
("I)\lI~hl C 11 \ l '1111 l llt"lIlI1.d \\"tld ("II'.!.II""" 

l ~lId, q w"l . IIl1ll":.ll \ . ]'1:--1 
'> 1'1 ( 1 \ 1 .\ I(.()RIIII \ I.S 

A NEW CONCEPT FOR LEARNING CONTROL 
INSPIRED BY BRAIN THEORY 

E. Ersii and H. To ll e 

l' I,I ;fl " /1,/ I:, ~" /1111 :,:,,1, 1111111:. F'liI,:.:. , /'1" j{, :':"/'\,/111111" ,,/I, F" i"II"I" 1/", i,,, I"d, /) '11/1/,1,;,/ ., 

.... , Id" ".:. /Id" 11 /. / ) . (1/ /Ill /J' /l 11I 1(1/'/(. /-, '/' li d U, /,"I, iil , ,' (", 11"/11\ 

AbstraLt. Thl..! paper explains an ul1Lonvt!ntional lea r ning cont r ol m~thod bas .... ,d ("'!1 3SSUr:lP ­
tl uns ln tilt! literature about human problem solving and info r mation ~t o rag2 in Ilt..'ur(lI1Jl 
l1t2t\,'orks . Till.' ,In - linc learnin g compri.ses t\o...'O stages : The dynamic input-0utput b ..... hJ.vil"'ur 
ot the pn.h':'L'SS to be cOl1trolll..!d is ~toreJ s t ep\..'ise ill a n~u r 0n- like mannl..!r int o 311 dSSL) ­
ciative memory as J prt.:.'dictivt.:' p r ocess model, the control strate::;y plallllt..'J via tilis 
1ll0Ut.:' 1 by 0ptimi.zJtion of .::1 goa l or i t:!1ted pe r formance index is tllen trained in the same 
\.0.' .)\' int0 3. second 3ss0cialive memory. As 3 general mapping thL' lea r ned Dt::'iI3viour is i n 
bu'lh CJSI..!S in t,l;'lh..'rJ.l l1onlinear , anu by this such a control d~sign is eS(1cci,:.llly suited 
fo r strunbly nu111int2J.r processe s. Simulations demonst r ate the applicability of tilL' l1e\,' 
cOlltrol CO!lCept . 

l\.eY\'o"ords . Associative memo r y systems; adapt i ve control ; artificial intelli ~~ncL.' ; 
biocyberlleti cs ; brain models ; learning systems ; neu r onal net~orks ; lloll l ineilr C0lltrol . 

I. I:\TRODlCTIO:\ 

I n recent ye a r s tile app l icatioll of lea r nillg, adap ­
tive or self - tuning metllods to automa t ic control 
systems 11as become an important a r ea of resea r ch 
(Tsypkin , 1973 ; ~strLim "nd othe r s , 1977 ; Saridis , 
1979) . This is due to the fact that most of the com­
plex indust r ial p r ocesses a r e of nOlllinear natu r e , 
but cont r ol theory ueals mostly wi th linea r sys ­
tems. The pr oblem lies not only in the difficu lty 
of modelling nonlincar systems but a l so i n finding 
some c l asses of 110n l inear systems to v.,lhich the n a 
sornellow standa r d control design algo r it ilffi call be 
applied . The learning ur adaptive cont r ol schemes 
have been proposed to bridge this gap of missing 
mathematically p r est r uctured desc r iption of 11011-
linear complex systems . 

