
Copyright © IFAC \!icrocoll1puter
Application in Process Control. Istanbu l
Turkn, 1986

MULTI-MICROCOMPUTER ROBOT CONTROL
SYSTEM USING A SPECIAL ROBOT­

ARITHMETIC-PROCESSOR FOR ADVANCED
APPLICATIONS OF ROBOT MANIPULATORS

K. Rathgeber and M. Schnell

Sly/iOIl COII/rol SYS!t'IIIS Them)' , IIIS/i/u/e of COIl/rol Ellgilleerillg,
T('(hlli(([l 1.:III"eni/r of Danns/wl/, Schiossgraben 1. D-6100 DanllS/uli/.

Fn/ITol Republic of Gnlll{lll}

e.bstca~. The performance of complex and advanced appl ications of industr ial
robots requires large computational power. The control system presented in th,S
paper IS desIgned as a multi-microcomputer system. The main purpose of this
system IS to create a pleasant environment for present and further studies in
robotlc research .
The Advanced Robot Control System (ARC) uses multiple microcomputers based on
lAPX 8086 processors. A local bus of each processor allows additional memory
and Input/output e)(pansions for increased throughput. Nevertheless, the rising
calculation effort for the kinematIc and dynamic relations shows the insuffi­
cient computing power of standard microprocessors.
Therefore a fast floating-polnt processor has been developed. This Robot Arith­
metic Processor (RAP) is built up with bipolar bit-slice components, special
arithmetic modules and hardware control mechanisms for on- and off-line diag­
nostic functions.

Keywords. Special purpose computers; Microprocessors; Hierarchical Systems;
MultIprocessing Systems; Microprogramming; Diagnostic on Chip; Computer Archi­
tecture; Robots; Closed Loop Systems; Real-Time Control; Cartesian Robot Con­
tra l.

I NTRODUCTI ON

The performance of complex and advanced applica­
tions for robot-manipulators. e.g. handl ing or
assembly tasks with external sensor-feedback, re­
quires large amount of computing power. The con­
trol-strategies for these applicatIons are time­
critical tasks. A multI-microcomputer system is
very suitable for robotics control because it can
provide the computing power required. The single
components of such a control-system can fullfi I
different time-criti cal tasks. A real-time system
can be designed by coordlnatlng the single sub­
systems.
There are two apposite requirements in construc­
ting such a multI-microcomputer control-system.
- The primary goal is to provide the computing

power and speed for real -t ime calculations of
cartesian and JOint-based control loops avai 1-
able.

- On the other hand there should be a pleasant
user envi ronment for programmi ng and coard i ~
nat i ng the sever a 1 processors of the contra I
s ystem. The system should offer the feasibility
far users to create and test software and to
analyse the results of the implemented control­
strategies on the multiprocessor system or an a
host-machIne.

The system we designed is called ARC (Advanced
Robot Control). ARC is a multi-microcomputer sys­
tem wi th one master-uni t and several slave pro­
cessors.
Within this system we have implemented a special
purpose processor, the Robot-Arithmetic-Processor
(RAP) to meet the computational requirements of
present and future robotiC control applications.
The development of the Robot-Arithmetic-Processor
aims at very fast processing of kinematic and
dynamic transformations for robot-manipulators.
The algorithms implemented on RAP are kinematic

179

ind ependent to provide the control of different
n-degrees-of-freedom manipulators.
There are two main goals of this paper:
- to discuss the architecture of the ARC-System

including the Robot-Arithmetlc-Processor
and

- to present some principles for advanced appli­
cations with simultaneous position and force­
control running an the Advanced-Robot-Control­
System.

