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Abstract. The paper descr.ibes an appl i cation of a robust controller design method for 
calculating the parameters of a contro l ler for a multi variable hard- coal preparation 
process. The parameters are optimized via a sequential design method in the frequency 
domain, being based on a combination of the Horowitz/Sidi design (1972) , Mayne ' s ( 1973) 
sequential des ign and Steinhauser/Kreisselmei er ' s (1979) vector performance criterion 
method. The design was carried out using a relatively sophisticated CAD-program . The 
paper shows how the parameters are calculated with this CAD-method and discusses the 
simulated control results. The simulation is compared with the measured results at the 
plant after implementation of the designed con}roller on a process computer AEG 80/30 
with a real time software control package ARS I . 

Keywords. Multivariable robust controller design , parameter uncertainty , vector per­
formance criterion , CAD. 

I. INTRODUCTION 

The plant at hand is g i ven by two coal bunkers in a 
coal preparation process, which follows the under­
ground oper ation of a coal mine. In order to re -
duce the production changes in crude coa l the bunkers 
are used t o keep an uniform coal flow. The investi­
gated part of the whole plant is ske t ched in fig. 1. 

bunker' 

actuator' 

amo , 

Fig. 1 . Sketch of the process 
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conveyor 

The control task considered here is complicated by 
some special effects of the dynamic plant behav­
iour; such as 

i. The bunkers input mass flows are not meas ­
ured . 

ii . The bunker vo lume is small compared with 
the mass flow . 

iii. The measurement of the coal level i n the 
bunkers is strongly d i sturbed (up t o 50%) 
by several effects. 

* ARSI is a trademark of AEG 
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iv. 

v . 

The actuators behaviour depends on the grain 
size , the coal surface moisture and the raw 
coal level in the bunkers· 

The output mass flow measurement has a con­
siderable delay time compared to the re­
maining dynamic parameters . 

The system can be denoted as multivariable , non­
linear and parameter uncertain. Potential solutions 
of such a control prob l em may be given by the use 
of adaptive algorithm and the robust controller 
design. As the bunker behaviour sometimes results 
in abruptly changing parameters adaptive control 
must be excluded as a control alternative: 

self adaptive control canno t provide an accept­
able system performanc~. 

gain scheduling needs switching conditions which 
cannot be derived from ava ilable measurements. 

That is why a robust contro l structure based on a 
sys t emat i c robust multivariable design method has 
been chosen. 

11 . THE MATHEMATICAL DESCR IPTION OF THE PROCESS 
AND BAS I C CONTROL REQUlREI-1ENTS 

The mathematical description of the process behav­
iour in general can be given by a non-l inear dif ­
ferential equation 

x = !(~,:o:.,~, ~) ( 1) 

with U E R 
n 

U input vector 

Y E Rny output vector 

X E RnX state space vector 

P E Rnp parameter vector 

where P represents possible changes in system para ­
meters-e.g. P the specific gravity of the raw coal. 

Defining the workspace of the system by 

W: = {X/X S X $ X } 
- -lb - :.:wo 

lb: lower bound 
ub: upper bound 

( 2) 
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one can assume that the system can be represented 
in the workspace W by a set of linearized system 
equations. They can also be noted as transfer func ­
tions with varying parameters ~ 

P(s,a) :={P(s,a)/P(s , a .. )=L{S } xj.w pi.Rnp (3) 

with 

- - --:l.J '-J 

L{} 

S . . 
'-J 

j=1. .. k ; i=1. .. l} 

the Laplace operator 

the linearized system equations in state 
space representation at the operating 
pOint ~j and the parameter set Ei 

P(s,~) the transfer function or transfer 

~ij 

function matrix of the linearized 
system in the workspace W 

vector of parameters of the transfer 
function 

The scalar k is the number of different fixed para­
meter set points ~j , and its choice depends on the 
admissible error • between the real non-l inear plant 
and the linearized one . 

The plant as shown in fig . I has an '-nput vector U 
containing the actuator set pOints U

I
' U

2 
and the un-

o mi mi 
measureable '-nput mass flows Q

l 
, Q2 . The output 

vector ~ contains the elements Qmo the measured 
output mass flow and the coal level of each bunker 

HI and H2. The differential equations describing 
the process behaviour are 

(4) 

with ~ j and ~j as non- linear functions of H
j 

the 

coal level, a
j 

the grain size and Y
j 

the 

surface moisture of the raw coal. 

