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Abstract. I.

M. Horowitz and M. Sidi (1972) presented a design procedure

which guarantees gquantitative demands on disturbance rejection and suppression
of plant variation using the minimum controller gain just necessary for this

effect.

This paper describes an interactive, computer-aided implementation of this
design procedure, which has proved to be very effective. The plant variations
are handled by some expansions of a method from L. lLongdon and D. J. East (1979),
the controller design by a parameter optimization method using a vectorial per-
formance criterion in an interactive manner.
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INTRODUCTION

Feedback allows to reduce effects of disturb-

ance signals and of plant parameter variations
by a suitable dynamic correction in the closed
loop, the controller. However, the command re-

sponse is likewise influenced by the controller.

I. M. Horowitz (1963) introduced therefore the
distinction between control loops with one and
two degrees of freedom and proposed to use in
general two degrees of freedom - two dynamic
corrections - the first one being the control-
ler and the second cne a dynamic prefilter for
command response shaping - see fig. 1 -.

Concentrating on the problem of plant parameter
variations one may describe the plant by the
parameter dependent mathematical model P(s,a),
where a is a vector describing parameters vary-
ing between specific bounds:

< <
By =B Ey (1)
The design objective for the two degrees of
freedom control loop is to keep step function
responses of the closed loop in a permissible
domain:

a(t) € y(t,a) < B(t) (2)
which may be reformulated at least for minimum
phase plants as a requirement on a domain for

the gain variation of the closed loop frequen-
cy response:
alw) < !_Tw(w,g)] < Blw) (3)

(see Krishnan and Cruickshanks 1977). Due to
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possible amplification of the unavoidable
measurement noise and design economy the
design objective should be reached with mini-
mum loop bandwidth and/or controller gain.

THE DESIGN METHOD OF
HOROWITZ/SIDI

The controller design method devised by I.1.
Horowitz and M. Sidi (1972) works according
to the following principle: For a number of
selected frequencies w, the plant gain and
phase variation is determined giving a cer-
tain phase-gain area in the Nichols chart,
which can be shifted in the phase and the
gain direction by selection of phase and
gain of the controller. With the Nichols
chart - see fig. 2 - there is a graphical
connection between phase and magnitude of
the open and the closed loop. Choosing a
nominal parameter set according to (1) with
the plant template one can look at distinct
phase values of the open lcoop to the minimal
magnitude of the nominal open loop to fulfill
the required maximum magnitude variation of
the closed loop.

Connecting points for different phase shifts
using a nominal plant parameter set one gets
boundaries above which the controller has to
bring the nominal open loop plet in the
Nichols chart for this frequency w,. Since
one guarantees by this procedure tﬁe closed
loop gain variation only, one has to adjust
later on with the prefilter that the command
response has not only the required small
variation but is actually really inside of
the given domain for the closed loop re-
sponse.
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However, one has to consider besides these
boundaries for each w, the stability problem in
the Nichols chart, toé. In most cases this can
be handled by a so-called high frequency bouna-
ry, which is based on the following situation:

For a stable closed loop and plants with at
least two more poles than zeros - which is un-
avoidable, if one takes together process plus
actuator as the plant to be considered - one
can diminish the closed loop variation vis-a-
vis the plant variation only up to a certain
frequency, which is unfortunately smaller than
the cross over frequency in the Bode-diagram

(see e.g. Graser, Dickmann and Neddermeyer 1982).

Therefore the requirement:

18 (w) !

1o (w)

makes sense only in the frequency command band
0 < w < w . For higher fregquency one limits the
unavo;dabfe amplification of the variations,

which can be done for example by a requirement:

o (Gw) | <

[T ! < v, y > 1 (5)
which leads to a closed curve in the Nighols
chart with the critical point 0dB, -180  in its

interior. Now the templates must not penetrate
into this area. Normally the phase variation is
already small for w-valueswith w > w_, so that
one gets only some gain variation now, which

can be approximated by the high frequency gain

variation, which is the plant gain variation for

w + =, One finds in this way in addition to the

phase and gain dependent boundaries for selected

w; one further boundary - see forbidden area in
fig. 7 - for all frequencies, the socalled high
frequency boundary.

CALCULATION OF THE wi—BDUNDARY

The high frequency boundary follows directly
from (5) and lim AP(s, a).

s £
However, the w; boundaries are explained up to
now in a way, which can be handled very easily
by hand and vision in a trial and error proce-
dure, but not very easy by a computer. The ba-
sis for an automation has been given by
L. Longdon and D.J. East (1979). It starts from
the relative plant variation vis-a-vis some
suitably selected plant description PN out of
the possible P(s, a) and the easily verifyable
equation: a

. (e}

With upper and lower boundaries on TN/T and the
calculable relative plant variation PN/P one
can now get the w;-boundaries in the Nichols-
chart by the computer (for details see Longdon
and East 1979). An upper and lower boundary on
TN/T can be found in the following way: From

(3) we have:

(4)
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laqwy [=[T™0] < |1] < |T™%|=[sw) |

and with T = T-F we can write:
N

= f‘;{w) '

|v

'-'.Ilz-—]zi:
=

T
= =

£
=]

TN

Sy

7z

= E(m),

=3

<

min
T
w

£

have lower and upper bounda-
if we would know Tﬁ

so that we would
ries a(w), E{u).