Th i s paper desc r ibes a l ea r ning cont r ol method mo ­
t i va t ed by neurobiological and psycholog i cal r e ­
sea r cll on tile lluman brain , trying to make some of 
i ts tremendous abilities to lea r n , to adapt , to 
associate and to p r epare s i gnals to illf l uence and/ 
or change i ts ellvi r ollmeIlt applicable to man- made 
sys t ems . Actually the method is a synthesis of the 
.;:-"! ' ; - , ,~ : .;: .. ,' given by human pr oblem so l v i ng 
capabilities (section 11) and the >v:" ·,, , -· ,,: ,,': '-,· c " "~ 

to be found in the basic wo r king st r uctu r e of ne ur o­
nal net\,'orks (section lIl) . The main features of the 
concept \,'hich has been developed and i mplemented hy 
E. Er su ( 1980 , 1982 , 1983) a r e that a :: !'£;:::<:'~ 

" :.: .: ,;= of the unknoKTl envi r onment and the cont r o l 
st r ategy eval uated via a goal or ien t ed pe r fo r mance 
i nde x \Jo r k i ng "itit the p r edic ti ve mode l a r e both 
tr eated as :'.' ';:Y.:i!."'_::~ ".'::: :-:: ';" , :,::::~:.:,:::: '"'::':::;:';-:';:';--3 \o.'hich a r e 
r ep r esen t ed and s t o r ed on- l i ne in ;sa : ~~~:~~~ ~a~­
: ::-'j s:::s: e ' ·~s simi l a r t o i nfo r mat i on sto r age in n e u ­
r onal networ ks . 

II . Hl",1A:\ PROBLE>I SOUI:\G : A:; I HELLlGE:-;T 
CO~TROL ST RATEGY 

The <:"'J"':C;": ;:!'~~ :e''": s:; >;'->':2 ':'ei:~:.::::::::~i"' a s a h i ghe r 
men tal p r oces s i s a n in telli gent ::);x,e:::io'·: f r om 
;;eJ":!e;;::-::Q''-; t o ·;::;:::'c·: v i a Y'e::.s~;:if·:;; o n the basi s o f 
pas t and presen t exp e r i e nc es. The most important 
prope rti e s tha t cont r ib ute to such an i n t elli gent 
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behaviour a r e - set.:.' Arbib , 1972 ; Dl.5rnl'r , 197:" ; 
~ewell and S i mon , 1972 - : 

a modifiable p r edictive mouel C\l the UllK!H.l\,·n 

environment 

the ability to plan actions and ~'l.cti cl\l Se ­
q uences h'hich r ep r esent solutions tLl up cum ll1 g 
p r oblems by using th~ predictive moJel 

the ability of generalizing the P3St exp~rience 
du r ing pe r ception , action and , of cours\..~ , plan ­
ning for similar p r oblem situatio!ls . 

~he act ~f p~rcep~ i on an~ the Jct of pL:"lI111ing result 
1n memorizatlon ot \,' ilat 1S perCeived and plannl..!u , 
that means in t\,10 co r respondin g fill..!ffioriL'!s : one [or 
the predict i ve mod~l , one [ l) r the st r ate gy selected 
by the planning pr ocess . The abilitv of gene r3li ­
zation is to be handled b\' the h'3V of memorization 
and will be dealt \,'ith in- section- Ill , therefo re . 

In te r ms of contro l theory lhe pe r ception L'o rresponds 
to lea r n i ng of tile predictive mod~l of tll~ process 
at hand , the reason i ng to \"eighting possib l e actions 
by usi n g the predictive modcl together h' it11 a go al 
oriented p~rfo rmallce ind e x , t ile ~ene r31izati ol1 to 
sup pressing of plann i ng a c t i viti~s ~11Cll for a ce r ­
ta i n situation the best action is 31r~adv l~arllt dnd 
Il0W a very similar s i tuatioIl aris~s. . 

Fig . 11. 1 . illust r ates this basic idea i n fo rm of a 
con tro l system . The sho r t te r m memo r y i s 11eeded for 
the envi r~nmental info r matio ll of the" nea r past as 
unique characte r ization of the ac tual situation. The 
shaded associa t ive memor i es (long te r m memo r ies LT'I) 
s t o r e t he pr ed i ctive model for planning and the se ­
lected good actions fo r r eac t ion in " similar " sit u ­
ations wi tho u t r efe r ence to the planning level , " s i ­
mila r " be ing dependent on t he gene r a li zing capabili ­
tie s i n the i nformation s t o r age cycle . 

