik, ([89], 2013)

5 This is then described by the term Mixed-Integer Nonlinear Program (MINLP), Belotti
et al. [13]

6 Floudas and Pardalos, Encyclopedia of Optimization, ([57], 2009, p. 2237)
7 A heuristic is a procedure that finds a sufficient, but not necessarily optimal solution. A

meta-heuristic is a generally applicable schema or principle to derive a specific heuristic,
see e.g. Suhl and Mellouli [178, p. 13].
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algorithm8 or simulated annealing9 for having a more time-efficient solution
procedure. One drawback of this approach is the loss of information about
the goodness of the derived (intermediate) solution(s), since the distance to
the (unknown) global optimum is unknown. Here, duality theory and modern
exact solvers like SCIP10 or MOSEK11 play their highest benefit, since their
usage allows an estimation of the distance to the global optimum. A more
detailed introduction in duality theory will follow briefly in this chapter.

2.1.1 Mixed-Integer Nonlinear Programming

A Mixed-Integer Nonlinear Program (MINLP) is given in general by

min
x,y

f0(x, y)

s.t. fi(x, y) ≤ 0 ∀i = 1, . . . , b,

ej(x, y) = 0 ∀j = 1, . . . , u,

x, y ≥ 0,

x ∈ R
k, y ∈ Z

l.

(2.1)

The objective is given by f0 : Rk ×Z
l → R. It represents the goal that should

be achieved. Each maximization objective can be transformed to an equivalent
minimization objective by using a multiplication with (−1). The inequality
constraints fi : Rk × Z

l → R are used to model for instance logical conditions
or other technical specifications. The equality constraints ej : Rk × Z

l → R

represent among others physical system properties, like for instance the mass
and/or energy balance.
If the MINLP is additionally nonconvex, multiple local optima may exist and
the complexity class of solving the nonconvex MINLP to global optimality
is NP-hard, as already introduced12. Despite this worst-case complexity
computational and algorithmic achievements lead to a high variety of use
cases in which this approach is applicable. Further details on this problem
class and solution strategies are summarized by Lee and Leyffer13.

8 Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, ([76], 1992)

9 Kirkpatrick, Gelatt Jr, and Vecchi, “Optimization by Simulated Annealing”,
([90], 1983)

10 For details see: https://www.scipopt.org/ (accessed August 18th 2022)
11 For details see: https://www.mosek.com/ (accessed August 18th 2022)
12 Floudas and Pardalos, Encyclopedia of Optimization, ([57], 2009, p. 2237)
13 Lee and Leyffer, Mixed Integer Nonlinear Programming, ([97], 2011)
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2.1.2 Stochastic Optimization

In engineering design, some or all parameters that are required to define
an instance (e.g. shown in Fig. 2.1) of an abstract optimization problem
are uncertain. This uncertainty can be mastered within the optimization
process by using stochastic optimization14, if it is quantifiable. Within a
stochastic optimization program the constraints and the objective depend
on the already introduced design variables and further random variables ξ
which model the uncertain parameters. Its values are unknown, but their
probability distributions are known. One specific abstract definition of a
stochastic optimization program is then given by:

min
x,y

Ef0(x, y, ξ)

s.t. Efi(x, y, ξ) ≤ 0 ∀i = 1, . . . , b,

Eej(x, y, ξ) = 0 ∀j = 1, . . . , u,

x, y ≥ 0,

x ∈ R
k, y ∈ Z

l.

(2.2)

One approach to solve (2.2) is via the definition of scenarios15. Here (2.2) is
approximated by using Ns scenarios {πn, ξn}

16:

min
x,y

Ns∑

n=1

πnf0(x, y, ξn)

s.t.
Ns∑

n=1

πnfi(x, y, ξn) ≤ 0 ∀i = 1, . . . , b,

Ns∑

n=1

πnej(x, y, ξn) = 0 ∀j = 1, . . . , u,

x, y ≥ 0,

x ∈ R
k, y ∈ Z

l.

(2.3)

The probability of occurrence πn of the n-th scenario and the according value
ξn are used to derive a deterministic equivalent. This procedure is also known
as a sample average approximation (SAA)17. Problem (2.3) can be solved
similarly to problem (2.1).

14 Shapiro, Dentcheva, and Ruszczynski, Lectures on Stochastic Programming: Mod-
eling and Theory, ([170], 2014)

15 Scenarios are also known as a finite event set.
16 Williams, Model Building in Mathematical Programming, ([199], 2013, pp. 53)
17 Nemirovski, Juditsky, Lan, and Shapiro, “Robust Stochastic Approximation

Approach to Stochastic Programming”, ([138], 2009)
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2.1.3 Convex Optimization

Given two points x1, x2 ∈ R
n, a convex combination is any point x3 of the

form18:

x3 = λx1 + (1− λ)x2, λ ∈ R, 0 ≤ λ ≤ 1. (2.4)

A set C ⊆ R
n is convex, if it contains all convex combinations of pairs of

points x1, x2 ∈ C. In general, a function f : C → R is convex in C, if the set
C ⊆ R

n is convex and for any two points x1, x2 ∈ C
19:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2), λ ∈ R, 0 ≤ λ ≤ 1 (2.5)

holds. The convex hull conv(C) of a set C is given by20:

conv(C) = {Θ1x1 + · · ·+ Θkxk|xi ∈ C,Θi ≥ 0, i = 1, . . . , k,Θ1 + · · ·+ Θk = 1}.
(2.6)

A continuous (nonlinear) optimization problem is given by21

min
x

f0(x)

s.t. fi(x) ≤ 0 ∀i = 1, . . . , b,

ej(x) = 0 ∀j = 1, . . . , u,

x ≥ 0,

x ∈ R
k.

(2.7)

Problem (2.7) can be derived for instance from (2.1) by fixing the integral
variables y to a given setting. Furthermore, problem (2.7) is convex, if f0(x)
and fi(x) are convex functions and ej(x) = aT

j
x− bj are affine functions21. A

convex optimization problem has the advantage that each local optimum is a
global optimum. On contrary, nonconvex nonlinear programs can also have
multiple local optima. The epigraph form of the standard problem in (2.7)

18 Papadimitriou and Steiglitz, Combinatorial Optimization: Algorithms and Com-
plexity, ([143], 1998, pp. 12)

19 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 67)
20 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 24)
21 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, pp. 127)
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is22

min
x

t

s.t. f0(x)− t ≤ 0

fi(x) ≤ 0 ∀i = 1, . . . , b,

ej(x) = 0 ∀j = 1, . . . , u,

x ≥ 0,

x ∈ R
k.

(2.8)

This form is equivalent to (2.7), since (2.8) is only optimal, if and only if x is
optimal for (2.7)22.
Per definition, a mixed-integer program is always non-convex, since the discrete
variables lead to a discontinuous solution space. Nevertheless, throughout
this thesis a MINLP is understood as “convex”, if the relaxation, where the
integrality requirements for the discrete variables are dropped, is convex.
Hence, a MILP is called to be “convex”. This imprecise wording enables an
easier discussion of the derived models within this thesis.

2.1.4 Duality

The following description is based on Boyd and Vandenberghe23. If we
consider the NLP given in (2.7), we can derive a valid upper bound by using
any heuristic or meta-heuristic that returns a solution that doesn’t violate
any constraint. If multiple evaluations are performed, the solution with the
lowest objective value is the current lowest upper bound. It is also possible to
derive a valid lower bound. This can be done in this case by solving a related
optimization problem; the so-called Lagrange dual problem. This problem is
based on the evaluation of the according Lagrange dual function23

g(νLa,(k), λLa,(k)) = inf
x∈X
L(x, νLa,(k), λLa,(k)) = inf

x∈X

(

f0(x) +
b∑

i=1

νLa,(k)

i
fi(x) +

u∑

j=1

λLa,(k)

j
ej(x)

)

(2.9)
with the non-empty valid domain X of the variables x and the dual variables
(or Lagrange multiplier vectors) νLa,(k) ∈ R

b and λLa,(k) ∈ R
u. This dual

function yields valid lower bounds on the optimal value x∗, since for any
νLa,(k) ≥ 0 and any λLa,(k)

g(νLa,(k), λLa,(k)) ≤ x∗ (2.10)

22 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 134)
23 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, pp. 215)
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holds. This is known as weak duality. The highest lower bound is found by
solving24:

max
νLa,(k),λLa,(k)

g(νLa,(k), λLa,(k))

νLa,(k) ≥ 0.
(2.11)

Problem (2.11) is convex, even if problem (2.7) would be nonconvex24. The
consideration of duality theory can be exploited within the solution process
and be used to derive bounds for the given design problem. Therefore, its
explicit usage is beneficial to be able to estimate further possible performance
gains, if primal solutions are found. For a detailed description of duality for
linear systems, it is referred to Papadimitriou and Steiglitz25.

2.1.5 Convexification Strategies

Since the global optimization of Mixed-Integer Nonlinear Programs is a
challenging task, it is required to derive modeling approaches that on the one
hand represent a technical system design as detailed as required to derive
solutions that can predict the real-world behavior accurately, and on the other
hand models that are solvable in an efficient way. This trade-off results in
the need of interdisciplinary research to develop suitable models. Multiple
approaches that proved their applicability within the research of this thesis
in the research group of Technical Operations Research at the Chair of Fluid
Systems from an engineering point of view, will be presented in the following.

Piecewise Linear Approximation

Frequently, engineering design optimization problems contain multiple binary
decision variables to select specific components from a pool of components
or are used to specify the activity of specific components within specific
use cases. Further linear and nonlinear constraints are then used to model
physical relationships like conservation laws. Since for engineering design
problems functional relationships with two independent variables and one
dependent variable have to be often integrated in the optimization program,
the following will only focus on this type of requirements. If only some
nonlinear functional relationships exist in the derived model, besides multiple
linear and binary relationships, it is often computationally efficient to use
linearized approximations of these nonlinear constraints to facilitate a rapid

24 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, pp. 215)
25 Papadimitriou and Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity, ([143], 1998, pp. 67)
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solution procedure by state-of-the-art MILP solvers. The domain space is
partitioned in small boxes that are then represented by two simplexes each in
three dimensions. In the following only a 1-4 direction is used as introduced
by Misener and Floudas26.
A polyhedron P , as stated by Boyd and Vandenberghe27, is a “solution set of
a finite number of linear equalities and inequalities”27:

P = {x|aT

j
x ≤ bj, j = 1 . . . , b, dT

j
x = ej, j = 1, . . . , u}. (2.12)

Hence, it represents an intersection of a finite number of halfspaces and
hyperplanes.
A simplex is a special polyhedron that is given by28

conv(v0, . . . , vk) = {Θ0v0 + · · ·+ Θkvk|Θ ≥ 0,1T Θ = 1}. (2.13)

Here, 1 denotes a vector with all entries one29. For instance, a simplex in one
dimension is a line segment, and in two dimensions it is a triangle.
Given is a functional relationship f(x1, x2), where f : R2 → R is an arbitrary
twice-differentiable relationship. Within technical systems this bivariate func-
tion represents characteristic curves of specific components, like for instance
the efficiency map of a permanent magnet synchronous motor30 or the power-
flow-pressure characteristic of a pump31. An approximation f̃ : R2 → R can
be created by using a lookup-table L = {f(x1, x2) ∈ R|x1 = X1,i,j ∈ R, x2 =
X2,i,j ∈ R} of specific function evaluations Yi,j at given domain points X1,i,j

and X2,i,j and an affine approximation in between32.
This piecewise linear approximation can be integrated in a given MILP by

26 Misener and Floudas, “Piecewise-Linear Approximations of Multidimensional Func-
tions”, ([126], 2010, p. 9)

27 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, pp. 31)
28 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 32)
29 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 33)
30 Leise, Simon, and Altherr, “Comparison of Piecewise Linearization Techniques to

Model Electric Motor Efficiency Maps: A Computational Study”, ([109], 2020)
31 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of

energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

32 Misener and Floudas, “Piecewise-Linear Approximations of Multidimensional Func-
tions”, ([126], 2010)
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multiple approaches33,34,35. In the following, only the method called convex
combination34 (CC) and a method based on special ordered sets (SOS)33 are
introduced in more detail. The following constraints are required to represent
the two-dimensional simplexes in between three adjacent domain points each
within the optimization program:

x1,i,j =
∑

i∈I

∑

j∈J

λi,jX1,i,j, (2.14a)

x2,i,j =
∑

i∈I

∑

j∈J

λi,jX2,i,j, (2.14b)

f̃i,j =
∑

i∈I

∑

j∈J

λi,jYi,j, (2.14c)

∑

i∈I

∑

j∈J

λi,j = 1. (2.14d)

Here λi,j ∈ [0, 1] is an additional continuous set of variables to enable an affine
approximation in between the according adjacent domain points. Addition-
ally, further method specific constraints are required besides these general
constraints. This then results in the addition of further binary variables. For
the CC method the additional constraints:

∑

k∈K

ak = 1, (2.15a)

λi,j ≤
∑

k∈K(i,j)

ak (2.15b)

with ak ∈ {0, 1} and the set of all simplexes K and the subset K(i, j) of all
simplexes that are adjacent to the domain point (x1,i,j, x2,i,j) are required.
This approach introduces as many binary variables as simplexes are used to
approximate the functional relationship.
The SOS approximation requires no definition of specific binary variables.
Instead, it uses the availability to process constraints with special ordered sets
in modern MILP/MINLP solvers. Special ordered sets were first introduced
by Beale and Tomlin36. A special ordered set of type one (SOS1) is a set

33 Misener and Floudas, “Piecewise-Linear Approximations of Multidimensional Func-
tions”, ([126], 2010)

34 Vielma, Ahmed, and Nemhauser, “Mixed-integer Models for Nonseparable Piecewise-
linear Optimization: Unifying Framework and Extensions”, ([191], 2010)

35 Geißler, Martin, Morsi, and Schewe, “Using Piecewise Linear Functions for
Solving MINLPs”, ([61], 2012)

36 Beale and Tomlin, “Special facilities in a general mathematical programming system
for non-convex problems using ordered sets of variables”, ([11], 1970)
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where only one element is nonzero37. A special ordered set of type 2 (SOS2) is
a set where at maximum two adjacent elements are nonzero37. The selection
of an active simplex is accomplished in this method by introducing additional
SOS1 and SOS2 constraints, as shown by Misener and Floudas37.
A further approximation approach that is closely related to PWL is the usage
of a polyhedral approximation without the definition of any binary variable.
If a resulting point in the optimal solution lies on the convex hull of a three-
dimensional polyhedron, this domain can be integrated in the program, by
adding a constraint for each intersecting hyperplane. This approach avoids
the usage of additional binary variables, but is only valid if the condition for
the solution is met by the optimization program.

Geometric Programming

The geometric programming approach first appeared in a publication by
Zener38 in 1961. Besides this first occurence the complete theory was first
published by Duffin, Peterson, and Zener39 in 1967. It was since its beginnings
related to the solution of engineering design optimization problems, based
on its possibility to consider nonconvex functional relationships efficiently
without the requirement of a (piecewise) linear approximation40. A historical
overview is given by Peterson41. A general introduction is given by Boyd,
Kim, Vandenberghe, and Hassibi42 and a recent review in the aerospace
domain is given by Pelz, Leise, and Meck43. It is a modeling approach in
which a log-transformation is used to convert a nonconvex nonlinear program
with only continuous variables in a convex program. This transformation is
possible42, if the objective and constraints either consist of monomials

fm(x) = α0x
α1
1 x

α2
2 . . . xαn

n
, (2.16)

37 Misener and Floudas, “Piecewise-Linear Approximations of Multidimensional Func-
tions”, ([126], 2010)

38 Zener, “A Mathematical Aid in optimizing Engineering Designs”, ([208], 1961)
39 Duffin, Peterson, and Zener, Geometric Programming – Theory and Application,

([44], 1967)
40 Beightler and Phillips, Applied Geometric Programming, ([12], 1976)
41 Peterson, “The Origins of Geometric Programming”, ([150], 2001)
42 Boyd, Kim, Vandenberghe, and Hassibi, “A Tutorial on Geometric Programming”,

([19], 2007)
43 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization

Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)
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with α0 > 0 or posynomials

f p(x) =
K∑

k=1

α0,kx
α1,k
1,k x

α2,k
2,k . . . x

αn,k
n,k (2.17)

with α0,k > 0. In this example the n variables are given by x, while α
represents specific parameters for each constraint and K the total number of
terms of the sum. The underlying optimization program can be transformed
in a convex program by using a log-transformation if it has a posynomial as
an objective and monomial or posynomial constraints of the following form44:

min
x

f p

0 (x)

s.t. fm

j
(x) = 1 ∀j = 1, . . . , u

f p

i
(x) ≤ 1 ∀i = 1, . . . ,m

x > 0.

(2.18)

The resulting log-transformed problem is convex. To derive this equivalent
convex problem description, we use ξi = log(xi) (xi = eξi) for a variable
transformation. The following is based on Boyd and Vandenberghe45. With
these new variables, the monomial (2.16) transforms into the exponential of
an affine function:

fm(x) = c(eξ1)α1 . . . (eξn)αn (2.19a)

fm(x) = eαT ξ+log(c) (2.19b)

A posynomial can be transformed analogously to

f p(x) =
K∑

k=1

eαT
k

ξ+βk (2.20)

The program (2.18) is then given with the new variables and a logarithmic
transformation by

min
x

log

(
K0∑

k=1

eαT
0,k

ξ+β0,k

)

s.t. log

(
Ki∑

k=1

eαT
i,k

ξ+βi,k

)

≤ 0 ∀i = 1, . . . ,m

αT

j
ξ + βj = 0 ∀j = 1, . . . , u.

(2.21)

44 Boyd, Kim, Vandenberghe, and Hassibi, “A Tutorial on Geometric Programming”,
([19], 2007)

45 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, pp. 162)
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In general, the function f̂(ξ) = log(eξ1 + · · · + eξn) is called a log-sum-exp
function, and it is convex on R

n. A composition of this function with an
affine function is again convex, so the transformed GP in the log-domain is
convex46. The transformed GP problem can also be further transformed into
an exponential cone program, which can be solved very efficiently by recently
developed conic optimization software.

2.1.6 Generalized Benders Decomposition

The Generalized Benders Decomposition47,48 (GBD) is a method to derive
global optimal solutions of MINLPs efficiently, if they fulfill specific structural
requirements49. The following introduction of this solution algorithm is based
on Floudas and Pardalos49. The general MINLP description was already
introduced in (2.1). In this subsection the following (nonconvex) MINLP
with continuous (x) and only binary variables (y) is considered49:

min
x,y

f0(x, y)

s.t. fi(x, y) ≤ 0 ∀i = 1, . . . ,m,

ej(x, y) = 0 ∀j = 1, . . . , u,

x ≥ 0,

x ∈ X ⊆ R
k, y ∈ {0, 1}q.

(2.22)

Here, the set X is nonempty and convex. The GBD is applicable, if the binary
variables y can be seen as “complicating” variables. Shown by Floudas and
Pardalos49, if these variables y are fixed (y ∈ Y = {0, 1}q), the remaining
problem

(i) can be decomposed in multiple subproblems,

(ii) becomes convex in x,

(iii) takes a specific structure that is exploitable with specific known algo-
rithms.

All three cases result in a significantly more efficient solution procedure of the
given subproblem with fixed complicating variables y. The GBD approach is

46 Martins and Ning, Engineering Design Optimization, ([123], 2021, p. 435)
47 Geoffrion, “Generalized Benders Decomposition”, ([62], 1972)
48 Geoffrion and Graves, “Multicommodity Distribution System Design by Benders

Decomposition”, ([63], 1974)
49 Floudas and Pardalos, Encyclopedia of Optimization, ([57], 2009, pp. 1162)
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based on the Benders decomposition, which was developed by Benders50 for
(mixed-integer) linear programs in 1962. Geoffrion extended this approach for
the solution of MINLPs in 197251. GBD is also applicable for a MINLP with
continuous or discrete/continuous variables y, which is beyond the considered
use case here.
The GBD is based on a decomposition in a main52 problem and a subproblem
with fixed complicating variables y. In an iterative solution procedure a main
and subproblem are solved consecutively. The main problem is used to derive
an optimized setting of the complicating variables in each iteration and the
subproblem is used to derive an optimized solution of the remaining variables
based on the fixed complicating variables in each iteration. This procedure is
then executed alternating until a global optimal solution is found, or another
stopping criterion is met.
Now, it is assumed that the solution procedure of the subproblem always leads
to a feasible solution. Then, in each iteration k, the following subproblem
with fixed y variables Yk ∈ Y is solved:

min
x

f0(x, Yk)

s.t. fi(x, Yk) ≤ 0 ∀ i = 1, . . . ,m,

ej(x, Yk) = 0 ∀ j = 1, . . . , u,

x ≥ 0,

x ∈ X ⊆ R
k.

(2.23)

The solution of the subproblem (2.23), also known in this context as the
primal problem, leads to an upper bound on (2.22) and provides Lagrange
multipliers, cf. Sec. 2.1.4, in each iteration. These Lagrange multipliers are
used in the main problem to derive an additional cut (constraint) in each
iteration. The solution of the main problem then leads to a lower bound
and the next iterations variable assignments for y. The main problem is
independent of the variables x and is given by53:

min
y∈Y,µB

µB

s.t. µB ≥ ζ(y, νLa,(k), λLa,(k)) ∀ νLa,(k), λLa,(k) ≥ 0,∀k
(2.24)

with ζ(y, νLa,(k), λLa,(k)) being the resulting cut of iteration k that relies on

50 Benders, “Partitioning procedures for solving mixed-variables programming problems”,
([15], 1962)

51 Geoffrion, “Generalized Benders Decomposition”, ([62], 1972)
52 Geoffrion and Benders use the term master problem.
53 Floudas and Pardalos, Encyclopedia of Optimization, ([57], 2009, p. 1167)
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the Lagrange multipliers νLa,(k) and λLa,(k). This cut is derived from the
subproblem with a fixed set of complicating variables Yk.
The shown main problem (2.24) is only valid, if the subproblem (2.23) always
results in feasible solutions. If this is not the case, it is required to add further
constraints based on an additional Lagrange function specific for the solution
of an infeasible subproblem54. Furthermore, the GBD can converge to only a
local optimum or even a non-stationary point, if the considered MINLP is
nonconvex in x and/or y55. Therefore, it only leads to global optimal solutions
for a subset of general nonconvex MINLPs. But on this subset, it can lead to
a significant improvement of the solving performance and can even provide
good estimates of the dual bound with a low number of iterations.

2.2 Modeling of Technical Systems

We differentiate between three model types: “white-box, gray-box, and black-
box”56 models. The selection of models has a significant impact on the final
result of an optimized technical system57. Therefore, it is essential to derive
engineering models that fit their purpose well.
White box models rely solely on axioms. The physical laws and parameters are
known58. The opposite, a black-box model59, only returns an evaluation based
on given inputs, but its internal structure is completely unknown. Gray-box
models are in an intermediate position, since they integrate an axiomatic
modeling with a parameter or functional relationship identification.
In the following, important modeling approaches that are used in the consid-
ered engineering design optimization programs in this thesis are presented.

54 Floudas and Pardalos, Encyclopedia of Optimization, ([57], 2009, pp. 1162)
55 Sahinidis and Grossmann, “Convergence Properties of Generalized Benders Decom-

position”, ([160], 1991)
56 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization

Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

57 Martins and Lambe, “Multidisciplinary Design Optimization: A Survey of Architec-
tures”, ([122], 2013)

58 Isermann and Münchhof, Identification of Dynamic Systems, ([86], 2011, p. 6)
59 Ashby, An Introduction to Cybernetics, ([9], 1956, pp. 86)
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2.2.1 White-box Modeling

Mathematical optimization algorithms can exploit the structure of a given
physical model, if it is modeled as a whitebox60. Hence, within modeling
of technical systems fundamental physical relationships from continuum
mechanics, like conservation laws for energy, mass, and momentum play an
important role61. All white-box models shown in this thesis rely on appropriate
subsets of these conservation laws.
Besides these, further problem specific subsystem descriptions are often
mandatory to describe the whole technical system properly. Here, problem
specific subsystem models are derived by using physical-based parameterized
functional relationships. The appropriate parametrizations are derived either
from experiments and/or component specifications provided by the compo-
nents’ manufacturer. The derivation of these parameterized gray-box models
is shown in the following subsection 2.2.2.
Furthermore, it is often required to determine the size of given components
accordingly to the system. The optimized result then consists of optimally
sized subsystems. Here, one approach is to model component series explicitly,
which results in a high number of binary variables to model the selection
of specific subsets for the derived system solutions. The advantage of this
method is a detailed modeling. The drawback is an increase in time in
the optimization program evaluation, since the higher number of binary
variables increases the complexity. From a computational point of view, this
approach is therefore limited within an optimization program to a relatively
low number of components that can be considered explicitly. Within Chapter 3
a problem-specific preprocessing heuristic is shown, which reduces the number
of components that are modeled within the optimization to improve the
evaluation performance significantly and on the same time reduces omitting
required subsystems from an engineering point of view.
Another approach is the usage of a reference system model and an according
continuous scaling to derive a model representation for a subsystem. Here,
frequently a change in the components size and the according effects on the
system properties are considered in a functional relationship. This is also
known as allometric scaling62. One early allometric scaling law is the famous
Kleiber’s law63, which states that a mammals metabolic rate is proportional

60 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

61 Spurk and Aksel, Strömungslehre, ([177], 2010, pp. 37)
62 Huxley and Teissier, “Terminology of Relative Growth”, ([80], 1936)
63 Kleiber, “Body Size and Metabolism”, ([91], 1932)
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to its mass by the power of 3/4. Besides biology, allometric scaling is also
applicable for technical systems. Here, the usage of scaling laws requires that
the scaled and reference system have a geometric and physical similarity64.
The term “similarity” is used, if the relationship of at least one physical
quantity in the reference and scaled design is constant65. Hence, geometric
similarity is achieved, if the ratio of all the lengths of any scaled design and
the according lengths in the reference model is constant.
The basis to derive scaling laws for technical systems is a dimensional analysis66,
which is based on the Buckingham Pi-theorem67 and the Bridgman postulate68.
One important physical similarity is a dynamic similarity, which describes
a constant force relationship in combination with a geometric and temporal
similarity69. Here, specific similarity measures, like the Froude- or Reynolds-
number are often used in engineering.
In reality the requirements of similarity are often not met completely, which
results in an incomplete similarity70. Nevertheless, scaling is a useful approach
within conceptual design to derive subsystem models of components that have
either not yet been developed or to reduce restrictions on the component
selections that are enforced by the usage of a component series solely. An
example of the usage of scaling within the conceptual system design is for
instance given by Pelz, Leise, and Meck who derived an allometric scaling
law for aircraft which was then used in an optimization program71.