MULTIMICROPROCESSOR CONTROL ARCHITECTURE

The required performance for a robot control sys­
tem can be obtained with a multi-microcomputer
system. Figure I presents the system structure
using 4 identical single board computers based an
lntel iAPX 8086 processors. The 8086 boards run
at 8 MHz and each board includes 64 Kbytes of
ROM, 16 Kbytes local RAM, 16 Kbyte dualport RAM,
interrupt controller and one serial and parallel
interface. A 8087 floating-paint co-processor can
be added to enhance the performance of the sys­
tem. The global multiprocessor bus - an AMS-M­
Bus, compatIble with Multibus I - connects all
processors and the global memory for fast inter­
processor communication. The dualport memory per­
mits together with the local onbord memory a high
degree of parallel processing. The local 16-bit
private bus s yst ems are used for 1I0-modules.
intelligent controllers, local memory expansions
and for fast interfaces to local processor-sub­
systems. The system is expandible With additional
processor boards at the global bus, but a limit
results from the maximum transfer rate on the bus
(10 Mbytes/second).
Ta create a pleasant and functional software
environment, it is useful to have one master pro­
cessor avoiding system overhead on the other pro­
cessors, for example synchronization a nd multi-

©1986 International Federation of Automatic Control (IFAC).
Posted under a CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Original publication in IFAC Proceedings Volumes (now IFAC-Papers online), https://doi.org/10.1016/S1474-6670(17)55850-4

ISO K. Ralhgeber and 1\ 1. Schncll

• D/A and A/D
conver ters

• dig 1 tal I/O ++ manipulator

• loca 1 memory environment expenslons

• local pr ocessor
subsystems

~ ~ ~ ~
~ e .B ID .Q ~

+' +'

:3 ~ ~

~ ~
,.,

g ~

~Q ~

'" ~ ~
.Q
0 ~

'" 8
Fig. 1 Multi - microcomputer architecture

processor-supervision. These functions together
with the high level tasks are implemented on the
master unit using an Intel RMX multitasking oper­
ating system managing a winchester- and a floppy­
disk, terminals and a communication link to a
host-computer, at the moment a LSI 11/34 machine.
The connection to the robotarm and the environ­
ment is realized with interface-components at­
tached at the local bus system of two slave-pro­
c essors . Accord i ng to the r equirements, the in­
terfaces can be flexibly adapted to different
robot tasks .
One processor of the system IS qualified for
arithmetic intensi ve tasks using a special pro ­
c essor described in the next paragraph .

Fig. 2 Robot Arithmetic Processor

RAP - ROBOT ARITHMETIC PROCESSOR

It is necessar y for the real-time implementation
of contra 1 tasks to compare di fferent hardware­
solutions wi th respect to the required c omputa­
tion performance for robot tasks. The most common
realization would be an application with standard
16 - o r 32-bit microcomputers with hardware-arith­
metic-support . The great advantage of these sys­
tems is the quanti ty of avai lable hdrdwar e- and
software- compo nents and d good development sup­
po rt. Nevertheless, the arithmet i c computation
performance is today not high enough for robotic
algor i thms, although it is possible to use mathe­
matic co-processors for the floa t ing-point arith­
meti c (e.g. t i me for one 32-bit floating-point
mu lt i pl i cat i on with Intel 80287 ~ 11,9 /IS, Moto­
r a 1 a 68881 :::; 5,5 I'S, Na tl 0 nd 1 320 81 z 4,8 /is) .
Loo lqng at the c omputat ion-speed, an applIcation
with s ignal-processors c ould provide good re­
sui ts, but the y have not yet on-chip hardware
s up por t fo r 32-bit fl o at i ng - point arithme tic .
Transputers wo u ld ha ve t h e r eqUIred performance,
but the y a r e at t h e moment too expensive and dif­
ficul t In handl ing. Nowadays, the real ization is
o n ly poss i ble with a mini - computer (too expen ­
sive i 0 "- wi th speC ia l hardwa r e designed for a
s pecific p r oblem.
We decided us for a mi c ro-programmed solution,
because this leads to a flexible systeOl struc­
ture . Modificat i ons are not c omplicated, so it is
ver y p rac ticab le f or diffe r e n t test implementa­
t io ns . We des i gned an independent microprocess or
subsystem using bipolar bit - slice components and
special floating - point building-blocks .
Figure 2 shows the block diagram of the Robot
Arithmetic Processo r, RAP.

