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A NEW CONCEPT FOR LEARNING CONTROL
INSPIRED BY BRAIN THEORY
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Abstract. The paper explains an unconventional learning control method based on assump-
tions in tihe literature about human problem solving and information storage in neuronal
networks. The on-line learning comprises two stages: The dvnamic input-output behavicur
of the process to be controlled is stored stepwise in a néuron-like manner inte an asso-
ciative memory as a predictive process model, the control strategy plannced via this
model by optimization of a goal oriented performance index is then trained in the same
wav into a second associative memory. As a general mapping the learned bebaviour is in
both cases in general nonlinear,and by this such a control design is especially suited
for strongly nonlinear processes. Simulations demonstrate the applicability of the new
control concept.
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In recent years the application of learning, adap-
tive or self-tuning methods to automatic control
systems has hULUmL an important area of research
(1a}pk1n. 1973 Sstrom and others, 1977; Saridis,
1979). This is due to the fact that most of the com—
plex industrial processes are of nonlinear nature,
but control theory deals mostly with linear sys-
tems, The problem lies not only in the difficulty
of modelling nonlincar systems but alse in finding
some classes of nonlinear systems to which then a
somehow standard control design algorithm can be
applied., The learning or adaptive control schemes
have been proposed to bridge this gap of missing
mathematically prestructured description of non-
linear complex systems.

This paper describes a learning control method mo-
tivated by neurobiological and psvchological re-
search on the human brain, trying to make some of
its tremendous abilities to learn, to adapt, to
associate and to prepare signals to influence and/
or change its environment applicable to man-made
systems. Actually the method is a synthesis of the
zemz=Toc2" Yool s given by human problem solv1ng
capabilities (section II) and the - o —"r e 'l iz
to be found in the basic working structure of neuro-
nal networks (section III). The main features of the
concept which has been developed and melenent;d by
E. Ersi (1980, 1982, 1983) are that a »ir=

wz iz, of the unknown environment and the Lovtrcl
strategy evaluated via a goal oriented performance
index working ultn tht predlccxve model are both
treated as ;= - which are
represented and stored on-line in :2
cry gu8tzve similar to information storage in neu-

ronal networks.

II. HUMAN PROBLEM SOLVING: AN INTELLIGENT
CONTROL STRATEGY

Trcilem gs.Uiig Tenaviiur as a higher
mental process is an intelligent zoiwezziox from
rersezzion. to 223icw via rezssidiz on the basis of
past and present experiences. The most important
properties that contribute to such an intelligent

The =g

Newell and Simon, 1972 -:

. a modifiable
environment

predictive model of the unknown

the ability to plan actions and action se-
quences which represent solutions to upcoming
problems by using the predictive model

the ability of generalizing the past experience
durlng perception, action and, of course, plan-
ning for similar problem situations.

The act of perLLpL;un and the act of planning result
in memorization of what is perceived and planned,
that means in two corresponding memories: one for
the predictive model for the strategy sclected
by the planning process. The ability of penerali-
zation is to be handled by the wav of memorization
and will be dealt with in section II11, therefore.

one

In terms of control theory the percepticon vorresponds
to learning of the predictive model of the process

at hand, the reasoning to weighting possible actions
by using the predictive model together with a woal
oriented performance index, the seneralization to
suppressing of planning activities when for a cer-
tain situation the best action is already learnt and
now a very similar situation arises.

Fig.II.1. illustrates this basic idea in form of a
control svstem. The short term memorv is needed for
the environmental information of the near past as
unique characterization of the actual situation. The
shaded associative memories (long term memories LTM)
store the predictive model for planning and the se-
lected good actions for reaction in "similar" situ-
ations without reference to the planning level, "si-
milar" being dependent on the generalizing capabili-
ties in the information storage cvcle.

