Copyright © IFAC Microcomputer
Application in Process Control. Istnbul

Turkey, 1986

MULTI-MICROCOMPUTER ROBOT CONTROL
SYSTEM USING A SPECIAL ROBOT-
ARITHMETIC-PROCESSOR FOR ADVANCED
APPLICATIONS OF ROBOT MANIPULATORS

K. Rathgeber and M. Schnell

Section Control Systems Theory, Institute of Control Engineering.
Techwical University of Darmstadt, Sehlossgraben 1, D-6100 Darmstadt.
Federal Republic of Germany

Abstract. The performance of complex and advanced applications of industrial
robots requires large computational power. The control system presented in this
paper 15 designed as a multi-microcomputer system. The main purpose of this
system 1s toc create a pleasant environment for present and further studies 1in
robotic research.

The Advanced Robot Control System (ARC) uses multiple microcomputers based on
1APX B08B4L processors. A local bus of each processer allows additicnal memory
and input/output expansions for increased throughput. MNevertheless, the rising
calculation effort for the kinematic and dynamic relations shows the insuffi-
cient computing power of standard microprocessors.

Therefore a fast floating-point processor has been developed. This Robot Arith-

metic Processar (RAP)
nostic functions.

Keywords. Special

tecture; Robots:
trol.

INTRODUCTION

The performance of complex and advanced applica-
tions for robot-manipulators, e.g. handling or
assembly tasks with external sensor-feedback, re-
quires large amount of computing power. The con-
trol-strategies for these applications are time-
critical tasks. A multi-microcomputer system is
very suitable for robotics control because it can
provide the computing power required. The single
components of such a control-system can fullfil
different time-critical tasks. A real-time system
can be designed by coordinating the single sub-
systems.

There are two opposite requirements 1n construc-

ting such a multi-microcomputer control-system.

- The primary goal is to provide the computing
power and speed for real-time calculations of
cartesian and joint-based control loops avail-
able.

- On the other hand there should be a pleasant

user environment for programming and coordi-

nating the several processors of the control
system, The system should offer the feasibility
for users to create and test software and to
analyse the results of the implemented control-

strategies on the multiprocessor system or on a

host-machine.

The system we designed is called ARC (Advanced
Robot Controll). ARC is a multi-microcomputer sys-—
tem with one master-unit and several slave pro-
CESSOrs.

Within this system we have implemented a special
purpose processor, the Robot-Arithmetic-Processor
(RAP) to meet the computational requirements of
present and future robotic control applications.
The development of the Robot-Arithmetic-Processor
aims at wvery fast processing of kinematic and
dynamic transformations for robot-manipulators.
The algorithms implemented on RAP are kinematic

purpose computers;
Multiprocessing Systems; Microprogramming; Diagnostic on Chip;
Closed Loop Systems; Real-Time Control; Cartesian Robot Con-

is built up with bipolar bit-slice components,
arithmetic modules and hardware caontrol mechanisms for on-

Microprocessors;

179

special
and off-line diag-

Hierarchical Systems;
Computer Archi-

independent to provide the contral of different

n-degrees-of-freedom manipulators.

There are two main goals of this paper:

- to discuss the architecture of the ARC-System
including the Robot-Arithmetic-Processor
and

- to present some principles for advanced appli-
cations with simultaneous position and force-
control running on the Advanced-Robot-Control-
System.

MULTIMICROPROCESSOR CONTROL ARCHITECTURE

The required performance for a robot control sys-
tem can be obtained with a multi-microcomputer
system. Figure 1 presents the system structure
using 4 identical single board computers based on
Intel i1APX BOB& processors. The 8086 boards run
at 8 MHz and each board includes &4 Kbytes of
ROM, 1& Kbytes local RAM, 1& Kbyte dualport RAM,
tnterrupt controller and one serial and parallel
interface. A 8087 floating-point co-processor can
be added to enhance the performance of the sys-

tem. The global multiprocessaor bus - an AMS-M-
Bus, compatible with Multibus 1 - connects all
processors and the global memory for fast inter-

processor communication. The dualport memary per-
mits together with the local onbord memory a high
degree of parallel processing. The local 1&-bit
private bus systems are used for I/0-modules,
intelligent controllers, local memory expansions
and for fast interfaces to local processor-sub-
systems. The system is expandible with additional
processor boards at the global bus, but a limit
results from the maximum transfer rate on the bus
(10 Mbytes/second).