2.2.2 Gray-Box and Black-box Modeling

To construct a derived subsystem model from given data two regression ap-
proaches are used within this work, depending on the underlying estimated

64 Weber, “Das allgemeine Ähnlichkeitsprinzip der Physik und sein Zusammenhang mit
der Dimensionslehre und der Modellwissenschaft”, ([197], 1930)

65 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,
([141], 2007, pp. 466)

66 Spurk, Dimensionsanalyse in der Strömungslehre, ([176], 1992)
67 Buckingham, “On Physically Similar Systems; Illustrations of the Use of Dimensional

Equations”, ([27], 1914)
68 Bridgman, Dimensional Analysis, ([23], 1922)
69 Pahl, Beitz, Feldhusen, and Grote, Engineering Design — A Systematic Approach,

([141], 2007, pp. 466)
70 Spurk, Dimensionsanalyse in der Strömungslehre, ([176], 1992, pp. 62)
71 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization

Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)
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physical relationships. These are first, the linear least-squares72, and sec-
ond the nonlinear least-squares73. The linear and nonlinear least-squares
approaches are usable, if it is required to derive a functional relationship
f̃ : Rn → R based on k discrete observations xi ∈ R

n, for all i = 1, . . . , k and
k according function evaluations y ∈ R from the unknown true functional
relation f : Rn → R, so yi = f(xi) for all i = 1, . . . , k. Linear least-squares is
applicable, if the derived model

f̃(x) = γ1φ1(x) + · · ·+ γpφp(x) (2.25)

is a combination of p basis functions φi(x) : Rn → R and model parameters
γi. The resulting approximation f̃ is linear in its parameters γi. The ap-
proximation f̃ should minimize the prediction errors ri ∀i = 1, . . . , k given
by:

ri = yi − ỹi = f(xi)− f̃(xi) (2.26)

for all given data samples xi. Here, the root-mean-square prediction error
‖r‖2 is used to derive a least-squares representation. With this the given
problem is transformed in the convex optimization problem

min
γ
||Aγ − yi||

2, (2.27)

with the k × p matrix A being the matrix containing the given basis function
evaluations at the known data samples xi. This problem can be solved
analytically by using the pseudo-inverse A† of the matrix A74:

γ̃ = A†yi. (2.28)

If the parameters γi are not linear in the derived model this results in:

f̃(x) = fn(x, γ) (2.29)

and the nonlinear least-squares approach must be used. Here, it is common
practice to either use the Levenberg-Marquardt algorithm73 or to use a gener-
ally applicable optimization algorithm for unrestricted nonlinear optimization
problems75 which mostly only finds a local optimum due to the possible
non-convexity of Equation (2.29).

72 Boyd and Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares, ([21], 2018, pp. 245)

73 Boyd and Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares, ([21], 2018, pp. 381)

74 Boyd and Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares, ([21], 2018, p. 229)

75 Harzheim, Strukturoptimierung, ([73], 2008, Chapter 2)
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2.2.3 Scenario Generation

For the design of technical systems it is required to derive a concept of
operations76 which is used to estimate the conditions within the usage period.
If a stochastic optimization approach is used to derive system designs that
are more robust against variations in their inputs, unsupervised learning
algorithms like the k-means77 clustering algorithm can be used to approximate
a sample distribution by a smaller discrete distribution78. This procedure
is also known as scenario generation. The clustering based on the k-means
algorithm is used explicitly within the modeling of the powertrain system
design79. For the water supply system design the scenario generation is based
implicitly on a clustering80,81.

2.2.4 Uncertainty Quantification

When comparing different solution strategies, it is required to derive point esti-
mates and their according confidence intervals. One useful approach to derive
these confidence intervals is the bootstrap method, which was first introduced
by Efron82 in 1979. Within this method resampling with replacement is used
to create multiple sets of data samples. “The statistical accuracy of parameter
estimates can then be evaluated by looking at the variability of predictions
between the different bootstrap data samples.”83 This procedure is repeated
a high number of times to derive more accurate estimates. Its advantage is
the ability to derive confidence intervals for arbitrary distributions without
further required information besides the already given drawn samples.

76 National Aeronautics and Space Administration, NASA Systems Engineering
Handbook, ([137], 2016, p. 4)

77 MacQueen et al., “Some Methods for Classification and Analysis of Multivariate
Observations”, ([115], 1967)

78 Löhndorf, “An Empirical Analysis of Scenario Generation Methods for Stochastic
Optimization”, ([112], 2016)

79 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

80 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

81 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

82 Efron, “Bootstrap Methods: Another Look at the Jackknife”, ([47], 1979)
83 Bishop, Pattern Recognition and Machine Learning, ([18], 2006, p. 23)
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Figure 2.2 – Performance of an example resilient technical system over time,
cf. [107]

2.3 Resilience

Resilience describes the intrinsic ability of a system to still ensure a minimal
functional performance in situations where a failure or a severe disturbance
occurs and additionally learn from these situations. Hence, a resilient system
is “safe-to-fail”84. Resilience is subject of research in many scientific fields85.
Nevertheless, the integration of this ability in technical systems is a challenging
task and subject to current research, but it offers the opportunity to derive
more sustainable systems86.
Multiple different facets of the resilience paradigm within the engineering
domain have been discovered so far. One early approach was given with the
term bounce back, see e.g. Wink87. This approach describes the desired system
behavior after a severe disturbance. Following this, the system should regain
its pre-disturbance performance level after the occurrence of a disturbance.
This describes one key property of a resilient system, but omits further
important properties, like a meaningful learning and anticipation approach
to avoid similar performance losses in the future.
Figure 2.2 visualizes a generalization of this dynamic behavior for an ideal
technical system88. A severe disturbance occurs in the time step tpre. After-

84 Ahern, “From fail-safe to safe-to-fail: Sustainability and Resilience in the New Urban
World”, ([1], 2011)

85 Wink, Multidisziplinäre Perspektiven der Resilienzforschung, ([200], 2016)
86 Fiksel, “Designing Resilient, Sustainable Systems”, ([54], 2003)
87 Wink, Multidisziplinäre Perspektiven der Resilienzforschung, ([200], 2016, p. 127)
88 Leise et al., “Potentials and Challenges of Resilience as a Paradigm for Designing

Technical Systems”, ([107], 2021)
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wards, the performance declines, but remains over a predefined minimum
required performance fmin. Due to either topological changes or other adap-
tation mechanisms the performance increases. At time tpost the best (mean)
post-disturbance performance is reached. For technical systems a complete
restoration of the pre-disturbance performance is not always feasible.
In a technical context, the term resilience often overlaps with the term
robustness89. A robust system survives a disturbance from a predefined range,
because it is designed to withstand stresses within this predefined range. Even
though robustness increases the resilience of a technical system, the resilience
paradigm augments this behavior by enabling a further adaptation, learning
and anticipation90,91.
The research focus within the community to design resilient technical systems
lies on the development of definitions of resilience and according metrics to
measure the resilience property92,93,94.
One major research direction of designing resilient technical systems within
the engineering domain is, besides definitions and metrics, the consideration
of network-like structures. They are modelled with the help of a mathematical
graph and are improved by using optimization approaches95,96.
Besides this, as shown by Scharte and Thoma97, there exists currently a lack
of a detailed evaluation of approaches to design resilient technical systems.
To address the resilient design of technical systems, within the CRC 805 a
definition and multiple metrics that are suitable for technical systems have

89 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, pp. 78)

90 Leise et al., “Potentials and Challenges of Resilience as a Paradigm for Designing
Technical Systems”, ([107], 2021)

91 Schulte, Kirchner, and Kloberdanz, “Analysis and Synthesis of Resilient Load-
Carrying Systems”, ([168], 2019)

92 Linkov et al., “Changing the Resilience Paradigm”, ([111], 2014)
93 Righi, Saurin, and Wachs, “A Systematic Literature Review of Resilience Engineering:

Research Areas and a Research Agenda Proposal”, ([158], 2015)
94 Hosseini, Barker, and Ramirez-Marquez, “A Review of Definitions and Measures

of System Resilience”, ([77], 2016)
95 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of

energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

96 Ulusoy, Pecci, and Stoianov, “An MINLP-Based Approach for the Design-for-
Control of Resilient Water Supply Systems”, ([185], 2020)

97 Scharte and Thoma, “Resilienz – Ingenieurwissenschaftliche Perspektive”, ([164],
2016)
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been introduced98,99.
Figure 2.3 shows a quasi-static evaluation of the performance f of a given
technical system. This approach is not limited to conceptual design, but
can be used in it as well to quantify the resilience. Figure 2.3 (a) shows the
performance range100 which represents the range for influencing factors for
which the minimum performance can be reached. The radius of performance
is the “minimum distance between the design point and a realization of an
influencing factor”101.
Figure 2.3 (b) shows the margin and gracefulness. The first is defined as the
difference of functional performance between the performance at the design
point and the minimum required performance102. The second describes the
system’s behavior “at the boundary of its performance range”103. Here a
graceful degradation is preferred for a more resilient system104. Since the
focus of this thesis is the conceptual design of technical systems by employing
Mixed-Integer Nonlinear Optimization, the selected approach for designing a
resilient system design is also presented in the next chapter.

98 Altherr et al., “Resilience in Mechanical Engineering - A Concept for Controlling
Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures”,
([3], 2018)

99 Altherr and Leise, “Resilience as a Concept to Master Uncertainty”, ([4], 2021)
100Altherr et al., “Resilience in Mechanical Engineering - A Concept for Controlling

Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures”,
([3], 2018)

101Altherr and Leise, “Resilience as a Concept to Master Uncertainty”, ([4], 2021,
p. 414)

102Altherr and Leise, “Resilience as a Concept to Master Uncertainty”, ([4], 2021,
p. 415)

103Altherr et al., “Resilience in Mechanical Engineering - A Concept for Controlling
Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures”,
([3], 2018, p. 190)

104Woods, “Essential Characteristics of Resilience”, ([202], 2017)
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Figure 2.3 – Metrics for technical systems to quantify the resilience, cf. [3].
This figure was first published in [4, p. 415]



Chapter 3

Water Distribution System

Design

In 2018 about 55% of the world’s population lived in urban areas, and it
is estimated that 2.5 billion people will join the urban population by 20501.
This trend enforces also an increase in the number of mega-cities with more
than 10 million inhabitants and also rises the trend of a growing number of
high-rise buildings2. Since the urban water distribution system is an important
infrastructure, research on more sustainable system designs is crucial3.
Therefore, the first use case which is described in details within this Chapter
focuses on the development of a sustainable water distribution system (WDS)
for high-rise buildings, since the efficiency of these systems can be significantly
improved, as identified within the research conducted within this thesis in
the CRC 805.
A prerequisite of an efficient design of these systems is the usage of efficient
components. But even a system design with the most efficient components
can result in a suboptimal system when considering the usage period and
investment decisions together. Therefore, it is essential to consider within
the conceptual design besides investment and the energy efficiency of single
components also their interplay within the derived system design4. Within
this chapter a newly derived MINLP model with specific extensions will
be shown. Furthermore, the effects of different modeling approaches on

1 United Nations Secretariat, Population Division, 2018 Revision of World
Urbanization Prospects, ([188], 2018)

2 CTBUH, 2018 Tall Building Year in Review, ([36], 2018)
3 Coelho and Andrade-Campos, “Efficiency Achievement in Water Supply Systems –

A Review”, ([35], 2014)
4 Tolvanen, “Life Cycle Energy Cost Savings through careful System Design and Pump

Selection”, ([181], 2007)

33
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the system design and the effects of the selected solution approach will be
evaluated. This chapter focuses on the underlying optimization model and
the physical and computational properties. In Subsection 3.3.3, this approach
is extended and discussed while considering explicitly the resilience.
This Chapter is based on multiple already published contributions5,6,7,8,9,
which specify specific parts while using this approach for the development of a
sustainable water distribution system for high-rise buildings. The first model
for designing a water distribution system for high-rise buildings was developed
in the preceding master thesis10, of which specific results were published by
Rausch, Leise, Ederer, Altherr, and Pelz11.
The models shown in the following extend this model significantly with an
improved model accuracy and enhanced solving performance. The research
within the subproject A9 within the CRC 805 mainly focused on this reference
use case to broaden the understanding of efficient modeling approaches, while
also considering the technical system’s resilience next to the system’s lifecycle
performance.
A MILP approximation of this non-convex MINLP for a WDS in highrise
buildings is also selected in a reference library that is used for the evaluation
of general purpose Mixed-Integer Linear Solvers. More details can be found
within the library MIPLIB 201712 and the corresponding publication13.

5 Leise, Altherr, and Pelz, “Energy-Efficient Design of a Water Supply System for
Skyscrapers by Mixed-Integer Nonlinear Programming”, ([102], 2018)

6 Leise and Altherr, “Optimizing the Design and Control of Decentralized Water
Supply Systems – A Case-Study of a Hotel Building”, ([101], 2018)

7 Altherr, Leise, Pfetsch, and Schmitt, “Algorithmic Design and Resilience Assess-
ment of Energy Efficient High-Rise Water Supply Systems”, ([5], 2018)

8 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

9 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

10 Leise, “Algorithmic Design of a Decentralized Fluid System”, ([98], 2016)
11 Rausch, Leise, Ederer, Altherr, and Pelz, “A Comparison of MILP and MINLP

Solver Performance on the Example of a Drinking Water Supply System Design Problem”,
([157], 2016)

12 Zuse Institute Berlin, MIPLIB 2017 – The Mixed Integer Programming Library,
([211], 2017)

13 Gleixner et al., “MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer
Programming Library”, ([65], 2021)
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3.1 Related Work

The optimization of water distribution systems in general has been in the
interest of research for several decades. Detailed reviews are given by different
authors14,15,16. Three types of specific optimization problems exist in the
literature. First, optimization programs, in which specific components like
pipes, networks, valves, or pumps are sized17,18,19. The problem of pipe
diameter sizing in this problem class is already NP-hard20 and is therefore
often solved by using heuristics. Second, the optimization of the operation
of components like pumps or valves in a given network21,22,23. And third,
the combined optimization of sizing, layout and operation increases the
solution complexity even further. It was therefore also mostly solved by
heuristics24,25,26.
Within this thesis an approach based on an exact optimization of a MINLP
is presented for the combined solution of a network layout, a pump sizing
and pump operation for the fresh-water supply of high-rise buildings. This
approach is based on the modeling as a stochastic optimization program
as already introduced in Section 2.1.2 to ensure the integration of a usage
14 De Corte and Sörensen, “Optimisation of Gravity-fed Water Distribution Network

Design: A Critical Review”, ([39], 2013)
15 D’Ambrosio, Lodi, Wiese, and Bragalli, “Mathematical Programming Techniques

in Water Network Optimization”, ([37], 2015)
16 Mala-Jetmarova, Sultanova, and Savic, “Lost in Optimisation of Water Distribu-

tion Systems? A Literature Review of System Operation”, ([119], 2017)
17 Fujiwara and Khang, “A two-phase Decomposition Method for Optimal Design of

Looped Water Distribution Networks”, ([60], 1990)
18 Varma, Narasimhan, and Bhallamudi, “Optimal Design of Water Distribution

Systems using an NLP Method”, ([189], 1997)
19 Pecci, Abraham, and Stoianov, “Global Optimality Bounds for the Placement of

Control Valves in Water Supply Networks”, ([144], 2019)
20 Yates, Templeman, and Boffey, “The Computational Complexity of the Problem

of determining Least Capital Cost Designs for Water Supply Networks”, ([206], 1984)
21 Jowitt and Germanopoulos, “Optimal Pump Scheduling in Water-supply Networks”,

([88], 1992)
22 Yu, Powell, and Sterling, “Optimized Pump Scheduling in Water Distribution

Systems”, ([207], 1994)
23 Gleixner, Held, Huang, and Vigerske, “Towards Globally Optimal Operation of

Water Supply Networks”, ([66], 2012)
24 Dandy, Simpson, and Murphy, “Optimum Design and Operation of Pumped Water

Distribution Systems”, ([38], 1994)
25 Ostfeld and Tubaltzev, “Ant Colony Optimization for Least-Cost Design and

Operation of Pumping Water Distribution Systems”, ([140], 2008)
26 Prasad, “Design of Pumped Water Distribution Networks with Storage”, ([153], 2009)
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period that is affected by uncertainty. Furthermore, it allows to estimate the
efficiency increase of an optimized system design in comparison to a reference
design. A related research approach that is solely based on a MILP approach
instead of a MINLP approach, and which focuses more on the optimization of
booster station designs and thermo-fluid systems is given by Weber et al27,28,29.
The standards DIN 1988-500 (2011) and DIN 1988-300 (2014) present codes
of practice for drinking water installations in high-rise buildings30,31. They
reflect current engineering best-practices to design water distribution systems
for fresh-water. Within DIN 1988-500 multiple generic approaches of multi-
branch system designs, where different pressure zones within the building are
supplied individually, are shown. DIN 1988-300 presents relevant sizing and
load estimation techniques to design the water distribution system according
to the needs of the considered building. Both standards are applicable for high-
rise buildings, but do not present a specific approach to derive a sustainable
system design. Instead, they only provide generic approaches. Besides this,
a concept of operation for the fresh water supply in buildings is given by
Hirschberg32. Since the considered pumps within the system design have a
significant impact on the energy efficiency within the usage phase, standards
like the EN16480:2016 (2016)33 or the ISO/ASME 14414 (2019)34 are also
relevant within the system design.

27 Weber and Lorenz, “Optimizing Booster Stations”, ([196], 2017)
28 Weber and Lorenz, “Algorithmic System Design of Thermofluid Systems”, ([195],

2018)
29 Weber, Hartisch, Herbst, and Lorenz, “Towards an Algorithmic Synthesis of

Thermofluid Systems”, ([194], 2021)
30 DIN 1988-300, Codes of practice for drinking water installations – Part 300: Pipe

sizing; DVGW code of practice, ([41], 2012)
31 DIN 1988-500, Codes of practice for drinking water installations – Part 500: Pressure

boosting stations with RPM-regulated pumps; DVGW code of practice, ([42], 2011)
32 Hirschberg, “Lastprofil und Regelkurve zur energetischen Bewertung von Drucker-

höhungsanlagen”, ([74], 2014)
33 EN 16480:2016, Pumps — Minimum required Efficiency of Rotordynamic Water Pumps,

([49], 2016)
34 ISO/ASME 14414, Pump System Energy Assessment, ([87], 2019)



CHAPTER 3. WATER DISTRIBUTION SYSTEM DESIGN 37

3.2 MINLP Model

The remaining part of this chapter is based on three publications that were
published in the context of the CRC 80535,36,37. The focus lies on the inter-
play between model accuracy and the applicability of an exact optimization
approach.
The concept of operation for the conceptual design of a water distribution
system is represented with a set of s scenarios, which can be written as:

Λ =






qT

hT

π
T




 ∈ R

3×s. (3.1)

With this abstract representation it is possible to derive a deterministic equiv-
alent of a stochastic program, in which the load of the water distribution
system is uncertain. This load is approximated with a discrete set of sce-
narios. Each scenario is given by a specific volume flow qi, pressure hi and
probability πi. The set of scenarios is given by S and consists of the s load
scenarios given by Λ.
In the following, a nonlinear nonconvex reference model is presented. Then,
multiple advancements are shown of this basic model, where each model is
specialized for answering a specific research question. Two approaches for
integrating multiple speed-controlled pumps in the optimization model are
presented. Here, one approach is based on a scaling approach, while the
second one is based on a preselection of a subset of pumps from a given series
of pumps. Afterwards, we also present a model adaption that transforms
the given nonconvex nonlinear model in a mixed-integer linear program.
The performance of this convexification strategy is shown by a systematic
evaluation, cf. [131].
For modeling of the given technical system a gray-box approach is selected.
The gray-box model for deriving a conceptual design for the WDS of high-
rise buildings is based on a graph-theoretical approach with the graph G,
in which the sets given in Table 3.1 are used to describe the vertices and
edges. It is required that the underlying graph is directed and acyclic. The

35 Leise and Altherr, “Optimizing the Design and Control of Decentralized Water
Supply Systems – A Case-Study of a Hotel Building”, ([101], 2018)

36 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

37 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)
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Table 3.1 – Index Sets, cf. [101]

Index Sets Description

V set of vertices of system graph G
E set of edges of system graph G
S set of load scenarios s
B set of pump types b

models consider only the fresh water supply. As an objective the simplified
lifetime costs are used, which consist of the investment and energy costs
within the lifetime. The most important components in the system model
are the speed-controlled centrifugal pumps that provide the volume flow and
pressure to supply each floor in the given building with fresh water. Since the
water pressure of municipal water supplier is only sufficient to provide water
in buildings with a few floors and is regionally different, pumps are usually
required for high-rise buildings. In the following, we use capital letters for
parameters and lower case letters for variables.
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Figure 3.1 – Characteristic diagram with isolines for different speed values ω

for an exemplified pump and its feasible set, cf. [6]

The behavior of the centrifugal pumps can be described by characteristic
diagrams, as shown in Fig. 3.1. The pressure head ∆h is measured in meter.
A centrifugal pump can be used in a specified subdomain within the ∆h-q
domain. Here, q represents the volume flow. A characteristic diagram of
a given centrifugal pump can be approximated with polynomials38. In the
following, we use for the representation of the pumps pressure head ∆h and

38 Ulanicki, Kahler, and Coulbeck, “Modeling the Efficiency and Power Characteris-
tics of a Pump Group”, ([184], 2008)
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the power p39:

∆h(q, ω+) = αh q2 + βh q ω+ + γh ω2

+ and

p(q, ω+) = αp q3 + βp q2 ω+ + γp q ω2

+ + δp ω3

+.
(3.2)

The functional relationship of the pressure head is approximated by a second-
order polynomial with the volume flow q and normalized rotational speed
ω+ = ω/ωmax. This normalized rotational speed reaches its upper bound
ω+ = 1, if the maximum speed is reached. The lower bound ω+ depends on
the considered pump and is usually above zero. The feasible set of a given
pump is then described additionally to Eq. (3.2) by39:

ω+ ≤ ω+ ≤ ω+,

αq + β∆h ≤ γ,

αq + β∆h ≤ γ.

(3.3)

The parameters that are required within this centrifugal pump model (3.2)
and (3.3) are derived by using a linear least-square approximation of measured
characteristics given by the given manufacturer, cf. Section 2.2.2. Since the
conceptual design task requires the appropriate sizing of pumps to supply the
building at hand most sustainable, a scaling approach, as already presented
in Section 2.2.1, helps to define pump characteristics that can be used as a
reference construction kit from which the optimized system can be build of.
If the flow conditions in two given pumps are geometrically and dynamically
similar, cf. Section 2.2.1, it is possible to use a scaling law to represent
a scaled pump by using the description of a reference pump (�M) and an
according scaling. For centrifugal pumps the following scaling approach is
given by Gülich40:

q = qM

(

d

dM

)3

,

∆h = ∆hM

(

d

dM

)2
zst

zst,M

,

p = pM

(

d

dM

)5
zst

zst,M

ηM

η
.

(3.4)

It assumes that “the volumetric and hydraulic efficiency, as well as the

39 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

40 Gülich, Centrifugal Pumps, ([69], 2008, p. 147)
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Figure 3.2 – Example for the scaling of characteristic pump diagrams based
on [6]. The solid curve represents the feasible set of the reference pump. The
dashed lines depict the feasible set of a scaled pump. The dotted lines depict
the scaling of the corner points.

rotational speed and density of the fluid are equal for the reference pump”41

and the derived pump. Here, the impeller diameter d ∈ R
+ and the number

of stages zst ∈ Z
+ are used as scaling parameters. A scaling based on the

impeller diameter is shown in Figure 3.2.
The parameter η represents the hydraulic efficiency, which increases with the
size of the pump. This increase is modelled following Gülich42 with:

η = ηM + 0.4 (1− ηM)

(

1−
ReM

Re

0.2
)

. (3.5)

With the constant kinematic viscosity ν and the Reynolds number Re = ωπd2

ν

for pumps, Equation (3.5) can be written as:

η = ηM + 0.4 (1− ηM)

(

1−
dM

d

0.4
)

. (3.6)

With this approach, we are able to derive an arbitrary number of pumps that
can be sized according to the requirements. This benefit comes also with
a computational drawback, since the integration of this approach directly

41 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

42 Gülich, Centrifugal Pumps, ([69], 2008, p. 155)
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Figure 3.3 – Characteristic q–∆h diagrams of the used construction kit in [6].

in the model reduces the performance of exact optimization algorithms due
to its high nonlinearity. Therefore, the scaling approach is used to define
multiple construction kits of specific scaled pumps, cf. Leise and Altherr43. The
additional degree of freedom is then evaluated by Latin Hypercube Sampling
(LHS) – an approach known from Design of Experiments44. Since the number
of stages and the diameter of the impeller represent two parameters to scale
the pumps, the construction kit can be build of pumps that have different
properties. In Fig. 3.3, a reference construction kit with differently sized
pumps is shown45.
The presented newly derived reference MINLP for the conceptual design
of the fresh water distribution systems in high-rise buildings is based on a
two-stage stochastic optimization program. In the first stage binary and
integer decisions represent investment decisions. Here, the complete network
design and pumps are selected. This reference network design, and an
resulting example selection after fixing the first stage variables is shown
in Figure 3.4. The black dots represent vertices of the underlying graph-
representation and from an engineering point of view junctions of the water
distribution network in the building to a corresponding pressure zone. Here,

43 Leise and Altherr, “Optimizing the Design and Control of Decentralized Water
Supply Systems – A Case-Study of a Hotel Building”, ([101], 2018)

44 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

45 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)
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pressure zones46 aggregate multiple adjacent floors. The according pressure
and flow requirements in these pressure zones can either be estimated by
standard procedures47 for a newly designed building or are based on reference
measurements from an existing building.