Fig . 2 shows the bar chart of the linearized pro­
cess model with the above mentioned input/output 
parameters. 

,,~j 
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Fig. 2 . Linearized process model 

The transfer functions Pi are given by 

p. (s , a) 
'- -

A 
K. 

'-
I+T.s = u. 

1 1 

i=I,2 

I' h
i

_
2 

p. (s,a) '- i= 3 , 4 
'- - s 6qi_2 

- T ~s 
Ps (s) = e TI~2=TT (5) 

The varying parameters a of the model are summa­
rized as : 

K. 
'-

T. 
'-

K. 
'-

with 

i= I, 2 

i=3,4 

parameter depending on different 
linearization points 

(6) 

In particular the parameter A. represents the chang­
ing of the bunkers cross sectIons depend i ng on the 
coal level i n the bunkers . The parameter p. des­
cribes the varying specific gravity of the '-bunkers 
contents . Due t o coal level , grain size and coal A 
surface moisture the actuator parameters KA and T. 
change. The va r iation limits of the above iliention~d 
parameters were measured (KA,A'-) or es timated (TA , 
p.) . They are listed in the'-following table: '-

'-

20 ,; KA 
I 

,; 33 [t/hV] 

23 ,; KA 
2 

,; 36 [ t / hV] 

5.36 ,; A. ,; 24 . 97 
2 

m ] with 1.5';h.';4 . 8[m] 
'- '-

The model in fig. 2 represents the actuator and 
bunker behaviour . In our practical application we 
have two sensors for measuring the coal level in 
the bunkers . Due to a lot of effects we ge t un ­
certainties in the sensor signals . One can observe 
errors up to 50% . A controller design has to take 
these effects into consideration. Therefore the 
model in fig. 2 has to be extended by a sensoring 
part . The complete model including the disturbance 
inputs d

i 
and the filters F is shown i n f i g. 3 . 

u, 

Fig. 3 . Linearized process model including 
measurement units 

The basic requirements for the design are: 

q'"O 

i. A nearly constant mass flow qmo shoul d be 
reached , because the process units following 
the bunkers work in a much better way when the 
mass flow is constant over a time interval! 
which is as long as possible . 

ii. The control loop should work in such a way 
that the measurement disturbancies of all the 
hi - values do not affect the mass flow qmo. 
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iii. The control loop should prevent an overflow of 
the bunkers. 

iv . The bunkers should not become empty . 

Ill . STRUCTURE OF THE MULTIVARIABLE CONTROL LOOP 

The variabl es w~iCh~could be used for feedback are 
the coal level hI' h2 and the output mass flow . The 
actuator set pOin t s are ul and u2 . In a preanalysis 
some controller structures using the above mentioned 
input/output variables had been tested and compared 
on the real process. As a result of the preanalysis 
we chose the structure which is depicted in fig. 4. 

Fig . 4. Control structure 

The control structure contains PI · algorithms as suf­
ficient in most applications in process industries. 
The measured difference of fil and ~2 is one of the 
contro lled variables. The o ther two are given by qmo 
and the average coal level h which is controlled via 
a so called master loop. The 6~-loop comes into con ­
sideration because both bunker volumes should be used 
symmetrically. The qmo _ loop controlls the main vari­
able qmo in order to produce a nearly constant mass 
flow. However, the output mass flow must be connected 
wi t h the input mass flows otherwise the bunkers might 
become e mpty or full. Therefore a third control loop 
has to be designed. This master regulator which is 
not considered in this paper sets the commanded out­
put mass flow. However, to fulfill the controll demards 
o ne has to desig~ the multivariable inner loop in or­
der to con trol 6 n and qmo in a robust way at first. 
The required multivariable design was carried out by 
a CAD method desc ribed in section IV . 

IV. ROBU ST MULTIVARIABLE DESIGN METHOD 

The plant description indicates that the appl ied de ­
sign method must allow to deal with the following 
restrictions: 

i . The plant is multivariable and parameter uncermin. 

ii . One loop contains a considerable delay time com­
pared to the r emaining dynamic parameters. 

iii . The process has very strong limitations for the 
actuator signal range. 

