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AbstraLt. Thl..! paper explains an ul1Lonvt!ntional lea r ning cont r ol m~thod bas .... ,d ("'!1 3SSUr:lP 
tl uns ln tilt! literature about human problem solving and info r mation ~t o rag2 in Ilt..'ur(lI1Jl 
l1t2t\,'orks . Till.' ,In - linc learnin g compri.ses t\o...'O stages : The dynamic input-0utput b ..... hJ.vil"'ur 
ot the pn.h':'L'SS to be cOl1trolll..!d is ~toreJ s t ep\..'ise ill a n~u r 0n- like mannl..!r int o 311 dSSL) 
ciative memory as J prt.:.'dictivt.:' p r ocess model, the control strate::;y plallllt..'J via tilis 
1ll0Ut.:' 1 by 0ptimi.zJtion of .::1 goa l or i t:!1ted pe r formance index is tllen trained in the same 
\.0.' .)\' int0 3. second 3ss0cialive memory. As 3 general mapping thL' lea r ned Dt::'iI3viour is i n 
bu'lh CJSI..!S in t,l;'lh..'rJ.l l1onlinear , anu by this such a control d~sign is eS(1cci,:.llly suited 
fo r strunbly nu111int2J.r processe s. Simulations demonst r ate the applicability of tilL' l1e\,' 
cOlltrol CO!lCept . 

l\.eY\'o"ords . Associative memo r y systems; adapt i ve control ; artificial intelli ~~ncL.' ; 
biocyberlleti cs ; brain models ; learning systems ; neu r onal net~orks ; lloll l ineilr C0lltrol . 

I. I:\TRODlCTIO:\ 

I n recent ye a r s tile app l icatioll of lea r nillg, adap 
tive or self - tuning metllods to automa t ic control 
systems 11as become an important a r ea of resea r ch 
(Tsypkin , 1973 ; ~strLim "nd othe r s , 1977 ; Saridis , 
1979) . This is due to the fact that most of the com
plex indust r ial p r ocesses a r e of nOlllinear natu r e , 
but cont r ol theory ueals mostly wi th linea r sys 
tems. The pr oblem lies not only in the difficu lty 
of modelling nonlincar systems but a l so i n finding 
some c l asses of 110n l inear systems to v.,lhich the n a 
sornellow standa r d control design algo r it ilffi call be 
applied . The learning ur adaptive cont r ol schemes 
have been proposed to bridge this gap of missing 
mathematically p r est r uctured desc r iption of 11011-
linear complex systems . 

Th i s paper desc r ibes a l ea r ning cont r ol method mo 
t i va t ed by neurobiological and psycholog i cal r e 
sea r cll on tile lluman brain , trying to make some of 
i ts tremendous abilities to lea r n , to adapt , to 
associate and to p r epare s i gnals to illf l uence and/ 
or change i ts ellvi r ollmeIlt applicable to man- made 
sys t ems . Actually the method is a synthesis of the 
.;:-"! ' ; - , ,~ : .;: .. ,' given by human pr oblem so l v i ng 
capabilities (section 11) and the >v:" ·,, , -· ,,: ,,': '-,· c " "~ 

to be found in the basic wo r king st r uctu r e of ne ur o
nal net\,'orks (section lIl) . The main features of the 
concept \,'hich has been developed and i mplemented hy 
E. Er su ( 1980 , 1982 , 1983) a r e that a :: !'£;:::<:'~ 

" :.: .: ,;= of the unknoKTl envi r onment and the cont r o l 
st r ategy eval uated via a goal or ien t ed pe r fo r mance 
i nde x \Jo r k i ng "itit the p r edic ti ve mode l a r e both 
tr eated as :'.' ';:Y.:i!."'_::~ ".'::: :-:: ';" , :,::::~:.:,:::: '"'::':::;:';-:';:';--3 \o.'hich a r e 
r ep r esen t ed and s t o r ed on- l i ne in ;sa : ~~~:~~~ ~a~
: ::-'j s:::s: e ' ·~s simi l a r t o i nfo r mat i on sto r age in n e u 
r onal networ ks . 