?

3
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1
4
2
1
2
4

Figure 3.4 – First stage decisions – Define the topology of the network,
cf. [101]

In the second stage integer and continuous variables lead to an optimal control
of the selected pumps48. The usage phase is represented by different scenarios
s and a corresponding weighting πs, cf. Section 2.1.2. It is therefore possible
to use specific pumps that were integrated in the optimized solution only
in specific scenarios, while they are deactivated in other scenarios. This
activation and deactivation is modeled with binary variables yload

i,j,b,s
and integer

variables zload
i,j,b,s

.
All used parameters and variables are shown in Table 3.2, cf. [101]. The corre-
sponding two-stage stochastic optimization program is given in Equation 3.7
to Equation 3.35. Within each load scenario up to Zp pumps of the same
type can be used in a parallel setting. This restriction is valid since parallel
pumps are only the most energy efficient, if they are of the same size and are
controlled simultaneously49,50.
The result of the solution of the given optimization program ((3.7) – (3.35))
with an according parametrization that is suitable for the high-rise building

46 DIN 1988-500, Codes of practice for drinking water installations – Part 500: Pressure
boosting stations with RPM-regulated pumps; DVGW code of practice, ([42], 2011)

47 DIN 1988-300, Codes of practice for drinking water installations – Part 300: Pipe
sizing; DVGW code of practice, ([41], 2012)

48 Leise and Altherr, “Optimizing the Design and Control of Decentralized Water
Supply Systems – A Case-Study of a Hotel Building”, ([101], 2018)

49 Pedersen and Yang, “Efficiency Optimization of a Multi-pump Booster system”,
([145], 2008)

50 Groß, Pöttgen, and Pelz, “Analytical Approach for the Optimal Operation of
Pumps in Booster Systems”, ([67], 2017)
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that is under consideration, are the investment decisions for the selected
pumps and pipes {zpump

i,j,b
, ypipe

i,j
} and the control decisions of the selected pumps

{zload
i,j,b,s

, ω+,i,j,b,s}.
The constraints of the resulting nonconvex MINLP are presented now in
further detail. Constraint (3.8) restricts the solution to only networks, in
which one pipe supplies each pressure zone. This leads to a tree-structured
network, which is representable for fresh water distribution systems in high-
rise buildings. Besides a single pipe, it is possible to select one of the given
pump types from the construction kit (constraint (3.9)). From this selected
pump type multiple parallel pumps can be used in the optimized solution. A
selection of pumps is only valid, if a pipe is selected to connect the according
vertices of the graph (constraint (3.10)). In a given load scenario, a pump can
only be used if it is installed (constraint (3.11)). The logical behavior for each
parallel pump group is modeled with Constraints (3.12) to (3.16). Constraints
(3.17) and (3.18) describe the domain boundaries on the normalized rotating
speed ω+,i,j,b,s. The boundary conditions of the considered high-rise building
are represented by Constraints (3.19) to (3.21). Constraint (3.19) sets the
pressure at the entry of the building based on a specified value by the municipal
water supplier. Constraints (3.20) and (3.21) integrate the minimum pressure
head in each pressure zone. The continuity equations for the volume flow
are modeled with (3.22) to (3.28). And finally, the characteristics of each
considered pump in the underlying construction kit is integrated in the MINLP
with Constraints (3.29) to (3.35).
Instances of this reference model can be created by selecting a dedicated
construction kit of pumps, a pressure zone description and water demand as
well as environmental parameters like the water pressure at the intake of the
building.

3.2.1 Solution Approach

The introduced abstract model is now evaluated on an existing reference hotel
building. With this example, the effect of a retrofitting of the water supply
system can be estimated. Since the selection of the pumps has an influence
on the optimized solution, an approach that is based on a Latin Hypercube
Sampling51 is presented to evaluate multiple solutions within the complete
design space given by the variability of the pumps. The performance of each
construction kit B is evaluated based on the given MINLP. The parameters

51 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)
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Table 3.2 – Parameters and variables for the MINLP, cf. [101]

Parameter Description Domain

Q maximum inflow R
+

Qload
v,s outflow on level v in scenario s R

+

H0 pressure head by water supplier R
+

H minimal pressure head in each level, expect the first one R
+

H1 minimal pressure head in first level R
+

H maximum water height of the building R
+

B big-M constant for the pressure increase R
+

∆Hi,j pressure loss between level i and level j R
+

P maximum power consumption R
+

Z maximum number of parallel pumps R
+

Ω+ minimum normalized speed of all pumps [0, 1]

Cenergy energy costs per Watt R
+

Cpump
b

investment cost for each pump R
+

Cpipe
i,j

investment costs per pipe R
+

πs usage probability of each scenario R
+

τ time of usage R
+

Variable Description Domain

qi,j,s volume flow in each edge (i, j) in scenario s [0, Q]

qpart
i,j,s

volume flow in each pump on edge (i, j) in scenario s [0, Q]

hv,s pressure head on vertex v in scenario s [0, H]
ω+,i,j,b,s normalized speed on edge (i, j) for pump b in scenario s [0, 1]

pi,j,b,s total power of pumps of type b on edge (i, j) in scenario s [0, P ]

ppart
i,j,b,s

power of each pump of type b on edge (i, j) in scenario s [0, P ]

ypipe
i,j

indicator whether pipe (i, j) is used {0, 1}

ypump
i,j,b

indicator whether pumps of type b is used in pipe (i, j) {0, 1}

yload
i,j,b,s

indicator if pump b is used in pipe (i, j) in scenario s {0, 1}

zpump
i,j,b

number of parallel pumps of type b on edge (i, j) {0, Z}

zload
i,j,b,s

number of active pumps of type b on edge (i, j) in scenario s {0, Z}

Table 3.3 – Parameters for all used model pumps, cf. [101].

b ∈ B Power ppart
i,j,b,s

Head ∆hi,j,b,s Flow qpart
i,j,s

αp
b

βp
b

γp
b

δp
b

αh
b

βh
b

γh
b

αq,1
b

βq,1
b

αq,2
b

βq,2
b

b = 1 -11.14 41.52 54.32 191.21 -3.42 2.76 45.19 1.07 0.085 0.077 0.0027
b = 2 -1.77 5.90 135.81 245.28 -0.92 1.18 52.30 2.34 0.15 0.098 0.0029
b = 3 -0.66 1.15 125.73 276.78 -0.34 0.37 47.97 3.26 0.21 0.25 0.0094
b = 4 -1.21 -4.67 205.12 343.73 -1.18 1.04 84.64 6.80 0.0 0.00 0.00
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min
∑

b∈B

∑

(i,j)∈E

Cpump

b
zpump

i,j,b
+

∑

(i,j)∈E

Cpipe

i,j
ypipe

i,j
+ Cenergyτ

∑

s∈S

∑

b∈B

∑

(i,j)∈E

πspi,j,b,s (3.7)

subject to
∑

(i,j)∈E:j=v

ypipe

i,j
≤ 1 ∀(i, j) ∈ E ,∀v ∈ V (3.8)

∑

∀b∈B

ypump

i,j,b
≤ 1 ∀(i, j) ∈ E (3.9)

ypump

i,j,b
≤ ypipe

i,j
∀(i, j) ∈ E ,∀b ∈ B (3.10)

yload

i,j,b,s
≤ ypump

i,j,b
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.11)

ypump

i,j,b
≤ zpump

i,j,b
∀(i, j) ∈ E ,∀b ∈ B (3.12)

ypump

i,j,b
Z ≥ zpump

i,j,b
∀(i, j) ∈ E ,∀b ∈ B (3.13)

yload

i,j,b,s
≤ zload

i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.14)

yload

i,j,b,s
Z ≥ zload

i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.15)

zload

i,j,b,s
≤ zpump

i,j,b
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.16)

ω+,i,j,b,s ≤ yload

i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.17)

ω+,i,j,b,s ≥ Ω+y
load

i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S (3.18)

hIn,s = H0 ∀s ∈ S (3.19)

h1,s ≥ H1 ∀s ∈ S (3.20)

hv,s ≥ H ∀v ∈ V \ 1,∀s ∈ S (3.21)
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qi,j,s ≤ Qypipe

i,j
∀(i, j) ∈ E ,∀s ∈ S (3.22)

qpart

i,j,s
≤ qi,j,s ∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.23)
∑

(i,v)∈E

qi,v,l =
∑

(v,j)∈E

qv,j,s + qload

v,l
∀v ∈ V,∀s ∈ S (3.24)

qi,j,s ≤ zload

i,j,b,s
qpart

i,j,s
+Q(1− yload

i,j,b,s
) ∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.25)

qi,j,s ≥ zload

i,j,b,s
qpart

i,j,s
−Q(1− yload

i,j,b,s
) ∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.26)

qpart

i,j,s
− qi,j,s ≤ Q

∑

b∈B

yload

i,j,b,s
∀(i, j) ∈ E ,∀s ∈ S (3.27)

qpart

i,j,s
− qi,j,s ≥ −Q

∑

b∈B

yload

i,j,b,s
∀(i, j) ∈ E ,∀s ∈ S (3.28)

qpart

i,j,s
≤ αq,1

b
+ βq,1

b
∆hi,j,b,s + (1− yload

i,j,b,s
)Q ∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.29)

qpart

i,j,s
≥ αq,2

b
+ βq,2

b
∆hi,j,b,s − (1− yload

i,j,b,s
)Q ∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.30)

(hj,s −
∑

b∈B

∆hi,j,b,s + ∆Hi,j − hi,s)

+B(1− ypipe

i,j
) ≥ 0 ∀(i, j) ∈ E ,∀s ∈ S (3.31)

(hj,s −
∑

b∈B

∆hi,j,b,s + ∆Hi,j − hi,s)

−B(1− ypipe

i,j
) ≤ 0 ∀(i, j) ∈ E ,∀s ∈ S (3.32)

ppart

i,j,b,s
≥ αP

b
(qpart

i,j,s
)3 + βP

b
(qpart

i,j,s
)2ω+,i,j,b,s

+γP

b
qpart

i,j,s
ω2

+,i,j,b,s
+ δP

b
ω3

+,i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.33)

pi,j,b,s ≥ zload

i,j,b,s
ppart

i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.34)

∆hi,j,b,s = yload

i,j,b,s
αH

b
(qpart

i,j,s
)2

+βH

b
qpart

i,j,s
ω+,i,j,b,s

+γH

b
ω2

+,i,j,b,s
∀(i, j) ∈ E ,∀b ∈ B,∀s ∈ S

(3.35)
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Table 3.4 – Cost model parameters, cf. [6, 101]

α1 α2 α3 α4 α5 α6

-0.952 -0.00853 1.135 84.699 5.542 225.387

Table 3.5 – Statistical indicators based on 40 different evaluations, cf. [101].

mean std min 25% 50% 75% max

objective 41056.39 24110.50 23391.09 26060.80 30905.98 40178.98 112464.52
time 461.48 836.86 0.31 2.84 118.60 510.55 4311.16

std — standard deviation; min — minimum; max — maximum

in Table 3.3 are used as a reference for the pump construction kit.
Within Equation 3.7 the given parameter Cpump

b
describes the investment

cost of a specific pump. Since this cost is only available for pumps already
available on the market, it is required to derive a cost estimation model for
the applicability of the scaling approach. The cost model

Cpump

b
= α1(q

pump)2 + α2(∆h
pump

)2 + α3q
pump∆h

pump

+ α4q
pump + α5∆h

pump

+ α6

(3.36)
was derived from a set of 33 available pumps of a pump series for a highrise
water supply with given impeller diameters and number of stages.
The according parameters that were derived by using a linear least-square
approach, cf. Section 2.2.2, are given in Table 3.4. As features the maximum
flow qpump and the maximum pressure increase ∆h

pump

were used, since they
can describe the scaling by impeller size and stage number. The data fitting
resulted in an adjusted R-squared value of 0.988 for the given data set. Further
information is given in the corresponding publications52,53.

3.2.2 Results

A computational study was conducted with the newly developed model given
in Equations (3.7) to (3.35). For this study we use d+,b = db/dM,b to describe
the ratio between the derived diameter and the original diameter given by the
reference pump in Table 3.3. A detailed description of the used parameters
can be found in the Appendix A.

52 Leise and Altherr, “Optimizing the Design and Control of Decentralized Water
Supply Systems – A Case-Study of a Hotel Building”, ([101], 2018)

53 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)
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Table 3.6 – Three best computational results, cf. [101]

# d+,1 d+,2 d+,3 d+,4 objective solution time
value in s

1 0.89 1.27 1.08 1.01 23391.09 257.34
2 0.78 0.93 0.89 1.04 23931.28 974.47
3 0.67 0.86 1.68 0.89 25607.67 3.16

Since the scaling uses the relations between the diameters, the true diameters
of the reference systems are not relevant in an absolute manner. Furthermore,
we select only a varying impeller diameter while taking the relation between
the number of stages constant. Table 3.5 shows a summary derived from 40
evaluations with differently scaled pumps. It can be seen that the objective
varies significantly, depending on the underlying set of selected pumps B.
Hence, the selection of the construction kit plays an important role, when
designing efficient systems. Next to the objective value, Table 3.5 also shows
a summary of the solving time for all 40 instances. Here, it can be seen that
the solving time also differs significantly within this problem class, despite
the fact that all problems only differ in their selected set of pumps. The
topological freedom by choosing different pipe layouts can compensate the
effects of sets with inefficiently sized pumps for a specific part. But due to
the high variability of the objective it is essential to evaluate multiple set of
pumps for the construction kit properly to enable an efficient system design.
This is exemplified by the difference between the maximum and minimum
value in Table 3.5. The worst system design results in more than four times
higher lifetime costs than the best system.
The three best sets by its objective value for B are shown in Table 3.6. The
objective value between the best and second solution is almost equal, which
exemplifies that multiple almost equally good solutions exist in the design
space. Nevertheless, the computational time varies significantly, as can be seen
for the three best solutions as well as within the summary data in Table 3.5.
Even if a specified construction kit B is defined for each computational result
with four differently sized pumps the optimally computed solution does not
necessarily make use of all available pumps. In fact, it usually consists of only
a few different pumps.
For the given evaluations the best solution in Table 3.6 uses only four times the
pump b = 4 with an almost identical size as the reference pump (d+,4 = 1.01).
As a topology two parallel pumps are combined in one booster station for
to adjacent pressure zones, which consist of three floors each. This system
design is shown in Figure 3.5.
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Figure 3.5 – Outlined topology result for the best found solution, cf. [101]

3.3 Extensions

3.3.1 Detailed Modeling

Based on this nonlinear and nonconvex MINLP multiple extended models
with specific solution approaches were developed within the CRC 805 and at
the Chair of Fluid Systems. Two specific extensions54,55 will be presented in
the following.
To increase the computational performance of this MINLP, a partially im-
proved model was derived by Altherr, Leise, Pfetsch, and Schmitt56. Besides
computational improvements through a problem-specific algorithm develop-
ment, the model was extended from an engineering point of view by a more
detailed pipe modeling. Here, different discrete pipe diameters were intro-
duced, which are commonly used as shown by DIN 1988-30057. The additional
set D = {10, 13, 16, 19.6, 25.6, 32, 39, 51, 60, 72.1, 84.9, 104} measured in mm
is introduced54. One of these discrete diameters has to be chosen for each
arc in the network. The investment costs in the objective for pipes are then

54 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

55 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

56 An alphabetic ordering of authors was chosen for this publication, cf. [6]
57 DIN 1988-300, Codes of practice for drinking water installations – Part 300: Pipe

sizing; DVGW code of practice, ([41], 2012)
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estimated by using the generally used nonlinear approach58,59,60 Cpipe
i,j

= γLad
δ

with the problem specific individually derived coefficients γ = 3593e/m
and δ = 1.6975, cf. [6]. Here, a nonlinear least-squares approach is chosen,
see Section 2.2.2. Furthermore, the pressure loss in pipes is modelled with
the help of the Darcy-Weisbach equation61

∆F (d, q, L) = λh

1

d5

8

π2

q2

g
L.

Here, λ is the friction coefficient and g the standard gravity acceleration. In
the considered use case for a water distribution system in high-rise buildings
by Altherr, Leise, Pfetsch, and Schmitt62, we have maximum volume flows
between 25 m3/h and 35 m3/h and pipe diameters between 0.01 m and 0.1 m.
These values result in Reynolds numbers that indicate a turbulent flow. Hence,
we use the assumption that the flow conditions are turbulent.
For the modelling of the friction coefficient λh in pipes multiple modelling
approaches exist63. For an integration in the optimization model it is beneficial,
if the friction coefficient is independent of the volume flow on the considered
arc, since the volume flow is set within optimization. If this holds, the friction
coefficient does not have to be modeled as an additional constraint explicitly,
but it can be integrated implicitly. One friction coefficient model that is
independent of the volume flow is the friction law of Nikuradse, Prandtl and
von Kármán, cf. Brkić63, for a hydraulically rough pipe62:

λh =
1

(2 log10(3.71 d

K
))2
. (3.37)

For the pipe wall roughness the parameter K = 0.0015 mm is used54, which
represents stainless steel pipes64. Besides this more detailed modelling of pipes

58 Fujiwara and Khang, “A two-phase Decomposition Method for Optimal Design of
Looped Water Distribution Networks”, ([60], 1990)

59 Savic and Walters, “Genetic Algorithms for Least-Cost Design of Water Distribution
Networks”, ([162], 1997)

60 Bieupoude, Azoumah, and Neveu, “Optimization of Drinking Water Distribution
Networks: Computer-based Methods and Constructal Design”, ([16], 2012)

61 Brown, “The History of the Darcy-Weisbach Equation for Pipe Flow Resistance”, ([26],
2003)

62 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

63 Brkić, “Review of Explicit Approximations to the Colebrook Relation for Flow Friction”,
([24], 2011)

64 DIN 1988-300, Codes of practice for drinking water installations – Part 300: Pipe
sizing; DVGW code of practice, ([41], 2012)
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a focus is set on the concurrent solution of the given optimization problem and
the explicit consideration to derive resilient system designs. For more details
on the solving algorithm, please refer to [6]. More details on the resilience
consideration in the conceptual design are given in Section 3.3.3.

3.3.2 Selection of Pump Sets

In the MINLP model in Eq. (3.7) – (3.35), a scaling of multiple reference
pumps is used to create a specific set of pumps B as a construction kit. This
approach is suitable, if no further knowledge about the pumps besides a
reference design is known.
Since the usage of a scaling approach for the pump size leads to pump designs
that are not necessarily available on the market, another approach is the
integration of a specific set of pumps as shown by Müller, Leise, Lorenz,
Altherr, and Pelz65.
In this work a computational study is performed. It is based on a discrete
approach with a dedicated problem-specific heuristic to select a suitable subset
of 15 pumps from a given series with 200 market-available pumps66 that are
used explicitly for the design of a water supply of high-rise buildings. Since
the integration of the complete set of pumps would result in a significant
increase in computational time, the heuristic shown in Algorithm 1 has been
developed to enable a selection of a subset. The developed MINLP in the
publication [131] differs slightly from the already introduced MINLP in the
last subsection, since it focuses on the design of a booster station.
Nevertheless, the heuristic approach to select a subset of pumps can be
integrated as a preprocessing step in multiple conceptual design processes for
high-rise buildings which are based on a MINLP modeling.
The preselection heuristic considers domain-specific knowledge to derive the
subset of pumps in the given series that are most suitable for the water
supply. It is a new algorithmic approach that extends common manual
problem-specific expert selection processes67,68.
The heuristic is shown in Algorithm 1. It derives a subset B of all available
pumps Btotal. As an input it uses multiple scenarios in the set S in their
respective ∆h− q domain. As already introduced in general in Section 2.2.3
the concept of operation in the usage period is given by scenarios s ∈ S with
65 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of

Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

66 Further information on the used dataset is given in the Appendix.
67 Larralde and Ocampo, “Centrifugal Pump Selection Process”, ([95], 2010)
68 Larralde and Ocampo, “Pump Selection: A Real Example”, ([96], 2010)
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Algorithm 1: Heuristic Selection of Pumps, cf. [131]

input : original load scenarios in ∆h–q domain S
set of all available pumps Btotal

distance parameter L
pre

set of desired fractional positions F
output : selected pumps B
Z ← ∅ // selected fractional loads in ∆h-q domain

B ← ∅ // selected pumps

// step 1: select fractional loads

for i← 1 to |S| do
generate fractional loads for parallel pump usage based on F and
add them to Z

for i← 1 to |Z| do
generate fractional loads for serial pump usage based on F and
add them to Z

sort Z by power
while true do

compute distance matrix value ai,j between every point in Z
if at least one ai,j < L

pre

∀ i, j ∈ Z without i = j then

remove point with ai,j < L
pre

and lowest possible power from Z
else

quit loop
// step 2: get best suitable pumps for Z
for i← 1 to |Z| do

for j ← 1 to |Btotal| do
select best suitable pump bj ∈ B

total for zi ∈ Z
save best suitable pump in B if not already selected

specific values for the pressure ∆hs, the volume flow qs and a probability of
occurrence πs.

Since these scenarios must be fulfilled within the optimized solution, it is
required that the corresponding pumps must either fulfill these scenarios
individually or in a set where pumps are connected in parallel or in series.

As already introduced, it is most efficient to consider only parallel connection
of equivalent pumps with the same speed, the volume flow of each pump in
this connection can be approximated with q/N if N is the number of pumps in
this subgroup. The pressure increase ∆h of a parallel connection is equivalent
for each pump. Furthermore, if a subgroup consists of a series connection the
volume flow q is equivalent in this subgroup, but the required pressure ∆h
can be divided by the number of considered pumps N .
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Figure 3.6 – Exemplified result of the newly derived heuristic for a preselection
of pumps, cf. [131].

The heuristic is based on these two physical properties of a booster station.
It uses a two-step process. In the first step a set of fractional loads is derived
where each load represents the load of one pump in a parallel or series
connection of pumps. Since multiple fractional loads can be placed in the
∆h− q domain close to each other, a distance parameter L

pre

is introduced.
Only the load with the highest power within a given distance from each other
load in the domain is stored for a later pump selection. The other loads are
removed iteratively from the set of fractional loads Z.
In the second step, the finally used pumps are selected based on their according
characteristics: “A pump is selected, if it can fulfill the desired demand at
these fractional loads and has the lowest possible maximum hydraulic power.
In this manner we derive a final pump catalog that consists of a predefined
number of pumps which are suitable to supply each original demand by single
pumps or a combination of serial/parallel connected pumps. Additionally,
each selected pump has the lowest power demand to supply the partial load
it was selected for.”69

This procedure reduces the given set of pumps considerably to the number
that is set manually in advance of the optimization and which can be solved
in an appropriate time. As shown in the corresponding publication, the
performance of this heuristic is high for the considered use case, since it leads
to solutions that are close to a hypothetically optimal performance69.

69 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)
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3.3.3 Resilience

Besides the already introduced conceptual approaches towards more resilient
technical system designs in Sec. 2.3, another important metric that can be used
to measure the resilience of a technical system is the buffering capacity70 of
type k, which we also call k-resilience71. This metric describes the ability of a
system to still fulfill a predefined minimum functionality fmin, if k components
have a failure and cannot maintain their functionality they would provide
under “normal” conditions. The benefit of this metric is the applicability
within MINLP programs. For the WDS use case, we assume that only pumps
are affected by failures and that the flow through an affected pump can be
bypassed. With these assumptions, we are able to extend a reference MINLP
model which is presented by Altherr, Leise, Pfetsch, and Schmitt71 so that
the resilience can also be considered while optimizing the conceptual system
design. A detailed view on this metric and its application for designing
resilient and efficient water distribution systems can be found in the joint
publication71 and in the dissertation of A. Schmitt72.

3.3.4 Convexification

The already introduced MINLP is nonconvex due to the pump characteristics.
One approach to derive a convex optimization program based on the given
MINLP is the usage of a piecewise linearization for the nonlinear and noncon-
vex constraints, cf. Section 2.1.5. This approach then leads to a Mixed-Integer
Linear Program (MILP) which can be solved with common state-of-the-art
MILP solvers very efficiently.
Hence, it is an often used approach to derive optimized system designs in
general and for water distribution system in particular73,74. This approach
was also implemented and tested by Müller, Leise, Lorenz, Altherr, and Pelz
for a high-rise WDS.

70 Woods, “Essential Characteristics of Resilience”, ([202], 2017, p. 23)
71 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of

energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)

72 Schmitt, “Mixed-Integer Nonlinear Programming for Resilient Water Network Design”,
([166], 2022)

73 Morsi, Geißler, and Martin, “Mixed Integer Optimization of Water Supply Net-
works”, ([129], 2012)

74 Rausch, Leise, Ederer, Altherr, and Pelz, “A Comparison of MILP and MINLP
Solver Performance on the Example of a Drinking Water Supply System Design Problem”,
([157], 2016)
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We were able to show that the solving performance is significantly improved
comparable to a solution of the MINLP directly. Since the number of simplices
and therefore the number of newly introduced variables significantly affects
the performance, we selected the number of simplices by the ability of the
optimized solution to approximate the MINLP result. As a threshold, we
set a limit of 2% of the objective value which corresponds to the uncertainty
that is measurable in physical experiments to validate the performance of the
optimization approach.
The only possibility to improve the performance even more is the development
of problem specific algorithms that exploit the problem structure and use
domain-specific knowledge. Further details on the MILP approach and a
specific solving algorithm as well as a systematic evaluation are shown in the
respective publication by Müller, Leise, Lorenz, Altherr, and Pelz75.
Besides this more common approach of PWL integration to convexify a
nonconvex MINLP, a further generalizable approach will be shown in the
next Chapter.