To create a pleasant and functional software
environment, it is useful to have one master pro-
cessor avoiding system overhead on the other pro-
cessors, for example synchronization and multi-

Original publication in IFAC Proceedings Volumes (now IFAC-Papers online), https://doi.org/10.1016/S1474-6670(17)55850-4

©1986 International Federation of Automatic Control (IFAC).
Posted under a CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

180

= iy
l communi-
M- cation P host-machine
| link
! ey feriel e p user
interface
1APX BODBE
g—p{ 54K PROM ([
3ZK RAM
4> disk
I controller winchester
drive
P 256K RAM P 256K RAM -
floppy
| — drive
LAPX BOB&
4P i PROM - RAP
32K RAM
LAPX BO&SE _ +»D/A and A/D
64K PROM o . converters
12K RAM .
| +digltal 1/0 manipulator
+» local memory
expensions environment
LAPX 8OBB 2
64k PROM P | * .local processor
32K RAM subsystems
3 = &
3 g | 3 :
E e -
sy 0 I — n
g & : 7
9 8 a
= - a
2 a
o -
CO 3
-
Fig. 1 Multi-microcomputer architecture

processor-supervision. These functions together
with the high level tasks are implemented on the
master unit using an Intel AMX multitasking oper-
ating system managing a winchester— and a floppy-
disk, terminals and a communication link to a
host-computer, at the moment a LSI 11/34 machine.
The connectian to the robotarm and the environ-
ment is realized with interface-components at-
tached at the local bus system of two slave-pro-
cessors. According to the requirements, the in-
terfaces can be flexibly adapted to different
robot tasks.

ne pracessor of the system 1s qualified for
arithmetic intensive tasks using a special pro-
cessor described in the next paragraph.

K. Rathgeber and M. Schnell

RAP - ROBOT ARITHMETIC PROCESSOR

It 1s necessary for the real-time implementation
of control tasks to compare different hardware-
solutiors with respect to the required computa-
tion performance for robot tasks. The most common
realization would be an application with standard
1&- gr 32-bit microcomputers with hardware-arith-
metic-support. The great advantage of these sys-
teme is the quantity of available hardware- and
software-components and a good development sup-
port. Nevertheless, the arithmetic computation
performance is today not high enough for robotic
algorithms, although 1t is possible to use mathe-
matic co-processors for the floating-point arith-
metic (e.g. time for one 32-bit floating-point
multiplication with Intel BO28B7 = 11,9 ws, Mato-
rala 68881 = 5,5 ws. Mational 32081 = 4,8 wms).
Locking at the computation-speed, an application
with signal-processors could provide good re-
sults, but they have not yet on-chip hardware
support for 32-bit floating-point arithmetic.
Transputers would have the required performance,
but they are at the moment too expensive and dif-
ficult 1m handling. Nowadays, the realization is
anly possible with a mini-computer (too expen-
sive! or with special hardware designed for a
specific problem.

We decided us for a micro-programmed solution,
because this leads to a flexible system struc-
ture. Modifications are not complicated, so it is
very practicable for different test implementa-
tions. We designed an independent microprocessor
subsystem using bipolar bit-slice components and
special floating-point building-blocks.

Figure 2 shows the block diagram of the Robot
Arithmetic Processor, RAP.