Floating - Point Path
ThE' main modules of RAP are two VLSI-Clrcuits
with a one - bus bu ilding - block architecture, a
float ing - po int ALU and mult ip lier / 1 / . They can
handle bo th single (32-bi t) and double (64-bi tl
precision formats and operations , as well as full
3 2 - bit two's c omplement integers . The floating­
point operatl o ns a nd data format is conform to
the r equ i rements o f the IEEE standard 754, ver ­
sion 10 . 0 . 8asic instructIons - add, subtract,
multiply, dIVIde, converSIon to and from 32-bit
two's complement integers, absolut value, compar e
- are executed onchip. Transcendental functions
a r e cal c ulated by a mlcroprogram with a table
lookup for fast processing. The devices can re­
present infini t y . NaN (Not a Number I, denor ma­
lized and zero oper ands and are capable to oper­
ate with all rounding modes . The treatment of
e xc eptio ns , suc h as divide-by-zero, overflow,

data bus

address bus

control signals

memory
with

bus arbiter

Multi-microcomputer Robot Control System 181

underflow. inval id and inexact operations are
full y implemented. A very important feature for
real-time control applications is a fast mode of
operation which remo ves the time penalty of
underflow exception handling by substitution of
zero for denormalized numbers.
As the units use dedicated circuit arrays to per­
form the reqUIred functions, the arithmetic pro­
cessing is faster than designs which rely solely
on sequential, clocked logic. For example, the
array flowthrough time is under 180 ns for single
precision floating-point multiplication and addi­
tion. Data input and output transfer may occur at
a rate of one transfer per clock cycle. One or
both op era nds can be stored internally which
allows repea ted opera t ions wi th a cons tant or
multiple functions performed on two operands.
Although the circuits had been designed for opti­
mal flowthrough time, they have also the capabi­
lity of pipeline-operations, because the next
operands can be loaded into the input-registers
during operation in the floating point array.
Together wi th the possibi I i ty of parallel compu­
tation in the ALU and in the multiplier, vector­
and matrix-arithmetic can be implemented very
efficiently.

Control path
A control unit i s required to build an indepen­
dent processor-subsystem which can supply the
arithmetic-chips with data at a high transfer
rate utilizing the high performance of the float­
ing point units. We have realized an universal
micro-programmed control -unit to get a great
flexibility for the implementation of a wide
range of algorithms for robot control systems.
A micro-programmed machine uses a coherent se­
quence of micro-instructions to execute the ma­
chine instructions. Without any overlapping in­
structions, the throughput of the system would be
to small. To improve the performance of the con­
trol unit, a pipeline technique is used with
three stages of pipel ine registers. We use the
most efficient structure, an address-instruct ion­
data based microprogram control architecture /2/ ,
although this technique is the most difficult
solution for the software development. The three
required steps (d etermine microprogram address,
fetch and execute micro-instruction) for a
complete microcycle are overlapped by this
technique which results in a shorter microcycle.
This pipeline architecture offers significant
speed improvements except in the case of condi­
tional jumps where the pipeline must be cleared
before execution.
In order to access instructions and data in an
orderly manner, a Program Control Unit (PCU) is
used to provide the most efficient mechanism for
program control. The PCU is built up with four
4-bit ALU-slices. This 16-bit ALU has the capa­
bility of using its internal registers as the
program counter. stack pointer and internal tem­
porar y registers for address calculations avoid­
ing the inefficient directly produced memory
addresses from the microword. This of course pro­
vides considerable flexibility in the architec­
ture and also allows a much greater repertoire of
instructions to be executed.
The 8086 host processor has direct access to the
memory of RAP in a 8 Kbyte page addressing mode,

because the address range of RAP is 32 x 2 16 bit
= 256 Kbyte which is a quarter of the address
space of the 8086 processor. This is not a re­
striction of the data transfer rate, since it is
not necessary to move more than 8 Kbyte of data
in real-time.
RAP can interrupt the host processor for communi­
cation and synchronization and in the other
direction - the host processor can set a signal
in the status register of RAP.

M.A.P.C.-M

RAP is attached to the local bus of the 8086 - a
16-bit SMP-M bus - vi a one interface board which
can be replaced to use RAP in connection with
other bussystems, e.g. Multibus I or 11, VME bus,
Q-bus.

