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Abstract . The paper discusses the real-time implementation of an 
associative-memory-based l earn ing contro l scheme with PI -controllers 
for nonlinear processes . Starting with a pre-assumed PI-controller 
which only has to stabilize the process the controller parameters are 
optim i zed on- li ne by a predictive optimization. This optimization 
uses for prediction the model of the process stored in an associative 
memory which is also learned on-line. The situation-dependent 
optimized controller parameters are also stored in an associative 
memory . The concept is a modification of the LERNAS-system 
(Ersu,1984), which is also shortly described and compared to the 
system described here. Some experimenta l results with a nonlinear pH­
control demonstrate the performance of the system. 
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INTRODUCTION 

The fact, that most of the complex 
industrial processes , espe cially if they 
are uncertain or fully or partially un­
known , have made self-organizing control 
schemes into an important research area 
in control theory. Since the beginning of 
the 1950's very active research has re­
sulted in various forms of self-organi ­
zing control , e . g . adaptive , learning, 
fuzzy, linguistic, e tc . An efficient 
implementation of the se algorithms could 
only be realized by the rapid and revo­
lutionary progress in microelectronics . A 
major part of recent industria l appli ca­
tions uses parameter adaptive control 
schemes by which a linear feedback law is 
on-line updated depending on an implicit 
or explicit identification of a linear 
model of the unknown process. 

The learning control method LERNAS 
(Learning Control with Neuron-like Asso­
ciative Memory Systems) represents a 
novel type of self-organizing control 
system which is motivated by the neuro­
biological and psychological research on 
the brain and the growth of the VLSI­
technology as well . The main novelty of 
the method introduced by Ersu (1 980 , 
1983) and discussed by ErsU and Tolle 
(1 984 ) is that the concept uses a 
control action test and optimization 
through a I-step ahead output predictive 
algorithm (similar to human problem 
solving) with both the predictive model 
of the unknown environment and the con­
trol strategy being represented by 
general mathematical (i. e . nonlinear) 
mappings. Both mappings are carried out 
by special neuron-like associati ve memory 
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systems similar to information storage in 
neuronal networks. 

The concept described in this paper is a 
modification of this method. The model 
for the process is the same and it is 
learned in the same way. The control­
strategy , however, is different . The 
LERNAS concept described above assumes 
that a priori information about the 
process is hardly available. But in most 
cases this assumption is not va l id . In 
g eneral there exists sufficient a priori 
information to design a PI-controller 
which only stabilizes the process. Now 
instead of the controller-respons e to a 
given state the optimal parameter set for 
a given state of the process is learned. 
These parameters are optimized utilizing 
the predictive process model stored in an 
associative memory. 

The advantages and disadvantages of this 
method with respect to the method 
described above will be demonstrated 
in this paper. 

LEARNING CONTROL CONCEPT 

In c lassica l system theory input-output 
descriptions are based on an assumed or 
predetermined mathematical structure, 
normally a set of differential equations. 
Replacement of these predetermined 
structures by input-output type of 
associative mappings leads to more 
general representations by (in general 
nonlinear) mathematical mappings between 
n-dimensional input vec tors I and 
m-dimensional output vectors 0: 
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M: .L..j Q (2.1) 

Given a time-descrete representation of a 
time-invariant deterministic system 

with 

and 

1(k+1 )=f( '!: (k) ,y(k) , u(k » 
(2.2) 

input vectors!! E U c R 

output vectors X. €. Y c R 

measurable ~ 
disturbance 
vector 

state description 

~(k) =(y( k) , y(k-1) , •.. , y(k - a ) 
u(k-1), ... , Q,(k-B) 
i(k-1 ), •.• , y(k-Y) 

scalars a , B, Y 

sampled time t=k . T s 

sampling period T s 

an associative mapping for (2.2) can be 
defined by 

S:(~(t), :y:,(k) , ~(k»~'y'(k+1) (2.3) 

which can be learned on-line via 
associative memorization. This procedure 
does not require any structural infor­
mation about the process at hand except 
the scalars a , Band Y representing the 
amount of history to be used in the 
model. 

Associative memorization is a storage 
technique in which the location of the 
output information is addressed by the 
contents of the input information only 
(Kohonen, 1977).This type of information 
retrieval which is an outstanding feature 
of the associative neuronal network models 
avoids long searching procedures as they 
are genera ll y necessary in conventional 
memory systems . The special memory system 
AMS (Associative Memory System) used for 
the implementation of the control concept 
is a Perceptron-like (Rosenblatt , 1962) 
distributed trainable associative memory 
system by which a real - valued function or 
mapping of several variables can be 
evaluated via simple content-addressing 
mechanisms rather than by complex 
mathematical operations . 