II . Hl",1A:\ PROBLE>I SOUI:\G : A:; I HELLlGE:-;T 
CO~TROL ST RATEGY 

The <:"'J"':C;": ;:!'~~ :e''": s:; >;'->':2 ':'ei:~:.::::::::~i"' a s a h i ghe r 
men tal p r oces s i s a n in telli gent ::);x,e:::io'·: f r om 
;;eJ":!e;;::-::Q''-; t o ·;::;:::'c·: v i a Y'e::.s~;:if·:;; o n the basi s o f 
pas t and presen t exp e r i e nc es. The most important 
prope rti e s tha t cont r ib ute to such an i n t elli gent 
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behaviour a r e - set.:.' Arbib , 1972 ; Dl.5rnl'r , 197:" ; 
~ewell and S i mon , 1972 - : 

a modifiable p r edictive mouel C\l the UllK!H.l\,·n 

environment 

the ability to plan actions and ~'l.cti cl\l Se 
q uences h'hich r ep r esent solutions tLl up cum ll1 g 
p r oblems by using th~ predictive moJel 

the ability of generalizing the P3St exp~rience 
du r ing pe r ception , action and , of cours\..~ , plan 
ning for similar p r oblem situatio!ls . 

~he act ~f p~rcep~ i on an~ the Jct of pL:"lI111ing result 
1n memorizatlon ot \,' ilat 1S perCeived and plannl..!u , 
that means in t\,10 co r respondin g fill..!ffioriL'!s : one [or 
the predict i ve mod~l , one [ l) r the st r ate gy selected 
by the planning pr ocess . The abilitv of gene r3li 
zation is to be handled b\' the h'3V of memorization 
and will be dealt \,'ith in- section- Ill , therefo re . 

In te r ms of contro l theory lhe pe r ception L'o rresponds 
to lea r n i ng of tile predictive mod~l of tll~ process 
at hand , the reason i ng to \"eighting possib l e actions 
by usi n g the predictive modcl together h' it11 a go al 
oriented p~rfo rmallce ind e x , t ile ~ene r31izati ol1 to 
sup pressing of plann i ng a c t i viti~s ~11Cll for a ce r 
ta i n situation the best action is 31r~adv l~arllt dnd 
Il0W a very similar s i tuatioIl aris~s. . 

Fig . 11. 1 . illust r ates this basic idea i n fo rm of a 
con tro l system . The sho r t te r m memo r y i s 11eeded for 
the envi r~nmental info r matio ll of the" nea r past as 
unique characte r ization of the ac tual situation. The 
shaded associa t ive memor i es (long te r m memo r ies LT'I) 
s t o r e t he pr ed i ctive model for planning and the se 
lected good actions fo r r eac t ion in " similar " sit u 
ations wi tho u t r efe r ence to the planning level , " s i 
mila r " be ing dependent on t he gene r a li zing capabili 
tie s i n the i nformation s t o r age cycle . 

Ill. I NFOR.'IATlO:\ STORAGE I:i "EL'RO:\AL :lEn,ORKS : 

AS SO CI ATIn: STI~!lLlS- RES PO:\ SE ~1APPING AS 
GEN ERAL SYSTE:I REP RESE :\TATI ON 

Fi g .II. I . i s an as s umpti on on t he macrost ructu r e of 
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l earning i n the human br&in. The sup~orting mi 
crostructure is given by the neuronal networks,and 
huge progress has been made since the beginning of 
this century - especially in the last two decades -
in understanding their functioning by theoretical 
and experimental r esearch . The general r esu lt is 
that incoming information pattern represent ed bv 
dendral activity of the specific neuronal network is 
mapped through weighted synaptic connec ti ons as a 
coding onto an output inf o rmation pattern, which is 
the axonal activity of the network . This mapping of 
afferent in fo rmation (stimulus) onto an effe rent 
one (response) can be modelled from a te chnical 
point of view by an associative memory system -
(Kohonen, 1977; Amari, 1977; Palm , 1982) - and is 
also one of the basic e l ements of the psYchologi
cal association theory. 

An associative memory system is by the \,,13)' an in 
formation storage in Wllich the l ocat i on of til e out 
put information is addressed by tbe content of the 
input informati on only (Kobonen, 1977). This type 
of informati on retrieval - "bich is an outstand ing 
feature of the associative neuronal network models -
avoids long searching procedures as they are 11eces
sary in general in the conventional memo ry systems . 

