COORDINATED MOTION PLANNING AND OPTIMAL FORCE DISTRIBUTION FOR ROBOTS WITH MULTIPLE COOPERATING ARMS

H. Bruhm
Tachnical L'miverity of Darmstadt. Control Swam. Theon Lathoratory. Schlowgrabe'n 1. D-6I(o) Darmsadt. FRG;

Abstract

This paper is concerned with the problems of inter-arm coordination which arise when multiple robot arms attach their end effectors to a single payload in order to perform a manipulation task. The approach taken is to let the arms cooperate with equal rights, and to exploit the redundancy present in the system for the minimization of a quadratic cost criterion. The main elements of the proposed control system are generators for courdinated nominal motions and force/torque interactions with the payload, and an active compliance scheme capable of resolving kinematic conflicts and inconsistencies between motion and force/torque commands. The paper gives a detailed mathematical description of both the motion and the force/torque generators. The proposed active compliance scheme is presented in summary form.

16, Wolds. Rubots; coopuratiny robol arms; forco distibution; actioe comMinet; hierarchical systems; process control; mathematical amal\%sis.

 is also gratefully ack:owludged.

I. INTRODUCTION

The reader will be aware, out of personal experience, that precise handling of large and heavy objects is much more easily achieved with two arms than with one We can learn from this ubservation that the performance features of robots coula be improved, and their field of application widened, if they could be made to use their arms cooperatively in a similar way. The main problem to be solved on the way to such advanced manipulation systems is that of fast and precise inter-arm coordination. Bad coordination may cause danage to the payload or the arms themselves.

Up to now the problem of inter-arm coordination for multi-armed robots has not received much attention in the control literature. Some researchers have proposed (and partly demonstrated) master/slave systems as a solution to the problem. Nakano et al. /1/ use a position-controlled master arm together with a force-controlled slave which supports the motion enforced by the master. Alford and Leiyeu /2/ have developed a predictive coordination method where both master and slave are position-controlled. The slave conmands are frodified on the basis of predicted position values for the next step. The goal of this control strategy is to keep the relative position of the two end-effectors constant. : io account is taken of interactive forces between the arnis, which may occur due to kinematic modelling errors. In 1975, Fuji and thod where two arms cooperate with equal richts. Their approach, called the method of "virtual reference", is based on position error feedLack and ieads to compliant behaviuur of the two position controlled arms. Ishida $/ 4 /$ describes and compares two alternative control methods applied to two reference tasks called parallel transfer and rotational transfer. The first control method is
the master/slave method of $/ 1 /$. In the second one, both arms are force servoed and cooperate with equal rights. They receive their commands from a coordination controller which enforces tracking of the desired load trajectory with a prescribed dynamic behaviour in operational coordinates. Ishida states that the second method is superior (though slower) in the case of the rotational transfer task. The problem of force distribution between the cooperating arms, which has not been addressed in the publications mentioned so far, has been studied intensively by orin and on $/ 5 /$, who treat it as a linear programming problem in the joint torque space. The objective function penalizes energy consumption and terminal reaction force imbalance.

The objective of the work presented in our paper was to construct, as an extension and further elaboration of Mason's work $/ 6 /$, a general theory of multi-arm cooperative manipulation which would, to the largest possible extent, incorporate the ideas introduced in the aforementioned publications. we have carried out our studies under the following yeneral assumptions, guidelines and constraints:

- The theory shall be valid for any number of cooperating arms.
- Both the motion and the force/torque aspect of manipulation shall be represented by the theory.
- No dependence on special features of any specific robot arm. The theory sinall Le formulated in terms of "ideal etfectors". The ideal effector is the most yeneral abstraction of a manipulator arm: a fictitious device which can ideally execute force/torque or motion commands, or ehibit a specified compliance behaviour in all six spatial directions.
- We have assumed a rigid body load with a grapple interface for each arm. Grappling
is assumed to lock the end-effectors to the load so that they behave like one rigid body.
- In addition to the common internal sensors, each arm must be equipped with a sensor system to measure force/torque interaction with the load (usually a wrist sensor).
- The control system to be developed shall be modular in the sense that every robot shall be addressed by the coordination controller through the same "virtual robot interface" (i.e. from the coordination level, the robots shall all look the same).
II. A GENERIC CONTROL HIERARCHY FOR MULIIARMED ROBOTS

In the generic control hierarchy for multiarmed robots shown as fiy. 1, three functional levels can be distinguished:

- On the intelligence level, the robot task is decomposed into a sequence of operations, and the required motion of the load and its required force/torque interaction with the environment are planned for each operation.
- On the dynamic control level, nominal motion and force/torque commands are derived for each arm. An active compliance scheme eliminates un-wanted counter-active forces exchanged between the arms and resulves possible conflicts (due to imperfections of the task model used in the planning process) between motion and force/torque commands. The corrected commands are then sent to the individual arm servo-controllers.
- The machine level comprises power electronics (or any other power source and conditioning unit) and the arms themselves.

