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e.bstca~. The performance of complex and advanced appl ications of industr ial 
robots requires large computational power. The control system presented in th,S 
paper IS desIgned as a multi-microcomputer system. The main purpose of this 
system IS to create a pleasant environment for present and further studies in 
robotlc research . 
The Advanced Robot Control System (ARC) uses multiple microcomputers based on 
lAPX 8086 processors. A local bus of each processor allows additional memory 
and Input/output e)(pansions for increased throughput. Nevertheless, the rising 
calculation effort for the kinematIc and dynamic relations shows the insuffi­
cient computing power of standard microprocessors. 
Therefore a fast floating-polnt processor has been developed. This Robot Arith­
metic Processor (RAP) is built up with bipolar bit-slice components, special 
arithmetic modules and hardware control mechanisms for on- and off-line diag­
nostic functions. 
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I NTRODUCTI ON 

The performance of complex and advanced applica­
tions for robot-manipulators. e.g. handl ing or 
assembly tasks with external sensor-feedback, re­
quires large amount of computing power. The con­
trol-strategies for these applicatIons are time­
critical tasks. A multI-microcomputer system is 
very suitable for robotics control because it can 
provide the computing power required. The single 
components of such a control-system can fullfi I 
different time-criti cal tasks. A real-time system 
can be designed by coordlnatlng the single sub­
systems. 
There are two apposite requirements in construc­
ting such a multI-microcomputer control-system. 
- The primary goal is to provide the computing 

power and speed for real -t ime calculations of 
cartesian and JOint-based control loops avai 1-
able. 

- On the other hand there should be a pleasant 
user envi ronment for programmi ng and coard i ~ 
nat i ng the sever a 1 processors of the contra I 
s ystem. The system should offer the feasibility 
far users to create and test software and to 
analyse the results of the implemented control­
strategies on the multiprocessor system or an a 
host-machIne. 

The system we designed is called ARC (Advanced 
Robot Control). ARC is a multi-microcomputer sys­
tem wi th one master-uni t and several slave pro­
cessors. 
Within this system we have implemented a special 
purpose processor, the Robot-Arithmetic-Processor 
(RAP) to meet the computational requirements of 
present and future robotiC control applications. 
The development of the Robot-Arithmetic-Processor 
aims at very fast processing of kinematic and 
dynamic transformations for robot-manipulators. 
The algorithms implemented on RAP are kinematic 

179 

ind ependent to provide the control of different 
n-degrees-of-freedom manipulators. 
There are two main goals of this paper: 
- to discuss the architecture of the ARC-System 

including the Robot-Arithmetlc-Processor 
and 

- to present some principles for advanced appli­
cations with simultaneous position and force­
control running an the Advanced-Robot-Control­
System. 

MULTIMICROPROCESSOR CONTROL ARCHITECTURE 

The required performance for a robot control sys­
tem can be obtained with a multi-microcomputer 
system. Figure I presents the system structure 
using 4 identical single board computers based an 
lntel iAPX 8086 processors. The 8086 boards run 
at 8 MHz and each board includes 64 Kbytes of 
ROM, 16 Kbytes local RAM, 16 Kbyte dualport RAM, 
interrupt controller and one serial and parallel 
interface. A 8087 floating-paint co-processor can 
be added to enhance the performance of the sys­
tem. The global multiprocessor bus - an AMS-M­
Bus, compatIble with Multibus I - connects all 
processors and the global memory for fast inter­
processor communication. The dualport memory per­
mits together with the local onbord memory a high 
degree of parallel processing. The local 16-bit 
private bus s yst ems are used for 1I0-modules. 
intelligent controllers, local memory expansions 
and for fast interfaces to local processor-sub­
systems. The system is expandible With additional 
processor boards at the global bus, but a limit 
results from the maximum transfer rate on the bus 
(10 Mbytes/second). 
Ta create a pleasant and functional software 
environment, it is useful to have one master pro­
cessor avoiding system overhead on the other pro­
cessors, for example synchronization a nd multi-
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Fig. 1 Multi - microcomputer architecture 

processor-supervision. These functions together 
with the high level tasks are implemented on the 
master unit using an Intel RMX multitasking oper­
ating system managing a winchester- and a floppy­
disk, terminals and a communication link to a 
host-computer, at the moment a LSI 11/34 machine. 
The connection to the robotarm and the environ­
ment is realized with interface-components at­
tached at the local bus system of two slave-pro­
c essors . Accord i ng to the r equirements, the in­
terfaces can be flexibly adapted to different 
robot tasks . 
One processor of the system IS qualified for 
arithmetic intensi ve tasks using a special pro ­
c essor described in the next paragraph . 