Floating-Point Path

The main modules of RAP are two VLSI-circuits
with a ane-bus building-block architecture, a
floating-point ALU and multiplier /1/. They can
handle both single (32-bit) and double (&4-bit)
precision formats and operations, as well as full
32-bit two's complement integers. The floating-
point operations and data format is conform to
the requirements of the I[EEE standard 754, ver-
sion 10.0. Basic 1nstructions - add, subtract,
multiply, divide, conversion to and from 32-bit
two's complement integers, absolut value, compare
- are executed onchip. Transcendental functions
are calculated by a microprogram with a table
leokup for fast processing. The devices can re-
present 1nfinity, MNaN (Met a Number), denorma-
lized and zero operands and are capable to oper-
ate with all rounding modes. The treatment of
exceptions, such as divide-by-zero, overflow,

data bus
N
—
“ memory
I : | address bus with
bus arbiter
—
status
s
Sequencer
L
program
FP. FP. ¥ y
ALU multiplier control
Hntt diagnostic
microprogram
Memory
J
< w
control signals ntrol
host-processor bus 'J

Fig. 2 Robot Arithmetic Processor

Multi-microcomputer Robot Control System 181

underflow, invalid and inexact operations are
fully implemented. A very important feature for
real-time control applications is a fast mode of
operation which removes the time penalty of
underflow exception handling by substitution of
zero for denormalized numbers.

As the units use dedicated circuit arrays to per-
form the reqguired functions, the arithmetic pro-
cessing is faster than designs which rely solely
on sequential, clocked logic. For example, the
array flowthrough time is under 180 ns for single
precision floating-point multiplication and addi-
tion. Data input and output transfer may occur at
a rate of one transfer per clock cycle. One ar
both operands can be stored internally which
allows repeated operations with a constant or
multiple functions performed on two operands.
Although the circuits had been designed for opti-
mal flowthrough time, they have also the capabi-
lity of pipeline-operations, because the next
operands can be loaded into the input-registers
during operation in the floating point array.
Together with the possibility of parallel compu-
tation in the ALU and in the multiplier, vector-
and matrix-arithmetic can be implemented very
efficiently.

Control path

4 control unit is required to build an indepen-
dent processor-subsystem which can supply the
arithmetic-chips with data at a high transfer
rate utilizing the high performance of the float-
ing point units. We have realized an universal
micro-programmed control-unit to get a great
flexibility for the implementation of a wide
range of algorithms for robot control systems.

A micro-programmed machine uses a coherent se-
gquence of micro-instructions to execute the ma-
chine instructions. Without any overlapping in—
structions, the throughput of the system would be
to small. To improve the performance of the con-
trol wunit, a pipeline technique is used with
three stages of pipeline registers. We use the
most efficient structure, an address—instruction-
data based microprogram control architecture /2/,
although this technique is the most difficult
solution for the software development. The three
required steps (determine microprogram address,
fetch and execute micro-instruction) for a
complete microcycle are overlapped by this
technique which results in a shorter microcycle,
This pipeline architecture offers significant
speed improvements except in the case of condi-
tional jumps where the pipeline must be cleared
before execution.

In order to access instructions and data in an
orderly manner, a Program Control Unit (PCU) 1is
used to provide the most efficient mechanism for
program control. The PCU is built up with four
4-bit ALU-slices. This lé-bit ALU has the capa-
bility of using its internal registers as the
program counter, stack pointer and internal tem-
porary registers for address calculations avoid-
ing the inefficient directly produced memory
addresses from the microword. This of course pro-
vides considerable flexibility in the architec-
ture and also allows a much greater repertoire of
instructions to be executed.

The 8086 host processor has direct access to the
memary of RAP in a 8 Kbyte page addressing mode,

because the address range of RAP is 32 «x Elb bit

= 256 Kbyte which is a quarter of the address
space of the B0B& processor. This is not a re-
striction of the data transfer rate, since it is
not necessary to move more than B Kbyte of data
in real-time.

RAP can interrupt the host processor for communi-
cation and synchronization and - in the other
direction - the host processor can set a signal
in the status register of RAP.

MAPC—M

RAP is attached to the local bus of the BOB& - a
16-bit SMP-M bus - via one interface board which
can be replaced to use RAP in connection with
ather bussystems, e.g. Multibus I or II, VME bus,
Q-bus.