IIT. INFORMATION STORAGE IN NEURONAL NETWORKS:
ASSOCIATIVE STIMULUS-RESPONSE MAPPING AS
GENERAL SYSTEM REPRESENTATION

Fig.II.l. is an assumption on the macrostructure of
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learning in the human brain. The supporting mi-
erostructure is given by the neuronal networks, and
huge progress has been made since the beginning of
this century - especially in the last two decades -
in understanding their functioning by theoretical
and experimental research. The general result is
that incoming information pattern represented by
dendral activity of the specific neuronal network is
mapped through weighted synaptic connections as a
coding onto an output information pattern, which is
the axonal activity of the network. This mapping of
afferent information (stimulus) onto an efferent
one (response) can be modelled from a technical
point of wview by an associative memory svstem -
(Kohonen, 1977; Amari, 1977; Palm, 1982) - and is
also one of the basic elements of the psychologi-
cal association theory.

An associative memory system is by the way an in-
formation storage in which the location of the out-
put information is addressed by the content of the
input information only (Kohonen, 1977). This type
of information retrieval - which is an outstanding
feature of the associative neuronal network models -
avoids long searching procedures as they are neces-
sary in general in the conventional memory systems.

In classical system theory input- output descrip-
tions are based on an assumed or predetermined ma-
thematical structure, normally a set of linear dif-
ferential equations. Replacement of these pre-
determined structures by learned stimulus-response
type of associative memory mappings lead to more
general system representations by (in general non-—
linear) mathematical mappings between n-dimensional
input-vectors 1 and m-dimensional output-vectors O:

S: 1L-0 1 &, o. " (1)
The utilization of such mappings for system re-
presentation is the most fundamental idea under-
lying the learning contreol concept introduced in
this paper.

Given a time-discrete representation of a time-in-
variant deterministic system

y(k1) = £ 0. (k) , uk) , v(k)] 2
with input vector u LU - R
n.
output vector y - ¥ - R ¥
n
measurable v VR
disturbance
vector

- T X T
vector of the . (k)=(y (k),...,y (k= ),
"inner state" . T ’

u (k=1)y a0 (k=ol),

v (1), (ke )

n _xXn xn
p s R °
scalars 1gy S rg
sampled time ¢t = k-Ts
and sampling period T,

a general mathematical mapping for (2) can be de-
fined by

s ¢ [L(k), ulk), v(k)1 -+ y(k+l) (3)
The mathematical expression (3) memorized in an

associative neural network model, i.e. an associ-
ative memory system,does not require any a-priori

structural information about the system at hand
except the scalars A , 1.y representing the
amount of history to"be used in the model.

Ag'a releE of a comparative study of various neu-
ronal network models (Ersi, 1981; Ersi and Militzer,
1982; Falb, 1981) the associative memory system
called AMS and discussed below was found to be a
suitable system for real-time control applications
(Ersii, 1982). AMS is conceptually based on CMAC
(Cerebellar Model Articulation Controller) con-
ceived by Albus as a neuronal network model of the
human cerebellar cortex (Albus, 1972, 1973). CMAC
itself is a modified version of the Perceptron, a
trainable pattern classifier proposed by Rosenblatt
as a model of the human visual svstem (Rosenblatt,
1962).

In terms of computer science AMS is a distributed
assocviative memory system by which a function or a
mapping of several wvariables can be evaluated via
simple content addressing mechanisms rather than by
complex mathematical operatiuvns.

The AMS information processing structure is illus-
trated in Fig. TI1.1. Mathematically AMS can be
presented by the overall mapping

H:sp (%)

by which according to the ncurophysiological nuta—T
tion (Albus, 1972) the sensory ilaput 3=\51,,,,,5“)

of n variables s, with varying resaolutions R, i.e.
each $; may have Ri distinguishable values, is

mapped onto the m-dimensional output vector p re-
presenting the axons of Purkinje cells leaving the
cerebellar cortex.