In order to handle the multivariable aspects we used 
the sequential design method proposed by Mayne ( 1973) . 
As in most multivariable design methods using the fre ­
quency domain the m- input , m-output multivariable sy­
stem is split down by this method into m- single input/ 
single output systems fo r design . Frequently used and 
well-known design procedures can now be applied for 
the SISO design. To handle the parameter variations 
and especially to guarantee stability in spite of them 
the quantitative design method proposed by Horowitz / 
Sidi (1972) f o r SISO systems is combined with Mayne ' s 
method , as suggested by Shaked/MacFar lane ( 1977) . For 
the iii-th design restriction and a comf ortable wayof 
work with the Ho rowitz /S idi method (Graser , Nedder­
meyer, Tolle 1982) a vector performace criterion in 
analogy to the Kreisselmeier/Steinhauser ' s (1979) de ­
sign me thod was defined and optimized. 

The whole procedure which makes use of sequentiell 
deSign, robus t design and a vector performance cri ­
terion can only work in a computer aided way. 

The following sections introduce to Mayne ' s method 
(IV.l) and the robust design very briefly . The use 
of the vector performance criterion and the CAD 
package which were discussed already by Graser, 
Neddermeyer, Tolle (1982) will be explained in 
sect i on IV.2 and IV.3. 

Iv . l MULTIVARIABLE DESIGN PROCESS 

The structure of the considered control loop with 
two degrees of freedom is shown in fig. 5 . 

Fig. 5. Multivariable control loop 

In our special appl i cation a one degree of freedom 
structure is sufficient because a prescribed distur­
bance behaviour is required only. According to Mayn e 
an additional input vector G is used for the deriva­
tion of the equations (see fig. 5) . The dynamic be­
haviour of the closed contro l loop depending on the 
two inputs is given by 

~ 

"i. TV w with (7) 

~ ~ ~) - 1 T (I + S R 

1.= T e with (8) 

T (:!. + ~~ 
- 1 

S. 

For the sequentia l design in connection with a 000 -

diagonal dominant MIMO sys tem, the i-th design step 
depends on all the controllers determined previous­
ly and it is necessary to mark the different trans­
fer function matrices with a superscript . According 
t o Mayne , the follow i ng notation is used 

SO( s) S(s) , RO(s) =0 , Rm(s) ~(s) 

~q(S) ~6q) - 1 .~= (!.+-~~q>l~ 
( I + S(s) Rq (S» 

diag (r 11 ' .. . , rqq , 0 . . . 0) (9) 

In general , after closing the q-th control loop we 
find f or the e l ements of the system transfer matrix 

sq-l+R (sq-l Sq - l_s q-l Sq - l ) 
ab qq qq ab aq qb 

.5 
q 

Oq denotes the characteristic 
SISO - control loop. 

o = 1 + Sq-l R 
q qq qq 

(10) 

equation of the q - th -

( 11) 

For the sequential method, there are only m stable 
controller designs necessary for S4ql; q = 1 , 2 ... m 
and all methods used for SISO design can be taken 
for that . 

IV.l.l ROBUST CONTROLLER DESIGN 

The Horowitz/Sidi design method is based upon t~r 
plant transfer function of the process (here sq 
(s, ~» and the Nichols chart for con t roller qq 
design . 
Fo r 5150 systems the Horowitz/5idi - design is no rmal­
ly divided into three design a r eas according to gro­
wing frequencies. 
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In area one, high accuracy and small effects of the 
parameter variations are demanded. The relative sen­
sitivity of the closed loop compared with the one of 
the open loop has to be less than one. For control 
systems with an excess e ~ 2 of poles over zeros the 
Bodeintegral 

J log [E(jw) [ dw o ( 12) 

o 

is valid. As a consequence [E [ can not be less than 
one over the whole range of frequencies. So in the 
second design area [E[ can only be limited to an mag­
nitude 1 $ [E[ $ y. In area three, the controller 
gain is very small and the sensitivity of open and 
closed loop are almost the same [E[ ~ 1. For quanti­
tative design of SISO-systems within area one, the 
sensitivity of the closed loop 

o $; W S w 
w 

( 13) 

is limited. In area two, limits for the sensitivity 

[Eqq(jW) I $ Y1 
(14) 

or of the maximum peak of 

( 15) 

with Y1 ' Y2 < 1 are given, respectively, guaranteeing 
in this way also stability in spite of parameter va­
riations. With the Nichols chart and parameter areas 
for different values s = jWi; i = 1 ... n of the trans­
fer function sq-1 (jw,a), Horowitz/Sidi transforms the 
requirements a~qformulated in Eq. 13, 14 or Eq. 13, 
15 into boundaries for the nominal open loop 

Lqq(jW, ~) = Rqq(jW) S~~l(jW' ~) 
frequency response. 