Diagnostic Path
We have implemented hardware control mechanisms

in RAP to utilize the following functions:

s on- and off-line diagnastics

* microprogram download

» debugging during software-

development

Diagnostic is used to verify the functionality of
a component or of the whole system and to ident-
ify the location which failed. A processor like
RAP is difficult to test comprehensively because
the combinatorial logic is very complex and in-
cludes sequential elements. Due to the complexity
the logic should be partitioned inta several
smaller logic blocks. The problem of observation
and control of sequential logic is difficult,
because the output is a function of both the in-
puts and the state stored in a register. The
design of RAP avoids the lack of access to the
state registers by breaking the feedback path in
the sequential logic block. The state can be con-
trolled by injecting test data and output can be
observed by reading the registers. Now the system
is easy to test because the seguential system is
converted into a pseudo-combinatorial logic.
A very feasible realization is the Diagnostic-On-
Chip (DOC) technique, which works without a con-
siderable increasing hardware effort /3/. DOC
uses a buried shift register, called the shadow
register, to load and unload diagnostic data. It
allows diagnostic testing in the background -
transparent to the normal system operation - and
on-line diagnostics. The system needs not to be
taken into off-line mode during diagnostic which
is beneficial for maintenance purpose. For proper
work all registers in the control path, e. g.
pipeline and instruction register, must have
these diagnostic capability. All DOC-elements are
connected by a serial ring-line for minimal ex-
penditure of hardware, controlled by the 80856
host-processor (see Figure 2).
Another advantage of this technique is the capa-
bility of using RAM- instead of PROM-elements for
the microprogram memory. This feature 1s called
Writeable Control Store (WCS) and increases the
flexibility of RAP with regard to the development
of different robot control algorithms. The work-
ing method of RAP can be adapted according to the
requirements of the algorithms. Additionally the
basic functions can be changed during operation
by loading new parts of microcode.
The hardware of RAP together with the host-pro-
cessor allows an easy software development with-
out necessity of an expensive bit-slice processor
development system. The program development util-
ities are:
- Assembler

We use a relocatable macro meta assembler run-

ning on an IBM-PC which differs from an ordi-

nary microprocessor assembler in that way, that

the user can define the instruction set and

hardware configurations. This development step

can be divided further in defining and assem-

bling of microprogram, generation of machine

instructuion addresses out of the microprogram,

assembly of machine program and formatting of

micro- and machine program.
- Download

The DOC-technique together with the Writabe

Control Store allows downloading of the for-

matted microprogram, whereas machine-code can

be loaded directly into the memory of RAP.
- Test and Debug

The user can run the programs and debug them

182 K. Rathgeber and M. Schnell

with additional hardware facilities of RAP and
with a software control monitor implemented on
the BOB4 host processor. The off-line test is
supported by start/stop and single-step func-
tions. Hardware breakpoints are also useful for
the real-time test of the system.

Using these utilities, a wide range of algorithms

for robot tasks can be implemented.

Computation Performance

The resulting computation performance i1s listed
in Table 1 for 32- and &4-bit floating-point
operations. Together with the number of mathe-
matic operations aof the control algarithms 1t is
possible to estimate the attainable sampling
periods of the control loops. The table shows two
different calculation methods, a pipelined oper-
ation and an operation with memory-to-memory
transfer which corresponds to the maximal execu-
tion time without using the parallel datapaths
and pipeline facilities. Further reduction of the
exsecution time can be obtained through parallel
use of the two floating-point units. This method
is wvery suitable for wvector- and matrix-oper-
ations. An example of a vector-vector multiplica-
tion is described in the appendix. The computa-
tion performance is between 3 and 5,5 MFLOP (330
- 180 ns per operation) depending on the wvector
dimensions. If the whole algorithm is implemented
on the microprogram level, the result would be
the shortest sampling period, but the size of the
microprogram is limited to addressable memary.