In classical system theory input - outp ut descrip 
tions are based on an assumed o r predetermined ma
thematical structure, normally a set of linea r dif 
ferential equations. Replacement of tbese pre
determined structures by l ea rned stimulus - resp onse 
type of assoc i ative memory mappings l ead to more 
genera l system representa tions by (in gene ral non
linear) mathematical mappings betweell n- dimensional 
input - vec tors I and rn- cl imens i ona l outp ut-vec tors Q: 

S: 1 -> 0 (I) 

The utilization of such mappillgs fo r system r e 
presentation is the most fundamental idea unde r
lying the learning cont r ol concept introduced in 
this paper. 

Given a time - dis c rete r ep resentati on o[ a time-in 
variant deterministi c system 

.z.(k+ I) = f [ . (k) 
-s -

, 

with input vector 

output vector 

measurable 
disturbance 
vector 

C!.(k) 

u 

.z. 

, ~(k) J (2 ) 

C - Rnu 

n 
Y ~ R Y 

T T T 
vector of the ~ (k) =(.z. (k), ... 'l (k-· s )' 
"inner state!! 

scalars 

sampled time 

and sampling period Ts 

T T 
C!. (k - I),. ' ,C!. (k-: s ) ' 

n xn xn 
" R Y u v 

k·T 
s 

a general mathematical mapping for (2) can be de 
fined by 

S: [..::.(k) , C!.(k) , :::.(k) ] -> z.(k+l) (3) 

The mathematical expression (3) memorized in an 
associative neural network model, i . e. an associ 
ative memory system ,does not require any a- priori 

structural information about the system at hand 
except the scalars I , ~ , 1 , representing the 
amount of history toSbe asedsln the model. . 
As a result of a comparative study of various neu-
ron al netlJork models (Ersu, 1981; Ersu and :lilitzer, 
1982; Falb, 1981) the associative memory system 
called A.'lS and discuss~d be 101,' I,as found to be a 
suitable system fo r real -ti me CO tltr ol applications 
(Ersu, 1982). ~lS is conc~ptually based on C:1AC 
(Cerebellar :Iodel Arti culation Controller) con 
ceived by Albus as a neurollal Iletwork model of the 
human ce r~bella r co rt ex (Albus , 1972, 1975) . C:1AC 
itself is a modified versi o n of the Pcrceptron, a 
trainabl e patterll class i fier prop ose d by Rosenblatt 
as a model of the human visual s~'stem (Rosenblatt , 
1962) . 

In terms of compute r science A... ... 1S is Cl distr i but ed 
associativ~ memory syst~m by \..'hich a function or a 
mapping of several variables can be evaluated via 
s impl e content addressing ffiL'chanisms rather than by 
complex mathem.:ltical ope['1ti0ns . 

The A:1S information prl..)cessin g structur~ is illus
trJted in Fig . Tl1 . J. :btilt.!lllati c 3lly ,",-\IS can be 
present e d by th e ove rall m3pping 

H : s -, E. (4) 

by which acco rdi ng to the neurophysiological nota -T 
tion (Albus, 197:2) thL' sensl'ry lllput ~-'=' (sl "" ,sn) 

of n variables Si \,'iriI varyin::;, rL's ol utiol1s Ri' i. e. 

each Si may have Ri distin gu ishabll.! values, is 

mapped onto the m-dimensional 1..1utput vector p re
presl2t1ting the dxons of Pu rkinjt.! I..'el ls leaving the 
cerebe ll a r cortex . 

Depending on the cont~nr~ of tile illput in fo rmation 
s a constan t numbl2 r r ot assoc i atioll cells (poill 
ters fo r locations in the physical memory marked 
bv * in fig. Ill. I.) are activat~d by 3 special en 
c~d ing procedure out of r mt.!m0 ry loc.:.ltions. Thus the 
illcomillg illform3ti on is subdivided onto r* informa
tion elements ~hich a r ~ linked togetber to form the 
output information. The concatenatioll of these in
formation elements , i . e . the sum of \,'e ights \,' .. of 
these selected memory locations,represents th~J 
value of each output channel Pj' 

,:_-:.::.> ', .. : , i.e . trainin g occu rs by adjusting the se-
lected \,o,.'eights \\' ji for .:111 input ~ depending on the 

e rror e between t he desired ~ .:1[10 tile actual output 

E. 

e =E.-E (5) 

h'hich is distributed oV l, ' r til e sl.:lected \\'eights. 