75 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)
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Chapter 4

Powertrain Design

The transport sector is responsible for approximately 37% of global CO2

emissions in the end-use sector1. Despite a decline of 10% in the CO2

emissions within the transportation sector in 2020 caused by the Covid-19
pandemic, the emissions are rebounding again in 20212 and still remain on a
high level.
This contradicts the required savings in CO2 emissions to reduce the effects
of climate change. Energy efficient system designs and an electrification of
transport are fundamental to reach the required ambitious reductions in CO2

emissions to mitigate climate change2.
The worldwide share of battery electric vehicles (BEVs) increased rapidly
within the last years3,4. Especially in Europe, which already became in 2021
the world’s largest electric car market followed by China and the United
States of America3. Besides passenger cars, other road transport modes, like
busses or trucks were also continuously electrified3.
As shown by the Intergovernmental Panel on Climate Change5 (IPCC),
one approach to derive a more “climate resilient development pathway”5 is
the development of environmentally sustainable and resilient technologies
and infrastructures. One suitable approach here, is the fulfillment of the
sustainable development goals that were already introduced by the United

1 IEA, IEA Transport, ([82], 2021)
2 IEA, Tracking Transport 2021, ([83], 2021)
3 IEA, Electric Vehicles, ([81], 2021)
4 Palmer, Tate, Wadud, and Nellthorp, “Total Cost of Ownership and Market

Share for Hybrid and Electric Vehicles in the UK, US and Japan”, ([142], 2018)
5 Pörtner et al., “Climate Change 2022: Impacts, Adaptation, and Vulnerability”,

([152], 2022)
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Nations in 20156.
Besides the already presented approach in the previous Chapter to derive a
sustainable water supply infrastructure, a second example use case is shown in
this Chapter. The technological development in this Chapter strengthens the
sustainable development goal climate action7. The focus lies on a conceptual
design approach for an efficient powertrain design in BEVs, and it is applicable
not only for road passenger vehicles, but also for road freight vehicles and
can therefore have a significant impact.
The representation of the usage phase in an optimization program for concep-
tual design is always affected by uncertainty. This uncertainty is currently
mastered within this problem class, by considering a specific driving cycle
as a concept of operation. Examples are legislative standard driving cycles
like for instance, the Worldwide harmonized Light-duty vehicles Test Cycles8

(WLTC). Additional approaches to derive driving cycles specific for BEVs
also exist in the literature9.
Besides this common approach, the focus is set on a new approach, where
the driving behavior is modeled as a stochastic variable, which is then ap-
proximated by scenarios, cf. Section 2.2.3. With this approach, it is possible
to create models that are comparable in its structure to the model presented
in the previous Chapter.
Some modeling approaches and results presented in this chapter have al-
ready been published in a peer-reviewed journal article7 and in peer-reviewed
proceedings10,11.
The optimization program considers a powertrain that consists of a battery, a
single electric machine (EM) with power electronics and a transmission which
are all optimized towards energy efficiency together7.
A first Mixed-Integer Nonlinear Program was presented by Leise, Altherr,
Simon, and Pelz10. This program was then extended, and the results were
verified by comparison with the solution of a comparable physical model that

6 United Nations Development Program, Sustainable Development Goals, ([187],
2015)

7 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

8 Tutuianu et al., Development of a World-wide Worldwide harmonized Light duty
driving Test Cycle (WLTC), ([183], 2013)

9 Pfriem and Gauterin, “Development of Real-World Driving Cycles for Battery
Electric Vehicles”, ([151], 2016)

10 Leise, Altherr, Simon, and Pelz, “Finding Global-Optimal Gearbox Designs for
Battery Electric Vehicles”, ([103], 2019)

11 Leise, Simon, and Altherr, “Comparison of Piecewise Linearization Techniques to
Model Electric Motor Efficiency Maps: A Computational Study”, ([109], 2020)
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was solved with a genetic algorithm7. As shown previously, the application of
a piecewise linear approximation of the characteristic diagrams of the pumps
leads to an efficient solving approach for the water distribution system design
problem, cf. Chapter 3. This approach was transferred to the powertrain
MINLP, where the highly nonlinear EM efficiency map was approximated
in a piecewise linear manner12. This approach leads to a reduction in the
computational time to derive solutions compared to solving the original
MINLP, but the usage of an outer polyhedral approximation that does not
require the integration of binary variables13 in the modeling resulted in the
considered (nonconvex) use case in a better scalable approach.
An extension of the solution approach for the nonconvex MINLP, shown in
these publications, is presented in this Chapter as well. It exploits the specific
structure of the MINLP by transforming the problem in a MINLP with convex
subproblems and applying a generalized Benders decomposition. This solution
approach also enables the derivation of a specific class of heuristics that can
lead to near-optimal solutions in a fraction of the time that is required to find
and prove the global optimality. The efficiency and correctness of the newly
developed modeling and solution approach is shown by a comparison to an
efficient brute force approach that omits the computation of mathematically
symmetric solutions. The shown modeling and solution approach is not
only applicable to the powertrain conceptual design problem, but is also
suitable for a high number of conceptual design problems. An outlook on the
transferability of the derived approach will be shown in Chapter 6.

4.1 Related Work

The optimization of a powertrain for hybrid-electric vehicles and battery
electric vehicles is a major research field in mechanical engineering14,15. As a
foundation for the modeling and optimization of BEVs, common approaches
from literature for the vehicle system modeling can be used to model the

12 Leise, Simon, and Altherr, “Comparison of Piecewise Linearization Techniques to
Model Electric Motor Efficiency Maps: A Computational Study”, ([109], 2020)

13 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

14 Chan, Bouscayrol, and Chen, “Electric, Hybrid, and Fuel-cell Vehicles: Architec-
tures and Modeling”, ([31], 2009)

15 Tran et al., “Thorough State-of-the-Art Analysis of Electric and Hybrid Vehicle
Powertrains: Topologies and integrated Energy Management Strategies”, ([182], 2020)
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fundamental physical properties16,17.
As already shown in Chapter 3 for the water distribution system, the combined
consideration of the system design (by selecting specific components either
by scaling or from a discrete set) and the usage phase (by having a concept
of operation) leads to more sustainable system designs. This is also true for
the powertrain design18. Hence, it results in an optimization program that
represents a combination of a component design and a corresponding control
problem.
The research focus in the literature was set primarily on powertrains for
hybrid electric vehicles, as shown by numerous publications19,20,21,22,23. Besides
passenger cars, also hybrid-electric busses were considered24. In recent years,
with an increasing importance of BEVs, further research publications were
presented for the powertrain design of battery electric vehicles as well25,26.
As shown previously, a common basis to derive a concept of operation for
the usage-phase is the consideration of representative driving cycles. These
cycles approximate a specific real driving dataset and are commonly derived

16 Mitschke and Wallentowitz, Dynamik der Kraftfahrzeuge, ([127], 2014)
17 Guzzella, Sciarretta, et al., Vehicle Propulsion Systems, ([71], 2007)
18 Silvas, Hofman, Murgovski, Etman, and Steinbuch, “Review of Optimization

Strategies for System-Level Design in Hybrid Electric Vehicles”, ([172], 2016)
19 Salmasi, “Control Strategies for Hybrid Electric Vehicles: Evolution, Classification,

Comparison, and Future Trends”, ([161], 2007)
20 Sinoquet, Rousseau, and Milhau, “Design Optimization and Optimal Control for

Hybrid Vehicles”, ([173], 2011)
21 Wu, Cao, Li, Xu, and Ren, “Component Sizing Optimization of Plug-in Hybrid

Electric Vehicles”, ([204], 2011)
22 Hu, Zou, and Yang, “Greener Plug-in Hybrid Electric Vehicles incorporating Renew-

able Energy and Rapid System Optimization”, ([78], 2016)
23 Qin et al., “Simultaneous Optimization of Topology, Control and Size for Multi-mode

Hybrid Tracked Vehicles”, ([155], 2018)
24 Xu, Li, Hua, Li, and Ouyang, “Optimal Vehicle Control Strategy of a Fuel

Cell/Battery Hybrid City Bus”, ([205], 2009)
25 Grunditz and Thiringer, “Characterizing BEV Powertrain Energy Consumption,

Efficiency, and Range during Official and Drive Cycles from Gothenburg, Sweden”, ([68],
2016)

26 Schönknecht, Babik, and Rill, “Electric Powertrain System Design of BEV and
HEV applying a Multi Objective Optimization Methodology”, ([167], 2016)
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by using a stochastic synthesis process27,28,29,30.
In the following, instead of using a given driving cycle directly, a new approach
that is based on a scenario generation in an additional preprocessing step,
as published by Leise et al.31, is introduced. Here, it could be shown that
the scenario-based approach can lead to results comparable to a classic
optimization approach, where the driving cycles are used directly within the
optimization program, if the same underlying datasets are used as an input.
This was evaluated for a variety of legislative standard driving cycles.
Besides this, the advantage of this new approach is the ability to integrate
arbitrary datasets. One related approach that also considers scenarios for a
powertrain design is given by Caillard, Gillon, Hecquet, Randi, and Janiaud32.
In comparison to this publication, a universally applicable pre-processing
heuristic to derive relevant scenarios automatically is presented in this thesis,
cf. [103, 106]. This heuristic can be used for any optimization approach
for the conceptual design of powertrains in a preprocessing step and is not
only specific to an exact optimization. It will be described in more detail in
the following sections. For the optimal calibration of combustion engines, a
scenario-based approach was also shown by Wasserburger, Hametner, and
Didcock33.
The usage of a multi-speed transmission increases the energy-efficiency of the
whole powertrain34. Commonly the transmission is often, due to its complexity
increase in solving, not modeled explicitly in the optimization programs.
In contrast within this thesis, the design of the multi-speed transmission is
explicitly integrated in each optimization program. This explicit consideration
leads to additional binary decisions in the model representation of the usage

27 Souffran, Miègeville, and Guérin, “Simulation of Real-World Vehicle Missions
using a Stochastic Markov Model for Optimal Powertrain Sizing”, ([175], 2012)

28 Silvas, Hereijgers, Peng, Hofman, and Steinbuch, “Synthesis of Realistic Driving
Cycles With High Accuracy and Computational Speed, Including Slope Information”,
([171], 2016)

29 Esser, Zeller, Foulard, and Rinderknecht, “Stochastic Synthesis of Representa-
tive and Multidimensional Driving Cycles”, ([52], 2018)

30 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

31 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

32 Caillard, Gillon, Hecquet, Randi, and Janiaud, “An Optimization Methodology
to Pre Design an Electric Vehicle Powertrain”, ([29], 2014)

33 Wasserburger, Hametner, and Didcock, “Risk-averse Real Driving Emissions
Optimization considering Stochastic Influences”, ([193], 2020)

34 Rinderknecht and Meier, “Electric Power Train Configurations and their Transmis-
sion Systems”, ([159], 2010)
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phase. Here, the program has to evaluate, which discrete transmission should
be used. This leads to the appropriate control strategy. Additionally, the
powertrain components also have to be sized, which is done by continuous
decision variables. These binary decisions for the control strategy result in a
higher complexity compared to only sizing the powertrain based on continuous
variables without an explicit consideration of a transmission or by simplifying
the transmission design. Within the literature the explicit consideration of
multi-speed transmissions were shown in some publications35,36,37.
The resulting optimization program is highly nonlinear and results in a
MINLP, when considering a multi-speed transmission. If no transmission is
considered explicitly in the program, it results in a NLP.
Due to the nonlinearity (and usually nonconvexity) of the underlying opti-
mization program, the NLP or MINLP are mostly solved by one or multiple
primal heuristics. The most used approaches are a genetic algorithm38,39,40,41,
an evolutionary algorithm42 or a particle swarm algorithm43,44,45. The disad-
vantage of these methods compared to exact optimization approaches are the
unavailability of dual bounds and the possibility to find only a local optimum.
On the other hand they usually result in faster solution times compared
to exact solvers which compute until they find the provable global optimal
35 Wu, Zhang, and Dong, Impacts of Two-Speed Gearbox on Electric Vehicle’s Fuel

Economy and Performance, ([203], 2013)
36 Morozov, Humphries, Zou, Martins, and Angeles, “Design and Optimization of

a Drivetrain with Two-Speed Transmission for Electric Delivery Step Van”, ([128], 2014)
37 Tan, Yang, Zhao, Hai, and Zhang, “Gear Ratio Optimization of a Multi-Speed

Transmission for Electric Dump Truck operating on the Structure Route”, ([179], 2018)
38 Li, Chang, Wang, and Wei, “Multi-objective Optimization Design of Gear Reducer

based on Adaptive Genetic Algorithm”, ([110], 2008)
39 Fang, Qin, Xu, Li, and Zhu, “Simultaneous Optimization for Hybrid Electric Vehicle

Parameters based on Multi-objective Genetic Algorithms”, ([53], 2011)
40 Schleiffer and Rinderknecht, BEREIT: Schlussbericht Verbundvorhaben Bezahlbare

Elektrische REIchweite durch ModularitäT: TP4 Entwurf und Simulation (Betriebsstrate-
gie), ([165], 2017)

41 Esser, Schleiffer, Eichenlaub, and Rinderknecht, “Development of an Opti-
mization Framework for the Comparative Evaluation of the Ecoimpact of Powertrain
Concepts”, ([51], 2019)

42 Deb and Jain, “Multi-speed Gearbox Design using Multi-objective Evolutionary
Algorithms”, ([40], 2003)

43 Savsani, Rao, and Vakharia, “Optimal Weight Design of a Gear Train using Particle
Swarm Optimization and Simulated Annealing Algorithms”, ([163], 2010)

44 Chen, Hung, Wu, and Huang, “Optimal Energy Management of a Hybrid Electric
Powertrain System using Improved Particle Swarm Optimization”, ([32], 2015)

45 Zhou et al., “Intelligent Sizing of a Series Hybrid Electric Power-Train System based
on Chaos-enhanced Accelerated Particle Swarm Optimization”, ([209], 2017)
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solution.
The usage of exact optimization approaches for the given powertrain design
problem is currently still an open research field. One recent MINLP approach
only focussed on the explicit design of the multi-speed gearboxes solely46, but
did not consider the complete powertrain.
Another recent research direction within powertrain conceptual design is the
development of convex optimization programs, which can then be solved very
efficiently. Tate and Boyd47 presented an early approach to derive limits
for the performance of hybrid electric powertrains by utilizing a piecewise
linearization of the complete NLP without considering the design of a multi-
speed transmission explicitly. Further approaches, primarily for hybrid-electric
vehicles without sizing a multi-speed transmission were shown by Murgovski,
Johannesson, Sjöberg, and Egardt48, Murgovski, Johannesson, and Sjöberg49,
Egardt, Murgovski, Pourabdollah, and Mardh50 and Hu, Zou, and Yang51.
Another more recent convex optimization approach was presented by Ver-
bruggen, Salazar, Pavone, and Hofman52, where the resulting NLP to derive a
joint sizing and control problem for the powertrain conceptual design of BEVs
was cast as a second-order conic program. It focussed only on a fixed-gear
transmission (FGT) and a continuous variable transmission (CVT) but did
not consider a multi-speed transmission. In following publications by members
of this research group, this approach was evaluated for different use cases and
extended to multi-speed transmissions with the help of heuristics53,54.
In the following, a new extended approach for the joint optimization of the

46 Dörig, Ederer, Pelz, Pfetsch, and Wolf, “Gearbox Design via Mixed-Integer
Programming”, ([43], 2016)

47 Tate and Boyd, “Finding Ultimate Limits of Performance for Hybrid Electric Vehicles”,
([180], 2000)

48 Murgovski, Johannesson, Sjöberg, and Egardt, “Component Sizing of a Plug-in
Hybrid Electric Powertrain via Convex Optimization”, ([135], 2012)

49 Murgovski, Johannesson, and Sjöberg, “Engine On/Off Control for Dimensioning
Hybrid Electric Powertrains via Convex Optimization”, ([136], 2013)

50 Egardt, Murgovski, Pourabdollah, and Mardh, “Electromobility Studies based
on Convex Optimization: Design and Control Issues egarding Vehicle Electrification”,
([48], 2014)

51 Hu, Zou, and Yang, “Greener Plug-in Hybrid Electric Vehicles incorporating Renew-
able Energy and Rapid System Optimization”, ([78], 2016)

52 Verbruggen, Salazar, Pavone, and Hofman, “Joint Design and Control of Electric
Vehicle Propulsion Systems”, ([190], 2020)

53 Hurk, “Optimal Design and Control of Electric Vehicle Transmissions”, ([79], 2021)
54 Duhr et al., “Time-optimal Gearshift and Energy Management Strategies for a Hybrid

Electric Race Car”, ([45], 2021)



64 CHAPTER 4. POWERTRAIN DESIGN

sizing and control of a powertrain for BEVs is presented55. It decomposes
the resulting nonconvex MINLP that also explicitly considers multi-speed
transmissions in a generalized Benders decomposition in a MIP and a convex
NLP that are solved iteratively. The resulting decomposed programs can be
solved very efficiently and lead to the global optimal solution.
The modeling and solution approaches shown in this Chapter extend the
literature within the field of research. Furthermore, the developed modeling
and solution approach is a generally applicable optimization approach that
is suitable for a multitude of engineering conceptual design problems. The
transferability of the developed approach will be shown in Chapter 5. In
the following section, we present the general modeling approach and its
implication on the solution strategy.

4.2 MINLP Model

The following model description is based on a peer-reviewed journal publica-
tion by Leise et al.56. Furthermore, parts of this section were published in a
preprint57. The concept of operation used to describe the usage-period is given
by the following representation that is based on three discrete time-series
which are aggregated in the usage phase representation Λ:

Λ =






vT

sT

π
T




 ∈ R

3×l. (4.1)

The first time-series v describes velocity values and the second time-series s

represents the slope value for each discrete time-step t. These two time-series
are usually used within an optimization framework, as already introduced in
the previous section, to derive optimized powertrain designs58. This common
approach is extended by a third time-series of weights πs, s ∈ (1, . . . , l) for
each time step. If the uniform weights πs = 1/l, s ∈ (1, . . . , l) are used, this
would result in a description that is comparable to the common procedure
when using solely a complete driving cycle. This representation of the usage

55 Leise and Pelz, Efficient Powertrain Design – A Mixed-Integer Geometric Program-
ming Approach, ([108], 2021)

56 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

57 Leise and Pelz, Efficient Powertrain Design – A Mixed-Integer Geometric Program-
ming Approach, ([108], 2021)

58 Silvas, Hofman, Murgovski, Etman, and Steinbuch, “Review of Optimization
Strategies for System-Level Design in Hybrid Electric Vehicles”, ([172], 2016)
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phase is comparable to the approach already introduced in Eq. (3.1) for the
water distribution system.
The explicit consideration of weights πs allows to master the uncertainty
present in modeling the usage-period in an optimization program. The
general driving conditions that a vehicle is facing within its usage-period are
highly uncertain and depend on multiple influencing factors, like geographic
conditions and/or individual preferences. Therefore, a driving cycle, as it
is commonly used in optimization programs for the conceptual design of
powertrains, is only an estimate that approximates the underlying probability
density function which describes the driving behavior.
In Section 2.1.2, this stochastic view on optimization problems was already
introduced and in Section 2.2.3 it was shown why and how to derive meaningful
scenarios to generate a finite event set approximation of a stochastic program
with recourse. The previously shown representation in Eq. (4.1) can also be
seen as a set of scenarios with the according weights πs. With this approach,
we are able to model the drive conditions a BEV is experiencing in its usage-
period by a set of scenarios that approximate the underlying probability
density function of the uncertain driving condition. This approach is useful
due to multiple reasons:

• Most time steps in the driving cycle do not affect the optimized solution.

• It avoids overfitting due to a specific driving cycle.

• It enables a faster solution of the optimization program due to its
reduced complexity.

Nevertheless, the results obtained by this approach should be comparable to
results that are obtained when using a complete driving cycle as the repre-
sentation of the underlying probability density function. This comparability
is shown in the corresponding publication59 by verifying this new approach
with a common optimization approach, which is based on the driving cycle
representation solely and which uses a genetic algorithm.

4.2.1 Vehicle

A quasi-static modeling approach is used, based on a backwards dynamic
longitudinal vehicle model60. It is used to derive the torque and speed

59 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

60 Tran et al., “Thorough State-of-the-Art Analysis of Electric and Hybrid Vehicle
Powertrains: Topologies and integrated Energy Management Strategies”, ([182], 2020)
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Table 4.1 – Vehicle parameters, cf. [106]

PARAMETER VALUE UNIT DESCRIPTION

Ac 2.2 m2 vehicle reference area
cw 0.3 – drag coefficient
g 9.81 m/s2 specific gravitational constant
MA 70 kg additional component mass
MP 75 kg mass of the considered driver
M0 1150 kg vehicle mass
rW 0.3 m wheel radius
v based on dataset m/s vehicle speed
v̇ based on dataset m/s2 vehicle acceleration
s 0 – terrain slope
ηB 0.97 – efficiency of battery (dis)charging
ηG ∈ [0.98, 0.975] – efficiency of transmission;

first value for one-speed;
second value for two-speed

λi 1.0 – inertia consideration factor
λr 0.008 – rolling resistance coefficient
̺ 1.2041 kg/m3 air density at 20 ◦C and sea level

Ω
M

10000 1/min maximum speed of the selected EM

Note: EM – electric machine.

requirements at the wheel. With these values, it is possible to set up the
combined sizing and control problem to find an optimal assembly of efficiently
sized components. The set S is used to describe the discrete scenarios which
are used in the concept of operation. In the scenario-based approach this set
is significantly smaller than a complete representation of a driving cycle. All
parameter definitions and values for the longitudinal vehicle model are given
in Table 4.1.
The longitudinal vehicle dynamics is modeled as61

tW =
(

λi mv̇ +mg (sin (s) + λr) +
1

2
̺cwAcv

2

)

rW. (4.2)

Equation 4.2 describes the torque at the wheels tW. The effect of rotational
inertias in Equation 4.2 was omitted by setting λi = 1, since they only result
in second-order effects. Additionally, they would increase the computational
effort significantly and are usually not considered in a conceptual design
study62.
The mass of the BEV is modeled as a sum of the battery mass mB, the
predefined net mass M 0, the additional mass for powertrain components MA,
and the passenger mass MP62:

m = mB +M 0 +MA +MP. (4.3)

61 Mitschke and Wallentowitz, Dynamik der Kraftfahrzeuge, ([127], 2014, pp. 83)
62 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of

Optimization Methods”, ([106], 2021)
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For a verification of the scenario-based modeling approach, an exemplary
value for a long-range capable vehicle with a range R = 500 km is used.
Besides this, it is required that the optimized system is able to fulfill a
minimum required speed of 160 km/h. Additionally, the vehicle should also
fulfill a specific launch torque at low speed, which was integrated with an
exemplified gradeability on a slope of 30°. These two restrictions are added
in the optimization program as additional scenarios with a weight πi = 0. As
a result, they are added as constraints in the optimization program, but do
not affect the objective of the optimized solution.

4.2.2 Battery

The battery capacity cB and mass mB are modelled with the energy density
ρe based on an approach developed by Esser63 and Zimmerling64:

cB = mBρe, (4.4)

ρe = 0.0008/kg cB + 0.0788 kWh/kg. (4.5)

Within the model, we also consider a (dis-)charging efficiency ηB of 97% and
an useable depth of discharge of 95%65.

4.2.3 Electric Machine

We use as a reference electric machine (EM) a permanent-magnet synchronous
motor, which was developed by An and Binder66, to demonstrate the practical
applicability of the derived methodology. The characteristics of the motor are
given by its efficiency map M, which describes the relation of the efficiency
ηM and the motor torque tM and speed ωM, ηM = ηM (tM, ωM) : R2 → R. It
is shown in Figure 4.1. The sub-figure (a) shows the characteristics for the
first quadrant (driving mode) and (b) shows the characteristics for the fourth
quadrant (recuperation).
Within the optimization program it is required to scale the motor based on
the concept of operation and the selection of the other components in the

63 Esser, “Realfahrtbasierte Bewertung des ökologischen Potentials von Fahrzeugantrieb-
skonzepten”, ([50], 2021)

64 Zimmerling, Erweiterung einer Optimierungsumgebung zur vergleichenden Bewertung
von Antriebskonzepten, ([210], 2020)

65 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

66 An and Binder, “Operation Strategy with Thermal Management of E-Machines in
Pure Electric Driving Mode for Twin-Drive-Transmission (DE-REX)”, ([7], 2017)
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Figure 4.1 – Efficiency map of the used reference electric machine. Given by
[7, 8]. (a) first quadrant / driving mode, (b) fourth quadrant / recuperation
mode

powertrain. This scaling is done according to the literature67,68 by scaling the
maximum torque t

M
and the reference efficiency map M. The upper speed

limit of the motor Ω
M

remains the same for all scaled versions. The scaling of
the mass of the motor is omitted due to its small fraction in comparison to
the overall system mass.
The electrical power pM required in each scenario s is computed in driving
with:

pM =
tMωM

ηM
(4.6)

and in recuperation with
pM = tMωMηM. (4.7)

4.2.4 Transmission

In a vehicle a transmission with a ratio i 6= 1 is required to transform the
torque tM and speed ωM that an EM can provide to the torque tW and speed
ωW at the wheel that is required to accomplish the required driving situation.
Furthermore, it is required to map all driving conditions in the feasible domain
of the EM which is limited by an upper speed limit Ω

M

, an upper torque limit
t

M
and an upper power limit pM.

67 Balazs, “Optimierte Auslegung von Hybridantriebsträngen unter realen Fahrbedingun-
gen”, ([10], 2015)

68 Lange, “Optimierung modularer Elektro- und Hybridantriebe”, ([94], 2018)
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We model the transmission with:

tMiηG = tW (4.8)

or
tMi = ηGtW (4.9)

for recuperation and
ωM = iωW. (4.10)

The reference value in the following computational study is ηG = 0.975 for
a transmission with two speeds and ηG = 0.98 for a transmission with one
speed69,70.