Fig. 2 Robot Arithmetic Processor 

RAP - ROBOT ARITHMETIC PROCESSOR 

It is necessar y for the real-time implementation 
of contra 1 tasks to compare di fferent hardware­
solutions wi th respect to the required c omputa­
tion performance for robot tasks. The most common 
realization would be an application with standard 
16 - o r 32-bit microcomputers with hardware-arith­
metic-support . The great advantage of these sys­
tems is the quanti ty of avai lable hdrdwar e- and 
software- compo nents and d good development sup­
po rt. Nevertheless, the arithmet i c computation 
performance is today not high enough for robotic 
algor i thms, although it is possible to use mathe­
matic co-processors for the floa t ing-point arith­
meti c ( e.g. t i me for one 32-bit floating-point 
mu lt i pl i cat i on with Intel 80287 ~ 11,9 /IS, Moto­
r a 1 a 68881 :::; 5,5 I'S, Na tl 0 nd 1 320 81 z 4,8 /is) . 
Loo lqng at the c omputat ion-speed, an applIcation 
with s ignal-processors c ould provide good re­
sui ts, but the y have not yet on-chip hardware 
s up por t fo r 32-bit fl o at i ng - point arithme tic . 
Transputers wo u ld ha ve t h e r eqUIred performance, 
but the y a r e at t h e moment too expensive and dif­
ficul t In handl ing. Nowadays, the real ization is 
o n ly poss i ble with a mini - computer (too expen ­
sive i 0 "- wi th speC ia l hardwa r e designed for a 
s pecific p r oblem. 
We decided us for a mi c ro-programmed solution, 
because this leads to a flexible systeOl struc­
ture . Modificat i ons are not c omplicated, so it is 
ver y p rac ticab le f or diffe r e n t test implementa­
t io ns . We des i gned an independent microprocess or 
subsystem using bipolar bit - slice components and 
special floating - point building-blocks . 
Figure 2 shows the block diagram of the Robot 
Arithmetic Processo r, RAP. 

Floating - Point Path 
ThE' main modules of RAP are two VLSI-Clrcuits 
with a one - bus bu ilding - block architecture, a 
float ing - po int ALU and mult ip lier / 1 / . They can 
handle bo th single (32-bi t ) and double (64-bi tl 
precision formats and operations , as well as full 
3 2 - bit two's c omplement integers . The floating­
point operatl o ns a nd data format is conform to 
the r equ i rements o f the IEEE standard 754, ver ­
sion 10 . 0 . 8asic instructIons - add, subtract, 
multiply, dIVIde, converSIon to and from 32-bit 
two's complement integers, absolut value, compar e 
- are executed onchip. Transcendental functions 
a r e cal c ulated by a mlcroprogram with a table 
lookup for fast processing. The devices can re­
present infini t y . NaN (Not a Number I, denor ma­
lized and zero oper ands and are capable to oper­
ate with all rounding modes . The treatment of 
e xc eptio ns , suc h as divide-by-zero, overflow, 
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underflow. inval id and inexact operations are 
full y implemented. A very important feature for 
real-time control applications is a fast mode of 
operation which remo ves the time penalty of 
underflow exception handling by substitution of 
zero for denormalized numbers. 
As the units use dedicated circuit arrays to per­
form the reqUIred functions, the arithmetic pro­
cessing is faster than designs which rely solely 
on sequential, clocked logic. For example, the 
array flowthrough time is under 180 ns for single 
precision floating-point multiplication and addi­
tion. Data input and output transfer may occur at 
a rate of one transfer per clock cycle. One or 
both op era nds can be stored internally which 
allows repea ted opera t ions wi th a cons tant or 
multiple functions performed on two operands. 
Although the circuits had been designed for opti­
mal flowthrough time, they have also the capabi­
lity of pipeline-operations, because the next 
operands can be loaded into the input-registers 
during operation in the floating point array. 
Together wi th the possibi I i ty of parallel compu­
tation in the ALU and in the multiplier, vector­
and matrix-arithmetic can be implemented very 
efficiently. 