For the design of a multivariable control system two 
problems have to be distinguished: 

- robustness of the stability under the presence 
of parameter variations, 

- quantitative design. 

The first case demands stability of the characteri­
stic equations of the m-SISO-systems sequentially 
designed. A SISO-system is stable for all parameter 
sets ~ when the open loop nominal frequency respon­
se plot does not penetrate into the closed curves 
(boundaries in the Nichols chart) which are derived 
from Eq. 14 or Eq. 15. Additionally the Nyquist 
criterion has to be fulfilled. 

For quantitative design of the multivariable system 
the sensitivity I~ Tqq(jW, ~) [ should be limited 
within the frequency range 0 $ W $ ww ' In the SISO­
case one holds the design requirements Eg. 13 exact­
ly if the controller brings the magnitude of the no­
minal open loop on the boundaries (Horowitz 1973) in 
the Nichols chart. For the multivariable case these 
relations are not easy to describe. In the sequen­
tial design method the q-th design step may also in­
fluence all t::a:1sfer functions designed previously 

sq + sq-l; a < q. 
aa aa 

Up to now, it is not possible to formulate an exact 
interrelation between the design requirements Eq. 13 
and the sequential design steps. Only for the last 
row of the transfer function matrix T (s) a direct cor­
relation can be derived (Graser, Tolle 1982). But due 
to the relatively high gains normally used in region 
1, the already designed closed loops are very often 
changed only marginally by closing additional loops 
so that one can live with this design method in ge­
neral also in the multivariable case. 

IV.2 OPTIMIZATION OF A VECTOR PERFORMANCE CRITERION 

Section IV.1 reduces the multivariable robust design 
problem to the following task: Find a regulator which 
holds the boundaries for the nominal open loop fre­
quency responses. 

A most convenient way to find the denominator and 
nominater parameters £ of Rqq(S, £) is to make use 
of a vector performance criterion ~(£) which was 
very succesfully applied bei G. Kreisselmeier and 
R. Steinhauser (1979, 1984) for some other problems. 
Therefore the constraints for Lqq(jW, ~, ~ and/or 
the controller have been formulated as such a vec­
tor performance criterion ~(£) . The robust design 
requirements derived from the boundaries in the 
Nichols chart are normally representable by the fol­
lowing six elements of the vector criterion: 

g4 (~: 

g5(~ : 

g6 (£): 

Sum of the deviations of the frequency 
response points Lqq(jWi' ~) from the 
boundaries Bi to higher gains; 

Sum of the deviations of the frequency 
response points L(jwi' ~) from the 
boundaries Bi to lower gains; 

Component resulting from the violation 
of the high frequency boundaries; 

Gain of the controller (jw ~ 0) ; 
00 

High frequency gain K of the controller; 

Stability of the controller. 

In a practical application one has not only require­
ments which can be easily represented by the fre­
quency domain methods. Such demands are time domain 
spezifications as noted under section IV (strong 
limits for the actuator signal range) . 

With the reduction of the design problem to an op­
timization of a vector performance criterion such 
constraints can easily be considered by defining 
additional vector elements. In our practical appli­
cation such elements can be given by 

TE 
r 

g6+i = ) (y(t'~i) - Ymax) 2 dt 

o 

i 

IV.2.1 OPTIMIZATION TECHNIQUE 

1,2 ... n. (16) 

As the above performance vector elements indicates 
each design aspect is to be rated quantitatively 
by means of a suitable positive design criterion in 
such a way, that reducing the value of a criterion 
always means improvement of a corresponding design 
aspect. In a second step the design is achieved 
iteratively as follows. In the y-th design step a 
target vector ~y is chosen within the range given 
by 