4.2.5 Scenario Generation

A scenario generation approach is used to derive the deterministic equivalent
of a stochastic optimization program that represents the conceptual design
problem with uncertain driving conditions. Here, we assume that we can
estimate the distribution of driving conditions (speed, slope), but do not know
exactly the driving behavior or the concrete driving cycle.
To transform this stochastic MINLP in a deterministic equivalent, which can
be solved by employing exact optimization algorithms, we derive scenarios
with corresponding weights.
For the scenario generation, we use instead of a manual approach, a newly
developed automatic preprocessing routine, which is based on an unsupervised
learning algorithm to extract meaningful scenarios. The k-means algorithm71

is employed, since Löhndorf72 showed that it is suitable to derive the deter-
ministic equivalent problem description. With the help of this algorithm, it is
possible to derive a predefined set of scenarios that represents the underlying
complete dataset.
The algorithm is used for partitioning a given set of vectors in different classes.
This problem is already NP-hard73 for two-dimensional vectors and therefore

69 Esser, Zeller, Foulard, and Rinderknecht, “Stochastic Synthesis of Representa-
tive and Multidimensional Driving Cycles”, ([52], 2018)

70 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

71 MacQueen et al., “Some Methods for Classification and Analysis of Multivariate
Observations”, ([115], 1967)

72 Löhndorf, “An Empirical Analysis of Scenario Generation Methods for Stochastic
Optimization”, ([112], 2016)

73 Mahajan, Nimbhorkar, and Varadarajan, “The Planar K-Means Problem is
NP-hard”, ([116], 2012)
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solved by employing a heuristic. Here, the implementation of the k-means
algorithm, which is available in the machine learning library scikit-learn74 is
used.
The k-means algorithm usually converges, even for large sample dataset, but
most often only to a local optimum. Therefore, a multi-start approach is
beneficial, where different initial points for the cluster centers for the iterative
clustering are selected and afterwards the solution with the lowest objective
value is selected. This leads to a more deterministic clustering. Nevertheless,
it is not guaranteed that the same clustering solution is found after rerunning
the algorithm. From a practical point of view this drawback is negligible, since
it only results in minor differences between different runs of the clustering
algorithm. Only some discrete points from the sample distribution at the
border between adjacent clusters are then assigned in one run the one cluster
and in the other run to the other cluster. This then only results in minor
changes in the cluster center positions, which are used as scenarios in the
optimization program.
The selected scenarios for the approximation of the underlying sample distri-
bution are based on the speed at the wheel ωW and the torque at the wheel tW.
We use the longitudinal vehicle model in Eq. (4.2) and the given parameters in
Table 4.1 to derive the torque values tW for a given reference mass of 1500 kg75.
If the mass of the vehicle is predefined, tW can be computed directly by
employing Eq. (4.2) for each sample point in the sample distribution. In
the developed model by Leise et al.75, we extended this approach with a
variable mass that depends on the capacity of the battery as a further degree
of freedom. Therefore, the mass, the torque at the wheel and the power are
not fixed in advance to the optimization. This leads to the task to enable a
scenario generation with an integrated mass scaling and therefore also torque
scaling within the optimization program.
The scenario generation is done by employing the aforementioned reference
mass. Then, the sample distribution is scaled to the unit cube to avoid a
skewed cluster generation due to high differences in the scales of both axis.
As a further step, the clustering is employed and the center points of the
clusters in the (tW, ωW) ∈ R

2 domain are used as scenarios. These cluster
centers are then rescaled to the velocity and slope domain by using an inverse
model of Eq. (4.2) and added in the optimization program.
Within the optimization, we use a further linear constraint that maps the

74 Pedregosa et al., “Scikit-learn: Machine Learning in Python”, ([146], 2011)
75 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of

Optimization Methods”, ([106], 2021)
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relation between the mass m and the torque at the wheel tW:

tW

s
= m (rWλi v̇s + rWg (sin (s) + λr))

︸ ︷︷ ︸

α1,s

+
1

2
̺cwAcv

2

s
rW

︸ ︷︷ ︸

α2,s

. (4.11)

This function is affine in m with the parameters α1,s and α2,s:

tW

s
= mα1,s + α2,s. (4.12)

The parameters are precomputed based on the longitudinal vehicle model in
Eq. (4.2) with the derived acceleration and speed values given by the already
computed scenarios (tW

s
, ωW

s
), s ∈ S, cf. [106]. An example use case is shown

in Fig. 4.2. This heuristic approach enables an integration of a variable mass
in the exact optimization program, but omits corner cases, like sign-changes
caused by a changing mass. For each scenario, we also derive weights πs

based on the total number of measurements and the average power in each
cluster. Additionally, to the center points of the clusters, which are used as
scenarios, also the corner points are used on the convex hulls of each cluster
as further constraints. These points are also scaled comparable to Eq. (4.11)
and must be located in the feasible domain of the electric machine. With this
approach, we are able to ensure a robust solution, which fulfills all demanded
driving situations, but generates optimized solutions, which are the most
energy-efficient.

4.2.6 Efficiency Map Approximation

The efficiency map M76 represents the efficiency of an electric machine
over its feasible domain (tM, ωM). It is commonly used to represent the
performance characteristics of an electric machine77. The integration of this
functional relationship is possible in different forms, but affects the solution
time of the optimization solving algorithm. For instance, an approximation by
polynomials was already introduced in the literature78. Besides these, further
approaches like a piecewise linearization are suitable, if only a primal heuristic,
like a genetic algorithm is used for solving the (MI)NLP, see e.g. [106]. The
usage of a piecewise linearization (PWL) with an exact solution approach

76 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

77 Lukic and Emado, “Modeling of Electric Machines for Automotive Applications using
Efficiency Maps”, ([113], 2003)

78 McDonald, “Electric Motor Modeling for Conceptual Aircraft Design”, ([124], 2013)
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Figure 4.2 – Result of the clustering preprocessing for a reference vehicle with
a mass of 1500 kg. First published by Leise et al. in [106].
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Figure 4.3 – Example of a polyhedral outer approximation with three hyper-
planes in two dimensions

was also evaluated by Leise, Altherr, Simon, and Pelz79. In a follow-up study,
three different PWL approaches were evaluated computationally80.
For an integration in a model that is solved by employing an exact solving
approach, the PWL approach resulted in a suitable modeling, but its solving
efficiency is lower than the approaches presented and discussed in the follow-
ing, due to the nonlinear constraints besides the efficiency map description.
For the WDS problem, a PWL of the pump characteristics resulted in a
MILP formulation, which was then solvable in an efficient manner. For the
powertrain conceptual design problem, the resulting optimization program is
still a (nonconvex) MINLP. Therefore, other approaches had to be evaluated.
One approach that results in an increase in the solution performance is the
usage of an outer polyhedral approximation of the efficiency mapM, where
each quadrant is considered individually.
An example of this approach is shown in Figure 4.3, where the inner space
of the exemplified one-dimensional convex function f(x) is approximated by
the intersection of three half-spaces that are based on three affine functions.
Since the efficiency map can be approximated as being concave, this approach
can be used to derive multiple affine half-spaces which are then added in the
optimization program.
The efficiency map M is almost concave, if the first and fourth quadrant is
considered individually, cf. Figure 4.1. In total, 226 points were used in each

79 Leise, Altherr, Simon, and Pelz, “Finding Global-Optimal Gearbox Designs for
Battery Electric Vehicles”, ([103], 2019)

80 Leise, Simon, and Altherr, “Comparison of Piecewise Linearization Techniques to
Model Electric Motor Efficiency Maps: A Computational Study”, ([109], 2020)
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quadrant at which hyperplanes are calculated. The set of these hyperplanes
is then used to represent the efficiency map within the optimization program.
Since the efficiency map can be understood as the maximum value that the
optimized solution can achieve, the relaxation of the equality constraints in an
inequality constraints will not affect the optimized solution. The optimized
system will result in a maximum efficiency, which is then given by the border
of the approximation.
The polyhedral outer approximation of the efficiency map is shown in Fig-
ure 4.4 for the first quadrant (a) and fourth quadrant (c). Additionally, the
approximation errors are shown. The approach leads to a good approximation
in general. Only near the axis, it leads to higher differences between the orig-
inal measured data and the approximation, which is used in the optimization
program.

4.2.7 Complexity Evaluation

The MINLP for the powertrain conceptual design has two stages. This is
comparable to the already introduced MINLP for the water distribution
system design, cf. Chapter 3. In the first stage, we derive a solution for
the scaling of the EM and for the sizing of the transmission. In the second
stage, we retrieve the optimized control strategy for each scenario. Here, the
assignment of the derived first-stage decisions for the transmission ratios i1
and i2 to each considered scenario is conducted.
We now focus on the combinatorial complexity of the considered use case with
a discrete assignment of transmission ratios to scenarios. The optimal solution
of the MINLP has an optimal binary vectorized mapping bs,t for each scenario
s ∈ S and each transmission ratio t ∈ T . For the two-speed transmission
the set T is given by T = {1, 2}. This binary decision indicates if either the
first or second transmission ratio is chosen within the considered scenario.
The second stage decision to assign transmission ratios to each scenario is a
combinatorial subproblem, that depends on the results of the first stage. This
coupling between both stages in combination with the non-convex property
within the original design space are the major challenges within the solution
process of the underlying MINLP.
The assignment of a single transmission ratio to each scenario, which represents
a single-speed solution is trivial. This would result in a reduction of both
stages to only one stage and therefore in an NLP in general. We will only
consider transmissions that have at least 2 transmission ratios (|T | ≥ 2).
Furthermore, |T | < |S| must hold, since if |T | = |S|, we compute a CVT
solution, where each scenario has its own specific transmission ratio. This
results again in a NLP and avoids the combinatorial second stage decisions.
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Figure 4.4 – Result of the polyhedral outer approximation. (a) first quadrant
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et al. in [106].
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If |T | < |S|, all possible assignments of transmission ratios t ∈ T to scenarios
are given by the cartesian product:

Nt→s = |T ||S|. (4.13)

Even for a low number of transmission ratios and scenarios, this is a rapidly
growing number.
From a mathematical point of view, the underlying optimization program
has a number of equivalent solutions. These solutions all have in common
that they result in equivalent system designs, but the variable assignments in
the optimized system design are different. They are known in combinatorics
as symmetric solutions. The reduction of symmetries to increase the solver
performance is a current research topic in mathematics81.
The given conceptual design problem for powertrains has a high number of
symmetric solutions, since a permutation of the transmission ratios and an
according permutation of the binary assignments will result in an equivalent
solution. The number of combinatorial second-stage solutions without sym-
metric solutions is represented by Stirling numbers of the second kind82

{
n

k

}

.
These are defined as following:

Sn,k =

{

n

k

}

:=
1

k!

k∑

i=0

(−1)i

(

k

i

)

(k − i)
n
.

They describe the number of possibilities to assign a set of n distinguishable
objects into k nonempty indistinguishable subsets. For the powertrain concep-
tual design problem n relates to the scenarios, while the transmission ratios
are represented by k. For a two-speed transmission this reduces further to:

Sn,2 =

{

n

2

}

= 2n−1 − 1. (4.14)

This evaluation shows that the number of solutions that have to be evaluated
is less than half of the solutions that are derived by Eq. (4.13).

81 Margot, “Symmetry in Integer Linear Programming”, ([120], 2010)
82 Knuth, Art of Computer Programming, ([93], 1997, p. 66ff.)
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Additionally, to the combinatorial complexity of the control strategy assign-
ment in the second stage of the MINLP comes additionally the computational
complexity to solve the assignment-depending NLP of first-stage decisions.
This depends on the problem formulation. Usually a convex problem formu-
lation results in a better solving performance than a nonconvex NLP.

4.2.8 Model Description

The complete model83 is given by objective (4.15) subject to the Constraints
(4.16) to (4.38). The sets, parameters and variables for the program are shown
in Table 4.2.
The goal of the conceptual design is to derive energy-efficient system designs
for powertrains with multi-speed transmissions. As previously shown, we
use a set range of 500 km that must be achieved. As an objective, we then
minimize the brutto battery capacity cB, which results in the best possible
powertrain system design to achieve this goal. Since the total mass m depends
on the battery capacity cB, it has a significant impact on the system design
and the optimized solution.
To facilitate the scaling of the EM and to enable multiple approximation
approaches of the EM efficiency mapM in a coherent manner, Constraints
(4.16) and (4.17) create a normalized EM torque ψM

s,k
and a normalized EM

speed ϕ̇M
s,k

. These variables are initiated for each scenario s ∈ S and EM
domain k ∈ K.
Constraint (4.18) models the relaxation of the EM efficiency map as an affine
approximation with the set N of considered grid points in the domain of the
EM efficiency map. This constraint is active in an optimized solution and then
results in an equality constraint, since the efficiency is maximized as much
as possible to enable an efficient system design. Constraint (4.19) models
the maximum power in the normalized domain. Constraint (4.20) is used to
order the transmission ratios. The logic to select only one transmission ratio
in each scenario and motor domain is modeled with Constraint (4.21). If the
binary variable is active (bt,s,k = 1), the motor and wheel speed are linked
by the given relation. This linking is implemented with the help of big-M
constraints.
Constraints (4.23) and (4.24) model the relation between the motor torque
and wheel torque. Constraint (4.25) and (4.26) are used to model the mass
changes due to capacity changes of the traction battery. Here, the energy
density ρe is measured in Wh/kg.

83 Leise et al., Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods (Supplemental), ([105], 2021)
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Table 4.2 – Notation for the powertrain conceptual design program

SET DESCRIPTION

T set of transmissions
K set of EM domains
N set of grid points of polyhedral approximation
R set of operating points on the convex hull
S set of scenarios

ADDITIONAL PARAMETER VALUE DESCRIPTION

Ad 0.4 EM hyperbole domain restriction parameter
L based on cycle cycle length in km
R 500 defined range in km

T
M

500/300 max. EM torque (single-speed/two-speed) in Nm
α1,s,k, α2,s,k based on S coefficients for torque-mass relation

α1,s,k,r, α2,s,k,r based on R coefficients for torque-mass relation on convex hulls
β0,k,n, β1,k,n, β2,k,n based on N parameters for polyhedral approximation

πs,k based on S weight of each scenario s in domain k

Ω
M

1047.198 max. EM velocity in 1/s
ΩW

s,k
based on S angular velocity input of scenario s and domain k

ΩW,R
s,k,r

based on R angular velocity input based on convex hull

VARIABLE DOMAIN DESCRIPTION

bt,s,k {0,1} binary variable to choose a transmission
cB [0, 150] battery capacity in kWh
it [2, 25] transmission ratio for transmission t
m [1150, 2800] total mass in kg
mB [0, 1500] battery mass in kg
pC

s,k
[0, 1500] power in each cluster in kW

tM
s,k

[0, T
M

] EM torque in Nm

t
M

[0, T
M

] max. EM torque in Nm

tW
s,k

[0, T
M

] wheel torque in Nm

tM,R
s,k,r

[0, T
M

] EM torque for op. points on convex hulls in Nm

tW,R
s,k,r

[0, T
M

] wheel torque for op. points on convex hulls in Nm

ηM
s,k

[0, 1] EM efficiency

ρe [0, 1000] energy density in Wh/kg
ϕ̇M

s,k
[0, 1] normalized angular velocity

ϕ̇M,R
s,k,r

[0, 1] norm. angular velocity for op. points on convex hulls

ψM
s,k

[0, 1] normalized torque

ψM,R
s,k,r

[0, 1] norm. torque for domain k for op. points on convex hulls

ωM
s,k

[0,Ω
M

] EM angular velocity in 1/s

ωM,R
s,k,r

[0,Ω
M

] EM angular velocity for op. points on convex hulls in 1/s

EM — electric machine
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min cB (4.15)

s.t.

tM

s,k
= t

M
ψM

s,k
∀s ∈ S, ∀k ∈ K (4.16)

ωM

s,k
= Ω

M

ϕ̇M

s,k
∀s ∈ S, ∀k ∈ K (4.17)

ηM

s,k
≤ β0,k,nψ

M

s,k
+ β1,k,nϕ̇

M

s,k
+ β2,k,n ∀s ∈ S, ∀k ∈ K, ∀n ∈ N

(4.18)

ψM

s,k
ϕ̇M

s,k
≤ Ad ∀s ∈ S, ∀k ∈ K (4.19)

it ≤ it−1 ∀t > 1 (4.20)
∑

t∈T

bt,s,k = 1 ∀s ∈ S, ∀k ∈ K (4.21)

bt,s,k = 1 =⇒ ωM

s,k
= ΩW

s,k
it ∀s ∈ S, ∀k ∈ K, ∀t ∈ T

(4.22)

tM

s,k

(
∑

t∈T

itbt,s,k

)

ηG = tW

s,k
∀s ∈ S, if k = 0 (4.23)

tM

s,k

(
∑

t∈T

itbt,s,k

)

= ηGtW

s,k
∀s ∈ S, if k = 1 (4.24)

ρe/1000 = 0.8cB/1000 + 78.8/1000 (4.25)

mBρe = 1000cB (4.26)

m = mB +M 0 +MP +MA (4.27)

tW

s,k
= α1,s,k m+ α2,s,k ∀s ∈ S, ∀k ∈ K (4.28)

1000 pC

s,k
ηGηM

s,k
= tW

s,k
ΩW

s,k
∀s ∈ S, if k = 0 (4.29)

1000 pC

s,k
= ηGηM

s,k
tW

s,k
ΩW

s,k
∀s ∈ S, if k = 1 (4.30)

3600 cB 0.95−

(
∑

s∈S

πs,0 p
C

s,0

)

R

LηB
. . .

· · ·+ ηB

(
∑

s∈S

πs,1 p
C

s,1

)

R

L
= 0 (4.31)
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tM,R

s,k,r
= t

M
ψM,R

s,k,r
∀s ∈ S, ∀k ∈ K, ∀r ∈ R (4.32)

ωM,R

s,k,r
= Ω

M

ϕ̇M,R

s,k,r
∀s ∈ S, ∀k ∈ K, ∀r ∈ R (4.33)

ϕ̇M,R

s,k,r
ψM,R

s,k,r
≤ Ad ∀s ∈ S, ∀k ∈ K, ∀r ∈ R (4.34)

tW,R

s,k,r
≥ α1,s,k,r m+ α2,s,k,r ∀s ∈ S, ∀k ∈ K, ∀r ∈ R (4.35)

bt,s,k = 1 =⇒ ωM,R

s,k,r
= ΩW,R

s,k,r
it ∀s ∈ S, ∀k ∈ K, ∀r ∈ R, ∀t ∈ T (4.36)

tM,R

s,k,r

(
∑

t∈T

itbt,s,k

)

ηG = tW,R

s,k,r
∀s ∈ S, ∀r ∈ R, if k = 0 (4.37)

tM,R

s,k,r

(
∑

t∈T

itbt,s,k

)

= ηGtW,R

s,k,r
∀s ∈ S, ∀r ∈ R, if k = 1 (4.38)

We model the mass according to Equation (4.3) with Constraint (4.27). The
(heuristic) relation between the vehicle mass and the resulting wheel torque
is given by Constraint (4.28).
The power demand is modeled with Constraints (4.29) and (4.30). The
required battery capacity is modelled with Constraint (4.31). The remaining
constraints model comparable relations as the already introduced constraint
for the points on the convex hull of the cluster, where the center represents the
scenarios. These values affect the objective only indirectly, since they must
be fulfilled in the optimized system design but are not considered directly in
the objective.

4.2.9 Results

The newly developed optimization program in Objective (4.15) to Con-
straint (4.38) was implemented using PyScipOpt84. The solvers SCIP85 6.0.2
with SoPlex v. 4.0.2 and Ipopt v. 3.12. were used86. As termination criteria
(i) a time limit of 30 minutes, (ii) RAM limit of 12 GB, and (iii) a duality
gap limit of 0.25 % were used86.
For single speed transmission, 25 scenarios plus one scenario each for the speed
and gradeability requirements were used. For the two-speed transmission, 19
scenarios were used in total.

84 Maher et al., “PySCIPOpt: Mathematical Programming in Python with the SCIP
Optimization Suite”, ([117], 2016)

85 Gleixner et al., The SCIP Optimization Suite 6.0, ([64], 2018)
86 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of

Optimization Methods”, ([106], 2021)
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Figure 4.5 – Used driving cycles for the verification, cf. [106]

To verify the optimization results returned by the nonconvex optimization
program, it was compared with an already implemented optimization approach
developed at the Institute of Mechatronic Systems at TU Darmstadt that
is based on the complete driving cycle and which is solved with a genetic
algorithm. Furthermore, the reference approach uses a piecewise linearization
of the efficiency map of the EM. Further details can be found in [50, 106].
For the clustering in the preprocessing the same driving cycles were used, as
for the reference model that was solved with a GA. As a basis of comparison,
nine different driving cycles are used to represent the sample distributions
each. Based on these, a model and solving procedure verification is performed.
These driving cycles are shown in Figure 4.5. The set of driving cycles
consists of six commonly used legislative driving cycles. Additionally, it
contains three driving cycles recorded at the Institute of Mechatronic Systems
at TU Darmstadt while using two hybrid-electric vehicles87. The cycles were

87 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)
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Table 4.3 – Rounded computational results for a single-speed transmission,
cf. [106]. The first sub-column in each column group shows the result for a
reference solved with a GA, while the second shows the minimum results of 10
evaluations each for the objective of the given MINLP. All deviation values are
absolute. First published by Leise et al. in [106].

pM i m cB cmean

in kW in kg in kWh in kWh/100km

WLTC 157 160 7.07 7.07 1841 1847 76.5 78.0 14.5 14.8
NEDC 155 157 7.07 7.07 1818 1814 70.9 70.0 13.5 13.3
Art. Urban 162 161 7.07 7.07 1859 1856 81.0 80.3 15.3 15.3
Art. Rural 153 157 7.07 7.07 1799 1807 66.5 68.3 12.6 13.0
Art. Motorway168 170 7.00 7.07 1946 1954 107.0 109.9 20.3 20.9
FTP75 153 156 7.07 7.07 1795 1798 65.7 66.4 12.5 12.6
pool vehicle 158 162 7.07 7.07 1863 1871 82.0 84.1 15.6 16.0
pool veh. city 156 156 7.04 7.07 1814 1798 69.8 66.3 13.0 12.6
inst. vehicle 160 163 7.07 7.07 1874 1878 85.1 86.2 16.2 16.4

mean dev. 2.44 0.01 6.67 1.69 0.29
median dev. 3.00 0.00 6.00 1.50 0.30
max. dev. 4.00 0.07 16.00 3.50 0.60

then synthesized by the method described by Esser, Zeller, Foulard, and
Rinderknecht88. Even though the approach allows integrating slope changes
within the scenario generation, all considered driving cycles do not contain
any slope information. This preserves comparability between all considered
cycles. The results for a single-speed transmission are shown in Table 4.3.
The comparison between both approaches shows that the newly developed
modeling and solution approach results in comparable results with only minor
differences. It can therefore be verified that the optimization approach is
suitable to develop energy-efficient powertrain system designs.
The results for a two-speed transmission are shown in Table 4.4. Here, again,
the newly developed approach leads to comparable results.
In comparison to the solving approach that is based on a GA, the exact
approach allows to quantify the optimality of each found solution based on
duality theory. This additional certificate of performance can then lead to a
more informed decision-making process within the conceptual design phase.

88 Esser, Zeller, Foulard, and Rinderknecht, “Stochastic Synthesis of Representa-
tive and Multidimensional Driving Cycles”, ([52], 2018)
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Table 4.4 – Rounded computational results for a two-speed transmission. The
first sub-column in each column group shows the result for a reference solved
with a GA, while the second shows the minimum results of 10 evaluations each
for the objective of the given MINLP. All deviation values are absolute. First
published by Leise et al. in [106].

pM i1 i2 m cB cmean

in kW in kg in kWh in kWh/100km

WLTC 70 67 16.61 16.61 5.99 5.76 1804 1808 67.7 68.5 12.9 13.0
NEDC 69 67 20.30 16.16 6.34 5.70 1759 1764 58.2 59.2 11.0 11.2
Art. Urban 69 66 20.09 19.49 6.60 7.07 1745 1758 55.4 58.0 10.5 11.0
Art. Rural 80 67 14.21 16.23 6.18 5.88 1773 1768 61.0 60.0 11.6 11.4
Art. Motorw. 111 82 13.19 14.56 5.48 5.14 1931 1928 102.1 101.2 19.4 19.2
FTP75 68 65 18.57 18.93 6.30 5.70 1733 1737 53.1 53.9 10.1 10.2
pool vehicle 76 75 18.27 17.28 5.88 5.56 1829 1832 73.4 74.2 13.9 14.1
pool veh. city68 67 19.23 21.31 6.68 7.07 1718 1721 50.3 50.9 9.5 9.7
inst. vehicle 70 67 18.61 18.38 5.78 5.79 1843 1846 76.8 77.6 14.6 14.7

mean dev. 6.44 1.31 0.37 4.78 1.03 0.20
median dev. 3.00 0.99 0.34 4.00 0.80 0.20
max. dev. 29.00 4.14 0.64 13.00 2.60 0.50

4.3 MIGP Model

The model presented in Section 4.2 is suitable for a powertrain conceptual
design. This was shown by the verification in Section 4.2. When solving
the MINLP usually relaxations are generated in which binary and integer
variables are partially replaced by continuous variables. For the given model
this results in nonconvex relaxations. We employed the usage of the branch-
cut-and-reduce framework SCIP89 to solve the MINLP, because of its efficiency
when solving nonconvex MINLPs.
Nevertheless, a MINLP with nonconvex relaxations is computationally difficult
to solve, due to the nonconvexity and the existence of multiple local optima.
Therefore, it is beneficial, if we can create a MINLP model, which can be
relaxed to a convex optimization program.
For the water distribution system design in Chapter 3, we were able to
generate a convex relaxation by using a piecewise linearization approach.
This was possible due to the already large quantity of affine constraints in the
model. The powertrain conceptual design problem, on the other hand, has a
high quantity of nonlinear constraints, which would result in a high number
of additional binary variables, when employing a piecewise linearization.
Within this Section, we present a newly developed modeling approach that is
based on the already introduced model for a powertrain design, but exploits
the specific structure to generate a convex relaxation of the MINLP by

89 Gleixner et al., The SCIP Optimization Suite 6.0, ([64], 2018)
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modeling it as a Mixed-Integer Geometric Program90 (MIGP).
If we reconsider the nonconvex MINLP with its objective (4.15) and the
constraints (4.16) to (4.38), we can already identify a high quantity of con-
straints that are aligned with the requirements of a geometric program, cf.
Sec. 2.1.5. Within a MIGP the resulting relaxation, when fixing the binary
and/or integer variables, becomes a geometric program (GP), cf. Section 2.1.5.
The constraints that do not fulfill the MIGP requirements are adapted to
finally derive a MIGP model. This is shown in the following.