Depending on the contents of the input information
s a constant number r* of association cells (poin-—
ters for locations in the physical memory marked

by  in Fig. 111.1.) are activated by a special en-
coding procedure out of r memory locations. Thus the
incoming information is subdivided onto r* informa-
tion elements which are linked together to form the
output information. The concatenation of these in-
formation elements, i.e. the sum of weights w. ., of
these selected memory locations,represents thd?
value of each output channel pj.

Zozeides, i.e. training occurs by adjusting the se-
lected weights wji for an input s depending on the

error ¢ between the desired p and the actual output

B
gi=p = P (3)
which is distributed over the selected weights.

The encoding procedure by which similar inputs
share some of the r” memory locations - the number
of shared locations being dependent on the degree
of similarity - is responsible for the AMS's most
fundamental feature of jeiew: ’nizlii, i.e. similar
inputs tend to produce similar outputs even if they
are not trained before. This ability - which is of
great importance during learning - means mathema-
tically that for untrained input variables s_ the
memory system evaluates an output p. the value of
which depends on the similarity of the correspon-
ding input s, to all other already trained 5 in a

specific nearest neighbourhood. For a single 5; @
generalization expression can be given by

By "Ry = 8 8, (6

The scalar i, the degree of generalization can be

pretuned by the generaiizazicn varduzble r*.
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By the encoding implemented in the AMS generaliza-

tion also reduces the theoretically necessary num-

ber of memory locations due to the possible input
n

combinations (r: =0 Ri) as memory locations are
i=1

shared by similar inputs.

Further this distributed type of storage has the
advantage that memory damages and disturbances have
comparably small influence on the output values.
Additionally a pseudorandom addressing technique in
the encoding procedure performs a location inde-
pendent memorization of information. (For further
details see Ersii and Militzer, 1982)

The following example will demonstrate the basic
properties ot the system: A reference function
P = h(s) shown in Fig. IIL.2. with two inputs s

1
and S, each defined on the interval [0,256] with a

resolution of unity, i.e. $; = i3 3 = Dyusey2Db;

i=1,2 is trained on the memory system by a single
training cycle in 289 of 66049 possible points
(0,4 %) with a root-mean-square error of 2.1 7,
(Fig. III.3.). This interesting result is due to
the generalization capability of the memory system.
The generalization variable r” was chosen to 16
which is optimum for this reference function.

IV. THE IMPLEMENTED LEARNING CONTROL SYSTEM

Based on the basic ideas of the two preceding
sections a control system has been proposed and
designed by E. Ersii, 1980 for technical control
tasks, As mentioned before the concept incorporates
two associative memory systems of type AMS, one for
the predictive model of the unknown process and one
for the control strategy. Furtheron the following
pre-assumptions are made:

a) The unknown multivariable process at hand is
deterministic, time—invariant or weakly time-
variant.

b) Time is sampled with a sampling period
Ts(kEkTs) to allow time for learning and

planning.
Ty
c) The control input u « U = R = is quantized
and the control input space U is finite.
n
d) The process output y - Y = R ¥ois quantized
and the output space Y is finite.
n
e) The measurable disturbances v = V R ¥ are
quantized and out of a finite space V,

f) The process can be described mathematically by
equation (3) with some o3 Sg and g

g) The overall performance index
S
e

I, =" L.[y(k+1), w(k+l), u(k)] (7)
¢ w0 © -

n,
with w = W = R

can be represented by a l-step ahead subgoal

1
Ig(k) = T Loly(kei), wlkei), u(k=1+i)1  (8)
i=1
i.e, minimizing the subgoal in each step also
minimizes the overall performance index, so
that the subgoal directs the learning control
toward the optimum with respect to the global
goal.