Longdeon and East choose now the nominal closed
loop transfer function in such an manner, that
it has the same percentage deviation from the
upper and lower boundary, which gives some
alw), E(w) and allows by that to calculate
with (4) some controller R, which meets all
requirements set forward in this way. However,
the controller has minimum gain only if the
actual wvalue of TN is chosen w1th respect to
the value TN used to calculate a and

Since this 15 not always the case with the
assumption of Longdon and East, one may get
by their method a certain overdesign (higher
controller gain than necessary). The simple,
but very effective modification is to take

a certain number of different Tﬁ in the region
allowed by (5), getting by this different
boundaries in the Nichols-chart, which may
cross each other for different phases. If one
takes the lower envelope, one gets now for

all phases a boundary of minimum gain and
avoids by this an overdesign.

To elucidate the above connections, an example
is given below.

Example: For the plant model

Kb

P(s,a) = ———; a = ia, =
= s(s+b) ' — b —N l 1
i) K 10
2 =
1 b 10

N .
a boundary for L is to be calculated at

frequency point w, = 2.

The admissible gain variation is AT

4 |
" ITﬁln‘ =|8 T(ml)] = 6,5 as.
de ‘de
Fig. 2 shows boundaries for seven allowed
{aluesmof Tﬁ, giving seven paired values of

a and B. The resulting envelope is line Bl'
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CONTRCLLER DESIGN

The controller design uses the w,-boundaries
and the high frequency boundary *in the Nichols
chart. Horowitz and Sidi (1972) are choosing for
each of the selected fregquencies w, and some
frequencies in the hjigh fﬁequency range a
phase and gain for L. = P *R by inspection and
calculate from this gain and phase regquirements
an R in certain frequencies. They select then

a certain dencminator and nominator degree for
the controller and approximate by appropriate
parameter selection the requested controller be-
haviour. Since this cannot be met exactly in
general, they have to control by some additio-
nal calculation, how far the selected control-
ler fulfills the requirements. Horowitz/Gera
(1980) used a Bode-Integral to automate the
evaluation of the frequency response of the
open lcop. The determination of the controller
then needs some optimization steps, too. Here
another way is used. The denominator and nomi-
nator degree of the controller is chosen at
first and the parameters of the controller

are optimized directly in such a way, that the
open loop plot L (jw) fulfills as far as possi-
ble the requirements set by the boundaries in
the Nichols-chart. The optimization uses after
exploring some other possibilities now a pro-
cedure, which was successfully applied by

G. Kreisselmeier and R. Steinhauser (1979) for
some other problems:

The constraints for L (jw) and/or the control-
ler are formulated as a vectorial performance
index G(r).

The latter is normally composed of the follo-
wing six elements:

g, (r): Sum of the deviationﬁ of the frequen-
1= % .
cy response points L (jw.) from the
boundaries Bi to higher ~gains,

g,(x): Sum of the deviationg of the freguen-
cy response points L [jmi) from the
boundaries Bi to lower gains,

gB(E): Compeonent resulting from the violation
of the single high-frequency boundary
by L (jw, EN)'

94(5): Gain of the controller (jw>¢),

95(5): High frequency gain x” of the control-

ler,

gG{E}: Stability of the controller.

The number of the vector components g; is easy
to vary, so that additional constraints can be

introduced into the design. For this purpose
the performance index components have to be
formulated such that their values become the
smaller the better the design requirements are
met.

Then the design of the controller R(r) has to
be transformed into the task of determining
the controller parameters r in such a manner
that each component of the performance index
G(r) becomes sufficiently small.

This goal is achieved by iterative selection

683

of a target vector é'rﬂwith Q(EY]‘:EYH@_Y
and by solution of one optimization task in

every iterative step.

The optimization task is formulated:

find x = m%n x(x) for which
E(£:~,r+1) % % g-y+1 i el
with x(r) = max (Gi(E)/Ci)
1<i<n

is fulfilled.

In the program package described here this
problem is solved numerically using a zeroth
order optimization procedure and a linear
one-dimensional search strategy.

INTERACTIVE DESIGN

In practice a design based on the method
described in the foregoing starts with the
fixing of the vectorial performance index

to be used in the optimization procedure.
Generally the standard six dimensional
vector agreed for the program package serves
this purpose well. Upon establishment of the
per formance criterion, the development en-
gineer selects a controller order as well as
controller start values r .

In doing so, the program enables him to sep-
arate indiwvidual controller parameters -

for example, an integarting pole 5 =0 -
from the optimization process and to pre-
determine them exactly.