TABLE | RAP: EXECUTION TIMES, SINGLE FUNCTION

computation of
operation memory-to-memory pipelined
transfer operation
32 bit 720 ns 450 ns
multiply — = = —j— — — — - — — — — 4 f—— —— = g
64 bit 1170 ns 900 ns
add 32 bit 720 ns 450 ns
substract - - - - |- - - - - — — — — 4+ — — — — —
compare 64 bit 990 ns 720 ns
32 bit 2250 n= 1980 ns
divide SRS SR SN, Ty S e SIS e S 4
64 bit 4230 ns 3960 ns

For real-time applications it must be taken into
account that data transfer between RAP and the
host processor requires in proportion to the RAP
arithmetic a large time. Nevertheless, the ratio
tetween arithmetic and transfer operations of RAP
is less than the ratio of standard micropro-
cessors. Therefore the estimation of the computa-
tion time cannot be restricted to the number of
mathematic operations. The worst-case execution
time - memory-to-memory transfer - is a first
evaluation if parts of the algorithms are micro-
programmed and data transfer is avoided as far as
possible,

APPLICATIONS

Over the last few years several applications in
robotics have been investigated. The achievement
of robot-assembly and handling tasks requires not
only the use of additional sensor-systems, called
external sensors in oppsite to the internal sen-
sors like joint-position sensors, but also com-
plex control-strategies and algorithms. Examples
for external sensor systems are wrist-mounted
farce/torgue-sensors or proximity-sensors. The
control strategies, like simultaneous motion and
force control in contour-finding and -tracking

tasks or the performance of the peg-in-hole prob-
lem require large amounts of computationl power
to realize good performance of the applications.

Contral Hierarchy

The performance of robot tasks can be stressed

gut in a hierarchical control structure, which is

presented in figure 3. The robot tasks can be de-

vided into three levels:

- Configuration level
The specification of the desired trajectories
in the configuration space is based on the ap-
plication dependent formulation of the robot
task.

- Cartesian control level
Depending on the desired trajectories and the
specified sensor-configuration the cartesian
control algorithms and the cartesian sensor-
data (e.g. force/torque signals) are processed
on this level.

- Joint control level
The joint torgues are calculated as functions
of the desired trajectories in joint coordinate
space and the sensor feedback from joint-based
sensor systems like joint-position sensors.

application

v

configuration specification of
level trajectories in
conflguration space

desired trajectories desired
in cartesian space sSensor
configuration
sensordata

cartesian control on <: rocessing on
control level |carteslan lavel Eq:tg.j.nqlq\ra]_q__

sensor feedback
In cartesian space

desired trajectories
in joint space

sensordata
<! |processing on
joint level

sensor feedback
jeint torques in joint space

joint centrol on
control level|joint level

manipulator I P sensor

sensor
signals

Fig. 3 Control hierarchy

General Reguirements

From this hierarchical point of wview we have

worked out some general requirements concerning

robot applications:

- Servo rates
The realization of a high task-performance re-
quires short servo cycles on cartesian level.
In spite of the complexity of the control
schemes there are two posibilities to meet the
requirements: the use of a control system with
very large computation power or the split of
the system's servo rate. Most control strate-
gies allow the splitting of the servo rate into
two levels. At the high level the calculation
of the control algorithms and the servo equa-

Multi-microcomputer Robot Control Svstem

tions takes place. The lower level computes the
configuration dependent parameters at a slower
servo rate.

- Sensor data processing
The utilization of external, in most cases com-
plex sensor-systems necessitates additional
computional power on the control system.

- Storage capability
In order to evaluate and compare control struc-
tures in a quantitative way the system must
provide the capability to store large amounts
of data in real-time.

- Evaluation of experimental results
The fast evaluation of test runs is enabled by
storage and display facilities on the control
system or on a host machine.

- Universal algarithms
The design of a robot caontrol system as a test-
ted for robotics applications requires the im-
plementation of configuration independent uni-
versal algorithms to make guite sure that the
control strategies are well guided for adapta-
tion to different tasks, changing sensor confi-
gurations and distict kinematics of robot mani-
pulators.

- Programming language
The program development process 1s supported by
using appropriate programming languages:
Highlevel languages, like PL/M or FORTRAN on
task configuration level and machine dependent
languages (assembler- and microprogramming) on
cantrol and sevo level.

Referring to these requirements the control sys-

tem must provide the following facilities and

attributes:

- Medular system architecture
The robot contral system must be divided into
modular subsystems to extract the parallelisms
in the control algorithms. Several time criti-
cal tasks can be processed on such a modular
system architecture.