The encoding procedure by ~Il i ch s i milar i nputs 
share some of the r* memory locations - the number 
of shared locations bt2ing dependent on the degree 
of similarity - is resp onsible for the ~lS1s most 
fundamental feature of ~ . . : "', _ "_'". , i.e . similar 
inputs tend to produce similar out puts even if they 
are not trained befo r e . This ability - which is of 
great importance during learning - means mathema 
tically that for untrained input variables ~x the 
memory system evaluates an ou tput £..X the value of 
which depends on the similarity of the correspon 
ding input ~x to all other already trained ~i in a 

specific nearest neighbourhood. For a single ~i a 
generalization expression can be given by 

s . - S 
-1 -x 

(6) 

The scalar ~ , the degree of general i zation can be 
pretuned by the Ige;~eY'~~ ~ iz:;::;:'~;:.; :;:J.!'liib~e r*. 
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By the encoding implemented in the ANS gene r al i za
tion also reduces the theoretically necessary num
ber of memor y loca t~ons due to the possible input 

combinations ( r = r. R.) as memory locations are 
t i= I 1 

shared by similar inputs . 

Furthe r this distributed t ype of storage has the 
advantage that memory damages and distur bances have 
compa rab l y small influence on the out put val ues . 
Additionally a pseudorandom addressing technique i n 
the encod in g procedure performs a location inde 
penden t memorization of information. (For fu rther 
detai l s see ErsU and Militzer , 1982) 

The following example "ill demonstrate the basic 
properties of the system: A reference function 
p = h(~) shown in Fig. III.2. with t"o inputs SI 

and s2 each defined on the int erva l [0 , 256 J with a 

resolut i on of unity , i.e. Si = j; j = 0, ... ,256; 

i=i,2 is trained on the memory system by a s i ngle 
training cycle in 289 of 66049 possible points 
(0,4 Z) with a r oot- mean - square er r or of 2 , I Z . 
(Fig. IlI.3.). This interesting r"sult isdu2to 
the gene rali zation capability of the memory system. 
The gene r alization variable r* was chosen to 16 
wh i ch i s optimum fo r th i s ref e reIlce funct i on . 

IV. THE HIPLEHENTED LEARN lNG CONTROL SYSTE:I 

Based on the basic ideas of the two preceding 
sections a control system has been proposed and 
designed by E. Er sU, 1980 for technical control 
tasks . As mentioned befo r e t he concept i ncorporates 
two assoc i ative memory systems of type A.'IS, one fo r 
the predictive model at the un knO\,., process and one 
for the control st rategy . Furtheron the following 
pre-assumptions are made : 

a) The unk nown multivari able process at hand is 
deterministi c , time - invariant or v..reakly tirne 
varian t. 

b) Time is sampled with a sampling period 
Ts(k ;kT

s
) t o allow time fo r l ea r ning and 

planning. 
n 

c) The control input u 0 C c R u is quantized 
and the cont r o l input space C is f inite. 

n 
d) The process output ~ Y ~ R Y is quantiz ed 

and t he output space Y is finite . 
n 

e) The measurable distur bances v V _ R v are 
quantized and out of a finit; space V. 

f) The process can be described mathematically by 
equation (3) wi th some . s ' . sand • s 

g) The ove r all performance index 

k -I 
e 

LG [~(k+I), ~(k+I), ~(k) J 
k=O 

n 
with 1.1 0 W = R W 

(7) 

can be represented by a I - step ahead subgoal 

LS [r.(k+i) , ~(k+i), u(k -l+i ) J 
i;;1 

(8) 

i.e. mini mizi ng th e subgoal in each step also 
minimizes the ove rall performance index, so 
that the sub goa l direct s the l earning control 
toward t he optimum with re spect to t he global 
goal. 

The concep t based on A}~ uses an ou tput predictive 
algorithm scheme with a I-step ahead con trol stra
tegy where according t o the equation (2) and (3) 
th e predi c tive process model 

N: ["'!-I(k) , ~(k), ,':'(k)] -> 2,(k+l) (9) 

wi th some _lm ' ': rn and "m 

and the cont rol st r ategy 

C: [ ':'C(k) , .':',(k) , ~(k)J ~(k) ( 10) 

with some . t
c

' '::c and ":c 

are represented by two gene ral mappings s t ored in 
two diffe rent A.'ISs. 