The concept based on AMS uses an output predictive
algorithm scheme with a l-step ahead control stra-
tegy where according to the equation (2) and (3)
the predictive process model

M: [y (k), u(k), v(k)] = F(k+1) (9)

with some & , = and 3
m’ “m m

and the control strategy
C: [;C(k), vik), w(k)]l = u(k) (10)

with some . , = and
[ C

are represented by two general mappings stored in

two different AMSs,

The algorithm scheme in each time cycle is as fol-
lows!) (Fig. 11.1.)2):

i. the predictive model is updated by the meas-
ured prediction error

e(k) = y(k) - ¥(k) ()
where (k) is obtained by (9):

M

b loylk=1), ulk=1), vik=1)1 = §(k) (12)

ii. an optimization (decision or planning) scheme
is activated, if necessary for calculating an
optimal control decision u* (k) for the sub-
goal (8).

As for the time instant t= {k+1) can only

t, Yy

k =
be predicted by (9), §(k+1) is used in (8) to
calculate the expected costs

I_(k)

8 Lsfitk+l). wik+1), u(k)] (13)

thus

- *
Is(k) = Is(k) and uopt(k) =u (k) (14)
where Eﬂpt(k) minimizes Is(k),

is valid only for a traired region Gy of the

input space of the predictive model memory re-
presenting the region in which training has
already occured, and the model is reliable to
some degree specified by the jeueralinzzios

slxblo r™ (s. preceding section).

Hence fs(k) is minimized under the constraint

uk) - G (15)

T
To speed up the optimization a starting ap-
proximation for evaluating Ef(k) can be ob-
tained by the past decision experience

= 1 T s i
C: [Lo(), vk), wk)] = u’(k) (16)

iii. the control decision 5*(k) optimized by (ii.)
is memorized in control memory to be used as
the best decision making (ii.) superfluous in
the long range, and giving either an excel-
lent optimization starting point (see (16))
or being used from a time on to be decided
by the user without further inclusion of the
predictive learning loop.

]]For the sake of simplicity the algorithm will be
discussed for 1=1.

2>In Fig. II.1. v is neglected.
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iv. the last operation before applying a control
input to the process is to look for a subopti-
mal control input u(k) # u™(k)

with

(k) - u(k) < : a7
but

u(k) £ G (18)

for some specified .

u(k) applied to the process excites it to
further untrained information for the model

AMS and, so, enlarges Gp. This exploratory pro-
cedure ecalled -2 _..i ¢ is speeding up
the learning.

V. RESULTS

The concept was successfully tested by simulations
on several nonlinear examples, single-input-single
output, as well as multi-input-multi-output. The
principle learning behaviour will be demonstrated
by a real-time implemented first order single-input
single-output example. A second example (simulation)
with a highly complex nonlinear multi-input-mulci=-
output process will show the efficiency of the
concept.

Example 1: For the first order process

Lut) = z(t)! (19)

;(t} = %5

the input and output variables for the AMS's are
defined as:

u(k) = g(k) 5 v(k) = z(k)
.H(k) = .C(k) =y(k) ; w=5 (20)

The one-step ahead performance index is of the form

2
Is(k) = (y(k) = w)~ (21}
and the overall performance index
k =1
€
I. =1 I.(k) 21)
G L2 S

With a sampling period of T_=6s Fig. V.l.a and Fig.
V.l.b demonstrate the evolu%ian of learning by suc-—
cessive learning trials. Neither the model nor the
control-AMS had any a-priori information before the
first run. Fig. V.l.b illustrates the control his-
tory. Obviously the system can generate a very use-
ful control strategy after a few trials. Fig. V.l.c
shows the learning curve which is the performance
index (21) for each learning trial plotted down
over the number of trials. In Fig, V.l.d the learn-
ing behaviour for set-point changes is demonstrated.

Example I1: The nonlinear MIMO-process simulating a
chemical reaction is given by

-75.2315/y,

- 5_)’
I 8 235

u, - 18.828:107 -y

|

. 1 -75.2315/y,
¥,= Eaa[(24-32y2)ui+2£2.88-lo v, e

3.73-4y,
+ 28,8 ——=u,]
5+0.92u,

The one-step ahead performance index is given as

ls(k) = ylk+l) - w (24)
with
W= (14, 0.9225) .