Diagnostic Path
We have implemented hardware control mechanisms
in RAP to utilize the following functions:

• on- and off-li ne diagnostiCS
• microprogram down load
• debugging during software-

development
Diagnostic is used to verify the functionality of
a component or of the whole system and to ident­
ify the location which failed. A processor like
RAP is difficult to test comprehensi vely because
the combinatorial logic is very complex and in­
cludes sequential elements. Due to the complexity
the logic should be partitioned into several
smaller logi c bloc ks. The problem of observation
and control of sequential logic is difficult,
because the output is a function of both the in­
puts and the state stored in a register. The
des i gn of RAP avo i ds the lac k of access to the
state register s by breaking the feedback path in
the sequential logic block. The state can be con­
trolled by injecting test data and output can be
observed by reading the registers. Now the system
is easy to test because the sequential system is
converted into a pseudo-combinatorial logic.
A very feasible realization is the Diagnostic-On­
Chip (DOC) technique, which works without a con­
siderable increasing hardware effort /3/ . DOC
uses a buried shift register, called the shadow
register. to load and unload diagnostic data. It
allows diagnostic testing in the background
transparent to the normal system operation - and
on-line diagnostics. The system needs not to be
taken into off-l ine mode during diagnostic which
is beneficial for maintenance purpose. For proper
work all registers in the control path, e. g.
pipeline and instruction register, must have
these diagnostic capability. All DOC-elements are
connected by a serial ring-line for minimal ex­
penditure of hardware, controlled by the 8086
host-processor (see Figure 2).
Another advantage of this technique is the capa­
bility of using RAM- instead of PROM-elements for
the microprogram memory. This feature is called
Wr i teable Control Store (WCS) and increases the
flexibility of RAP with regard to the development
of different robot control algorithms. The work­
ing method of RAP can be adapted according to the
requirements of the algorithms. Additionally the
basic functions can be changed during operation
by loading new parts of microcode.
The hardware of RAP together wi th the host-pro­
cessor allows an easy software development with ­
out necessity of an expensive bit-slice processor
development system. The program development util­
i ties are:
- Assembler

We use a relocatable macro meta assembler run­
ning on an IBM-PC which differs from an ordi­
nary microprocessor assembler in that way, that
the user can define the instruction set and
hardware configurations. This development step
can be di v ided further in defining and assem­
bling of microprogram, generation of machine
instructuion addresses out of the microprogram,
assembly of machine program and formatting of
micro - and machine program.

- Download
The DOC-technique together with the Writabe
Contro I Store allows download i ng of the for­
matted microprogram, whereas machine-code can
be loaded directly into the memory of RAP.
Test and Debug
The user can run the programs and debug them

182 K. Rathgeber and 1\1. Schnell

with additional hardware facilities of RAP and
with a software control monitor implemented on
the 8086 host processor. The off-l ine test is
supported by start/stop and single-step func­
tions. Hardware breakpoints are also useful for
the r eal-time test of the system.

Using these utilities, a wide range of algorithms
for robot tasks can be Implemented.

computation Perfo r mance
The resu It i ng compu ta t i on
in Table 1 for 32- and
operations. Together wi th

performance IS listed
6it-bit floatIng-point
the number of mathe-

matic: operations of the control algorithms it is
possible to estimate the attainable sampling
periods of the control loops. The table shows two
different calculation methods, a pipelined oper­
ation and an operation with memory-ta-memory
transfer which corresponds to the maximal execu­
tion time without using t he parallel datapaths
and pipeline facilities. Further reduction of the
e,ecution time can be obtained through parallel
use of the two floating-point units. This method
is ve ry sUitable for vecto r - and matrix-oper­
ations. An example of a vector-vector multiplica­
tIOn is described in the appendix. The computa­
tion performance IS between 3 and 5,5 MFLOP (330
- 180 ns per operation I depending on the vector
dimenSions. If the who le algorithm is implemented
on the microprogram level, the result would be
the shortest sampling period, but the size of the
microprogram is limited to addressable memory.