Control path 
A control unit i s required to build an indepen­
dent processor-subsystem which can supply the 
arithmetic-chips with data at a high transfer 
rate utilizing the high performance of the float­
ing point units. We have realized an universal 
micro-programmed control -unit to get a great 
flexibility for the implementation of a wide 
range of algorithms for robot control systems. 
A micro-programmed machine uses a coherent se­
quence of micro-instructions to execute the ma­
chine instructions. Without any overlapping in­
structions, the throughput of the system would be 
to small. To improve the performance of the con­
trol unit, a pipeline technique is used with 
three stages of pipel ine registers. We use the 
most efficient structure, an address-instruct ion­
data based microprogram control architecture /2/ , 
although this technique is the most difficult 
solution for the software development. The three 
required steps (d etermine microprogram address, 
fetch and execute micro-instruction) for a 
complete microcycle are overlapped by this 
technique which results in a shorter microcycle. 
This pipeline architecture offers significant 
speed improvements except in the case of condi­
tional jumps where the pipeline must be cleared 
before execution. 
In order to access instructions and data in an 
orderly manner, a Program Control Unit (PCU) is 
used to provide the most efficient mechanism for 
program control. The PCU is built up with four 
4-bit ALU-slices. This 16-bit ALU has the capa­
bility of using its internal registers as the 
program counter. stack pointer and internal tem­
porar y registers for address calculations avoid­
ing the inefficient directly produced memory 
addresses from the microword. This of course pro­
vides considerable flexibility in the architec­
ture and also allows a much greater repertoire of 
instructions to be executed. 
The 8086 host processor has direct access to the 
memory of RAP in a 8 Kbyte page addressing mode, 

because the address range of RAP is 32 x 2 16 bit 
= 256 Kbyte which is a quarter of the address 
space of the 8086 processor. This is not a re­
striction of the data transfer rate, since it is 
not necessary to move more than 8 Kbyte of data 
in real-time. 
RAP can interrupt the host processor for communi­
cation and synchronization and in the other 
direction - the host processor can set a signal 
in the status register of RAP. 

M.A.P.C.-M 

RAP is attached to the local bus of the 8086 - a 
16-bit SMP-M bus - vi a one interface board which 
can be replaced to use RAP in connection with 
other bussystems, e.g. Multibus I or 11, VME bus, 
Q-bus. 

Diagnostic Path 
We have implemented hardware control mechanisms 
in RAP to utilize the following functions: 

• on- and off-li ne diagnostiCS 
• microprogram down load 
• debugging during software-

development 
Diagnostic is used to verify the functionality of 
a component or of the whole system and to ident­
ify the location which failed. A processor like 
RAP is difficult to test comprehensi vely because 
the combinatorial logic is very complex and in­
cludes sequential elements. Due to the complexity 
the logic should be partitioned into several 
smaller logi c bloc ks. The problem of observation 
and control of sequential logic is difficult, 
because the output is a function of both the in­
puts and the state stored in a register. The 
des i gn of RAP avo i ds the lac k of access to the 
state register s by breaking the feedback path in 
the sequential logic block. The state can be con­
trolled by injecting test data and output can be 
observed by reading the registers. Now the system 
is easy to test because the sequential system is 
converted into a pseudo-combinatorial logic. 
A very feasible realization is the Diagnostic-On­
Chip (DOC) technique, which works without a con­
siderable increasing hardware effort /3/ . DOC 
uses a buried shift register, called the shadow 
register. to load and unload diagnostic data. It 
allows diagnostic testing in the background 
transparent to the normal system operation - and 
on-line diagnostics. The system needs not to be 
taken into off-l ine mode during diagnostic which 
is beneficial for maintenance purpose. For proper 
work all registers in the control path, e. g. 
pipeline and instruction register, must have 
these diagnostic capability. All DOC-elements are 
connected by a serial ring-line for minimal ex­
penditure of hardware, controlled by the 8086 
host-processor (see Figure 2). 
Another advantage of this technique is the capa­
bility of using RAM- instead of PROM-elements for 
the microprogram memory. This feature is called 
Wr i teable Control Store (WCS) and increases the 
flexibility of RAP with regard to the development 
of different robot control algorithms. The work­
ing method of RAP can be adapted according to the 
requirements of the algorithms. Additionally the 
basic functions can be changed during operation 
by loading new parts of microcode. 
The hardware of RAP together wi th the host-pro­
cessor allows an easy software development with ­
out necessity of an expensive bit-slice processor 
development system. The program development util­
i ties are: 
- Assembler 

We use a relocatable macro meta assembler run­
ning on an IBM-PC which differs from an ordi­
nary microprocessor assembler in that way, that 
the user can define the instruction set and 
hardware configurations. This development step 
can be di v ided further in defining and assem­
bling of microprogram, generation of machine 
instructuion addresses out of the microprogram, 
assembly of machine program and formatting of 
micro - and machine program. 