This paper deals only with the dynamic control level, with emphasis on the generation of coordinated nominal motion and force/ torque trajectories, and on the theoretical basis for the active compliance scheme.
III. GENERATION OF NOMINAL MOTION TRAJECTORIES

Given the load's geometry and its desired motion trajectory we can derive the nominal motion commands for each of the cooperating robot arms in an open loop process. The mathematical description of the coordinatud motion generator will be derived in the following two paragraphs.

111. Thask Geometiy

For the purpose of generation of coordinated desired trajectories for the cooperating manipulator ar:as we consider the load as a rigid Lody witl: n grapple interfacus. As in /7/, the frame concept and homugeneous transformations will be ised to describe the spatial relations between the n manipulator arms, the load, and an ine tial reference frame referred to as the task frame. All relevart frames and transformations are shwown in fig. 2 .

The following names will we used for the coordinate frames in fig. 2:
($\dot{R}_{R}, j_{R^{\prime}}, \dot{k}_{R}$) : (inertial) reference
$\left(\vec{i}_{L}, \vec{j}_{L}, \vec{k}_{L}\right) \quad: \quad$ load Erame
($\ddot{i}_{C}, \vec{j}_{C}, \vec{k}_{C}$) : load center frame (a coordinate system with its origin in the load's center of mass and its axes aligned with the load's princiऐal axes)
$\left(\dot{i}_{\mathrm{Gi}}, \dot{j}_{\mathrm{Gi}}, \dot{k}_{\mathrm{Gi}}\right)$: graptie frame i
$\left(i_{B i}, \dot{j}_{B i}, \vec{k}_{B i}\right)$: base frame 1
$\left(\dot{i}_{H i}, \dot{j}_{\mathrm{Hi}}, \dot{k}_{\mathrm{Hi}}\right):$ hand frame 1
The transformations G_{i} are constant because of the riyid body assumption. The transformations B_{i} are also constant as long as the bases of the arms are inertially fixed. The transformations L and H_{i}, being input and outputs of the motion trajectory generator of fig. 1, are changing in time.
III. 2 Derivation of Kinematic Equations

The kinematic equations depend on how the load is grasped by the hands. the general from of the grasping condition reads:

$$
\begin{equation*}
\underline{E}(t) \underline{G}_{i} \underline{R}_{i}=\underline{B}_{i} \underline{H}_{i}(t) ; \quad i=\overline{1, n} \tag{1}
\end{equation*}
$$

The transformation R_{i}, which closes the transformation graph of fig. 2, describes the relative position and orientation of hand and grapple interface in the grasped condition. Sometimes the contact between hand and grapple interface can be established in different ways, with different values of R. The choice may have important consequences for collision avoidance, but it doesn't make any difference for the considerations in this paper, where R can be treated as a constant, retaining the value it had upon closure of the hand.

Solving (1) for $H_{i}(t)$ we obtain a set of equations describing the coordinated desired motion trajectories in terms of homogeneous transformations:

$$
\begin{equation*}
\underline{H}_{i}(t)=\underline{B}_{i}^{-1} \underline{L}(t) \quad \underline{G}_{i} \underline{R}_{i} ; \quad i=\overline{1, n} \tag{2}
\end{equation*}
$$

The spatial relationship of hand and base of a manipulator can be specified more concisely by a vector of generalized coordinates

$$
\begin{equation*}
\underline{x}_{i}^{t}=\left(p_{1 i}, p_{2 i}, p_{3 i}, \psi_{i}, \theta_{i}, \phi_{i}\right) \tag{3}
\end{equation*}
$$

where p_{1}, p_{2}, p_{3} are the position coordinates, and $\psi, 0, \dot{*}$ three angles determining the orientation (pseudo-coordinates). With $\mathrm{X}_{\mathrm{L}}(\mathrm{t})$ denoting the desired trajectory of the load in generalized coordinates we can formally write

$$
\begin{equation*}
\underline{x}_{i}(t)=\underline{f}_{i}\left(\underline{x}_{L}(t)\right) ; \quad i=\overline{1, n} \tag{4}
\end{equation*}
$$