Ill. I NFOR.'IATlO:\ STORAGE I:i "EL'RO:\AL :lEn,ORKS : 

AS SO CI ATIn: STI~!lLlS- RES PO:\ SE ~1APPING AS 
GEN ERAL SYSTE:I REP RESE :\TATI ON 

Fi g .II. I . i s an as s umpti on on t he macrost ructu r e of 
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l earning i n the human br&in. The sup~orting mi ­
crostructure is given by the neuronal networks,and 
huge progress has been made since the beginning of 
this century - especially in the last two decades -
in understanding their functioning by theoretical 
and experimental r esearch . The general r esu lt is 
that incoming information pattern represent ed bv 
dendral activity of the specific neuronal network is 
mapped through weighted synaptic connec ti ons as a 
coding onto an output inf o rmation pattern, which is 
the axonal activity of the network . This mapping of 
afferent in fo rmation (stimulus) onto an effe rent 
one (response) can be modelled from a te chnical 
point of view by an associative memory system -
(Kohonen, 1977; Amari, 1977; Palm , 1982) - and is 
also one of the basic e l ements of the psYchologi­
cal association theory. 

An associative memory system is by the \,,13)' an in ­
formation storage in Wllich the l ocat i on of til e out ­
put information is addressed by tbe content of the 
input informati on only (Kobonen, 1977). This type 
of informati on retrieval - "bich is an outstand ing 
feature of the associative neuronal network models -
avoids long searching procedures as they are 11eces­
sary in general in the conventional memo ry systems . 

In classical system theory input - outp ut descrip ­
tions are based on an assumed o r predetermined ma­
thematical structure, normally a set of linea r dif ­
ferential equations. Replacement of tbese pre­
determined structures by l ea rned stimulus - resp onse 
type of assoc i ative memory mappings l ead to more 
genera l system representa tions by (in gene ral non­
linear) mathematical mappings betweell n- dimensional 
input - vec tors I and rn- cl imens i ona l outp ut-vec tors Q: 

S: 1 -> 0 (I) 

The utilization of such mappillgs fo r system r e ­
presentation is the most fundamental idea unde r­
lying the learning cont r ol concept introduced in 
this paper. 

Given a time - dis c rete r ep resentati on o[ a time-in ­
variant deterministi c system 

.z.(k+ I) = f [ . (k) 
-s -

, 

with input vector 

output vector 

measurable 
disturbance 
vector 

C!.(k) 

u 

.z. 

, ~(k) J (2 ) 

C - Rnu 

n 
Y ~ R Y 

T T T 
vector of the ~ (k) =(.z. (k), ... 'l (k-· s )' 
"inner state!! 

scalars 

sampled time 

and sampling period Ts 

T T 
C!. (k - I),. ' ,C!. (k-: s ) ' 

n xn xn 
" R Y u v 

k·T 
s 

a general mathematical mapping for (2) can be de ­
fined by 

S: [..::.(k) , C!.(k) , :::.(k) ] -> z.(k+l) (3) 

The mathematical expression (3) memorized in an 
associative neural network model, i . e. an associ ­
ative memory system ,does not require any a- priori 

structural information about the system at hand 
except the scalars I , ~ , 1 , representing the 
amount of history toSbe asedsln the model. . 
As a result of a comparative study of various neu-
ron al netlJork models (Ersu, 1981; Ersu and :lilitzer, 
1982; Falb, 1981) the associative memory system 
called A.'lS and discuss~d be 101,' I,as found to be a 
suitable system fo r real -ti me CO tltr ol applications 
(Ersu, 1982). ~lS is conc~ptually based on C:1AC 
(Cerebellar :Iodel Arti culation Controller) con ­
ceived by Albus as a neurollal Iletwork model of the 
human ce r~bella r co rt ex (Albus , 1972, 1975) . C:1AC 
itself is a modified versi o n of the Pcrceptron, a 
trainabl e patterll class i fier prop ose d by Rosenblatt 
as a model of the human visual s~'stem (Rosenblatt , 
1962) . 