TABLE I RAP: EXECUTION TIMES, SINGLE FUNCTION

operation
computation of

memory-to-memory pipelined
transfer operation

32 bi t 720 ns 450 ns
multiply

64 bit 1170 ns 900 ns

add 32 bit 720 ns 450 ns
subs tract - - - - - - - - - - - - -
compare 64 bit 990 ns 720 ns

32 bit 2250 ns 1980 ns
divide

64 bi t 4230 ns 3960 ns

Fo r real-time applications it must be taken into
account that data transfer between RAP and the
hGst processor requires in proportion to the RAP
ari thmetic a large time. Nevertheless, the ratio
between arithmetic and transfer operations of RAP
is less than the ratio of standard micropro­
cesso r s. Therefore the est imation of the computa ­
tion time cannot be restricted to the number of
mathematic operations. The worst-case execution
time - memory-ta-memory transfer is a first
evaluation if parts of the algorithms are micro­
programmed and data transfer is avoided as far as
possible.

APPLl CAT IONS

Over the last few years several appl ications in
robotics have been investigated. The achievement
of robot-assembly and handling tasks requires not
only the use of additional sensor-systems, called
external sensors in oppsite to the internal sen­
sors like joint-position sensors, but also com­
plex control-strategies and algorithms. Examples
for external sensor systems are wrist-mounted
force / torque-sensors or proximity-sensors. The
control strategies, like simultaneous motion and
force control in contour-finding and -traCking

tasks or the performance of the peg-in-hole prob­
lem require large amounts of computationl power
to realize good performance of the applications.

Control Hierarchy
The performance of robot tasks can be stressed
out in a hierarchical control structure, which is
presented in figure 3. The robot tasks can be de­
vided into three levels:
- Configuration level

The specifIcation of the desired trajectories
in the co nfiguration space is based on the ap­
pI ication dependent formulation of the robot
task.

- Cartesian control level
Depending on the desired trajectories and the
specified sensor-configuration the cartesian
control algor i thms and the cartesian sensor­
data (e.g. force/torque signals I are processed
on this level.

- Joint control level
The Joint torques are calculated as functions
of the desired tra jectories in joint coordinate
space and the sensor feedback from joint-based
sensor s yst ems like jOint-position sensors,

configuration
level

specification of
trajectories in
conf 19uration space

desired

cartesian
control level

joint
control level

Fig. 3 Control hierarchy

General Requirements
From this hierarchical
worked out some general
robot applications:
- Servo rates

/

point of view we have
requirements concerning

The realization of a high task-performance re­
quires short servo cycles on cartesian level.
In spite of the complexity of the control
schemes there are two posibilities to meet the
requirements: the use of a control system with
very large compu ta t i on power or the sp 1 i t of
the system's servo rate. Most control strate­
gies allow the splitting of the servo rate into
two levels. At the high level the calculation
of the control algorithms and the servo equa-

~Illlti-microcomputer Robot Control S\'slem 183

tions takes place. The lower level computes the
configuration dependent parameters at a slower
servO rate .

- Senso r data processing
The utilization of exte rnal , in most cases com­
plex sensor-systems necessitates additional
computional power on the control s ystem .

- Storage capability
In order to evaluate and compare control struc­
tures in a quant i tative way the system must
pro v ide the capab i I i ty to store large amounts
of data in real-t ime.

- Evaluation of experimental results
The fast evaluation of test runs is enabled by
storage and display facilities on the control
system or on a host machine.

- Universal algorithms
The design of a robot control s ys tem as a test­
bed for ro botics applications requires the im­
plementat ion of configuration independent uni­
versa 1 alg or i thms to make qu i te sure that the
con t rol strategies are well guided for adapta­
tion to different tas ks, changi ng sensor confi ­
gurations and distict k inematics of robot mani­
pulators.

- Programming language
The program development process is supported by
us i ng app ropria te programming languages:
Hlghlevel langu ages, lik e PLIM or FORTRAN on
task conf i gurati on level and machine dependent
languages (assembler- and microprogramming) on
control and sevo level.

Refer ring to these requ irements the control sys­
tem must provlde the following facilitie s and
attr ibu tes:
- Modular s ystem ar chi tecture

The robot control system must be di vi ded into
modular subsystems to extract the parallel isms
in the control algorithms. Several time criti­
cal tas ks ca n be pr oc essed on such a modular
s ys tem ar chi tecture.