4.3.1 Efficiency Map Approximation

To be able to model the conceptual design problem as a MIGP, we have to
approximate the efficiency mapM of the EM with a set of constraints that
are GP-compliant. As shown in the literature91,92, the efficiency map modeling
of a permanent-magnet synchronous motor (PMSM) can be accomplished in
comparison to the already applied PWL or outer polyhedral approximation,
by using a physical based modeling approach that models specific losses
following a power law. This modeling has the advantage to be GP-compliant
due to the monomial/posynomial structure. If we transfer this modeling
approach, losses like core losses, armature losses or stray load losses can be
modelled in each scenario s ∈ S and EM domain k ∈ K as:

pM,L,j

s,k
(tM

s,k
, ωM

s,k
) = PL,ref,j,k

(

tM
s,k

t
M

)αj,k
(

ωM
s,k

Ω
M

)βj,k

, (4.39)

each with the parameters PL,ref,j,k, αj,k and βj,k. The resulting total power
loss pM,L

s,k
of the EM is then given in each scenario s ∈ S and EM domain

k ∈ K by the sum of N loss terms:

pM,L

s,k
(tM

s,k
, ωM

s,k
) =

N∑

j=1

pM,L,j

s,k
(tM

s,k
, ωM

s,k
). (4.40)

The resulting efficiency map approximation in the domain k ∈ K can then be
calculated with a suitable set of parameters {PL,ref,j,k, αj,k, βj,k,∀j ∈ 1, . . . , N}
for this semi-analytical model by

ηk(t
M, ωM) =

tMωM

tMωM + pM,L
⋆,k (tM, ωM)

. (4.41)

90 Leise and Pelz, Efficient Powertrain Design – A Mixed-Integer Geometric Program-
ming Approach, ([108], 2021)

91 Mahmoudi, Soong, Pellegrino, and Armando, “Efficiency Maps of Electrical
Machines”, ([118], 2015)

92 Vratny, “Conceptual Design Methods of Electric Power Architectures for Hybrid
Energy Aircraft”, ([192], 2019)
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The advantage of this modeling approach is the applicability to integrate
this EM model as constraints in a MIGP, which is shown in this thesis.
Equation (4.39) is a monomial and therefore GP compliant. Equation (4.40)
can be cast as a posynomial, if the equality constraint is relaxed into an
inequality constraint:

pM,L

s,k
(tM, ωM) ≥

N∑

j=1

pM,L,j

s
(tM, ωM). (4.42)

This relaxation is comparable to the relaxation used within the already
introduced MINLP in the previous section for the polyhedral approximation,
cf. Section 4.2.6. Within the optimized solution the overall efficiency is
maximized. This is only possible, if the best possible efficiency in each point
(tM, ωM) is selected. Hence, an optimized solution lies on the upper boundary
of the relaxation, which is given by the efficiency map.
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Figure 4.6 – (a) GP-compatible efficiency map model in the first quadrant for
a motor with 100 kW (b) error of the approximation in the first quadrant (c)
GP-compatible efficiency map model (absolute torque) in the fourth quadrant
for a motor with 100 kW (d) error of the approximation in the fourth quadrant

To approximate the given reference efficiency mapM, a nonlinear least-square
fitting, cf. Section 2.2.2, is conducted by employing a genetic algorithm to
derive the set of fitting parameters by minimizing the mean squared error
between the approximation and the given datasetM. In total four loss terms
(N = 4) were considered for the driving domain (k = 0) and five loss terms
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(N = 5) for the recuperation domain (k = 1). The result is shown in Fig. 4.6
for an EM with a maximum power of 100 kW.
The integration of a scaling of the EM model is accomplished by adding a
scaling factor kM,p to Eq. (4.39).

4.3.2 Model

Based on the already introduced model in Section 4.2, the already introduced
modeling approach of a geometric program in Sec. 2.1.5 and the GP-compliant
EM modeling in Sec. 4.3.1, it is possible to derive a new model for the
conceptual design of a powertrain that is a MIGP. To accomplish this, we
slightly adapt the already introduced modeling approach in the previous
section for the nonconvex MINLP. The used parameters, sets and variables
are given in Tab. 4.5.
The complete model is shown in objective (4.43) to constraint (4.87). As an
objective, we use a comparable approach to the previously shown objectives for
the water distribution system design and the nonconvex powertrain conceptual
design. To be compliant with the GP requirements, we move the objective to
the first constraint (4.44) as a posynomial. This approach is already known
from Section 2.1.5 as the epigraph form of the problem. The new objective
(4.43) also has a physical meaning, as it represents the power required to
fulfill all scenarios.
Constraint (4.45) limits the choosable transmission ratios between a preset
upper (I) and lower (I) bound. The selection of a discrete transmission ratio
is modelled with big-M constraints in Constraints (4.46) and (4.47). Only
one transmission ratio can be selected within each scenario. This is given by
the logic constraint (4.48).
The transformation between the torque and speed within the multi-speed
transmission is given by Constraints (4.49), (4.50) and (4.51). Instead of the
angular speed in s−1 we use as a unit for the speed in the MIGP approach min−1.
This results in a better scaling of the variable ranges within the optimization
program, but can be changed to the angular speed ωM = 2πnM/60, if desired.
We enable a scaling of the EM besides the selection of a suitable multi-speed
transmission to derive energy-efficient system designs. This EM scaling is
also conducted, as previously introduced, for the general MINLP approach.
A scaled EM results in a higher maximum power pM and a higher maximum
torque t

M
. The reference power that is used for scaling is added to the program

by using Constraint (4.52). Constraint (4.53) is used to model the hyperbola
that restricts the feasible domain of the EM to a power below the maximum
power pM. The upper limits of the speed and torque are added to the program
with Constraints (4.54) and (4.55).
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Table 4.5 – MIGP model notation, cf. [108]

SET DESCRIPTION

S set of all considered scenarios
S+ set of all steps based on the given cycle

PARAMETER VALUE UNIT DESCRIPTION

Ad 0.4161 – EM hyperbola constant
I 1.0 – minimum transmission ratio

I 18.0 – maximum transmission ratio
NW based on cycle /min wheel rotational speed

N
M

10000 /min EM maximum rotational speed

P
M, in

8000 kW upper limit of EM power
Pref 100 kW power of reference EM

PL, ref, 1, 0 787.35 W power reference loss 1
PL, ref, 2, 0 1566.67 W power reference loss 2
PL, ref, 3, 0 9904.85 W power reference loss 3

PL, ref, const, 0 1059.34 W power reference constant loss
PL, ref, 1, 1 2450 W recuperation power reference loss 1
PL, ref, 2, 1 904.58 W recuperation power reference loss 2
PL, ref, 3, 1 13.8 W recuperation power reference loss 3
PL, ref, 4, 1 9425 W recuperation power reference loss 4

PL, ref, const, 1 1212 W recuperation power reference constant loss
TW based on cycle N m wheel torque
ηG 0.98 – transmission efficiency of gearbox

π 1/
∑l

k=1
1 – probability of occurrence for all |S+| scenarios

VARIABLE DOMAIN UNIT DESCRIPTION

i [I, I] – transmission ratio
kM,p

R – EM power scaling factor

nM [0, N
M

] /min EM speed

nM,R [0, N
M

] /min EM speed on convex hulls
pM

R W EM design power
pM,in,avg

R W average used power in cycle
pM,in

R W EM power requirement drawn from battery
pM,L

R W EM power loss
pM,out

R W EM maximum design power
pM,L,R

R W EM power loss on convex hull

tM [0, t
M

] N m EM torque

tM,R [0, t
M

] N m EM torque on convex hulls

t
M

R N m EM maximum torque

EM — electric machine
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min pM,in,avg (4.43)

s.t.
∑

s∈S

∑

k∈K

πs,kp
M,in

s,k
≤ pM,in,avg (4.44)

I ≤ it ≤ I ∀t ∈ T (4.45)

is,k ≤ it +B (1− bt,s,k) ∀t ∈ T ,∀s ∈ S, ∀k ∈ K
(4.46)

is,k ≥ it −B (1− bt,s,k) ∀t ∈ T ,∀s ∈ S, ∀k ∈ K
(4.47)

∑

t∈T

bt,s,k = 1 ∀s ∈ S, ∀k ∈ K (4.48)

tM

s,k
is,kη

G = TW

s,k
∀s ∈ S, if k = 0 (4.49)

tM

s,k
is,k = ηGTW

s,k
∀s ∈ S, if k = 1 (4.50)

nM

s,k
= is,kN

W

s,k
∀s ∈ S, ∀k ∈ K (4.51)

pM,out = N
M 2π

60
Adt

M
(4.52)

nM

s,k

2π

60
tM

s,k
≤ pM,out ∀s ∈ S, ∀k ∈ K (4.53)

nM

s,k
≤ N

M

∀s ∈ S, ∀k ∈ K (4.54)

tM

s,k
≤ t

M
∀s ∈ S, ∀k ∈ K (4.55)

kM,p =
pM,out

Pref

(4.56)

pM

s,k
= tM

s,k

2π

60
nM

s,k
∀s ∈ S, ∀k ∈ K (4.57)

pM,L,1

s,k
= kM,pPL, ref, 1,k

(

tM
s,k

t
M

)(

nM
s,k

N
M

Ad

)3.93

∀s ∈ S, if k = 0 (4.58)

pM,L,2

s,k
= kM,pPL, ref, 2,k

(

tM
s,k

t
M

)

∀s ∈ S, if k = 0 (4.59)

pM,L,3

s,k
= kM,pPL, ref, 3,k

(

tM
s,k

t
M

)2

∀s ∈ S, if k = 0 (4.60)

pM,L,const

s,k
= kM,pPL,ref,const,k ∀s ∈ S, if k = 0 (4.61)
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pM,L,1

s,k
= kM,pPL, ref, 1,k

(

tM
s,k

t
M

)

∀s ∈ S, if k = 1 (4.62)

pM,L,2

s,k
= kM,pPL, ref, 2,k

(

tM
s,k

t
M

)

∀s ∈ S, if k = 1 (4.63)

pM,L,3

s,k
= kM,pPL, ref, 3,k

(

tM
s,k

t
M

)(

nM
s,k

N
M

Ad

)7.36

∀s ∈ S, if k = 1 (4.64)

pM,L,4

s,k
= kM,pPL, ref, 4,k

(

tM
s,k

t
M

)2.64

∀s ∈ S, if k = 1 (4.65)

pM,L,const

s,k
= kM,pPL,ref,const,k ∀s ∈ S, if k = 1 (4.66)

pM,in

s,k
≥ pM

s,k
+

3∑

j=1

pM,L,j

s,k
+ pM,L,const

s,k
∀s ∈ S, if k = 0 (4.67)

pM,in

s,k
≥ pM

s,k
+

4∑

j=1

pM,L,j

s,k
+ pM,L,const

s,k
∀s ∈ S, if k = 1 (4.68)

pM,in

s,k
≤ P

M, in

∀s ∈ S, ∀k ∈ K (4.69)

tM,R

s,k,r
is,kη

G = TW,R

s,k,r
∀s ∈ S, if k = 0, ∀r ∈ R

(4.70)

tM,R

s,k,r
is,k = ηGTW,R

s,k,r
∀s ∈ S, if k = 1, ∀r ∈ R

(4.71)

nM,R

s,k,r
= is,kN

W,R

s,k,r
∀s ∈ S, ∀k ∈ K, ∀r ∈ R

(4.72)

nM,R

s,k,r

2π

60
tM,R

s,k,r
≤ pM,out ∀s ∈ S, ∀k ∈ K, ∀r ∈ R

(4.73)

nM,R

s,k,r
≤ N

M

∀s ∈ S, ∀k ∈ K, ∀r ∈ R
(4.74)

tM,R

s,k,r
≤ t

M
∀s ∈ S, ∀k ∈ K, ∀r ∈ R

(4.75)
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pM,L,R,1

s,k,r
= kM,pPL, ref, 1,K

(

tM,R
s,k,r

t
M

)(

nM,R
s,k,r

N
M
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)3.93

∀s ∈ S, if k = 0, ∀r ∈ R

(4.76)

pM,L,R,2

s,k,r
= kM,pPL, ref, 2,K

(

tM,R
s,k,r

t
M

)

∀s ∈ S, if k = 0, ∀r ∈ R

(4.77)

pM,L,R,3

s,k,r
= kM,pPL, ref, 3,K

(
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s,k,r

t
M

)2

∀s ∈ S, if k = 0, ∀r ∈ R

(4.78)

pM,L,R,const

s,k,r
= kM,pPL,ref,const,k ∀s ∈ S, if k = 0, ∀r ∈ R

(4.79)

pM,L,R,1

s,k
= kM,pPL, ref, 1,k

(

tM,R
s,k

t
M

)

∀s ∈ S, if k = 1, ∀r ∈ R

(4.80)

pM,L,R,2

s,k
= kM,pPL, ref, 2,k

(

tM,R
s,k

t
M

)

∀s ∈ S, if k = 1, ∀r ∈ R

(4.81)

pM,L,R,3

s,k
= kM,pPL, ref, 3,k

(

tM,R
s,k

t
M

)(

nM,R
s,k

N
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)7.36

∀s ∈ S, if k = 1, ∀r ∈ R

(4.82)

pM,L,R,4

s,k
= kM,pPL, ref, 4,k

(

tM,R
s,k

t
M

)2.64

∀s ∈ S, if k = 1, ∀r ∈ R

(4.83)

pM,L,R,const

s,k
= kM,pPL,ref,const,k ∀s ∈ S, if k = 1, ∀r ∈ R

(4.84)

pM,R

s,k,r
= tM,R

s,k,r

2π

60
nM,R

s,k,r
∀s ∈ S, ∀k ∈ K, ∀r ∈ R

(4.85)

pM,R,in

s,k,r
≥ pM,R

s,k,r
+ pM,L,R,1

s,k,r
+ pM,L,R,2

s,k,r
+ pM,L,R,3

s,k,r
+ pM,L,R,const

s,k,r
∀s ∈ S, ∀k ∈ K, ∀r ∈ R

(4.86)

pM,R,in

s,k,r
≤ P

M, in

∀s ∈ S, ∀k ∈ K, ∀r ∈ R
(4.87)
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Constraint (4.56) is used to add the scaling with the scaling factor kM,p of
the EM based on the already introduced maximum power variable pM. The
parameter Pref is used as a reference for the motor power. Constraint (4.57)
models the shaft power.
As already presented in Eq. (4.39), we add further constraints for the modeling
of the efficiency map M. Here, we use Constraints (4.58) – (4.61) to model
specific losses for the driving domain. To be able to scale the efficiency map
and accordingly the losses, we add the scaling factor kM,p in each constraint.
The Constraints (4.62) to (4.66) are used to model the EM efficiency map in
the fourth quadrant.
Constraint (4.67) and (4.68) model the required power that must be supplied
by the battery in driving mode and is recuperated. To be compliant with
the GP requirements, we also model an upper bound of the total power pM,in

in (4.69). Within the optimized solution this bound constraint should be
inactive.
The remaining Constraints (4.70) to (4.87) model the relevant parts for the
selected corner points of the convex hulls to be able to derive a more robust
solution, as already introduced in Section 4.2.5.
The mass is not modeled as a variable within the MIGP, as it was done
in the previously shown MINLP. The focus of the following sections lies on
the efficient modeling and solving, exemplified by the powertrain conceptual
design. Instead, we predefine the battery size in advance to the powertrain
sizing and control strategy computations. Either with a bisection solving
approach or with an explicit modeling it could also be added in a later step.

4.3.3 Solution Approaches

In the following, three different approaches to solve the given MIGP are
shown. To solve the given MIGP, the basic idea is a separation of first and
second-stage decisions which can improve the solving performance. The
second stage decisions are in this use case only combinatorial decisions for
the control strategy within the usage phase. The first-stage decisions are
only continuous decisions for scaling the EM and selecting the transmission
ratios. As seen previously in objective (4.43) to constraint (4.87), this results
in a geometric program for the continuous decisions, which can be solved
efficiently93, if the assignments for the control strategy are known. In general,
these are only known for corner cases like a continuous variable transmission
(CVT), where each scenario has its own transmission ratio variable, or for a

93 Boyd, Kim, Vandenberghe, and Hassibi, “A Tutorial on Geometric Programming”,
([19], 2007)
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single-speed transmission, where each scenario has the same transmission ratio
assigned. For multi-speed transmissions this assignment of a transmission
ratio and scenario is not trivial, since it also depends on the first stage
decisions. Therefore, it is not suitable to divide the optimization program
in two independent optimization programs to receive the optimized system
design.

Brute Force

As a first approach, we iterate over all possible combinatorial control-strategy
solutions. As a result, in each assignment only a GP has to be solved to
dimension the components of the powertrain, since the second-stage decisions
are fixed in each iteration. This approach reduces the MIGP to a series of GP
evaluations. This brute force approach is only useable for a small quantity of
scenarios, since the number of possible solutions increases rapidly, as shown in
Section 4.2.7. To increase the performance of this approach, it is beneficial to
evaluate only one solution of multiple symmetric solutions, cf. Section 4.2.7.
This is achieved with a lexicographic ordering of all binary assignments before
optimization of each instance. After using a lexicographic ordering of the
binary variable assignment vectors, we consider only the first half. With this
approach the solution time is reduced by approximately 50 % in comparison
to evaluate all possible assignment vectors. It is important to mention that
the used approach with a lexicographic ordering is only valid for two-speed
transmissions. For three- or more-speed transmission the subset with all
removed symmetric binary assignments has to be chosen differently.
The brute force approach is used as a comparison to check the global optimality
and performance of the two remaining approaches that are shown in the
following.

Generalized Benders Decomposition

A decomposition approach based on a generalized Benders decomposition
(GBD), cf. Section 2.1.6, is shown as a second solution approach. As stated
in this Section, a generalized Benders decomposition is suitable to compute
global optimal solutions of a MINLP, if the resulting subproblem becomes
convex when fixing specific complicating variables. In the given case, the
complicating variables are the binary control variables bt,s,k. When fixing these
variables, the remaining NLP has a special structure and becomes a GP, which
can be transformed in a convex optimization program by using a variable
transformation in the log-domain. This convexification of the subproblem of
the general nonconvex MINLP has from a computational perspective to be
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considered as very beneficial.
The usage of a generalized Benders decomposition for solving the conceptual
design problem in conjunction with a GP-compatible modeling has until now
only been shown for very few more abstract examples94. Many open research
questions for the applicability and modeling of MIGPs still remain. Therefore,
the approach shown here extends the examples in the literature considerably
by presenting a practical example use case and a modern implementation
with a sophisticated computational evaluation.

Algorithm 2: Decomposition Approach for MIGP
input : Set of Scenarios S; Main program Pmain; Subproblem Psub

Niter,max = 100; ǫ = 0.000005;
call_heuristic ∈ {0, 1}; heuristic H

output : Optimized powertrain design with control strategy
j = 0;
Set UB =∞ and LB = −∞;
if call_heuristic = 1 then

Call heuristic H to get a first estimate for a good assignment of all
binary control variables bt,s,k;

Retrieve current objective value as UBj;
if UBj < UB then

UB = UB0

else
Solve main program Pmain to get a first estimate for all binary
values bt,s,k and the current lower bound LBj;

if LBj > LB then

LB = LBj

while UB− LB > ǫ AND j < Niter,max do

j = j + 1;
Solve subproblem Psub with given binary assignments for bt,s,k;
Retrieve dual variables λ from the solution;
if UBj < UB then

UB = UBj

Add optimality cut based on dual variables to the main problem;
Solve main problem Pmain; Retrieve LBj and binary assignment;
if LBj > LB then

LB = LBj

Set binary assignments (bt,s,k) based on result in Pmain;

94 Choi and Bricker, “Geometric Programming with Several Discrete Variables: Algo-
rithms employing Generalized Benders’ Decomposition”, ([34], 1995)
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min µB (4.88)

s.t.
∑

t∈T

bt,s,k = 1 ∀s ∈ S, k ∈ K

(4.89)
∑

s∈S

bt,s,k ≤ |S| − 1 ∀t ∈ T

(4.90)

µB ≥ f̃ (j)

0,k
− B̃

∑

s∈S

∑

t∈T

∑

k∈K

(

λ̃La,(j)

s,g,k,<
+ λ̃La,(j)

s,g,k,>

)

(1− bs,g,k) ∀j ∈ J

(4.91)

µB ∈ R; 0 ≤ µB ≤ µB (4.92)

Figure 4.7 – Main program within the Generalized Benders Decomposition
approach

The used decomposition approach is shown in Algorithm 2 in more detail.
The algorithm solves iteratively a main problem Pmain and a sub-problem
Psub. The main problem aggregates the complicating variables, in this case
the binary control variables. It results for the powertrain conceptual design
problem in a Mixed-Integer Linear Problem, which can be solved with any
MILP-Solver. As a result, we get in each iteration j a new control strategy
for all considered scenarios. Furthermore, the objective of Pmain refers to a
current lower bound LBj. With this, we can derive the best lower bound
LB(j) in each iteration j by selecting the lowest value found so far.

With this given control strategy, the MIGP is reduced to a GP, which can
be solved very efficiently with a state-of-the-art GP solver. The objective
value of the solved sub-problem Psub yields a current estimate for the upper
bound UBj.

The gap UB(j)−LB(j) between the highest lower bound and the lowest upper
bound is used to terminate the algorithm, when it reaches a predefined value ǫ.
To avoid infinitely long computations, as a second termination criterion a
predefined maximum number of iterations has also been added.

While running the algorithm, the relaxation of the MIGP is continuously
reduced to close the gap between the upper and lower bound. This is done by
adding in each evaluation of the main problem Pmain an additional optimality
cut.

The main problem is shown in Figure 4.7. The objective is the newly intro-
duced continuous variable µB. Additionally, the logical relations between the
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binary decision variables for the control strategy are given by Constraint (4.89)
and Constraint (4.90). The first Constraint ensures that only one transmission
ratio is selected for each scenario. The second Constraint ensures that only
solutions are selected, in which both transmission ratios are used. This forbids
the single-speed solution.
The linking between the newly introduced variable µB and the binary decision
variables bt,s,k is achieved by the optimality cuts (4.91). A detailed explanation
about the optimality cut generation is given in the following.
When conducting the optimization, we also introduced a rounding scheme for
binary variables comparable to the approach shown by Fischetti, Ljubić, and
Sinnl95 to ensure a correct binary variable setting in the subproblem. This
reduces the effects of a transfer of computational imprecision of the solution of
the main problem on the solution of the following subproblem. Without this
rounding of binary variables the generalized Benders decomposition would
sometimes lose its ability to close the gap due to a definition of redundant
optimality cuts.
The adding of feasibility cuts, cf. Sec. 2.1.6, in the main problem is not
required in the given use case, since the control strategy derived by the
main problem is always feasible due to the combinatorial nature of the given
problem. The optimality cuts were derived by using the approach shown in
Sec. 2.1.6 based on the Lagrangian and the dual variables from the solution
of the subproblem.
In the original problem formulation, we couple the binary decision variables
for the control strategy bt,s,k with the continuous transmission ratios it by the
following big-M constraints:

is ≤ it +B (1− bt,s,k) ∀t ∈ T , (4.93a)

is ≥ it −B (1− bt,s,k) ∀t ∈ T (4.93b)

These constraints are the only constraints which contain both types of vari-
ables: complicating variables for the main problem and continuous variables
from the subproblem. These constraints are not GP-compliant. But if we
only consider the projection on the variable space of the subproblem Psub, we
derive the constraints:

is ≤ it, (4.94a)

is ≥ it, (4.94b)

for the active subset of control assignments. These constraints are monomials
and therefore GP-compliant. They are also invariant to the log-transformation.

95 Fischetti, Ljubić, and Sinnl, “Redesigning Benders Decomposition for Large-scale
Facility Location”, ([55], 2017)
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Since the logic of the assignment must also hold in the log-space after con-
ducting a GP transformation, we can also add the big-M constraints in the
log-space with the transformed big-M constant B̃ = log (B):

ĩs ≤ ĩt + B̃ (1− bt,s,k) ∀t ∈ T , (4.95a)

ĩs ≥ ĩt − B̃ (1− bt,s,k) ∀t ∈ T . (4.95b)

This then results in linear mixed-integer constraints in the log-space.
If the binary variables are set to zero, the big-M approach leads to two
additional constraints per scenario that per definition do not affect the given
optimization program:

ĩs ≤ ĩt + B̃ ∀t ∈ T , (4.96a)

ĩs ≥ ĩt − B̃ ∀t ∈ T . (4.96b)

Since the log-transfomed GP in the subproblem Psub is a convex optimization
program, we can also employ duality theory for convex optimization programs.
When the GP is solved to optimality, the primal and dual of the GP are
equal. Then, the complementary slackness states that “(...) roughly speaking,
(...) the ith optimal Lagrange multiplier is zero unless the ith constraint
is active at the optimum.”96 Since, per definition of the big-M constraints,
only the projections on the GP space of the selected binary assignments are
active, we also only have to consider the dual variables for these constraints
in the definition of the optimality cuts for the main problem Pmain. Since the
two monomial constraints in (4.94) are used to model the selection of the
transmission ratio in a given scenario, we also have to consider both dual
variables λ̃La,(j)

s,t,k,<
and λ̃La,(j)

s,t,k,>
within the cut generation. The used optimality

cuts in Eq. (4.91) use these values, besides the current objective value f̃ (j)
0,k

of the solved GP in iteration j and the log-transformed big-M parameter
B. The solving performance is reduced with a selection of a larger big-M
parameter than necessary. Hence, the smallest possible selection is the best
choice, as commonly done for big-M constraints in linear programs.