In terms of compute r science A... ... 1S is Cl distr i but ed 
associativ~ memory syst~m by \..'hich a function or a 
mapping of several variables can be evaluated via 
s impl e content addressing ffiL'chanisms rather than by 
complex mathem.:ltical ope['1ti0ns . 

The A:1S information prl..)cessin g structur~ is illus­
trJted in Fig . Tl1 . J. :btilt.!lllati c 3lly ,",-\IS can be 
present e d by th e ove rall m3pping 

H : s -, E. (4) 

by which acco rdi ng to the neurophysiological nota -T 
tion (Albus, 197:2) thL' sensl'ry lllput ~-'=' (sl "" ,sn) 

of n variables Si \,'iriI varyin::;, rL's ol utiol1s Ri' i. e. 

each Si may have Ri distin gu ishabll.! values, is 

mapped onto the m-dimensional 1..1utput vector p re­
presl2t1ting the dxons of Pu rkinjt.! I..'el ls leaving the 
cerebe ll a r cortex . 

Depending on the cont~nr~ of tile illput in fo rmation 
s a constan t numbl2 r r ot assoc i atioll cells (poill ­
ters fo r locations in the physical memory marked 
bv * in fig. Ill. I.) are activat~d by 3 special en ­
c~d ing procedure out of r mt.!m0 ry loc.:.ltions. Thus the 
illcomillg illform3ti on is subdivided onto r* informa­
tion elements ~hich a r ~ linked togetber to form the 
output information. The concatenatioll of these in­
formation elements , i . e . the sum of \,'e ights \,' .. of 
these selected memory locations,represents th~J 
value of each output channel Pj' 

,:_-:.::.> ', .. : , i.e . trainin g occu rs by adjusting the se-
lected \,o,.'eights \\' ji for .:111 input ~ depending on the 

e rror e between t he desired ~ .:1[10 tile actual output 

E. 

e =E.-E (5) 

h'hich is distributed oV l, ' r til e sl.:lected \\'eights. 

The encoding procedure by ~Il i ch s i milar i nputs 
share some of the r* memory locations - the number 
of shared locations bt2ing dependent on the degree 
of similarity - is resp onsible for the ~lS1s most 
fundamental feature of ~ . . : "', _ "_'". , i.e . similar 
inputs tend to produce similar out puts even if they 
are not trained befo r e . This ability - which is of 
great importance during learning - means mathema ­
tically that for untrained input variables ~x the 
memory system evaluates an ou tput £..X the value of 
which depends on the similarity of the correspon ­
ding input ~x to all other already trained ~i in a 

specific nearest neighbourhood. For a single ~i a 
generalization expression can be given by 

s . - S 
-1 -x 

(6) 

The scalar ~ , the degree of general i zation can be 
pretuned by the Ige;~eY'~~ ~ iz:;::;:'~;:.; :;:J.!'liib~e r*. 
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By the encoding implemented in the ANS gene r al i za­
tion also reduces the theoretically necessary num­
ber of memor y loca t~ons due to the possible input 

combinations ( r = r. R.) as memory locations are 
t i= I 1 

shared by similar inputs . 

Furthe r this distributed t ype of storage has the 
advantage that memory damages and distur bances have 
compa rab l y small influence on the out put val ues . 
Additionally a pseudorandom addressing technique i n 
the encod in g procedure performs a location inde ­
penden t memorization of information. (For fu rther 
detai l s see ErsU and Militzer , 1982) 

The following example "ill demonstrate the basic 
properties of the system: A reference function 
p = h(~) shown in Fig. III.2. with t"o inputs SI 

and s2 each defined on the int erva l [0 , 256 J with a 

resolut i on of unity , i.e. Si = j; j = 0, ... ,256; 

i=i,2 is trained on the memory system by a s i ngle 
training cycle in 289 of 66049 possible points 
(0,4 Z) with a r oot- mean - square er r or of 2 , I Z . 
(Fig. IlI.3.). This interesting r"sult isdu2to 
the gene rali zation capability of the memory system. 
The gene r alization variable r* was chosen to 16 
wh i ch i s optimum fo r th i s ref e reIlce funct i on . 