Based on the concept of CMAC (Cere­
bellar Model Articulation Controller) 
proposed by Albus (1972, 1975) as a 
neuronal network model of the human 
cerebellar cortex AMS has been further 
modified and developed for real-time 
control purposes (Ersu , 1982). In 
AMS the information storage for an 
association pair II i ' Q.i ) occurs by 
distributing the novel output infor­
mation over a constant number (r*) of 
memory locations, thus for any input 
information the output is always formed 
by a recollection of the information 
eleme1J..ts located in the correspondiEg (to 
Ii) r memory cells. Dependlng on the 

similarity of input information, e.g. the 
difference between two inputs ll1- i -I ·11 the 
mapplng procedure recalls corresponJing 
sets of information elements which share 
the memory cells to an extent which is a 
function of the input similarity. This 
leads to one of the most important 
features of AMS called generalization, 
i.e. similar inputs tend to produce 
similar outputs. Mathematically it can be 
interpreted as a multi-dimensional inter­
polation in the neigBbou~hood of a 
tralned pOlnt (ro, 0 ) lllustrated in 
figure 1. The degree of generalization 
which is fundamental for on-line l earning 
can be thus pretuned by the generali­
zation variable r*and the quantization 
variable . As memory locations are shared 
by similar inputs the AMS procedure also 
reduces the amount of memory to a great 
extent. 

CONTROL STRATEGY 

For simplification here only a single­
variable process is considered. Th e 
method is nevertheless also applicable 
for multi variable-processes with some 
modifications. 

The concept shown in fig. 2 incor­
porates two AMS-type memory systems, one 
for the predictive model of the unknown 
process 

M: (!l!~k), :y:,(k), u(k)H y(k+1) (3.1.) 

corresponding to~ with some aM, BM , YM 
(instead of a , B, Y ) 
and one for the control strategy 

P: (j,bk ) , ,::(k), y (k» -7 .e(k) (3. 2 . ) 

With setpoint value w(k) E. Y and ljI pin 
practice similar to ~M . 

u(k) is calculated in a PI-control-al­
gorithm : 

u(k )=u(k-1 )+qOxd(k)+q1xd(k-1) 

T 
Where £(k)=(qo,q1) 

(3.3. ) 

The PI-algorithm was choosen because it 
is a robust algorithm with respect to 
model uncertainities. Further there are 
only two parameters to optimize. 

The behaviour of the process is deter­
mined by a reference-model. This method 
results in a better learning-behaviour of 
the system because it always follows 
similar trajectories. 

Assuming that 

i.the unknown multivariable process at 
hand is a determinstic time­
invariant or weakly time-variant 
BIBO-stable process, 

ii. u,y and v are quanti zed and of 
finite subspaces, 
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iii. the overall goal 

ke- 1 
IG=~ LG(y(k+l), w(k+l), u(k))(3.4.) 

k=O 

can be substituted by a i-step 
ahead subgoal 

1 
IS=~ 

i=O 
LS(y(k+i), w(k+i), u(k+i-l)) 

(3.5) 

IV. a parameterset Evis known which 
stabilizes the process 

V. the process is able to follow the 
model-trajectory 

the algorithmic scheme in each sampling 
period is as follows: 

1. the prediction-model is updated by 
the measured prediction-error 
e(k)=y(k)~y(k) where y(k) is the pre­
dicted value from step k-l. 

2. an optimization scheme is activated. 
It tries to calculate the parameter­
set p*(k) which is the estimated 
optimal set f~r the subgoal Is(k). 
In fact only Is(k) - the estlmated sub­
goal - can be calculated. because for 
future y(k+i) only the estimated 
value y(k+i) is available. Besides 
the whole prediction has to take 
place in the trained area of the 
model, because otherwise no infor­
mation about the behaviour is 
available. That means that the re­
sulting p*(k) also depends on the 
informatTon available in the pro­
cess-model. The prediction-length 
1 is adapted to the training-
situation of the process-model in 
the boundaries 

lmin < 1 < lmax 

lmin is the shortest prediction which 
allows a critical evaluation of the 
parameter-set. lmax is the longest 
prediction which can assure estima­
ted values which are to some extent 
accurate. 

There are three different possibi­
lities for the starting point of the 
optimization: 

1. the initial parameter-set.Ev 
2. the old parameter-set E(k-l) 
3. the parameter-set p (k) which is 

the preliminary optimal parameter­
set out of the parameter-AMS. 

3. can only be used if the parameter­
AMS is trained for the appropriate 
state of the process. 

2. can be used as long as this para­
meterset doesn't lead to an undesired 
behaviour of the process. This can be 
the case when the behaviour of the 
process in the actual state is 
(because of nonlinearities) very 
different to the behaviour in the 
state the previous parameter-set was 

M.A.P.C.-H 

originally optimized. To detect such 
a situation a supervisor-level was 
introduced. 