The bundle of functions f_{i} comprises (2) and the conversion from generalized coordinates to horojoneous transformations and vice versa. Ccncatenation of the n equations of (i) into one column vector yields

$$
\begin{equation*}
\underline{i}(t)={\underset{i=1}{n}\left(\underline{x}_{i}(t)\right)=\underline{f}\left(\underline{x}_{1}(t)\right), ~(t)}^{n} \tag{15}
\end{equation*}
$$

This is tie function to be inplemented in the notion irajector: senerator block of fig. 1.

iv. GEKERATION OF NOMINAL FORCE/TORQUE

 TRAUECTORIESfust as for tie motion we can calculate nomi-na- values for tine sorce/torque interaction of the cooperating robot arms with the payloac. The ncminal force/rorque to be applied tias two conponents required for the desired force/torque interaction between load and en\because romment, and for a seleration/deceleration of the loas, respectively. Chapter IV. 1 shows how the iatter corponent can be determined from known or estimated load drnamics.
Ciapters $I \because .2$ tiro:ion IV. 5 deal with force distribution, i.e. With the question how the required force, torque effort is to be shared by the robot arms.
IV. 1 Load Dynamics

With the notation introduced in fig. 3, and using the laws of rigid body dynamics, the equations of motion of the load read

$$
\begin{align*}
& \sum_{i=1}^{n} \underline{f}_{i}+\underline{f}_{e x t}=\dot{\underline{p}}_{c} \tag{6a}\\
& \sum_{i=1}^{n}\left[\underline{t}_{i}+\underline{x}\left(\underline{r}_{i}-\underline{r}_{c}\right) \cdot \underline{f}_{i}\right]+\underline{t}_{e x t}=\dot{1}_{c} \tag{6b}
\end{align*}
$$

Explanations:
$\underline{f}_{i}, \underline{t}_{i}$: force and torque vector applied to the load by arm i (line of action through the center of grapple frame i)
fext, text: external reaction force and torque vectors acting on the load (line of action through the center of mass c)
$\mathrm{P}_{\mathrm{C}}, \underline{1}_{C}$: linear and angular momentum of the load, both with respect to its center of mass
$\underline{r}_{i}, \underline{r}_{C}$: position vectors from the inertial reference frame to the grapple interfaces and to the load's center of mass

All vectors are expressed with respect to
the inertial reference frame. The "dot"
operator performs differentiation by time,
and the operator x builds up the skew-symmetric matrix
$\underline{x}(\underline{r})=\underline{x}\left(\left(r_{1}, r_{2}, r_{3}\right)^{t}\right)=\left(\begin{array}{ccc}0 & -r_{3} & r_{2} \\ r_{3} & 0 & -r_{1} \\ -r_{2} & r_{1} & 0\end{array}\right)$
which is used for the computation of the cross product when vectors are represented by the calculus of matrices:
$t=r \times f$
$\Leftrightarrow \quad \underline{t}=\underline{X}(\underline{r}) \cdot \underline{f}$
After arranging the forces \underline{f}_{i} and torques t_{i} in one column vector

$$
\left.\left.\underline{\phi}=\begin{array}{c}
n \tag{9}\\
\operatorname{col} \\
i=1
\end{array} \right\rvert\, \begin{array}{l}
\underline{f}_{i}
\end{array}\right\}
$$

we can re-write equations (6a,b) in the simple form

$$
\begin{equation*}
\underline{B}:=\underline{h} \tag{10}
\end{equation*}
$$

with $\underline{B}=\underset{\substack{n \\ i=1}}{n}\left(\underline{B}_{i}\right)$

$$
\begin{aligned}
& \underline{B}_{i}=\begin{array}{ll}
\underline{I}_{3} & \underline{Q}_{3 \times 3} \\
\underline{X}_{1}\left(\underline{r}_{i}-r_{c}\right) & \underline{I}_{3} \\
\underline{n}= & \dot{\underline{p}}_{\mathrm{C}}-\underline{E}_{\mathrm{ext}} \\
& \dot{\underline{i}}_{\mathrm{c}}-\underline{t}_{\text {ext }}
\end{array}
\end{aligned}
$$