The wector of the inner state is defined by
;N(L) = #C(k) = yik).
The control input is bounded:

0 ui L0 R i=1,2 (25)
As model AMS was chosen 16 KByvte of memory, and for
control AMS 2 KBvte. A sampling period of Is in
real-time has been used. The simulation example il-
lustrated in Fig. V.2.a and Fig, V.2.b shows the
learning behaviour of the control system by succes-
sive training trials on the same initial condition.
50 runs with 30 sample steps each (k,=30) were
carried out with initially untrained memory svstems.
The "learning curve' in Fig. V.l.c demonstrates the
learning convergence. The unmonotonous decrease of

IG is due to the exploratory active learning proce-

dure.

The examples above discuss only some principal fea-
tures of the concept, Ersii and Mao, 1983 shous a
more detailed example of a waste-water ncutrali-
zation process. As mentioned above the test exam-
ples (simulated and real-time) did not show any
principal problems. Even in the case of a robot arm
which does not fulfill the conditions of BIBO
(Bounded-Input-Bounded-Output)-stability required
for learning control systems (Saridis, 1979) learn-
ing converged and the stability problem was over-
come after a few learning trials.

VI. CONCLUSTONS

A new, unconventional control concept is intro-
duced which is motivated by models of the informa-
tion processing elements and loops in the human
brain., The fundamental ideas underlying the concept
are:

i. Representing syvstems by general mathematical
mappings stored in associative memory systems.

ii. Crilizing this kind of system description for
the predictive model of the unknown process
and for the controller in a learning control
system.

The basic properties of the system are:

- 1t does not distinguish between linear or non-
linear processes, as well as between linear and
nonlinear control functions, a very fundamental
feature due to the mathematically general way of
system description by associative mappings.

- There is no need for an off-line structural mo-
del pre-assumption or modelling respectively.
0ff-line engineering efforts can be reduced to
a degree which is necessary for determining the

arameters o 2 % . 2 [ *
P m Cmt m? e’ Ter e and ¢ .

3)

In practice one will choose = T 2o=io, qo=y
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- Learning the model and evaluating the control
function occurs in discrete points of the cor-
responding input space. In contrary to the con-
ventional adaptive control by which a global ge-
neralization for the whole working space occurs
due to the structural model pre-assumption the
proposed learning control approach has local ge-
neralization properties in a certain neighbour-
hood of the trained points of the corresponding
input and output space (generalization region
specified by ).

- Due to the implemented active learning procedure
and the generalizing capabilities of the used
associative memory svstem AMS the control system
has fast learning convergence. Active learning
is not a prerequisite for svstems learning be-
flaviour, but it speeds up learning and excites
the process to additional information around the
optimal control function,

= Learning mainly occurs around the optimal con-
trol path; thus the information inflow is opti-
mized to an extent which is sufficient for gain-
ing the goal state.

- A priori information about the process and the
control function can be used as a priori train-
ing for the memory systems which will additional-
ly speed up the learning process.

Though the approach presented is very effective,
further research is needed to broaden its generali-
ty. The latter is at present limited by several
theoretical and practical assumptions. Missing are
especially theoretical results regarding stability,
and regarding classes of processes and classes of
performance criteria to which the concept will
apply successfully. However, all examples attacked
up to now, worked satisfactorily. A practical
difficulty arises when .(k), y(k}, y(k), u(k) are
of high order with fine resolutions. In principle
the method in this paper still applies but the
"curse of dimensionality" is a handicap which can
result in huge memory requirements and heavy com-
putational efforts. The recent developments in
VLSI-technology signal solutions for these prob-
lems, however.
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Fig. I11.1: Information processing structure
of the implemented associative memory
system (AMS)
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Fig. ITI.3: Response of AMS after training on
289 points (0,4 7)
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Fig., I1.1: Learning control system by Ersii (Shaded blocks indicate the associative memory

systems)
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