- Large computational power
Th e computation of the control loop equations
and the sensor data processing in real-time
tasks requires a multiprocessor system to pro­
vide the la r ge amounts of computing power.

- Large amou nt of memory
The system must have the facility to store
large amounts of data in real - time. For later
a na lysis data such as joint positions or sensor
signals (e.g. measured cont ac t forces) must be
stored in every servo cycle.

- Intelligent subsy s tems
The complex sensor data preprocessing is
achi eved by Intell igent SUbsystems . These sub­
systems calculate the sensory feedback for the
control algorithms . This concept reduces data
transfer to other pr ocessors of the control
system .

ARC-System for Robot Control
We have taken t hese requ i rements into account
when designing the Adv anced Robot Control System
as a testbed for our further studies in robotics
research . The distribution of the computational
burden on the system's processor units is shown
in figure 4.
• The master processor with the multitasking op ­

erating-system processes all high-level tasks
and manages the global state memory .

• The time -cr itical numerically-intensive tasks -
i n particular k inematic and dynamic calcula­
tions - are executed by one SOS6-processor with
attached RAP. Data transfer to other processors
reduces to a minimal value .

• The third processor uses two SOSS-processor
subsystems connected v ia dual-port memory at
the local bus . The flexibility and the perform ­
ance Incr eases through sensor data prepro­
cessing and local gripper control.

conununication
coordination
configuration

global
state
memory

kinematic +
dynamic

calculation

multi sensor
data

processing

robot
interface

user

host-machine

arithmetic

gripper
control

sensordata
prepro­
cessing

analog I/O

digital I/O

joint
position

acquisitation

Fig . 4 Robot Control System

'" \.<
o
'" 0:::
al

'"

• The servo loops of the manipulator are con­
nected vi a local interfaces to the fourth SOS6-
processor using analog and binar y l iD-modules
and a jOint position acquisitation system. This
processor e xecutes all manipulator specific
tasks (e . g. robot super vi sion, joint control)
except the kinematic and dynamic calculations .

REAL-TI ME IMPLEMENTATION - AN EXAMPLE

The ARC-System is designed as a testbed for real­
time experiments in manipulator position and s en­
sor control. As an example for implementation of
robot control schemes the cartesian closed loop
control with prescribed dynamics 14 1 is dis­
c ussed.
The contra 1st r a tegy is based on the idea to
maintain a prescribed motion along desired car­
tesian trajectories and to get well defined re­
sponses in each direc tion of the task coordinate
system . The manipulator being controlled with
this strategy is a MANUTEC r3 with a 6-link-arm.
The r ea l- time control algorithms must achieve the
following steps:
- Measurement and preprocessing of the joint

posit i on and of the signals from a wrist
mounted force / torque sensor .

- Computation of the end-effector position
(forward solution of the kinematic problem),
cal cu lation of the cartesian velocity and ac­
celeration based on the determination of the
Jacobian matrix and of the time derivative of
the Jacobian .

- Calculation of the desired joint velocit y based
on the cartesian contro l loop.

- Computation of the inverse dynamics of the sys-
tem and calculation of the compensation-torque.

The computational burden of the control scheme is
spread across the processor units of the ARC-sys­
tem. The number of mathematic operations can be
used to est imate the computation performance re-

184 K. Rathgeber and M. Schnell

quired in real-time control of the MANUTEC r3
arm.
The total number of operations for the calcula­
tion of the kinematic transformations, the in­
verse dynam ics and the car tes i an contro ller is
approximately 3500 floating-point operations. The
maximum servo-rate of the system with prescribed
dynamics would be about 4 msec. To reach even a
higher performance wi thin this system, the sam­
pling period is divided into two different
cycles:
- Contro I leve I

On the high-rate control level the system real­
izes the cartesian controller, computes the
desired joint velocity and calculates the com­
pensation torque resulting from the inverse
dynamics of the manipulator.

- Parameter level
On the parameter level, which works on lower
rate, the control system refreshes the vectors
and matrices of the inverse system.