- Large computational power
The computation of the control loop equations
and the sensor data processing in real-time
tasks requires a multiprocessor system to pro-
vide the large amounts of computing power.

- Large amount of memory
The system must have the facility to store
large amounts of data in real-time. For later
analysis data such as joint positions or sensor
signals (e.g. measured contact forces) must be
stored in every servo cycle.

- Intelligent subsystems
The complex sensor data preprocessing is
achieved by intelligent subsystems. These sub-
systems calculate the sensory feedback for the
control algorithms. This concept reduces data
transfer to other processors of the control
system.

ARC-System for Robot Control

We have taken these requirements into account

when designing the Advanced Robot Control System

as a testbed for our further studies in robotics
research, The distribution of the computational
burden on the system’s processor units is shown

in figure 4.

The master processor with the multitasking op-

erating-system processes all high-level tasks

and manages the global state memory.

The time-critical numerically-intensive tasks -

in particular kinematic and dynamic calcula-

tions - are executed by one BOB&-processor with
attached RAP. Data transfer to other processors
reduces to a minimal value.

e The third processor uses two B0BB-processor
subsystems connected via dual-port memory at
the lacal bus. The flexibility and the perform-
ance increases through sensor data prepro-
cessing and local gripper control.

communication Hagr
— coordination
configuration host-machine
global
— state
memory
kinematic +
— dynamic arithmetic
calculation
gripper
control i &
multisensor 3
— data 0
processing sensordata g
prepro- g
cessing
— analog 1/0 P
M
0
+
&
robot <>
L o o
interface digital 1/0 &
=
o
. E
joint
L4 position
acquisitation

Fig., 4 Robot Control System

s The serva loops of the manipulator are con-
nected via local interfaces to the fourth BOB&-
processor using anmalog and binary [/0-modules
and a joint position acquisitation system. This
processor executes all manipulator specific
tasks (e.g. robot supervision, joint contrel)
except the kinematic and dynamic calculations.

REAL-TIME IMPLEMENTATION - AN EXAMPLE

The ARC-System is designed as a testbed for real-
time experiments in manipulator position and sen-
sor control. As an example for implementation of
robot contral schemes the cartesian closed loap
control with prescribed dynamics /4/ is dis-
cussed.
The control strategy is based on the idea to
maintain a prescribed motion along desired car-
tesian trajectories and to get well defined re-
sponses in each direction of the task coordinate
system. The manipulator being controlled with
this strategy is a MANUTEC r3 with a 6-link-arm.

The real-time cantrol algorithms must achieve the

following steps:

- Measurement and preprocessing of the joint
position and of the signals from a wrist
mounted force/torgue sensor.

- Computation of the end-effector position
{forward solution of the kinematic problem),
calculation of the cartesian velocity and ac-
celeration based on the determination of the
Jacobian matrix and of the time derivative of
the Jacobian.

- Calculation of the desired joint velocity based
on the cartesian control loop.

- Computation of the inverse dynamics of the sys-—
tem and calculation of the compensation-torgue.

The computational burden of the control scheme is

spread across the processor units of the ARC-sys-

tem. The number of mathematic operations can be
used to estimate the computation performance re-

184 K. Rathgeber and M. Schnell

guired in real-time control of the MANUTEC r3
arm,
The total number of operations for the calcula-
tion of the kinematic transformations, the in-
verse dynamics and the cartesian controller is
approximately 3500 floating-point operations. The
maximum servo-rate of the system with prescribed
dynamics would be about 4 msec. To reach even a
higher performance within this system, the sam-
pling period 1is divided into two different
cycles:
- Control level
On the high-rate control level the system real-
izes the cartesian controller, computes the
desired joint velocity and calculates the com-
pensation torgue resulting from the inverse
dynamics of the manipulator.
- Parameter level
On the parameter level, which works on lower
rate, the control system refreshes the vectors
and matrices of the inverse system.
Taking the splitted servo rates into account the
system reaches a contral level cycle rate of 2,3
msec and a parameter level rate of 5 msec. These
cycle times are quiet feasable both for tasks
with high speed requirements and for sensor-
guided handling and assembly tasks in robot ap-
plications. The implementation of the proposed
control scheme on the Advanced Robot Control Sys-
tem is under progress.