~ (£y-1) < ~y < c y - 1 (17) 

Here £y-1 denotes the controller poles and zeros 
which resulted from the previous design step, and 
cy-1 denotes the associated target vector. In the 
~ove choice of ~y, it is advisable to take cj=cj-1 
for those design criteria, which have been made suf­
ficiently small in earlier design steps, whereas 
c{=gi(£y-1) may be chosen for design criteria, which 
are to be reduced in value further. This determines 
the direction in which the design proceeds. Then £y 
is defined as the solution of a scalar optimization 
problem 

min 

£ 

1 L 
{- l3 ln L 

i=l 
exp(Bg. (r)/cY) I. 

1 - 1 

Using the definition 

a(£): = max (g. (r)/cY) 
lSi$L ~ - 1 

(18) 

(19) 

the optimization problem can be rewritten in the 
form 

min 

£ 

1 L gi (~ 
{a(£) +l3ln L exp[[3(-c-.-- a (£)) ] } 

i=l 1 

(20) 
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and the minimization is essentially reduced to the mi­
nimization of the value of a(r) .With Eq . 19 we have 

gi (E.) ,;; a (E.) .cr i = 1, 2. -:-.L (21) 

that means minimizing a (E.) i s the same task as redu­
c ing the value of all design c riteria simultaneous­
ly . I n the program package described below the op­
timization task is real i zed with the Hook - Jeeves 
method . 

IV. 3 CAD PACKAGE 

The program package used here is written in FORTRAN 
77 as a multitasking dialog system which runs on a 
VAX 11/780 . Some detailed program descriptions are 
given by Ersu , Neddermeyer , Tews ( 19 83) . However , 
the global structure is shown in fig. 6 . 

1
~~UltiVariable 
design method 
(4,1) 

1 

q-th 
design 
step 

I 
Robust Single'l 
loop des ign 
(4, I , 1l 

I
T ime doma in 
requirements 
(4,2) 

closing 
the q- th 
lo op 

I Optimization of a vecto r 
per formance cr i ter ion (4.2) 

! f 
rG'raPhi cal inspection I (Nichols c ha rt. step responses) 

Fig. 6 . Global software structur e 

I 

J 

J 
On the higest level we have the multivariable 
frequency domain design and time domain requirements 
for the multivariable system. As shown in I V. 1 and 
IV . 2 the mul t ivariable design problem reduces to m­
single loop des ign s which are carried out by an op­
timizatio n of a vec t o r performance criterion. During 
this process a grafical output supports the use r 
choosing the target vectors for the optimiza t ion 
and f or inspec tion of the design results. 

V. APPLICATION OF THE INTERACT I VE COMPUTER AIDED 
CONTROLLER DESIGN 

At first the plant i s rewritten in a P-kanonical 
system representation . Fig. 7 shows the input/out­
put variables and the location of the transfer func ­
tions 5, ,(s , a) . 

1J 21 

Fig . 7. P-kanonical plant model 

They are given by 

Sll (s ,~) Ps (s) (P 1 (s ,~) + P
2 
(s , ~» 

5
12 

(s , ~) Ps (5) (P
1 
(s , ~) - P 2(s , ~» (22) 

S21 (s,~) F (s) (P
3 
(s , ~)P1 (s , ~) - P4 (s , ~)P2(s , ~» 

S22(s , ~) F (s) (P 3 ( s,~) P 1 ( s,~) +P 4 (s , ~) P2 (s , ~) ) 

Fig. 8 contains the corresponding Bode plots of the 
parameter uncertain transfer functions Si j 

;r : ::::--- ::: :1 
: ( 

I 

~ i 5(1,11 

10'1 10' IU o 

~~----------- "',----------
o 

SI2.11 SI221 

Fig . 8 . Bode p l ots o f the uncontrolled plant 

The design requireme nts f or the MIMO problem can be 
sununarized as : 

i. 16T (jw , a) I as small as possible for O';;W';;W
W qq -

IT (jW ,a ) 1 ,;; 2dB v~, w 
qq -

ii. 

iii . The overshooting o f t h e step response o f the 

qmo_ loop should be limited t o 10% . 

iv. An abrupt measurement disturbance of t he coal 
level (0 . 5 m is a t yp i cal value) should not 
disturbe the bunkers output mass flow . 