(I): identity matrix, $\underline{0}$: null matrix)

The matrices \underline{B}_{i} are all of crier 6×6 and, consequently, $\frac{B}{}$ is a $6 \times 6 n$ matrix. It is easily seen thät

$$
\begin{aligned}
& \operatorname{rank}\left(\underline{B}_{i}\right)=6 ; \quad i=\overline{1, n} \\
& \operatorname{rank}(\underline{B})=6
\end{aligned}
$$

(11)
(10) is hence a system of 6 independent equations in the 6 n unknown elements of :-

In other words, the problem of moving a load with more than one arm is dynamically underdetermined. The open question is, how the effort h necessary to move the load is to be shared by the arms. We shall take this fact as a chance to optimize the operation.
IV. 2 Optimal Distribution of Generalized Forces

Let the optimal distribution of generalized forces among cooperating robot arms be governed by a quadratic cost function

$$
\begin{equation*}
c=\underline{\varphi}^{t} \underline{c} \underline{\varphi} \tag{12}
\end{equation*}
$$

The $6 n \times 6 n$ matrix of cost coefficients ("cost matrix") is assumed to be symmetric and strictly positive definite, and thus regular.

The force distribution problem can now be formulated as the following constrained optimization problem:

> Find the vector of generalized
> forces of that minimizes
> criterion (12) and fulfils the
> constraints (10)

This problem can be solved with the classical methods of constrained optimization.

Introducting the vector λ of Lagrangian multipliers we combine ($\overline{10}$) and (12) and obtain the Lagrangian function

$$
\begin{equation*}
\mathrm{L}=\underline{\Phi}^{\mathrm{t}} \underline{\mathrm{C}} \Phi+\underline{x}^{\mathrm{t}}[\underline{\mathrm{~B}} \Phi-\underline{\mathrm{h}}] \tag{14}
\end{equation*}
$$

The necessary conditions for a constrained local extremum are

$$
\left.\frac{\partial \mathrm{L}}{\partial \underline{\phi}}\right|_{\substack{\phi=\underline{\phi}^{*} \\ \underline{\lambda}=\underline{\lambda}^{*}}}=2 \underline{\mathrm{C}} \underline{\phi}^{*}+\underline{\mathrm{B}}^{t} \underline{\lambda}^{\star}=\underline{0} \quad(15 \mathrm{a})
$$

$$
\begin{equation*}
\left.\frac{\partial \mathrm{L}}{\lambda \lambda}\right|_{\substack{\dot{\phi}=\Phi^{\lambda} \\ \underline{\lambda}=\underline{\lambda}^{*}}}=\underline{\mathrm{B}} \underline{\Phi}^{*}-\underline{\mathrm{h}}=\underline{0} \tag{15b}
\end{equation*}
$$

This is a system of $6 n+6$ linear equations for the $6 n+6$ unknown elements of $\underline{\phi}^{*}$ and λ^{*}. Solving (15a) for ${\underset{\sim}{*}}^{\star}$

$$
\begin{equation*}
\dot{土}^{*}=-\frac{1}{2} \underline{C}^{-1} \underline{B}^{t}{A^{*}}^{*} \tag{16}
\end{equation*}
$$

and substituting this into (15b) yields

$$
\begin{equation*}
\underline{B} \underline{C}^{-1} \underline{B}^{\mathrm{t}}-^{*}+2 \underline{h}=\underline{0} \tag{17}
\end{equation*}
$$

It can be shown that, with C strictly positive definite and rank $(\underline{B})=\frac{\overline{6}}{}, \underline{B} \mathbb{C}^{-1} \underline{B}^{t^{2}}$ is regular:

$$
\begin{equation*}
\operatorname{rank}\left(\underline{B} \underline{C}^{-1} \underline{B}^{t}\right)=6 \tag{18}
\end{equation*}
$$

Therefore, (16) and (17) have one unique solution:

$$
\begin{equation*}
\underline{\Delta}^{*}=-2\left(\underline{B} \underline{C}^{-1} \underline{B}^{t}\right)^{-1} \cdot \underline{h} \tag{19a}
\end{equation*}
$$

$$
\begin{equation*}
\underline{S}^{*}=\underline{D} \underline{h} \text { with } \underline{D}=\underline{C}^{-1} \underline{B}^{t}\left(\underline{B} \underline{C}^{-1} \underline{B}^{t}\right)^{-1} \tag{19b}
\end{equation*}
$$

The $6 n \times 6$ matrix \underline{D} is called the optimal force cistribution matrix. An analysis of its rank shows

$$
\begin{equation*}
\operatorname{rank}(\underline{D})=\operatorname{rank}(\underline{B})=6 \tag{20}
\end{equation*}
$$

This follows from (19b) and the fact that both C^{-1} and ($B \underline{C}^{-1} B^{t}$) are regular.