IV. THE HIPLEHENTED LEARN lNG CONTROL SYSTE:I 

Based on the basic ideas of the two preceding 
sections a control system has been proposed and 
designed by E. Er sU, 1980 for technical control 
tasks . As mentioned befo r e t he concept i ncorporates 
two assoc i ative memory systems of type A.'IS, one fo r 
the predictive model at the un knO\,., process and one 
for the control st rategy . Furtheron the following 
pre-assumptions are made : 

a) The unk nown multivari able process at hand is 
deterministi c , time - invariant or v..reakly tirne ­
varian t. 

b) Time is sampled with a sampling period 
Ts(k ;kT

s
) t o allow time fo r l ea r ning and 

planning. 
n 

c) The control input u 0 C c R u is quantized 
and the cont r o l input space C is f inite. 

n 
d) The process output ~ Y ~ R Y is quantiz ed 

and t he output space Y is finite . 
n 

e) The measurable distur bances v V _ R v are 
quantized and out of a finit; space V. 

f) The process can be described mathematically by 
equation (3) wi th some . s ' . sand • s 

g) The ove r all performance index 

k -I 
e 

LG [~(k+I), ~(k+I), ~(k) J 
k=O 

n 
with 1.1 0 W = R W 

(7) 

can be represented by a I - step ahead subgoal 

LS [r.(k+i) , ~(k+i), u(k -l+i ) J 
i;;1 

(8) 

i.e. mini mizi ng th e subgoal in each step also 
minimizes the ove rall performance index, so 
that the sub goa l direct s the l earning control 
toward t he optimum with re spect to t he global 
goal. 

The concep t based on A}~ uses an ou tput predictive 
algorithm scheme with a I-step ahead con trol stra­
tegy where according t o the equation (2) and (3) 
th e predi c tive process model 

N: ["'!-I(k) , ~(k), ,':'(k)] -> 2,(k+l) (9) 

wi th some _lm ' ': rn and "m 

and the cont rol st r ategy 

C: [ ':'C(k) , .':',(k) , ~(k)J ~(k) ( 10) 

with some . t
c

' '::c and ":c 

are represented by two gene ral mappings s t ored in 
two diffe rent A.'ISs. 

The algorithm scheme in each time cyc le i s as fol -
10ws l ) (Fig. 11. I .)2): 

1 • 

i i . 

the predictive model 15 updated by the meas ­
ured prediction er r or 

::(k) = ~(k) - 2,(k) ( 11 ) 

where i(k) is obtained by (9): 

Cl: [ "'!-I(k-I ), ~(k-I ) , .':',(k-I)J -> i(k) (12) 

an optimization (decision or planning) scheme 
i s activa t ed, i f necessary for ca l culating an 
op timal control dec isi on u* (k) fo r the sub ­
goal (8). 

As for the time instant t =t k ~(k+l) can only 

be predi cted by (9) , i(k+l) is used in (8) t o 
calculate t he expected costs 

(13) 

thus 

and u (k) = u*(k) 
opt -

( 14) 

where ~pt(k) minimizes IS(k) , 

is valid only for a trai~ed region GT of the 

input space of the predictive model memory re­
presenting the region in which training has 
already occu r ed , and the model is reliable to 
some degree specified by the ~2·:e~Q~~~2tiQ i. 
;~~~~~. ~ r* (s. preceding section). 