Primal Heuristic

The third approach to solve the given MIGP is a newly developed primal
heuristic. This approach results in fast solution times, but does not guarantee
a global-optimal solution. It is based on an iterative two-step process and is
only valid for a two-speed transmission. The algorithm is shown in detail in
Alg. 3. It can also be extended to a higher number of transmission ratios.

96 Boyd and Vandenberghe, Convex Optimization, ([20], 2004, p. 243)
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Algorithm 3: Pseudocode for the primal heuristic to solve the
powertrain conceptual design MIGP.

input : MIGP model
empty set of assigned binary control variables in driving and
recuperation mode Y = ∅; YR = ∅

percentage value γ = 0.1; Loop decision variables q = 0;
qR = 0

output : Optimized powertrain design with according control strategy
while q = 0 or qR = 0 do

solve relaxed MIGP model with partial assignments Y and YR;
get set of unassigned scenarios in driving mode U ;
get set of unassigned scenarios in recuperation mode UR;
if U = ∅ then

q = 1;
else

Get current maximum transmission value i in U ;
Get current minimum transmission value i in U ;
∆i = i− i;
Get upper rounding limit l = i− γ∆i;
Get lower rounding limit l = i+ γ∆i;
for k ∈ U do

if ik > l then
bk,0 = 1; bk,1 = 0

if ik < l then
bk,0 = 0; bk,1 = 1

if UR = ∅ then

qR = 1;
else

Get current maximum transmission value i
R

in UR;
Get current minimum transmission value iR in UR;

∆iR = i
R
− iR;

Get upper rounding limit l
R

= i
R
− γ∆iR;

Get lower rounding limit lR = iR + γ∆iR;
for k ∈ U do

if iR

k
> l

R

then
bR

k,0 = 1; bR
k,1 = 0

if iR
k
< lR then

bR
k,0 = 0; bR

k,1 = 1
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Starting from a complete relaxation of all binary variables, which is equivalent
to the CVT solution, the binary control variables are iteratively assigned.
Therefore, further constraints, as shown in (4.94), are added to the CVT
solution, which restrict the transmission ratio variable is in specific scenarios
to the global decision variables it which are used in multiple scenarios. This
is equivalent to setting specific binary variables bt,s,k to one and the opposite
to zero. Different to the decomposition approach not all binary variables are
set in this approach in each iteration, but the number of assigned scenarios to
the variables it is continuously growing. The algorithm terminates when all
scenarios s ∈ S are assigned to one of the two transmission ratios it; t ∈ T .
A rounding scheme is employed to select scenarios where a specific transmission
ratio is used. The CVT solution results in as many values of transmission
ratios as there are scenarios. But some of these values are close to each other.
This closeness between assigned transmission ratios in different scenarios is
used to assign close to each other located scenarios in the CVT solution to
discrete transmission ratios. In Alg. 3, we use a closeness factor of γ = 0.1,
which relates to assign the 10 % closest values to the given reference values.
As a reference, we use the highest and lowest transmission ratio within the
CVT solution as a starting point. With this approach we support the manual
assignment heuristic to assign scenarios with a high torque and low speed to
one transmission ratio and one with low torque and high speed to another.
Since the CVT solution is in general not feasible anymore if specific binary
variables are assigned, a recomputation of this extended NLP is done. With
this newly sized powertrain components from the first stage, a further iteration
is started to assign further binary variables to either the first or second
transmission ratio. After this assignment, a recomputation of the powertrain
components is done again with the given new additional assignments of binary
variables. This procedure is iteratively executed until all available scenarios
are assigned.
With the given approach, we are able to compute in a low number of iterations
a near-optimal solution by using the binary assignment of the given heuristic
and the consecutive solving of GPs even for a high number of scenarios.
The performance of this heuristic, next to the decomposition approach, is
evaluated with a high number of computations in comparison to the brute
force approach within the following.
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Table 4.6 – Influencing variables for the computational datasets to evaluate
the MIGP solving approaches

dataset 1

number of clusters {6, 7, 8, 9, 10, 11, 12}
cycles WLTC, NYCC, Artemis Motorway 150,

FTP 75, Institute vehicle
mass {1800, 2000}
recuperation status {True, False}
convex hull status {True, False}
maximum iterations 400

dataset 2

number of clusters {13, 14, 15, 16}
cycles WLTC, NYCC, Artemis Motorway 150,

FTP 75, Institute vehicle
mass {1800, 2000}
recuperation status {True, False}
convex hull status {True, False}
maximum iterations 600

4.3.4 Results

The performance and correctness of the decomposition approach and the
primal heuristic are evaluated in comparison to the brute force approach. Since
the computational time required to solve the underlying MIGP depends on the
number of binary control decisions, multiple instances with different scenarios
were evaluated in a computational study. To allow a comparison between
all instances, we conducted the computations on specialized server hardware
that was only used for the computations. The scenarios are generated with
the method shown in Section 4.2.5.

Based on the complexity of the control strategy in the second stage, we
divided the performed evaluation runs in two datasets. The complete set of
combinations is shown in Table 4.6. For the first dataset, in total 280 MIGPs
were solved. For the second dataset, 160 MIGP evaluations were performed.

Besides four commonly used legislative driving cycles for which scenarios
were generated, we also used one driving cycle developed at the Institute
of Mechatronic Systems at TU Darmstadt that was already used in the
computational study for the (nonconvex) MINLP approach in Sec. 4.2.9.
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Table 4.7 – Comparison of solution approaches for 280 instances.

Decomposition Decomposition Heuristic Brute Force
+ Heuristic

global identified 279 277 90 280
gap closed 264 262 – 280

Over both datasets, we considered between 6 to 16 scenarios in each instance.
For the low number of scenarios in dataset 1, we were able to also compute
the global optimal solution by employing the brute force approach. Since the
complexity grows exponential, cf. Sec. 4.2.7, we were only able to evaluate
the brute force approach on the first dataset. On the second dataset, we then
only compared the decomposition with and without a pre-evaluation based
on the developed heuristic.
All computations were conducted on a server with an AMD Ryzen 5 5600X
and 32 GB RAM. The code was implemented in Python 397. The GP models
were implemented by using the Python library GPKit98. As a solver for the
GP we used MOSEK 9.099. For the implementation of the main problem of
the Generalized Benders approach, we used SCIP 7.0.2 with the LP-Solver
SoPlex 5.0.2 and as an interface PyScipOpt100.

Comparison of Solution Approaches

For dataset 1 in total 280 MIGPs were solved. Table 4.7 shows a comparison
of the different approaches and the possibility to find the global solution.
The brute force approach was used as a reference for each MIGP. It was
executed iteratively until all possible control strategies were evaluated, and the
best solution was stored as the global optimal solution. As shown previously,
we omitted the computation of symmetric solutions, which improved the
solution performance considerably, cf. Sec. 4.3.3. Within each iteration of the
brute force approach, we computed a GP with the given binary assignments for
the specific control strategy. Due to the convexity of the subproblems, these
could be solved very efficiently. Hence, we were able to find the global-optimal
solution for all 280 instances.

97 Python, Python Programming Language, ([154], 2022)
98 Burnell, Damen, and Hoburg, “GPkit: A Human-centered Approach to Convex

Optimization in Engineering Design”, ([28], 2020)
99 Mosek SPA, Mosek, ([130], 2022)
100Maher et al., “PySCIPOpt: Mathematical Programming in Python with the SCIP

Optimization Suite”, ([117], 2016)
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Figure 4.8 – Difference in percent between the best found solution with the
heuristic and the found global solution by employing a Benders decomposition
approach.

The usage of the decomposition approach with and without a pre-evaluation
based on the heuristic can find for most instances the global solution within
the given limit of maximum iterations (cf. Table 4.6). At the maximum
number of iterations only for one instance we were unable to identify the
global optimal solution, when using the decomposition. Within Table 4.7, we
also show the number of instances, where the duality gap between the upper
and lower bound was closed at the end of computation. From the difference
to the first row, it can be seen that the global solution was identified in more
instances, even, if the gap could not be closed completely until the end of the
maximum iterations per MIGP evaluation.
As a third approach, we also evaluated the heuristic to find the global-optimal
solutions. In approximately one third of the MIGPs, we were able to find
the global-optimal solution in the first dataset by employing the heuristic.
The heuristic does not provide any information about the dual. Hence, no
duality gap can be estimated. Since the possibilities for a control-strategy
increase with the number of scenarios, it is in general not possible to find
the global optimal solution by employing the heuristic solely. Nevertheless,
it provides near-optimal solutions. This can be seen in the histogram in
Figure 4.8 which shows the error between the global solutions and the best
found solutions when using the heuristic for all instances that could be solved
to global optimality.
Figure 4.9 shows a comparison of the mean solution times for the brute force
approach and the decomposition approach. Besides a run of the decomposition,
we also evaluated the performance, if the heuristic was employed before solving
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Figure 4.9 – Comparison of the mean required solution time (on a logarithmic
scale) for each solving approach for the derived MIGPs in dataset 1. The
uncertainty is quantified by using bootstrapping and the 95 %-confidence
interval is presented by the error bars. Additionally, the shifted geometric
mean with a shift value of 10 is shown as a star (⋆).

the MIGP with the generalized Benders decomposition algorithm. The idea
in using the heuristic in advance was to generate a near-optimal starting
solution relatively fast with the heuristic and then using this solution to start
the decomposition algorithm.

The results in Figure 4.9 show that the effects of the heuristic on the overall
solution time are negligible. The complete time for finding and proving the
global optimal solution is not reduced by adding the heuristic in advance
to the decomposition. Nevertheless, the comparison with the brute-force
approach shows that the solution time with the decomposition approach can
be reduced significantly.

For 6 scenarios, the brute-force approach is faster than the decomposition
approach. This is caused by the overhead that is required to model the
optimization programs and call the main programs’ MILP solver. As shown
by the logarithmic scale, all approaches are rather fast to solve the given
optimization program for this size. But starting from 8 scenarios (which is
equivalent to 28−1− 1 = 127 different possible control strategies) the overhead
of the decomposition approach outperforms the brute force approach. For
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approach for the derived MIGPs in dataset 2. The uncertainty is quantified
by using bootstrapping and the 95 %-confidence interval is presented by the
error bars. Additionally, the shifted geometric mean with a shift value of 10 is
shown as a star (⋆).

12 scenarios (2047 possible control strategies) the difference becomes even
more significant, since it is almost one order of magnitude faster in the given
implementation.
We also quantify the uncertainty of this point estimate by employing boot-
strapping. This approach to quantify the uncertainty of arbitrary point
estimates was already introduced in Sec. 2.2.4. The 95 %-confidence interval
of the arithmetic mean is shown as error bars for each subset in Figure 4.9.
Besides the arithmetic mean of the solution time, which is commonly used in
engineering, we also present the shifted geometric mean as stars (⋆) with a
shift value 10. The shifted geometric mean is usually used for performance
evaluations in the optimization community. The advantage of the shifted geo-
metric mean is its robustness against small and large outliers. But as shown
by the arithmetic mean and the uncertainty quantification, the difference
between both values is not very high and the shifted geometric mean lies
within the uncertainty set.
Dataset 2 was evaluated solely by using the decomposition approach with and
without a pre-evaluation with the developed heuristic. The results for 13 to
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16 scenarios are shown in Figure 4.10. The benefit of the heuristic as a first
step to estimate a good primal solution is not given for each scenario group.
The solving time increases with the considered scenarios, but remains on an
acceptable level for evaluations of specific instances to derive an optimized
conceptual powertrain design. Furthermore, we only considered instances in
the results, which were solved to global-optimality.

The decomposition approach is based on an iterative solving procedure. In
Figure 4.11, we evaluate the number of iterations that are required to (a)
find the global optimal solution and (b) to prove this global optimality by
closing the gap between the primal and dual bound. From an evaluation
on dataset 1, we can see that the decomposition approach usually finds the
global optimal solution in a much earlier iteration than is required to prove
the found solution. It is already found by the algorithm after approximately
30− 50% of the total number of iterations that are required for proving the
global optimal solution. This underlines the usefulness of this developed
approach for solving a given MIGP.
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Figure 4.12 – (a) Heuristic transmission ratio assignment over required iter-
ations for WLTC data with 811 scenarios. (b) assigned binary variables by
iteration.

Primal Heuristic

The developed primal heuristic that iteratively solves GP models was used
until now only for generating a good primal starting solution for the decom-
position approach. Unfortunately, it did not accelerate the performance of
the decomposition. But its advantage is clearly to find a good solution for a
given MIGP rapidly. This performance is shown here with a use case, where
not only a few scenarios are used.
The heuristic can be used to compute a control strategy for a complete
driving cycle within a few iterations. For the shown use case, we consider
exemplarily the WLTC legislative driving cycle. We consider a vehicle mass
of M = 1800 kg and select only loads in the first quadrant. This results in
811 scenarios (time steps) with torque and speed requirements.
If we reconsider the combinatorial complexity associated with this problem
we have 2811−1 − 1 ≈ 6.8× 10243 possible control strategies.
With the developed heuristic, we are able to derive a good solution that is
near global-optimal with only 20 iterations with one GP solving each. For
the given problem this was solved in approximately 168 s.
The usage of the considered two transmission ratios and the number of
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Figure 4.13 – Exemplary iterations of the developed heuristic to derive near-
global-optimal solutions for the WLTC. The iterations count from k = 0 to
k = 19. A star (⋆) marks the usage of the first transmission ratio, while a cross
(×) shows the second transmission ratio. Unset binaries are marked with a
circle (◦). In iteration k = 19 all binary decision variables are set.
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unassigned binary variables in each iteration are shown in Figure 4.12. The
heuristic iteratively switches between the computation of the first and second-
stage variables. Within the first iterations, the number of unset binary
variables for the control strategy is reduced the most. In the later iterations
only a few scenarios are still unset and assigned to the given transmission
ratios. Three exemplified assignment results for the given use case are shown
in Figure 4.13: within the first, fourth and 20st iteration. The already set
binary variables are shown in stars (⋆) and crosses (×). The unset binary
variables in the given iteration are shown as circles (◦).

Engineering Results

Within the last sections, we presented a computational study to evaluate the
applicability of the decomposition approach and the usage of the developed
heuristic. Within this section, we will show briefly the results obtained by
using the MIGP approach from an engineering point of view.
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Figure 4.14 – Optimized powertrain system design for the WLTC and a
vehicle mass of 1800 kg.

Figure 4.14 shows an exemplified powertrain design that is based on the
WLTC driving cycle. The resulting powertrain design is presented according
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to the optimized results shown within the supplementary material for the
MINLP model presented above101.
It shows a simultaneous view on the underling driving cycle, the used EM
torque, the switching behavior between the two speeds of the optimized
powertrain design and the state of charge (SoC) of the used battery. The
resulting system design that is based on the MIGP approach behaves similar
to the system design optimized by using a genetic algorithm with a higher-
fidelity modeling, cf. [105]. This shows that the developed optimization and
design approach can be useful to derive first conceptual designs that are based
on binary control decisions and a nonlinear system modeling. The MIGP
modeling approach leads to a system design that avoids a high number of
switching between both transmission ratios within the considered example use
case. This behavior is beneficial for a later embodiment design and transfer on
a real-world test environment. This underlines the usefulness of this modeling
approach, both from an engineering point of view and from an algorithmic
point of view.

101Leise et al., Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods (Supplemental), ([105], 2021)
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Discussion

At the beginning of this thesis the question was raised how a good trade-off
between model accuracy and solving performance for a conceptual design of
a technical system can be achieved. To answer this research question, two
different use cases, the water distribution system design and the powertrain
design for battery electric vehicles (BEVs), were modeled and evaluated.
As known from optimization research1, there is always a trade-off, if the goal
is to derive a very efficient solving algorithm for a specific problem class.
Additionally, when developing and solving optimization-based conceptual
design models, engineers always have to trade off the effort required to model
and to solve the given system at hand.
The number of model evaluations after a successful modeling in conceptual
design is rather low, since the most important result is the system design
itself. This is derived with only one evaluation. Even if parameter studies are
conducted with a given conceptual design model, the number of evaluations
is at least one order of magnitude smaller than in other domains where
optimization based approaches are used. In these domains a given model is
repeatedly solved multiple times with a different parametrization in each run.
Furthermore, solving-performance requirements exist to solve these models up
to real-time2. Examples for this are demand-planning or trajectory-planning.
Consequently, the importance of the efficiency of the solution algorithm shifts
to the applicability of the solution procedure for a given problem in conceptual
design. Furthermore, the transferability of the given solving procedure on
new systems also becomes more important. The applicability in engineering,
the algorithmic expedience and the suitability for mastering uncertainty are

1 Wolpert and Macready, “No Free Lunch Theorems for Optimization”, ([201], 1997)
2 Chachuat, Srinivasan, and Bonvin, “Adaptation Strategies for Real-Time Opti-

mization”, ([30], 2009)
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taken up in this chapter to discuss the developed conceptual design approach
against this background.

5.1 Applicability in Engineering

For conventional aircraft the design has “converged to an overriding design
scheme”3 since “the shape of the body and wings remains almost identical for
all designs”3, currently manufactured.
On contrary, if new powertrain concepts with (hybrid-)electric propulsion are
considered for aircraft, the optimal design is still an open research question3.
This example shows that it is required in the conceptual design of a technical
system to be able to compare a high number of possible design decisions, even
when changes in a sub-system are introduced and solutions for related systems
are already identified. The optimal new system can then differ significantly
from the already found old solution of the related system. For instance, when
introducing (hybrid-)electric powertrains in aircraft, the optimal number of
propulsors significantly increases in comparison to a conventional aircraft,
when employing an optimization-based approach3.
The benefits of an optimization-based approach in conceptual design are obvi-
ous. This approach is able to provide (i) a quantification of the performance
gains, (ii) evaluate and compare a high variety of possible system designs,
and (iii) allows a comprehensible preference of solutions due to the predefined
objective.
When using optimization-based approaches in the conceptual design, engi-
neers always have the possibility to choose from multiple approaches to derive
an optimized system design. This thesis focussed on the usage of an exact
optimization approach by modeling the given problem in a domain-specific
modeling language for optimization programs, like PyScipOpt4, JuMP5 or
GPKit6. Afterwards, an exact optimization solver or specifically developed
heuristics were used to solve the problems. Even though this approach is
widespread in the operations research community, it is not within engineering.

3 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

4 Maher et al., “PySCIPOpt: Mathematical Programming in Python with the SCIP
Optimization Suite”, ([117], 2016)

5 Dunning, Huchette, and Lubin, “JuMP: A Modeling Language for Mathematical
Optimization”, ([46], 2017)

6 Burnell, Damen, and Hoburg, “GPkit: A Human-centered Approach to Convex
Optimization in Engineering Design”, ([28], 2020)
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For this reason, this thesis is embedded in the research area technical oper-
ations research7. Besides concrete modeling approaches it presents further
algorithmic developments and an engineering applicability.
The first impression of a higher effort in modeling of the approach in this
thesis is outweighed by a better traceability and extensibility. With this
approach different open-source and commercially available solvers can easily
be replaced by each other to improve the solving performance with no extra
costs in modeling and only minor costs in maintenance. Furthermore, this
explicit modeling allows a superior traceability due to the already described
optimization problem with the help of the given domain-specific modeling
language.
The developed approaches for designing more sustainable systems designs
that were presented in the last two chapters can also be discussed within
the domain of multi-disciplinary design optimization (MDO), which gained
attention in the engineering sciences starting in the 1990s8.
In general, the system design is modeled in an object-oriented manner, where
each object can represent a subsystem or discipline. The variables in all
objects can then be either optimized together, or only within an object. In
the latter approach, only the optimized results are passed-on to the objects
which require these values9.
Following the classification of Martins and Lambe10, the developed approach
for a water distribution system in Chapter 3 and for the powertrain in
Chapter 4 can be seen as all-at-once (AAO) approaches, or more precisely
as simultaneous analysis and design (SAND) approaches. This architecture
naming convention was coined by Haftka11.
Usually local optima are searched within MDO. Furthermore, usually sub-
models that are only given as black-boxes are integrated in the optimization
architecture.
On contrary, since the derived models in this thesis allow for a white-box
optimization, the developed solving algorithms can exploit the given model
structure and additionally lead to the global optimal solution. This global-
optimality is usually not searched for in common MDO approaches. Examples

7 Fügenschuh, Lorenz, and Pelz, “OPTE Special Issue on Technical Operations
Research (TOR)”, ([59], 2021)

8 Sobieszczanski-Sobieski, Multidisciplinary Design Optimization: An Emerging New
Engineering Discipline, ([174], 1993)

9 Perez, Liu, and Behdinan, “Evaluation of Multidisciplinary Optimization Approaches
for Aircraft Conceptual Design”, ([149], 2004)

10 Martins and Lambe, “Multidisciplinary Design Optimization: A Survey of Architec-
tures”, ([122], 2013)

11 Haftka, “Simultaneous Analysis and Design”, ([72], 1985)
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as given by Chernukhin and Zingg12 show that a search for global optima can
have a benefit in engineering design and can lead to better designs.
The associated dual solution that is evaluated within the solution process of
the exact optimization program has the great benefit to create a certificate
that proves the global optimality, when the gap between the primal and dual
is closed. Furthermore, it enables the estimation of the difference between the
best solution already found and the best possible solution (currently unfound)
within the solution process. With this additional knowledge an engineer can
estimate, if an additional investment in further solving time is worth the
performance gains of the complete system. Therefore, even if the solving until
its global optimum is not always required from an engineering point of view,
the shown approach has the benefit to quantify the possible performance
gains until the global optimum is found.
The water distribution system in Chapter 3 was first modelled as a (nonconvex)
MINLP, which can then be linearized and transformed in a (convex) MILP. By
employing the epigraph form given in Eq. (2.8), without loss of generality, the
objective can always be modelled as a linear function. But for the constraints,
this is not true anymore. In conceptual design, most system models require the
integration of at least partly nonlinear constraints. As seen within Chapter 3,
one approach that is useful is a linearization, if the total number of nonlinear
constraints is reasonable.
A second approach to derive a convex optimization program, is shown in
Chapter 4. Here, a new modeling as a (mixed-integer) geometric program
is shown. In the engineering sciences, the applicability of this modeling
approach is significant, since a lot of physical constraints and scaling laws are
of an exponential nature. Already the initial developments of this modeling
approach by Zener were motivated by engineering design13. Within recent
years, cf. Sec. 2.1.5, multiple models have been discovered within conceptual
design, i.e. for electronics14, aircraft15,16, and water distribution systems17. So
far, the focus in engineering design optimization with geometric programming

12 Chernukhin and Zingg, “Multimodality and Global Optimization in Aerodynamic
Design”, ([33], 2013)

13 Zener, “A Mathematical Aid in optimizing Engineering Designs”, ([208], 1961)
14 Boyd, Kim, Patil, and Horowitz, “Digital Circuit Optimization via Geometric

Programming”, ([22], 2005)
15 Hoburg and Abbeel, “Geometric Programming for Aircraft Design Optimization”,

([75], 2014)
16 Brown and Harris, “Vehicle Design and Optimization Model for Urban Air Mobility”,

([25], 2020)
17 Sela Perelman and Amin, “Control of Tree Water Networks: A Geometric Program-

ming Approach”, ([169], 2015)
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was focussed solely on continuous GP models, while the approach shown in
Chapter 4 extends this to partly discrete MIGP models. This has not been
done in this detail within the literature to the knowledge of the author for a
conceptual design of a technical system.
Within engineering design, two further results are important besides the opti-
mized system design. First, the change of the objective and topology within
the design space. Second, the sensitivity due to changes in the parametriza-
tion.
In Chapter 3, different sets of pumps were created by employing a latin-
hypercube sampling (LHS). Each subset was then integrated in the derived
MINLP formulation and was then optimized. The comparison of the found
solutions in Table 3.5 shows the significance of the selected set of pumps
on the objective value. This meta-evaluation can also be seen as a discrete
sampling within the design space of the pump sets. Due to this sampling,
different solutions in this design space can be compared with each other.
Besides this meta-level due to the LHS, the developed solution procedure in
Chapter 4 for the MIGP allows an equivalent view on the powertrain use
case.
The decomposition in a main problem, which specifies a new set of discrete
control variables, and a subproblem, which evaluates the performance, results
in a similar view. The iterative solution process allows to derive additional
information about the performance of local optimal solutions within the
design space of the control strategy. Additionally, the modeling as a MIGP
has the great benefit to automatically derive sensitivity values for each of the
evaluated solutions without further computational costs.
For a general overview about sensitivity analysis within engineering design
it is referred to [147]18. In general, within sensitivity analysis the effects of
model inputs on the output are quantified19. The developed MIGP modeling
and solution approach enables the examination of local sensitivities for each
subproblem evaluation without any further computation besides the model
solving. Due to the sampling within the main problem a more global sensitivity
quantification due to the sensitivity tracking20 within the design space is also
possible without any extra computational costs. Therefore, the developed
approach supports additionally very effectively the evaluation of sensitivities.
Within the introduction in Sec. 1.1 the research domain technical operations

18 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

19 Iooss and Saltelli, “Introduction to Sensitivity Analysis”, ([84], 2017)
20 Harzheim, Strukturoptimierung, ([73], 2008, p. 382)



114 CHAPTER 5. DISCUSSION

research was introduced. To ensure that the derived optimized engineering
designs are applicable in a real usage, it is mandatory to implement further
steps following the conceptual design. One crucial step is the verification
and validation of the given system topologies. The focus of this thesis lies
on algorithmic approaches to derive conceptual designs by employing exact
optimization approaches. Nevertheless, within the research at the Chair of
Fluid Systems and within the CRC 805 multiple experimental evaluations
were conducted for the water distribution system design21,22,23. Here, it could
be shown that the developed modeling can lead to system designs which result
in comparable solutions, when building these system topologies on a test rig.
For the powertrain conceptual design the conducted verification also showed
that the developed optimization approach leads to comparable results when
considering an equivalent driving cycle as within a heuristic-based solution
procedure24,25.
The last two chapters focussed more on the algorithmic development and
mathematical implications, when building and solving conceptual design
models for two example use cases in engineering. Nevertheless, the optimized
results of the system design can significantly improve the energy-efficiency
of the considered systems. For instance improvements of up to 50 % can be
achieved within the water distribution system design26.
Due to the scalability of the developed optimization models by using a
different parametrization and the expandability due to the modeling with
a domain-specific modeling language, both models can be used within the
conceptual design for each use case also if the underlying building design
or vehicle differ from the shown examples. This allows to use these models
and their implementations as a “tool” for engineers to design these systems
properly within conceptual design.
21 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of

Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

22 Müller, Leise, Meck, Altherr, and Pelz, “Systemic Optimization of Booster
Stations - From Data Collection to Validation”, ([132], 2019)

23 Müller et al., “Validation of an Optimized Resilient Water Supply System”, ([133],
2021)

24 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

25 Esser, Schleiffer, Eichenlaub, and Rinderknecht, “Development of an Opti-
mization Framework for the Comparative Evaluation of the Ecoimpact of Powertrain
Concepts”, ([51], 2019)

26 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of
energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)
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The term sustainable development was defined in 1987 by the United Nations as
the ability to meet “the needs of the present without compromising the ability
of future generations to meet their own needs”27. With the methodological
research conducted in this thesis, a further step in this direction is shown,
since a higher energy-efficiency allows lower consumption of resources within
the lifetime. As already presented in the introduction, the environmental
effect when applying both optimization approaches can be significant.