- Download 
The DOC-technique together with the Writabe 
Contro I Store allows download i ng of the for­
matted microprogram, whereas machine-code can 
be loaded directly into the memory of RAP. 
Test and Debug 
The user can run the programs and debug them 
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with additional hardware facilities of RAP and 
with a software control monitor implemented on 
the 8086 host processor. The off-l ine test is 
supported by start/stop and single-step func­
tions. Hardware breakpoints are also useful for 
the r eal-time test of the system. 

Using these utilities, a wide range of algorithms 
for robot tasks can be Implemented. 

computation Perfo r mance 
The resu It i ng compu ta t i on 
in Table 1 for 32- and 
operations. Together wi th 

performance IS listed 
6it-bit floatIng-point 
the number of mathe-

matic: operations of the control algorithms it is 
possible to estimate the attainable sampling 
periods of the control loops. The table shows two 
different calculation methods, a pipelined oper­
ation and an operation with memory-ta-memory 
transfer which corresponds to the maximal execu­
tion time without using t he parallel datapaths 
and pipeline facilities. Further reduction of the 
e,ecution time can be obtained through parallel 
use of the two floating-point units. This method 
is ve ry sUitable for vecto r - and matrix-oper­
ations. An example of a vector-vector multiplica­
tIOn is described in the appendix. The computa­
tion performance IS between 3 and 5,5 MFLOP (330 
- 180 ns per operation I depending on the vector 
dimenSions. If the who le algorithm is implemented 
on the microprogram level, the result would be 
the shortest sampling period, but the size of the 
microprogram is limited to addressable memory. 

TABLE I RAP: EXECUTION TIMES, SINGLE FUNCTION 

operation 
computation of 

memory-to-memory pipelined 
transfer operation 

32 bi t 720 ns 450 ns 
multiply 

64 bit 1170 ns 900 ns 

add 32 bit 720 ns 450 ns 
subs tract - - - - - - - - - - - - -
compare 64 bit 990 ns 720 ns 

32 bit 2250 ns 1980 ns 
divide 

64 bi t 4230 ns 3960 ns 

Fo r real-time applications it must be taken into 
account that data transfer between RAP and the 
hGst processor requires in proportion to the RAP 
ari thmetic a large time. Nevertheless, the ratio 
between arithmetic and transfer operations of RAP 
is less than the ratio of standard micropro­
cesso r s. Therefore the est imation of the computa ­
tion time cannot be restricted to the number of 
mathematic operations. The worst-case execution 
time - memory-ta-memory transfer is a first 
evaluation if parts of the algorithms are micro­
programmed and data transfer is avoided as far as 
possible. 

APPLl CAT IONS 

Over the last few years several appl ications in 
robotics have been investigated. The achievement 
of robot-assembly and handling tasks requires not 
only the use of additional sensor-systems, called 
external sensors in oppsite to the internal sen­
sors like joint-position sensors, but also com­
plex control-strategies and algorithms. Examples 
for external sensor systems are wrist-mounted 
force / torque-sensors or proximity-sensors. The 
control strategies, like simultaneous motion and 
force control in contour-finding and -traCking 

tasks or the performance of the peg-in-hole prob­
lem require large amounts of computationl power 
to realize good performance of the applications. 

Control Hierarchy 
The performance of robot tasks can be stressed 
out in a hierarchical control structure, which is 
presented in figure 3. The robot tasks can be de­
vided into three levels: 
- Configuration level 

The specifIcation of the desired trajectories 
in the co nfiguration space is based on the ap­
pI ication dependent formulation of the robot 
task. 

- Cartesian control level 
Depending on the desired trajectories and the 
specified sensor-configuration the cartesian 
control algor i thms and the cartesian sensor­
data (e.g. force/torque signals I are processed 
on this level. 