Hence IS(k) is min i mi zed under the constraint 

~(k) , GT ( 15) 

To speed up the opt imization a sta r ting ap ­
proximation for evaluating u*(k) can be ob­
tained by the past decisi on-expe rience 

( 16) 

* iii. the control decision u (k) optimized by (ii . ) 
is memorized in cont rol memory to be used as 
the best decision making (ii.) superf l uous i n 
the long r ange, and givi ng either an excel ­
lent optimization starting point (see ( 16» 
or being used f r om a time on to be decided 
by the user without further inclusion of the 
pr edict i ve learn i ng loop. 

I)For the sake of simp li city the algor ithm will be 
discussed for 1=1. 

2)ln Fig. 11.1. v is neglected. 
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iv. the l ast ope r a ti on before applying a cont r ol 
input to the proce~ s is t o l ook for a s ubop ti­
mal control i nput ~(k) F ~*(k) 

with 

~(k) - u* (k) ( 17) 

but 

( 18 ) 

for some specified ~ . 

~(k) applied to the process excites it to 
fu rt he r untrained informatiul1 fo r the model 
'\"15 and , so , enlaq;"s CT . This "xploratorv pro ­
cedu r e called ,: , ' C. " ,; ,'" ,":', , ' • is speeding up 
tbe learning. 

\' . RE5 L' LTS 

Tile concept was succ~ssiully t~sted by simulations 
on several llonlillcar ~xamp1 2 s , sillgie - input-sill g ie 
outpu t, as \~'ell as multi - input-mult':' - output . The 
prin cipl e learning behav i ou r \,'ill be demonstrated 
by a real - time implemented fi rst o rd~r single-i np ut­
single- output example. A second example (simulation) 
with a highly complex nonlinear multi-input - multi ­
output process \.Jill ShOh' the efficiency of the 
concep t . 

Exampl e I: For the first order p roc~ss 

~(t) I TO [ u(t ) - z(t) ] ( 19) 

the input and output variables for the ,\.'IS's are 
defined as: 

u(k) = g(k) y(k) = z(k) 

(20) 

The one - step ahead performance index is of the fo r m 

and the ove rall performance index 

k - I 
e 

~ IS(k) 
k =O 

The control inpu t is bounded 

o ~ u(k) ~ 10 . 

(21 ) 

(21 ) 

(22) 

Io.'ith a sampling period of T =6s fig. \'.I.a and f i g . 
V. I.b demonstrate the evol u~i on of learning by suc ­
cessive learning trials. ~either the model nor the 
control - A.'\S had any a - priori informati on before the 
first run. f i g, \'. I.b illustrates the con trol h is­
tory. Obviously t he sys t em can gene rat e a very use ­
fu l cont r ol strategy after a fe\-: tri.als. fig . V.I.c 
shows the learning cu rve which is the performance 
index (21) fo r each learning trial plotted down 
over the numb e r of t ri als . In f i g . \'.I .d the learn­
i ng behaviour fo r set - point changes is demonstrated. 

Example II: The nonlinear :lI:l0 - process simu l a t ing a 
chemi cal reac tion i s given by 

5- y I 33 - 75 . 23 IS /Y2 
12 .5 u l - 18.828'10 ' YI'e (23) 

3.73-41'2 
+ 28 . 8 u

2
] 

5+0.92u, 

The one - step ahead performance index is g iven as 

z.(k +l) - I, 

with 

, 0.9225) . 

The vector of the inller state is defined by 

The co ntrol input is bounded : 

0 , U, 
1 

i= \ , 2 

(2-'+) 

(25) 

As model A...'lS \~'as cilosl:!n 16 KBytl.: u i m~>mory , dnd fo r 

control A..'lS 2 KBytl! . A sampling perivd 01 25 in 
real - time has been used . The simuiaticl[l L'xample il­
lustrated in Fig. \',2.3 and Fitj , \'.2.b 5110\\'5 the 
l ea r!li ng belldviour of the cont rol system by succes ­
sive trainillg trials on tile same il1iti31 cOlldition . 
50 runs with 50 sample steps each (k e =50) were 
carri ed out \\litll initially untrained memory systems. 
The "learning cu rve ll in Fig. \' . ~ . c demonstrates the 
learning conve r gellce . Tile unmonotonous decrease of 
le is due to the exp l o r atory active learning proce -

dure. 