CONCLUSION

This paper has presented the structure of the
Advanced Robot Contral System (ARC). Within this
system we have integrated a special purpose Robot
Arithmetic Processor (RAP)., The ARC-System is
designed as a testbed for studies in robotic
research.

The architecture of the control system meets the
requirements arising from hierarchical control
schemes of advanced robot applications. The com-
putation performance of the system is sufficient
for real-time control of industrial robots,; using
universal and kinematic independent algorithms.
The control system offers the feasibility to
create and test control schemes and to analyse
the results on a hast-machine. Applications like
the cartesian closed loop control with prescribed
dynamics can be achieved in real-time.

A later wversion of RAP with reduced hardware
effort could be a processor for industrial con-
trol systems. This RAP has to be programmed only
with the specific robot parameters. The kinematic
and dynamic relations would be computed for a
n-degrees-of-freedom manipulator in a "black-box’
system.

REFERENCES

/1/ B.Sackett, G.White (1983).
Solution Faor a High Performance Floating
Point Co-processor Design.
Application Note Weitek Corporation, 15 March
1985
/2/ J.Mick, J.Brick (1980).
Bit-Slice Microprocessor Design.
McGraw-Hill, 1980
/3/ J.Birkner, V.Coli, F.Lee.
Shadow Register Architecture Simplies Digital
Diagnosis.
Monolithic Memories Application Note AN-123
/4/ E.Ersiiy K.Rathgeber, M.Schnell,
W.Neddermeyer (1985)
A Robot Arithmetic Processor Concept for
Cartesian Closed-loop Control with Prescibed
Dynamics.

Proc. of the ISt IFAC Symposium on Robot

Caontrol, November., &-8, 1985, Barcelona

APPENDIX

An example of a vector-vector multiplication in a
32-bit floating-point format illustrates the
working method of the Robot Arithmetic Processor
isee figure 5).

n
d=d_=a.b=Z a-b
n == i= i
with |:1.l = di-l F &g e do =0 . £y = ai-hi
For fast processing, the microprogram uses the
pipeline facilities and parallel computation in
the floating-point ALU and multiplier. For
example, three parts are executed during step 10:
* load vector-element b“ from the main memory

tnto one input register of the multiplier
(memory addressed through a register of the
Program Control Unit; multiplication will be
carried out in step 14 and 15)

e multiply aq and be first step

+ add cl and CEI second step

The status signals of the floating-point-chips
can be tested by the sequencer for exeption-
handling.
For a multiplication of 2 vectors with the dimen-
s10n ny 4nt+th4 steps are reguired (1 step = 70 ns).
Computation performance P of a computer is ex-
pressed through the number of floating-point op-
erations per seconds (FLOP). The number of oper-
ations is 2n-1 for this example , the performance
of RAP is:

- gn-=1 100
Pin) = e By o MFLOP
An estimation 1s possible using the two bound-
aries:
P

o

= 5,5 MFLOP, Pm. = 3 MFLOP

max | (ns) in - PtEI

The result for a matrix-vector multiplication
(matrix-dimension n x m) is:

2nm - m 100

Pln-m) " hGrm - 2m + 5 9
5,5 MFLOP, P
min

MFLOP

i = 3,9 MFLOP

step memory Floatingpolnt- Floatingpoint- data-

Hultiplier ALU bus

oo
-

ADD

e

-

o
=
(=
r

- T T T T R
& o o [t
R T N

-
L]

of'

o
=1

d’uf:f Pn‘FJF

4n-7 @ omm—
e - ADD on
4n-6 ba F;_I__J HUL r__1 b,
4n-5 dn-z
4n-4 ‘Er-i
4n-3 -
L1 Japp
4n-2 P__L_J HuL r_4
4n-1 dn-l
4n <
n
4n+l -
. —]
ez — e .
4n+3 result ¢ d

Fig. S Computation Structure of wvector-vector
multiplication