- Joint control level 
The Joint torques are calculated as functions 
of the desired tra jectories in joint coordinate 
space and the sensor feedback from joint-based 
sensor s yst ems like jOint-position sensors, 

configuration 
level 

specification of 
trajectories in 
conf 19uration space 

desired 

cartesian 
control level 

joint 
control level 

Fig. 3 Control hierarchy 

General Requirements 
From this hierarchical 
worked out some general 
robot applications: 
- Servo rates 

/ 

point of view we have 
requirements concerning 

The realization of a high task-performance re­
quires short servo cycles on cartesian level. 
In spite of the complexity of the control 
schemes there are two posibilities to meet the 
requirements: the use of a control system with 
very large compu ta t i on power or the sp 1 i t of 
the system's servo rate. Most control strate­
gies allow the splitting of the servo rate into 
two levels. At the high level the calculation 
of the control algorithms and the servo equa-
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tions takes place. The lower level computes the 
configuration dependent parameters at a slower 
servO rate . 

- Senso r data processing 
The utilization of exte rnal , in most cases com­
plex sensor-systems necessitates additional 
computional power on the control s ystem . 

- Storage capability 
In order to evaluate and compare control struc­
tures in a quant i tative way the system must 
pro v ide the capab i I i ty to store large amounts 
of data in real-t ime. 

- Evaluation of experimental results 
The fast evaluation of test runs is enabled by 
storage and display facilities on the control 
system or on a host machine. 

- Universal algorithms 
The design of a robot control s ys tem as a test­
bed for ro botics applications requires the im­
plementat ion of configuration independent uni­
versa 1 alg or i thms to make qu i te sure that the 
con t rol strategies are well guided for adapta­
tion to different tas ks, changi ng sensor confi ­
gurations and distict k inematics of robot mani­
pulators. 

- Programming language 
The program development process is supported by 
us i ng app ropria te programming languages: 
Hlghlevel langu ages, lik e PLIM or FORTRAN on 
task conf i gurati on level and machine dependent 
languages (assembler- and microprogramming) on 
control and sevo level. 

Refer ring to these requ irements the control sys­
tem must provlde the following facilitie s and 
attr ibu tes: 
- Modular s ystem ar chi tecture 

The robot control system must be di vi ded into 
modular subsystems to extract the parallel isms 
in the control algorithms. Several time criti­
cal tas ks ca n be pr oc essed on such a modular 
s ys tem ar chi tecture. 

- Large computational power 
Th e computation of the control loop equations 
and the sensor data processing in real-time 
tasks requires a multiprocessor system to pro­
vide the la r ge amounts of computing power. 

- Large amou nt of memory 
The system must have the facility to store 
large amounts of data in real - time. For later 
a na lysis data such as joint positions or sensor 
signals (e.g. measured cont ac t forces) must be 
stored in every servo cycle. 

- Intelligent subsy s tems 
The complex sensor data preprocessing is 
achi eved by Intell igent SUbsystems . These sub­
systems calculate the sensory feedback for the 
control algorithms . This concept reduces data 
transfer to other pr ocessors of the control 
system . 

ARC-System for Robot Control 
We have taken t hese requ i rements into account 
when designing the Adv anced Robot Control System 
as a testbed for our further studies in robotics 
research . The distribution of the computational 
burden on the system's processor units is shown 
in figure 4. 
• The master processor with the multitasking op ­

erating-system processes all high-level tasks 
and manages the global state memory . 

• The time -cr itical numerically-intensive tasks -
i n particular k inematic and dynamic calcula­
tions - are executed by one SOS6-processor with 
attached RAP. Data transfer to other processors 
reduces to a minimal value . 

• The third processor uses two SOSS-processor 
subsystems connected v ia dual-port memory at 
the local bus . The flexibility and the perform ­
ance Incr eases through sensor data prepro­
cessing and local gripper control. 
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• The servo loops of the manipulator are con­
nected vi a local interfaces to the fourth SOS6-
processor using analog and binar y l iD-modules 
and a jOint position acquisitation system. This 
processor e xecutes all manipulator specific 
tasks ( e . g. robot super vi sion, joint control) 
except the kinematic and dynamic calculations . 

REAL-TI ME IMPLEMENTATION - AN EXAMPLE 

The ARC-System is designed as a testbed for real­
time experiments in manipulator position and s en­
sor control. As an example for implementation of 
robot control schemes the cartesian closed loop 
control with prescribed dynamics 14 1 is dis­
c ussed. 
The contra 1st r a tegy is based on the idea to 
maintain a prescribed motion along desired car­
tesian trajectories and to get well defined re­
sponses in each direc tion of the task coordinate 
system . The manipulator being controlled with 
this strategy is a MANUTEC r3 with a 6-link-arm. 
The r ea l- time control algorithms must achieve the 
following steps: 
- Measurement and preprocessing of the joint 

posit i on and of the signals from a wrist 
mounted force / torque sensor . 