5.2 Algorithmic Expedience

Besides an applicability in engineering, this section discusses the applicability
from an algorithmic point of view.
The water distribution system design model in Chapter 3 and the powertrain
design model in Chapter 4 contain both nonlinear constraints, which make
a modeling of the given systems solely with linear constraints without an
employing of a PWL approximation impossible. As shown by Fügenschuh,
Hayn, and Michaels28, a modeling of technical systems with a MINLP can
increase the solving performance in comparison to using a MILP approach.
Hence, the start of each system modeling was a MINLP. For both use cases
these (nonconvex) MINLPs were solved with common state-of-the-art MINLP
solvers. In case of the water distribution system design a piecewise lineariza-
tion as shown in the accompanying publication29 can be introduced to derive
a convex MILP formulation. Its benefit is the convexity of the relaxations
which can be solved very efficiently. Its drawback is the requirement to
add additional binary variables and sets of constraints. The performance of
this PWL approximation to derive a MILP has been compared within the
accompanying publication.
Within the powertrain use case next to the nonconvex MINLP a convex
MINLP model has been identified, developed and presented. The core of
the developed convex MINLP within the powertrain use case is a geometric
program. Its specific model structure allows solving high dimensional problems
very efficiently30.

27 United Nations Commission on Environment and Development, Our Common
Future, ([186], 1987)

28 Fügenschuh, Hayn, and Michaels, “Mixed-integer Linear Methods for Layout-
optimization of Screening Systems in Recovered Paper Production”, ([58], 2014)

29 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

30 Boyd, Kim, Vandenberghe, and Hassibi, “A Tutorial on Geometric Programming”,
([19], 2007)
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The consideration of the computational solution time depends on multiple
influencing factors. On the one hand, the hardware used to perform the
computations has a direct influence on the performance. A further influencing
factor is given by the used solvers to solve either the main or subproblem
within each iteration. Within the main problem, we used Scip with the LP
solver SoPlex. An additional computational evaluation with a linking to
another LP solver was not done within this computational study, but can
increase the solving performance even further.
Furthermore, within the developed Generalized Benders Decomposition the
main problem and subproblems have always been solved to global optimality
to receive optimality cuts or binary assignments. Especially within the main
problem this leads to increasing solving times with increasing iterations, due
to the addition of further optimality cuts. Different methods to increase the
performance were already discovered but have not yet been implemented in
the current algorithm31.
One feasible approach is given by Geoffrion and Graves32, in which the main
problem was only solved to ǫ-optimality, instead of to global optimality, to
derive a binary assignment.
Additionally, as can be shown in Fig. 4.11, the decomposition approach leads
in average to the global optimal solution far earlier than this global optimality
can be proven. Therefore, besides its ability to derive global optimal solutions,
it is also applicable as a very good heuristic approach to find the global
optimal solution, even though a duality gap still exists.

5.3 Mastering Uncertainty

As already introduced in Chapter 1, the consideration of uncertainty is an
important aspect when designing technical systems. Here, it was distinguished
between model uncertainty, structural uncertainty, data uncertainty and
uncertain specifications33. It is referred to Figure 1.2 for further details.
Within this thesis, the first three mentioned sources of uncertainty were
considered explicitly.
First, the structural uncertainty that is given by the underlying design
space and potentially unexplored domains within has been addressed. The

31 Rahmaniani, Crainic, Gendreau, and Rei, “The Benders decomposition algorithm:
A literature review”, ([156], 2017)

32 Geoffrion and Graves, “Multicommodity Distribution System Design by Benders
Decomposition”, ([63], 1974)

33 Pelz, Groche, Pfetsch, and Schäffner, Mastering Uncertainty in Mechanical
Engineering, ([148], 2021, pp. 25)
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introduction and usage of an optimization-based approach, which derives
global optimal solutions, instead of local-optimal solutions, enables to review
the total modelled design space and gives with the dual bound a certificate
on the optimality of the found solutions throughout this design-space.
Second, the usage of a stochastic optimization as the basis of the modeling
leads to the possibility to consider explicitly data uncertainty, as introduced in
Fig. 2.1. And third, thorough verification and validation tasks are performed
to estimate model uncertainty.
Furthermore, the developed decomposition approach for the powertrain use
case allows the application of a sensitivity analysis, as shown in Sec. 5.1,
which can be used to enable a further quantification of the model uncertainty.
Within the following, all three approaches to address each source of uncertainty
are discussed in more detail.
When modeling a real-world technical system, usually some input parameters
are not known exactly in advance to the optimization. Hence, they are affected
by data uncertainty. This uncertain parametrization results in different
objective values and system designs, if even slightly changed parameter values
are used in the optimization program. To be able to find an optimized
solution with an uncertain parametrization, two main approaches exist in the
literature: robust optimization34 and stochastic optimization35.
The robust optimization approach only considers bounds of the uncertain
parameters, which can be estimated given the specific system at hand. It is
usually more easy to solve than a stochastic optimization problem, where
the parameters are modeled as random variables with a given probability
density function. Additionally, a robust optimization program can lead to very
conservative solutions. This reduces its applicability for practical problems36.
Contrary, a stochastic optimization approach is very flexible, but also more
complex to solve. All models in this thesis followed the stochastic optimization
approach to be able to exploit this flexibility in modeling.
To transform the given stochastic problem, a scenario generation was used
for both use cases. While the water distribution system design use case is
based on a manual scenario generation, the powertrain use case integrates a
newly developed algorithm within the preprocessing to derive a predefined
number of scenarios that represent the given input data. This enabled the
transformation in the deterministic equivalent of the stochastic two-stage
optimization problem, cf. Sec. 2.2.3.

34 Ben-Tal, El Ghaoui, and Nemirovski, Robust optimization, ([14], 2009)
35 Shapiro, Dentcheva, and Ruszczynski, Lectures on Stochastic Programming: Mod-

eling and Theory, ([170], 2014)
36 Fischetti and Monaci, “Light robustness”, ([56], 2009)
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As shown in Chapter 4 and published in [106]37 a significantly lower number
of (weighted) scenarios can represent a given driving cycle accurately to be
able to derive results that are comparable to the results of an approach that
uses a complete driving cycle for the optimization. This down sampling of the
number of considered loads in combination with a weighting of the specific
scenarios can also reduce over-fitting to specific driving cycles and is therefore
applicable to master data uncertainty.
The focus of this thesis is set on the modeling and computation of more
sustainable system designs for two use cases, the water distribution system for
high-rise buildings and the powertrain design for battery electric vehicles. For
each use case, the basis is a MINLP formulation which considers the relevant
physics as detailed as required. Every model is subject to model uncertainty.
Within the introduction in Section 1.1 the Euler diagram of a model with its
model horizon was introduced in Figure 1.1. The consideration of this model
uncertainty is mandatory in engineering sciences to derive a model that fulfills
its intended use. In general, the model uncertainty is reduced by increasing
the models’ level of detail. But this richness of detail granularity is often not
required to derive the relevant outcomes for the considered questions38.
Furthermore, when employing global optimal optimization approaches, in
which integral decisions are modelled as well by using binary variables, the
curse of dimensionality for this combinatorial problem requires the integration
of models that follow a principle of simplicity: As detailed as required, but as
simple as possible. This approach to modeling is also known as the Occam’s
razzor39 and is a common guiding principle for axiomatic and data-driven
models40. The developed MINLP models in this thesis follow as well this
guiding principle of simplicity.
To be able to assess the quality of the developed models, in engineering
sciences as well as computational sciences verification and validation41 play an
important role. Within systems engineering verification is defined as following:

37 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)

38 Pelz, Leise, and Meck, “Sustainable Aircraft Design – A Review on Optimization
Methods for Electric Propulsion with derived Optimal Number of Propulsors”, ([147],
2021)

39 MacKay, Information Theory, Inference and Learning Algorithms, ([114], 2003, pp. 343)
40 One important example in this context is the Akaike Information Criterion, cf. [2], for

the selection of statistical models, which provides a formal performance indicator that
considers a trade-off between the goodness-of-fit and the model simplicity by penalizes
the complexity of the considered models.

41 National Aeronautics and Space Administration, NASA Systems Engineering
Handbook, ([137], 2016)
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“Verification of a product shows proof of compliance with requirements.”42 In
contrast, validation is defined as the following: “Validation of a product shows
that the product accomplishes the intended purpose in the intended environ-
ment.”42 This general definitions can be specified for a usage in computational
engineering. Following Oberkampf, Trucano, and Hirsch43, a verification is
given by a comparison of the models results to known solutions, or by compar-
ison to other implementations of the same problem. A validation is derived
by comparing the results of the newly developed model with the results of
experiments, which represent the intended usage and intended environment.
With both approaches the confidence in a newly developed model can be
increased, and the model uncertainty can be quantified. Nevertheless, the
latter is more difficult, due to the requirements to derive experiments, which
imply a proper design of a test-rig for the given model.
For the water distribution system design, a test-rig was developed at the Chair
of Fluid Systems in a joint work and presented in one of the accompanying
publications of this thesis44. This test-rig represents a scaled version of a
high-rise building. On this test-rig, it is possible to evaluate the performance
of a derived optimized solution in comparison to the true experimental data
by rebuilding manually in multiple experiments the topology and pump
placement, as well as the according control strategy. It could be shown that
the approach for designing high-rise buildings by employing a global-optimal
optimization scheme with a comparable model formulation to the one in
Chapter 3 leads to a good compliance between the optimized solution and
the real-world system. Further details on the experimental design and results
can be found in the relevant publications45,46,47.
For the powertrain conceptual design use case a verification approach was
chosen to evaluate the performance and applicability of the developed non-

42 National Aeronautics and Space Administration, NASA Systems Engineering
Handbook, ([137], 2016, p. 11)

43 Oberkampf, Trucano, and Hirsch, “Verification, Validation, and Predictive Capa-
bility in Computational Engineering and Physics”, ([139], 2004)

44 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

45 Müller, Leise, Lorenz, Altherr, and Pelz, “Optimization and Validation of
Pumping System Design and Operation for Water Supply in High-Rise Buildings”, ([131],
2020)

46 Müller, Leise, Meck, Altherr, and Pelz, “Systemic Optimization of Booster
Stations - From Data Collection to Validation”, ([132], 2019)

47 Müller et al., “Validation of an Optimized Resilient Water Supply System”, ([133],
2021)
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convex MINLP modeling approach48. The results given in Table 4.3 and
Tab. 4.4 show the results of the developed model for multiple commonly
used legislative driving cycles in this thesis compared to the results of a
comparable model that was based on a different modeling and optimization
approach. Instead of a simultaneous analysis and design approach it uses
a different structural setup. All constraints were moved to the objective by
adding penalty-factors for each constraint. It was then solved by a genetic
algorithm (GA). Furthermore, the approximation for the efficiency map was
not modeled as in the presented approach in this thesis, but instead was
modeled as piecewise linear approximation in the given domain. This results
in a nonconvex efficiency map due to the partly nonconvex nature of the
original dataset. The shown polyhedral outer approximation in the nonconvex
MINLP and the convex approximation in the newly developed MIGP do not
consider the efficiency map in that detail but enable a better solvability in
the global-optimal framework. The computed results show the applicability
of the shown modeling approach by resulting in only minor differences to
the second approach which was based on a GA. A detailed discussion on the
comparability can be found in the accompanying publication48.
One approach important in computational engineering is the consideration of
sensitivities, as introduced in Sec. 5.1. Sensitivity analysis can be understood
as a methodological approach to master data and/or model uncertainty and
results after a successful application in the conceptual design process in either
a model refinement or model acceptance.
The newly developed MIGP approach for the powertrain design in Sec. 4.3
has a further positive side effect besides its efficient solving for providing
estimates of the model uncertainty. Each run of a sub-problem (which is a
GP) results besides the objective and sizing in local sensitivity values at this
point in the design space with no extra cost. Even though it is not a global
sensitivity analysis it still provides multiple sensitivity values scattered within
the design space at local optima that can provide an input for a computation
of an estimate of the global sensitivities.
A further approach to sensitivity analysis has been introduced in Chapter 3
with Latin Hypercube Sampling in the domain of the construction kit of
pumps that are used as an input to the optimization by the developed MINLP.
By employing this approach known from Design of Experiments, it could
be shown how the optimized solution changes with an additional degree of
freedom. Further details can be found in Table 3.5. The usage of Design
of Experiments can also be seen as a type of sensitivity analysis as shown

48 Leise et al., “Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods”, ([106], 2021)
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by Kleijnen49. The benefit of the selected approach for the WDS conceptual
design is the explicit consideration of the complete design space spanned by
the scaled pumps and still be able to evaluate the performance of a given
solution with the developed MINLP model.
The concept of resilience for technical systems has already been introduced
in Section 2.3. Here, we discuss the applicability of this general concept
based on the two developed conceptual design problems given in the previous
chapters. When considering resilience, the focus in this thesis was set on a
static evaluation of the resilience. First steps in the direction of dynamic
resilience have also been shown by specific publications within the research
in the subproject A9 within the CRC 80550,51. This dynamic view on the
concept of resilience “is based on the four functions monitoring, responding,
learning and anticipating”51 and was evaluated on a newly designed test-rig
as well as by algorithmic evaluations.
As a static view on resilience the buffering capacity, first mentioned by
Woods52, has been introduced for the water distribution system design in
Chapter 3. Here, resilience as a strategy to master uncertainty has been
exemplified for an integration in a MINLP to derive solutions that are resilient
against arbitrary failures of pumps. With the developed approach in the
accompanying publication53, it is possible to derive optimized solutions for a
conceptual design of a water distribution system for a high-rise building that
is efficient and more resilient than a given reference system. The potential
energy-efficiency improvements can still be acquired, and additionally the
system can cope with a predefined number of pump failures, which is given
by the k-value within the k-resilience approach.
A second static view on resilience was already shown in the introduction by
presenting the performance range and the radius of performance. A more
resilient technical system is then characterized by a broader performance range,
in which a predefined minimum performance can be reached. Furthermore,
it is characterized by a graceful degradation when the system reaches its
performance limit.
The developed model and solution process for the powertrain conceptual

49 Kleijnen, “Verification and Validation of Simulation Models”, ([92], 1995)
50 Leise, Breuer, Altherr, and Pelz, “Development, Validation and Assessment of a

Resilient Pumping System”, ([104], 2020)
51 Leise and Altherr, “Experimental Evaluation of Resilience Metrics in a Fluid System”,

([100], 2021)
52 Woods, “Essential Characteristics of Resilience”, ([202], 2017)
53 Altherr, Leise, Pfetsch, and Schmitt, “Resilient layout, design and operation of

energy-efficient water distribution networks for high-rise buildings using MINLP”, ([6],
2019)
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design approach can also be extended to derive further insights about the
resilience of the given system design. Due to the integration of multiple
scenarios with the developed pre-processing heuristic in which it is possible
to integrate multiple legislative driving cycles as a reference for sizing the
powertrain, the radius of performance can be calculated for influencing factors
that are important for the designer. Hence, the developed modeling and
optimization approach is also applicable to derive resilience metrics based on
the result of the optimization. Due to the white-box optimization approach,
where each constraint is editable, it is also able to be used in later research,
where explicit resilience considerations are implemented as done for the water
distribution system conceptual design.



Chapter 6

Summary and Outlook

The IPCC1 showed in its recent report that the development of environmentally
sustainable and resilient technologies and infrastructures is mandatory to
reduce the impact of climate change. Within this thesis both paths have been
considered already before this report was published.
The focus of this thesis is the conceptual design of sustainable technical
systems by employing a rigorous mathematical modeling under consideration
of uncertainty. The current scientific knowledge is extended with this thesis
twofold:
First, from an engineering point of view, specific approaches for two use cases,
namely a water distribution system design for high-rise buildings and the
powertrain design of battery electric vehicles have been introduced. In this
context, the potential system efficiency improvements have been outlined.
Second, from an algorithmic point of view, a widely applicable general sys-
tem modelling approach for technical systems under uncertainty has been
presented.
The usage of exact optimization approaches by engineers for solving real-world
engineering problems in comparison to other approaches is still in its infancy.
To enable a broader usage of these very promising set of tools in engineering,
it is required to reduce the modelling effort, but still be able to solve the
models efficiently. Between these poles, this thesis gives answers how to
jointly fulfill both requirements.
Therefore, the considered path of modeling was consequently followed. This
leads to a modeling as a Mixed-Integer Geometric Program (MIGP), which is
being solved very efficiently by using a Generalized Benders Decomposition.
The attention of modelling conceptual design problems as Geometric Programs

1 Pörtner et al., “Climate Change 2022: Impacts, Adaptation, and Vulnerability”,
([152], 2022)
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has increased within recent years considerably, due to its modelling and solving
performance. This thesis extends this continuous GP-modelling approach to
programs with additional discrete variables. Up to date, MIGPs have not
been frequently in the focus of engineering research, but the usage of integer
and/or binary variables is important for modeling a multitude of technical
systems more accurately. In this thesis it could be shown that this field of
research is very promising. Furthermore, the recent developments in conic
and integer optimization result in a very reliable solving of this problem class.
As a MIGP the underlying model can be modeled efficiently and solved
to global optimality, while still having the great advantage of allowing to
master uncertainty. This thesis additionally extends the knowledge in system
modeling as a Mixed-Integer Geometric Program and gives answers to the
transfer of problem-specific modeling approaches on this problem class.
Methodologically, this approach is not only restricted to the considered use
case of the conceptual design of a powertrain, but it can be employed for
numerous technical systems. Hence, the developed systematic modeling and
solving can be employed for further technical systems beyond the presented
use cases.
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Appendix A

Additional Data

A.1 Water Distribution System Design

The presented conceptual design model in Section 3.2 models an existing
hotel building in Germany. It has 9 stories (each 3 m high) that must be
supplied by the fresh water distribution system. The first three represent the
lobby. From the 4th to the 12th story, the hotel rooms are located, which
must be supplied by the fresh water distribution system. On top of the hotel
are further individual flats and a restaurant located. Since these are supplied
by another water supply, they are excluded from the consideration in this
example calculation. The used parameters within the presented computational
study are given in Table A.1.
In total, 5 parallel pumps can be placed of each type. Four different load
scenarios have been selected. Furthermore, 4 pressure zones must be supplied
by the fresh water distribution system, each consisting of three stories. The
modelled graph consists of one vertex for the modeling of the water transfer
inside the building from the water supplier and four vertices for the pressure

Table A.1 – Values of the parameters in Chapter 3, cf. [101]

Parameter Description Value

Q maximum inflow 24 m3/h
H0 pressure head by water supplier 28.63 m
H minimal pressure head in each level, expect the first one 15.25 m
H1 minimal pressure head in first level 20 m

H maximum water height of the building 43.5 m
B big-M constant for the pressure increase 84 m

P maximum power consumption 6000 W
Z maximum number of parallel pumps 5
Ω+ minimum normalized speed of all pumps 0
Cenergy energy costs per Watt 0.30e/(kWh)
τ time of usage 3.75 a
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Table A.2 – Used scenarios within the MINLP to model the usage-period

scenario 1 scenario 2 scenario 3 scenario 4

volume flow Qv,s 24 m3/h 18 m3/h 12 m3/h 6 m3/h
pressure H as stated in Table A.1
probability πs 0.06 0.15 0.35 0.44

zones of adjacent floors, cf. DIN 1988-500 ([42]). The investment costs for
each pump are calculated based on the cost model and scaling parameter
d+. The required pressure in each pressure zone is estimated by using the
standard DIN 1988-300, cf. [41].
The investment costs per pipe Cpipe

i,j
are computed based on the selected length

within the solution process and a fixed cost of 50e/m.
Since the building considered in Chapter 3 is based on an existing hotel
building, which has already been equipped with a pump, the volume flow
demand and the scenarios are also based on the recorded data. The used
scenarios are given in Table A.2.
The pressure difference between the different vertices within the model in
Section 3.2 has been computed by considering the height difference between
each vertex, since it causes the main pressure loss within the system, cf. [101].
As shown in Section 3.3.1, this can be further detailed by also considering the
pressure losses within each pipe due to pipe friction. A detailed description
of this approach can be found in the accompanying publication by Altherr,
Leise, Pfetsch, and Schmitt ([6]). All computations were performed by using
a Linux-based machine with an Intel i7-6600U processor and 16 GB of RAM
with SCIP 4.0.0 and CPLEX as an LP-solver. All raw computational results
can be found in the provided supplementary dataset.

A.2 Powertrain Design

The computations of the MINLP were conducted on a Linux-based machine
with an Intel Core i7-10510U with 16 GB RAM and Scip 6.0.2. The termina-
tion criteria were (i) a time limit of 30 minutes, (ii) a RAM limit of 12 GB
and a duality gap limit of 0.25%.
For the computations of the MIGP, shown in Section 4.3, a Linux-based server
with an AMD Ryzen 5 5600X and 32 GB RAM was used. The computations
were executed in a Docker image on a Gitlab runner. A maximum time limit
of 6 days was set for all computations on the Gitlab runner. Scip 7.0.2 with
SoPlex was used for the main problem and Mosek 9.0 was used for solving the
GP sub-problems. No further solver-specific settings were selected to improve
the computational performance.



Appendix B

Research Data Management

The computational evaluation of the developed algorithms leads to multiple
datasets, which are then evaluated to derive the shown figures and tables. This
thesis follows the FAIR1 principles (Findability, Accessibility, Interoperability
and Reusability) of research data management.
Since the thesis focus is the conceptual design of technical systems by employ-
ing exact optimization approaches, the presented approach already allows a
direct reimplementation based on the shown models.
To enhance the reusability of the algorithms and the computed results even
further, all corresponding datasets are stored within a repository as supple-
mentary data2. This repository is identifiable by using the following uniform
resource identifier (URI):

https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3550.2

Each relevant figure is labeled with an identifier that is unique within the
thesis. It links the shown figure with an accompanying .json-file that contains
further metadata. This metadata provides additional information about the
relevant data source(s). Additionally, it contains for figures that present
evaluated data the underlying data in a machine-readable format. This
facilitates a re-use of the shown results.
Besides these additional files with metadata for the presented figures, fur-
ther Read-Me files are provided, which contain additional information about
the structure and usage of the provided datasets and figures. To enable a
reusability of the accompanying files, open file formats, like .csv, .zip and
.txt were used for the raw datasets.
1 Wilkinson et al., “The FAIR Guiding Principles for scientific data management and

stewardship”, ([198], 2016)
2 Leise, Supplementary Material: Algorithmic Design of Technical Systems under Uncer-

tainty, ([99], 2022)
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The supplementary research data can be accessed over open protocols like
https on the institutional data repository tudatalib3 and is provided upon
request. It is provided with a 3-Clause BSD license.
As explained in Chapter 4, an algorithmic preprocessing was conducted to
derive relevant scenarios for the conceptual design of the powertrain use case.
This preprocessing is not only required within the shown MINLP/MIGP
modeling, but can be reused in other optimization- and/or simulation-based
approaches for the conceptual design of powertrains for battery electric
vehicles. Therefore, the latest development version of this Python-based
toolbox is provided also within the supplementary data repository. Important
information about the toolbox and examples are located in a Read-Me file.
The toolbox is installable via the common Python package manager pip from
the provided local copy of the toolbox. It also contains examples for the usage
and pytest test cases. It is also licensed under the 3-Clause BSD license.
Additionally, to the previously mentioned supplementary data, two further
additional datasets are relevant for the content of this thesis. The first one
contains additional information for the MINLP model in the powertrain use
case.4 The second one contains additional information5 about a relevant
dataset of pump characteristics that were used within publications relevant
to the conceptual design of the water distribution system, cf. [131].

3 The institutional repository of TU Darmstadt can be found under the following address:
https://tudatalib.ulb.tu-darmstadt.de/ (accessed 18. August 2022)

4 Leise et al., Sustainable System Design of Electric Powertrains – Comparison of
Optimization Methods (Supplemental), ([105], 2021)

5 Müller et al., Pump System Test Instances and Electronical Pump Catalogues, ([134],
2022)
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