The algorithm scheme in each time cyc le i s as fol -
10ws l ) (Fig. 11. I .)2): 

1 • 

i i . 

the predictive model 15 updated by the meas 
ured prediction er r or 

::(k) = ~(k) - 2,(k) ( 11 ) 

where i(k) is obtained by (9): 

Cl: [ "'!-I(k-I ), ~(k-I ) , .':',(k-I)J -> i(k) (12) 

an optimization (decision or planning) scheme 
i s activa t ed, i f necessary for ca l culating an 
op timal control dec isi on u* (k) fo r the sub 
goal (8). 

As for the time instant t =t k ~(k+l) can only 

be predi cted by (9) , i(k+l) is used in (8) t o 
calculate t he expected costs 

(13) 

thus 

and u (k) = u*(k) 
opt -

( 14) 

where ~pt(k) minimizes IS(k) , 

is valid only for a trai~ed region GT of the 

input space of the predictive model memory re
presenting the region in which training has 
already occu r ed , and the model is reliable to 
some degree specified by the ~2·:e~Q~~~2tiQ i. 
;~~~~~. ~ r* (s. preceding section). 

Hence IS(k) is min i mi zed under the constraint 

~(k) , GT ( 15) 

To speed up the opt imization a sta r ting ap 
proximation for evaluating u*(k) can be ob
tained by the past decisi on-expe rience 

( 16) 

* iii. the control decision u (k) optimized by (ii . ) 
is memorized in cont rol memory to be used as 
the best decision making (ii.) superf l uous i n 
the long r ange, and givi ng either an excel 
lent optimization starting point (see ( 16» 
or being used f r om a time on to be decided 
by the user without further inclusion of the 
pr edict i ve learn i ng loop. 

I)For the sake of simp li city the algor ithm will be 
discussed for 1=1. 

2)ln Fig. 11.1. v is neglected. 
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iv. the l ast ope r a ti on before applying a cont r ol 
input to the proce~ s is t o l ook for a s ubop ti
mal control i nput ~(k) F ~*(k) 

with 

~(k) - u* (k) ( 17) 

but 

( 18 ) 

for some specified ~ . 

~(k) applied to the process excites it to 
fu rt he r untrained informatiul1 fo r the model 
'\"15 and , so , enlaq;"s CT . This "xploratorv pro 
cedu r e called ,: , ' C. " ,; ,'" ,":', , ' • is speeding up 
tbe learning. 

\' . RE5 L' LTS 

Tile concept was succ~ssiully t~sted by simulations 
on several llonlillcar ~xamp1 2 s , sillgie - input-sill g ie 
outpu t, as \~'ell as multi - input-mult':' - output . The 
prin cipl e learning behav i ou r \,'ill be demonstrated 
by a real - time implemented fi rst o rd~r single-i np ut
single- output example. A second example (simulation) 
with a highly complex nonlinear multi-input - multi 
output process \.Jill ShOh' the efficiency of the 
concep t . 

Exampl e I: For the first order p roc~ss 

~(t) I TO [ u(t ) - z(t) ] ( 19) 

the input and output variables for the ,\.'IS's are 
defined as: 

u(k) = g(k) y(k) = z(k) 

(20) 

The one - step ahead performance index is of the fo r m 

and the ove rall performance index 

k - I 
e 

~ IS(k) 
k =O 

The control inpu t is bounded 

o ~ u(k) ~ 10 . 

(21 ) 

(21 ) 

(22) 

Io.'ith a sampling period of T =6s fig. \'.I.a and f i g . 
V. I.b demonstrate the evol u~i on of learning by suc 
cessive learning trials. ~either the model nor the 
control - A.'\S had any a - priori informati on before the 
first run. f i g, \'. I.b illustrates the con trol h is
tory. Obviously t he sys t em can gene rat e a very use 
fu l cont r ol strategy after a fe\-: tri.als. fig . V.I.c 
shows the learning cu rve which is the performance 
index (21) fo r each learning trial plotted down 
over the numb e r of t ri als . In f i g . \'.I .d the learn
i ng behaviour fo r set - point changes is demonstrated. 

Example II: The nonlinear :lI:l0 - process simu l a t ing a 
chemi cal reac tion i s given by 

5- y I 33 - 75 . 23 IS /Y2 
12 .5 u l - 18.828'10 ' YI'e (23) 

3.73-41'2 
+ 28 . 8 u

2
] 

5+0.92u, 

The one - step ahead performance index is g iven as 

z.(k +l) - I, 

with 

, 0.9225) . 