- Computation of the end-effector position 
(forward solution of the kinematic problem), 
cal cu lation of the cartesian velocity and ac­
celeration based on the determination of the 
Jacobian matrix and of the time derivative of 
the Jacobian . 

- Calculation of the desired joint velocit y based 
on the cartesian contro l loop. 

- Computation of the inverse dynamics of the sys-
tem and calculation of the compensation-torque. 

The computational burden of the control scheme is 
spread across the processor units of the ARC-sys­
tem. The number of mathematic operations can be 
used to est imate the computation performance re-
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quired in real-time control of the MANUTEC r3 
arm. 
The total number of operations for the calcula­
tion of the kinematic transformations, the in­
verse dynam ics and the car tes i an contro ller is 
approximately 3500 floating-point operations. The 
maximum servo-rate of the system with prescribed 
dynamics would be about 4 msec. To reach even a 
higher performance wi thin this system, the sam­
pling period is divided into two different 
cycles: 
- Contro I leve I 

On the high-rate control level the system real­
izes the cartesian controller, computes the 
desired joint velocity and calculates the com­
pensation torque resulting from the inverse 
dynamics of the manipulator. 

- Parameter level 
On the parameter level, which works on lower 
rate, the control system refreshes the vectors 
and matrices of the inverse system. 

Taking the splitted servo rates into account the 
system reaches a control level cycle rate of 2,5 
msec and a parameter level rate of 5 msec. These 
cycle times are quiet feasable both for tasks 
with high speed requirements and for sensor­
gu i ded hand ling and assemb I y tasks in robo t ap­
plications. The implementation of the proposed 
control scheme on the Advanced Robot Control Sys­
tem is under progress. 

CONCLUSION 

Th i s paper has presented the struc ture of the 
Advanced Robot Control System (ARC) . Within this 
system we have integrated a special purpose Robot 
Arithmetic Processor (RAP). The ARC-System is 
designed as a testbed for studies in robotic 
research. 
The architecture of the control system meets the 
requirements arising from hierarchical control 
schemes of advanced robot applications. The com­
putation performance of the system is sufficient 
for real-time control of industrial robots, using 
universal and kinematic independent algorithms. 
The control system offers the feasibility to 
create and test control schemes and to analyse 
the results on a host-machine. Applications like 
the cartesian closed loop control with prescribed 
dynamics can be achieved in real-time . 
A later version of RAP wi th reduced hardware 
effort could be a processor for industrial con­
trol systems. This RAP has to be programmed only 
with the specific robot parameters. The kinematic 
and dynamic relations would be computed for a 
n-degrees-of-freedom manipulator in a 'black-box' 
system. 
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APPENDIX 

An example of a vector-vector multiplication in a 
32-bit floating-point format illustrates the 
working method of the Robot Arithmetic Processor 
(see figure 5). 

n 

d = d = a.b =.r a .• b . 
n - - 1=1 1 1 

with d i = d i _ 1 + c i • dO = 0 , c i = ai'b i 
For fast process i ng, the m icroprogram uses the 
pipeline facilities and parallel computation in 
the floating-point ALU and multiplier. For 
example, three parts are executed during step 10: 

• load vector-element b4 from the main memory 

into one input register of the multiplier 
(memory addressed through a register of the 
Program Control Unit; multiplication will be 
carried out in step 14 and 15) 

• multiply a 3 and b3 , first step 

• add cl and c 2 ' second step 

The status signals of the floating-point-chips 
can be test ed by the sequencer for exeption­
handling. 
For a multiplication of 2 vectors with the dimen­
sion n, 4n+4 steps are required ( 1 step = 90 ns). 
Computation performance P of a computer is ex­
pressed through the number of floating-point op­
erations per seconds (FLOP). The number of oper­
ations is 2n-1 for this example , the performance 
of RAP is : 

P(n) = 2n-l • ~ MFLOP 
4n-3 9 

An estimation is possible using the two bound­
aries: 
P = P max (n-+ CX1 ) 5,5 MFLOP, P . 

mln P(2) = 3 MFLOP 

The result for a matrix-vector multiplication 
(matrix-dimension n x m) is: 

P (n,m) 
2nm - m 

4nm - 2m + 5 ~ MFLOP 
9 
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Fig. 5 Computation Structure of vector-vector 
multiplication 