If none of the two parameter-sets is 
applicable the initial parameter-set 
E.v is used. 

3. The parameter-set p*(k) optimized by 
(2.) is memorizedln parameter memory 
to be used as the best decision, 
making (2.) superfluous in the long 
range, and giving either an ex­
cellent optimization starting point 
or being used without further in­
clusion of the predictive learning 
loop after a user-defined point of 
time. 

4. The last step is the calculation of 
the control-output u*(k). This is 
done via the PI-algorithm 

u*(k)=u(k-l )+Qoxd(k)+qlxd(k-l) 

where (QO,Ql f=E(k). 

Again there are the three possibi­
lities mentioned above for p(k). 

Before applying a control input to 
the process a supoptimal control in­
put u(k)/u1k) with 

IIU(k) - u(k) 11 ( 8 

but 

GT = trained area of model-AMS 

for some specified8 is determined. 

u(k) applied to the process excites 
it to further untrained information 
for the model AMS and, so, enlarges 
GT • This exploratory procedure called 
active learning is speeding up the 
learning. 

It should be pointed out that the fact 
that the old parameterset p(k-l) can be 
used for control is an advantage of 
this method in comparison to the original 
LERNAS-method. A parameterset in 
connection with a fixed controller­
structure can provide a response to every 
state of the process. Depending on the 
nonlinearity of the process this will not 
be the optimal response in all cases, but 
in most cases it is similar to it. 

This is not true if the u(k) are 
stored directly. Then the learned u is 
only a response to that specific state of 
the process. 

With increasing learning-time the system 
can adapt the controller-parameters to 
the nonlinearities of the process. But, 
as the information "parameterset" is 
more global than the information 
"controller-output", it can not be 
adapted to such an extend. That means 
that the original LERNAS-system is better 
suited for very high nonlinear processes 
with fast changes in behaviour, whereas 
the described system is well suited for 
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processes without these fast changes. 
In the latter case it has three major 
advantages: 

1. It requires less memory, because a 
parameterset can be used for a 
greater area than a control-output 
and therefore it is not necessary to 
distinguish so many states of the 
process. 

2. For the same reason it can learn more 
quickly: A parameterset once learned 
can be used in a greater area and 
there are less different parameter 
sets to learn than controller-outputs. 

3. In the case of very high disturbances 
it leads to much better behaviour. 
The original LERNAS must learn the 
response to each disturbance-input. 
When this disturbance-input occurs 
the first time the reaction is slow, 
because the control-AMS has not yet 
learned a response to it. The system 
described here uses a PI-controller 
as backup. Therefore it can 
immediately react on a disturbance­
input because the PI-controller "knowS' 
an answer to it (even if it is not the 
optimal answer). It should be pointed 
out that in the case of smaller distur­
bances also the original LERNAS is 
able to react due to the ability of 
pluralization. 

SOME EXPERIMENTAL RESULTS 

The described control-algorithm has been 
tested with a simulated nonlinear pH­
control-process. The major nonlinearity 
of this process is the titration-
curve (fig. 3). The system had to learn 
to change the pH-value periodically bet­
ween 7 and 9 (the most nonlinear area) 
according to the gi ven desired trajec­
tory. 

Fig. 4 shows the behaviour with the 
predetermined para meterset. It can easily 
be seen that the behaviour is not very 
good and that it depends on the 
set-point. In fig. 5 the behaviour in the 
region between 7 and 8 is shown after the 
system has followed three times the 
model-trajectory shown in fig. 4. In 
fig. 6 the same is shown after following 
the trajectory 15 times. Figure 7 shows 
the parameter-sets used in every step 
(the optimized parameters from the para­
meter-AMS) after 3 learning-cycles, 
fig. 8 after 15 learning-cycles. 

The figures demonstrate that with in­
creasing learning-time the system is able 
to follow the model-trajectory better and 
that it is able to adapt the parameters 
to the nonlinearity of the process. 

The response to very high disturbance­
inputs (up to 100 %) have also been 

tested. For this test a well trained 
parameter-AMS was used. Figure 9 shows 
that the system is able to achieve a good 
behaviour. 

CONCLUSION 

A modification of the LERNAS-concept was 
described which uses associative memories 
to store the optimized parameters of a 
PI-controller. The parameters are 
optimized on-line with the help of a 
process-model which is also stored in an 
AMS and also learned on-line. The 
simulation shows that it is well suited 
for nonlinear processes with not too high 
nonlinearities. Only very few a 
priori-information about the process is 
needed. It is especially not necessary to 
have a mathematical model for the 
process. 

The concept is at the moment very well 
applicable for SISO processes. The on­
going work will be concentrated on an ex­
tention to MIMO processes. 
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Fig. 3 Titration-curve 
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