Although conditions (15a,b) were only necessary for the existence of a local extremumi, it can be shown that : * is indeed the
global minimum of the constrained optimiation problem. This is the case because the cost function is positive definite and the constraints are linear.
IV. 3 Computational Simplification of the Optimal Force Distribution Law

It is generally not necessary to penalize cross terms containing products of generalized forces applied to the load by different arms. Hence we assume from here on that the cost matrix \underline{C} has block diagonal form

$$
\begin{equation*}
\underline{C}=\underset{i=1}{\operatorname{diag}}\left(\underline{C}_{i}\right) \tag{21}
\end{equation*}
$$

with 6×6 matrices C_{i} stating the cost of forces and torques applied by arm i. The total cost of (12) is now obtained by adding up the individual cost components

$$
\begin{align*}
c & =\sum_{i=1}^{n} \Phi_{i}^{t} \underline{c}_{i} \Phi_{i} \tag{22}\\
\Phi_{i}^{t} & =\left(\underline{f}_{i}^{t}, \underline{t}_{i}^{t}\right) ; \quad i=\overline{1, n}
\end{align*}
$$

Using (21) we can reduce the number of operations required to calculate the force distribution matrix D :

$\left.\underline{B} C^{-1} \underline{B}^{t}=\underset{i=1}{n} \operatorname{row}_{i}\right) \cdot \underset{i=1}{\operatorname{Col}}\left(C_{i}^{-1} \underline{B}_{i}^{t}\right)=\sum_{i=1}^{n} \underline{B}_{i} C_{i}^{-1} \underline{B}_{i}^{t}$
$\Rightarrow \underline{D}=\operatorname{col}_{i=1}^{n}\left(C_{i}^{-1} \underline{B}_{i}^{t}\right)\left(\sum_{i=1}^{n} B_{i} C_{i}^{-1} B_{i}^{t}\right)^{-1}$
Splitting \underline{D} into 6×6 matrices \underline{D}_{i} according

$$
\begin{equation*}
\underline{D}=\underset{\substack{n \\ i=1}}{n}\left(\underline{D}_{i}\right) \tag{24a}
\end{equation*}
$$

puts the result into a slightly different from:

$$
\underline{D}_{i}=\underline{C}_{i}^{-1} \underline{B}_{i}^{t}\left(\sum_{j=1}^{n} \underline{B}_{j} \underline{C}_{j}^{-1} B_{j}^{t}\right)^{-1} ; \overline{i=1, n} \quad \text { (24b) }
$$

\underline{D}_{i} assigns a portion of the total forces and torques to be exerted on the load to arm number i:

$$
\begin{equation*}
{\underset{i}{i}}=\underline{D}_{i} \underline{h} ; \overline{i=1, n} \tag{24c}
\end{equation*}
$$

The advantage of (24b) over (19b) is twofold: There are fewer computations, and on a multiprocessor system the n equations of (24b) can be evaluated in parallel.
IV. 4 Some Features of the Optimal Force Distribution Law

1) From (19b) we can draw the important conclusion that the nominal forces and torques are all zero in the absence of accelerations and external forces and accelerations and external forces and
torques on the load. This means that the torques on the load. This means that the
forces distribution law eliminates all forces distribution law eliminates a
static internal forces in the load.
2) It further follows from (19b) that the optimal force vector \underline{f}^{*} is always contained in a six-dimensional subspace $\mathrm{S}^{+}=\mathrm{R}^{6 \mathrm{n}}$. This subspace will be referred to as the space of co-active forces. It is spanned by the six columns of the force distribution matrix D. Co-active force vectors $\underline{\mathrm{f}} \mathrm{S}^{+}$will be marked $\underline{\mathrm{f}}^{+}$.
3) The orthogonal complement of S^{+}is called the space of counter-active
forces $S^{--} R^{6 \mathrm{n}}$. Measured counter-active force vectors $\underline{\mathrm{f}} \times \mathrm{S}^{-}$will be marked $\underline{\mathrm{f}}^{-}$. accordingly.
4) It is interesting to analyze the relation between the spaces of co-active and counter-active forces, and the space S_{r} which is spanned by the rigid body motion modes of the system, i.e. the admissible combinations of arm motions under the constraints imposed by the interconnection via a rigid load, which is free to move in all six degrees of freedom. It can be shown that the rigid body motion modes of the system rigid body motion modes of the system
are given by the columns of the matrix are given by the columns of the matrix
Bt^{t}. On the other hand, we can see from B^{t}. On the other hand, we can see from
$(19 b)$ that $\underline{C}^{-1} \cdot \underline{B}^{t}$ spans the same space as D, which means that its columns may be used as an alternative basis of the space of co-active forces. In the special case of C being a multiple of the identity matrix, the space of co-active forces will coincide with the space of admissible rigid body motions:

$$
\begin{equation*}
\underline{C}=a \cdot \underline{I}(a=0) \cdot S^{+}=S_{r} \tag{25}
\end{equation*}
$$

In general, S^{+}and S_{r} are different, but never orthogonal, because it follows from (19b) that $B \frac{D}{B}=\underline{I}$, i.e. \underline{D} is a pseudo-inverse of $\frac{\bar{B}}{B}$.
5) The optimization criterion (12) can be formulated in coordinate frames other than the inertial reference frame, i.e. costs can be assigned to force components along the axes of some other coordinate frame. An obvious possibility would be the load frame. It is also possible to specify the cost of forces/torques exerted by each arm in the respective robot base frames. The resulting force distribution will be different in each case, but it is always possible to transform the problem back to the inertial space so that the force distribution law retains the same form and everything said about it remains valid.
6) It is sometimes opportune to transform the force distribution law to another coordinate system, where the calculation of the force distribution matrix may become much simpler. This is the case, for example, when both the cost function and the force distribution law are formulated in load coordinates.

Example:

The following example of optimal force distribution in a very simple manipulation task will help to visualize the relations discussed in points $2-4$ above. The task is illustrated by fig. 4 a :
A total force h parallel to the X -axis has to be applied to a rigid body. The task is shared by two ideal effectors capable to exert forces f_{1} and f_{2} along the X -axis.

In this case the constraints (10) read

$$
\begin{aligned}
&(1,1) \begin{array}{c}
f_{1} \\
f_{2}
\end{array}=i: \\
& \underline{f_{2}}=(1,1) \\
&\left(f_{1}, f_{2}\right)^{t}
\end{aligned}
$$

we choose a cost matrix

$$
\underline{C}=\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}
$$

and caiculate the force distribution matrix according to (19b):
$\underline{D}=\begin{array}{ccccccc}1 & 0 & 1 & (1,1) & 1 & 0 & -1 \\ 0 & 0.5 & 1 & & 0 & 0.5 & 1\end{array}$
$\underline{D}=\binom{1}{0.5} \cdot(1.5)^{-1}=\frac{1}{3}\binom{2}{1}$
The only rigid motion mode of the system is
$v_{1}=v_{2}=v \rightarrow \underline{v}=\binom{1}{1} v=\underline{B}^{t} \underline{v}$
with V : velocity of the load v_{1} : velocity of effector 1
v_{2} : velocity of effector 2
Fig. 4b shows the subspaces $\mathrm{S}^{+}, \mathrm{S}^{-}$and S_{r} for this case, and the splitting up of a^{r} measured force vector f into co-active and counter-active components.

IV. 5 The General Linear Force Distribution Law

It is not necessary to view the force dis tribution law (19b) as the result of an optimal approach. If we had just postulated a linear force distribution law, we could have written down the first part of equation (19b) right away, with the force distribution matrix D free, but subject to the constraint constituted by the equations of motion of the load (10):
$\underline{B} \Phi=\underline{B} \underline{D} \underline{h} \stackrel{!}{=} \underline{h}$ for arbitrary \underline{h}
(26)
$\Rightarrow \underline{B} \underline{D}=\underline{I}$
This constraint is difficult to fulfil, however, if D is to be specified directly (Remember that B was defined in (10) as a function of $\underline{r}_{i}=\underline{r}_{c}$. It varies, therefore with the orientation of the load, except if the force distribution law is specified in load coordinates, in which case the transformation of the constraint (26) to the same coordinate system yields $\underline{L}_{\underline{B}} \cdot L_{\underline{D}}=I$, with constant \mathcal{L}_{B}.) The optimal $\bar{a} p p \bar{r} o a c \bar{h}$, ' on the other hand, has the advantage that the constraint (26) is fulfilled automatically constraint the force distribution matrix calculated by the force distribution ma

We have not studied non-linear force distribution laws, as we think they are too diffibution laws, as we think they are too dif
cult to handle analytically and therefore not suitable for our purposes.