Taking the splitted servo rates into account the
system reaches a control level cycle rate of 2,5
msec and a parameter level rate of 5 msec. These
cycle times are quiet feasable both for tasks
with high speed requirements and for sensor­
gu i ded hand ling and assemb I y tasks in robo t ap­
plications. The implementation of the proposed
control scheme on the Advanced Robot Control Sys­
tem is under progress.

CONCLUSION

Th i s paper has presented the struc ture of the
Advanced Robot Control System (ARC) . Within this
system we have integrated a special purpose Robot
Arithmetic Processor (RAP). The ARC-System is
designed as a testbed for studies in robotic
research.
The architecture of the control system meets the
requirements arising from hierarchical control
schemes of advanced robot applications. The com­
putation performance of the system is sufficient
for real-time control of industrial robots, using
universal and kinematic independent algorithms.
The control system offers the feasibility to
create and test control schemes and to analyse
the results on a host-machine. Applications like
the cartesian closed loop control with prescribed
dynamics can be achieved in real-time .
A later version of RAP wi th reduced hardware
effort could be a processor for industrial con­
trol systems. This RAP has to be programmed only
with the specific robot parameters. The kinematic
and dynamic relations would be computed for a
n-degrees-of-freedom manipulator in a 'black-box'
system.

REFERENCES

111 8.Sackett, G.White (1985).
Solution For a High Performance
Point Co-processor Design.
Application Note Weitek Corporation,
1985

121 J.Mick, J.8rick (1980).
8it-Slice Microprocessor Design.
McGraw-Hill, 1980

131 J.8irkner, V.Coli, F.Lee.

Floating

15 March

Shadow Register Architecture Simplies Digital
Diagnosis.
Monolithic Memories Application Note AN-123

141 E.Ersu, K.Rathgeber, M.Schnell,
W.Neddermeyer (1985)
A Robot Arithmetic Processor Concept for
Cartesian Closed-loop Control with Prescibed
Dynamics.

Proc. of the 1st IFAC Symposium on Robot
Control, November, 6-8, 1985, 8arcelona

APPENDIX

An example of a vector-vector multiplication in a
32-bit floating-point format illustrates the
working method of the Robot Arithmetic Processor
(see figure 5).

n

d = d = a.b =.r a .• b .
n - - 1=1 1 1

with d i = d i _ 1 + c i • dO = 0 , c i = ai'b i
For fast process i ng, the m icroprogram uses the
pipeline facilities and parallel computation in
the floating-point ALU and multiplier. For
example, three parts are executed during step 10:

• load vector-element b4 from the main memory

into one input register of the multiplier
(memory addressed through a register of the
Program Control Unit; multiplication will be
carried out in step 14 and 15)

• multiply a 3 and b3 , first step

• add cl and c 2 ' second step

The status signals of the floating-point-chips
can be test ed by the sequencer for exeption­
handling.
For a multiplication of 2 vectors with the dimen­
sion n, 4n+4 steps are required (1 step = 90 ns).
Computation performance P of a computer is ex­
pressed through the number of floating-point op­
erations per seconds (FLOP). The number of oper­
ations is 2n-1 for this example , the performance
of RAP is :

P(n) = 2n-l • ~ MFLOP
4n-3 9

An estimation is possible using the two bound­
aries:
P = P max (n-+ CX1) 5,5 MFLOP, P .

mln P(2) = 3 MFLOP

The result for a matrix-vector multiplication
(matrix-dimension n x m) is:

P (n,m)
2nm - m

4nm - 2m + 5 ~ MFLOP
9

P
max

step

2

3

5

6

e
9

10

11

12

13

14

4"-7

4n-6

4n-5

4n-4

4"-3

4n-2

4n-1

4n

4n+1

4n+2

4n+3

5,5 MFLOP, P .
mln

memorlJ F'loatlngpolnt-
Multiplier

'1
b

1

'2
b

2

'3
b

3

'4
b

4

a
n

b
n

3,9 MFLOP

Floatlngpolnt-
ALU

data-
bus

8
1

b,

8
2

b
2

cl

'3
b

3
c

2
8

4
b

4
d,

c
3

~
%

d
n

Fig. 5 Computation Structure of vector-vector
multiplication