For the numerical optimization it }s neces-
sary to cgoose Ehe target vector C , for
which G(r™) < C holds.

Beginning the optimization with these star
values, one obtains the parame%er vector r
and the performance vector G(r )<x,C after
the first iterative step. By selecéinq the
following target vector, the designer is in
the position to control the optimization
process interactively. If a specific crite-
rion is intended to be improvg? the corre-
sponding vector component C chosen

has to be as small as possiéle - however,
always larger than g, (r'). When a criterion
is already fulfilled satisfactorily it suf-
fices to select Ci - ci-"r .

As an aid to select the target vector, the
designer can have the actual frequency res-
ponse of the nominal open loop plotted into
a Nichols diagram, together with the bound-
aries to be kept. By means of his geometri-
cal conception of the optimum shape of the
frequency response of L (Horowitz 1973)

he then recognizes which criterion in the
performance vector is still to be improved.

With the aid of the above-mentioned plots
the designer can observe the progress of
the design and take appropriate measures,
if required.
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If it turns out, for instance, that no sub-
stantial imprcvement of the locus can be
achieved by a change of the target vector
there is the possibility of continuing the
optimization process by means of new start
values for the contrcller parameters or with
a new controller.

After a sufficient apprgximation of the optimum
frequency response of L has been reached, the

designer can stop the optimization process and

arrange for the output of the controller para-

meters.

In addition, the described interactive program
package offers a variety of possibilities of
checking the control result obtained - for
example, the calculation of step function res-
ponses and frequency responses.

Hence, to show the performance of the design
support, the synthesis of a controller regu-
lating the pressure of a servo-hydraulic actua-
tor is considered in the following example
(Drechsler 1982).

EXAMPLE

The plant investigated, P(s,a), was identified

on a motor-vehicle test bench as
24 1
Ko{l + —ig4 = g7)
1 w 2
A mA
P(s,a) =
S(1+Ts)2(1+zgs+-1—s)
w 2
o W

where the parameter set a varied within the

bounds
110 = Kl < 340
98 = mo < 116 ; 0.0B<d4 = 0.5
< < i g < < 0.
56 wa 69 ; 0.4 dA 0.6

The underlined magnitudes were chosen as nomi-
nal parameter values.

Considering the above-menticned plant in the
Bode diagram (Fig. 3), one finds that the
maximum gain variation is approximately 35 dB.

The requirements in the closed control loop are
given in the freguency domain and represented
in Fig. 4.

The transformation of these regquirements into
boundaries took place at 11 freguency points.
Fig. 5 shows these boundaries ‘.B1 ....... B1 with
the nominal plant frequency response PN t%e
frequency points belonging to the boundaries
are marked in the curve. Fig. 6 illustrates the
progress of the design. The fregquency res-
ponse of the open loop meets to the require-
ments imposed by the boundaries B;. Some of

the fregquency response points coincide with

the boundaries, for example, mé, wlo. mll where-
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as the remaining ones lie above them, which
corresponds to an overdesign.

Freguency response LN, however, still wvio-
lates the single high-frequency boundary,
which was determined here from the high-
frequency gain variation Ak =26.24 dB and the
constraint |T|510 dB.

Fig. 7 shows the frequency response of LN
after five further iterative steps. It can
be seen that the wanted optimum curve ac-
cording to Horow&tz is reached in good ap-
proximation by L .

The controller parameters obtained are:

K(s - nl)(s - n2)

P(s)

n

= 12
1 wi—— § g
) 2
“y
K = 2.3-10°°
n, = - 820.88
= - .1
5 303.12
D, = 0.28
w, = 1353.2

To verify the design the magnitude variation
of the closed loop is shown in Fig. 8. The
design requirements are marked with (x) and
the actual wvariation of the closed loop with
(+). It can be seen that the pre-determined
gain variation was met at all points. The
wanted absolute position of the freguency
response is easy to attain by use of a pre-
ceding filter.

Note:

In this example the unusually loose con-
straint |T|=10 dB was selected because of
a bandwidth limitation.

CONCLUSION

The method of Horowitz and Sidi for a gquanti-
tatively prescribed suppression of plant
parameter variation conseguences in the
command frequency area has been implemented
into an interactive computer program, using
the ideas of Horowitz and Sidi and Longdon
and East with some modifications. The pro-
gram runs on a small HP 9825 desk computer.
An improved version using a light pencil
input on the relative plant variation areas
for a DEC-PDP 11/34 and/or a DEC-MINC is
foreseen to be available at the end of the
year. The method of Horowitz/Sidi and the
program has been proved to be very helpful
for design considerations on car test bench-
es, since it gives clear indications, what
closed loop step response boundaries may be
reached with actuators with a given band-
width and/or, what actuators are necessary
if a certain behaviour shall be guaranteed
for a specified plant uncertainty.
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