V. SUMMARY OF THE ACTIVE COMPLIANCE SCHEME

The active compliance law that we propose for cooperating manipulator arms distinquishes internal compliance and external compliance. The role of internal compliance is to nullify any counter-active forces exchanged between the arms. It has no effect on the contact between load and environment. External on the other hand, is External compliance, used to be specified separately and then unified.

The external compliance law is formulated in terms of linear and angular velocities of the load, and of generalized contact forces with the environment, just as if there were only one manipulator arm involved. It is a direct application of Mason's method $/ 6 /$, which doesn't need further discussions here.

The internal compliance law is formulated in terms of the combined terminal force/ torque and generalized velocity vectors of the n arms. In the ideal domain*, the artificial constraints read:

[^0]\[

$$
\begin{equation*}
\underline{A}^{t} \underline{\underline{t}}=\underline{0} \tag{27}
\end{equation*}
$$

\]

where the matrix A forms a basis of S^{-}, the space of counter-ăctive forces. The orthogonality of S^{-}and S^{+}(for which the force distribution matrix \underline{D} forms a basis) yields

$$
\begin{equation*}
\underline{D}^{t} \quad \underline{A}=\underline{O} \tag{28}
\end{equation*}
$$

Equations (27) and (28) show that the force distribution law determines the characteristic directions for the internal compliance
law. These two functions are therefore very closely interrelated in our control approach for cooperating robot arms.

A unified compliance law is obtained by transformation of the external compliance law from load level to the level of the n ideal effectors. It can be shown that the combined internal and external, natural and artificial constraints are consistent and non-singular, which means that the task is fully and unambiguously specified in the ideal domain.

Our opinion concerning the realization of the active compliance scheme is, that the only methods having some practical importance at present are those sketched by Mason in $/ 6 /:$ the generalized spring and the generalized damper method, or a combination of the two. Other implementation methods may become feasible in the near future, however.

The mathematical relations describing the generalized spring and generalized damper methods for manipulator arms with position or rate servo may be inverted, for example, and applied to force-servoed arms. The best performance would probably be obtained with arm control systems implementing an adjustable end-effector compliance behaviour on the joint control level.
VI. CONCLUSIONS

Our study of the problems of inter-arm coordination in cooperative manipulator tasks has yielded a generic theory of coordinated motion planning and inter-arm distribution of generalized forces. This theory has been shown to be applicable as a basis for automatic control of multi-armed robots. Its strength lies in the fact that it is entirely formulated in the cartesian task space and hence, in principle, applicable to any combination of different manipulator arms, independently of their particular kinematic structures. This means, on the other hand, that quite a high computational burden for kinematic transformations is placed on the individual arm controllers. The performance requirements concerning dynamic accuracy are also very high (at least for high speeds of motion), so that the application of the control method will lie some way in the future. We are presently preparing a low-speed implementation of the control method for two laboratory arms in order to give a first demonstration of its capabilities.
/4. T. 1slida: Fores Control in Coorcination of Two krns. Proc. 5til Int. Joint cont. on ir: fifteal Intullisence, R17, Boston,
/5/ D.E. cria, \because. Ci.: a Nathematical hpproach to the prodicm of Force Distribation in Locenation and Manipulation Sys:uns co:taini:\% Closud Finomatic 2£ Fobets and wanigulators, and practice Sep podets and \%anigulators, Coine (italy), ※... Kasco: Condiance and Forco contro: omater Controlluc Mamipulators. K. Pan1: *anfulator Cartesian fath Controi. $\frac{1}{2}$ Trans. on S\%stens, han and

Fig. 3: Forces and torques acting upon the load and resulting changes in linear and angular momentum

Fiq. 4:
a) Example of onedimensional task to be snared by two effectors
b) Characteristic directions in the $f_{1}-f_{2}$ plane

Fig. 1: Generic control hierarchy for multi-armed robots

Fig. 2: Task geometry: Coorcinate frames and transformations

[^0]: *The notion of the "ideal domain" has been introduced by Mason in $/ 6 /$.