For the f irst item i. it makes no sense to require 
absolute bounds on 16T I . Due to the non-minimum 
phase behavi our of the plant the bandwidth and as 
a consequence the realizeabl e robustness are limit ­
ed. However , the Horowitz/Sidi- boundaries for the 
firs t open loop R11 (S ,E.) S~ l (s ,~) are noted in 
fig. 9 . 

~ 
~~--~--~-+~~~~~~ 

- 3600 -1800 00 

Fig. 9 . Nichols chart of the nominal o p en l oop 
frequency response 

The chosen vector performance index contains the 
terms g .. . g menti oned under IV . 2 and the time do­
main re~uire~ents 

i=l, 2 ... n (23) 

The optimized nominal open loop (see fig. 9) does 
not penetrate the c l osed boundaries and frequency 
point 11 (w=0.6 [l / min) is on a line of constant 
16Ti with 16TI=2 .7dB. Additionally in fig . 12d the 
response of a qmo set po in t step for the lineari­
zation point L1 is shown . The qmo - trajectory ful­
fil ls the overshooting restriction. 

The controller parameters are computed as 

1 
R11 (s) = 0 .2 281 1+ 11.451 (24) 

With this regulator we o btain fo r the fr equency re ­
sponse of the first closed loop ~i 1=S ;lR1 1 the Bode 
plot noted i n fig. 10. 

~ r------------------------' 

:c I ---,,- ' ---

"'1 
Fig. 10 . Bode plot of T11 

1(, ' 1/"'; ,"" le: 

The frequency plot of S~2 with the boundaries ac ­
cording to item (ii . ) and the frequency plo t of 

the nominal open l oop R22 ( s'E.)S12(s,~) are not 
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shown, since they are in principle similar to fig . 9. 
The second regulator was optimzied with the vector 
performance criterion containing gl" .g6 and 

T 
E mo 2 

g6+i;! (qmo(t ' ~i) -wq ) dt 
o 

mo 
v t with w

q 
const . i=l, 2 . .. n 

The resulting regulator parameters are 

Fig. 13d shows a simulated disturbance of 0.5 m at 
the linearized plant (L

2
). One can see that the 

output mass flow is not disturbed. 

In fi9' 11 the frequency response of the closed 
1 1'2 - 2 . . oop 22-S22R22 1S g1ven. 

10- 2 10-1 100 
'\,2 

Fig. 11 . Bode plot of T22 
lImin 

The coupl i ngs are not ~p.ry .strong . That is why th~ 
frequency response of Tll 1S nearly the same as 1<lr 
Due to that it is not sAown again here. The opti­
mi zed controller parameters have been tested at the 
real plant. The results are given below . 

VI. REALIZED CONTROL LOOP 

The here interesting units of the hard coal pre­
paration plant at hand are controlled by a AEG 80-
30 process computer system. 

The application software used for the realization 
of the feedback control is ARSI80 and AS80 for the 
logic/sequence control. Both systems provide oper­
ating procedures to run the plant automatically 
from start up to normal operation and to manage 
emergency and shutdown operations . Custom tailoring 
of the modular program packages has been made main­
ly off- line while necessary modifications of con­
trol structures could be done during on- line oper­
ation. 

The control structure and the contro l algorithm 
has been real ized in a quasi continuous way. 

Fig. 12,13, 14 show the simulation results together 
with the 

6V tOV 320t/h 360t/h 2 m 3201/h 360t/h 

a b c d 
Fig. 12 . Step response of the ~mo_loop 

Fig. 12 compares the simulated to the real step 
responses of the qmo loop . 

Fig. 13. Disturbance response (0.5 m) 

Fig. 14. Disturbance response (0 . 9 m) 

Fig . 13 and 14 show the influence of the disturbed 
coal level measurement. Looking at the measured and 
simulated trajectories one finds that they are very 
similar. 

In a more general way one can say that the control­
ler fulfills the design requirements in the simu­
lation as well as on the real plant. 

VII. CONCLUSIONS 

The paper describes a multivariable , robust design 
process. The design was carried out with an inter­
active CAD- system. The optimized controller para­
meters are applied to the real process . The process 
behaviour fulfills the required system performance 
in an impressive way. 
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