The examples above discuss only some principal fea ­
tur es of the concept . Ersli and :lao, 1983 shOl,s a 
more detailed example of a \\'aste -\~'ater neutrali ­
zation process . As mentioned above the test exam­
ples (simulated and r eal - time) did not show anv 
principal problems. Even in the case of a robot arm 
which does not fulfill the cond i tions of BI80 
(Bounded - Input- Bounded - Output) - stability required 
fo r learning contro 1 s1's terns (Sar id is , 1979) learn­
ing converged and the stability problem was over­
come after a few learning trials . 

VI. CO~CL CS T O~S 

A new , unconventional control concept is intro­
duced which is motivated by models of the informa­
tion processing elements and loops in the human 
bra in. The fundamental ideas underlying the conce pt 
are : 

i. Representing systems by general mathematical 
mappings stored i n associative memo ry systems . 

ii . ctilizing this kind of system des c ription fo r 
the predictive model of the unknown process 
and for the controlle r in a learning cont r ol 
system. 

The basic properties of th e system a r e: 

It does not distinguish between linear or non­
linea r processes, as well as between linear and 
nonlinear cont rol functions, a very fundamen tal 
featu r e due to the mathematically gene ral way of 
system description by associative mappings. 

There is no need fo r an off - line structu r al mo ­
del pre-assumption or modelling respe c tive ly. 
Off-line enginee ri ng efforts can be reduced to 
a degree which i s necessa r y for determini ng the 

and r * .3) paramete rs ~m' ~m ' ":m ' je ' ~c ' 
c 



Learn i ng Con trol ins pired by Bra i n Theory 104 3 

Lea r ning the model and eva l ua t ing the cont r ol 
function occurs in di3crete points of t he co r­
r esponding input space. In cont r ary t o the con­
ven t iona l adaptive con trol by which a gl obal ge ­
neralization for tile whole working space occurs 
due to the st r uctural model pre - assumption the 
proposed learning control approach has local ge ­
neralization properties in a ce r tain ne i ghbour ­
hood of the trained points of the corresponding 
input alId output space (gelle ralization region 
specified by r*). 

Due to the implemented active learning procedure 
and the generalizing capabilit i es of the used 
associative memory system A...' lS the control system 
has fast learning convergellce . Active learning 
is I10t a pre requisite for systems learning be ­
Ildviour , but it speeds up learning and excites 
tile process to additional information around the 
optimal control fUllction. 

Learning mainly occurs around the optimal con­
trol path; thus the information inf10\,; is opti ­
mized to an extent which is sufficient for ga i n­
ing the goal state. 

A priori information about the process and the 
control function can be used as a pri o r i train ­
i ng for the memory systems "hich "ill add i tional ­
ly speed up the learning process. 

Though the approach presented is very effective , 
further resea r ch is needed to broaden its generali ­
ty. The latter is at present limited by seve r a l 
tl leo retical 311d practical assumptions. ~lissing are 
especially theoretical resul t s regarding stability , 
and regarding classes of processes and classes o[ 
perfo rmal1c~ crit~ria to whicll t h~ concept will 
apply successfully. Hm,ever , all examples attacked 
up to now, worked sat i sfactorily. A practical 
difficulty arises when. (k), y(k), y(k) , u(k) are 
of high orde r "ith fine-resol~t ions~ In piinciple 
the method in this pape r still applies but the 
"cu rse of dimensionality" is a handicap \.Jhich can 
result in huge memory requirements and heavy com­
putational efforts . The recent developments in 
VLSI - technology signal solutions for these prob ­
lems, hO\.Jcver. 
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