The vector of the inller state is defined by 

The co ntrol input is bounded : 

0 , U, 
1 

i= \ , 2 

(2-'+) 

(25) 

As model A...'lS \~'as cilosl:!n 16 KBytl.: u i m~>mory , dnd fo r 

control A..'lS 2 KBytl! . A sampling perivd 01 25 in 
real - time has been used . The simuiaticl[l L'xample il
lustrated in Fig. \',2.3 and Fitj , \'.2.b 5110\\'5 the 
l ea r!li ng belldviour of the cont rol system by succes 
sive trainillg trials on tile same il1iti31 cOlldition . 
50 runs with 50 sample steps each (k e =50) were 
carri ed out \\litll initially untrained memory systems. 
The "learning cu rve ll in Fig. \' . ~ . c demonstrates the 
learning conve r gellce . Tile unmonotonous decrease of 
le is due to the exp l o r atory active learning proce -

dure. 

The examples above discuss only some principal fea 
tur es of the concept . Ersli and :lao, 1983 shOl,s a 
more detailed example of a \\'aste -\~'ater neutrali 
zation process . As mentioned above the test exam
ples (simulated and r eal - time) did not show anv 
principal problems. Even in the case of a robot arm 
which does not fulfill the cond i tions of BI80 
(Bounded - Input- Bounded - Output) - stability required 
fo r learning contro 1 s1's terns (Sar id is , 1979) learn
ing converged and the stability problem was over
come after a few learning trials . 

VI. CO~CL CS T O~S 

A new , unconventional control concept is intro
duced which is motivated by models of the informa
tion processing elements and loops in the human 
bra in. The fundamental ideas underlying the conce pt 
are : 

i. Representing systems by general mathematical 
mappings stored i n associative memo ry systems . 

ii . ctilizing this kind of system des c ription fo r 
the predictive model of the unknown process 
and for the controlle r in a learning cont r ol 
system. 

The basic properties of th e system a r e: 

It does not distinguish between linear or non
linea r processes, as well as between linear and 
nonlinear cont rol functions, a very fundamen tal 
featu r e due to the mathematically gene ral way of 
system description by associative mappings. 

There is no need fo r an off - line structu r al mo 
del pre-assumption or modelling respe c tive ly. 
Off-line enginee ri ng efforts can be reduced to 
a degree which i s necessa r y for determini ng the 

and r * .3) paramete rs ~m' ~m ' ":m ' je ' ~c ' 
c 
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Lea r ning the model and eva l ua t ing the cont r ol 
function occurs in di3crete points of t he co r
r esponding input space. In cont r ary t o the con
ven t iona l adaptive con trol by which a gl obal ge 
neralization for tile whole working space occurs 
due to the st r uctural model pre - assumption the 
proposed learning control approach has local ge 
neralization properties in a ce r tain ne i ghbour 
hood of the trained points of the corresponding 
input alId output space (gelle ralization region 
specified by r*). 

Due to the implemented active learning procedure 
and the generalizing capabilit i es of the used 
associative memory system A...' lS the control system 
has fast learning convergellce . Active learning 
is I10t a pre requisite for systems learning be 
Ildviour , but it speeds up learning and excites 
tile process to additional information around the 
optimal control fUllction. 

Learning mainly occurs around the optimal con
trol path; thus the information inf10\,; is opti 
mized to an extent which is sufficient for ga i n
ing the goal state. 

A priori information about the process and the 
control function can be used as a pri o r i train 
i ng for the memory systems "hich "ill add i tional 
ly speed up the learning process. 

Though the approach presented is very effective , 
further resea r ch is needed to broaden its generali 
ty. The latter is at present limited by seve r a l 
tl leo retical 311d practical assumptions. ~lissing are 
especially theoretical resul t s regarding stability , 
and regarding classes of processes and classes o[ 
perfo rmal1c~ crit~ria to whicll t h~ concept will 
apply successfully. Hm,ever , all examples attacked 
up to now, worked sat i sfactorily. A practical 
difficulty arises when. (k), y(k), y(k) , u(k) are 
of high orde r "ith fine-resol~t ions~ In piinciple 
the method in this pape r still applies but the 
"cu rse of dimensionality" is a handicap \.Jhich can 
result in huge memory requirements and heavy com
putational efforts . The recent developments in 
VLSI - technology signal solutions for these prob 
lems, hO\.Jcver. 
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