
Copyright © IFAC Adaptive Systems in Control
and Signal Processing. Glasgow. UK. 1989

CONVERGENCE PROPERTIES OF
ASSOCIATIVE MEMORY STORAGE FOR

LEARNING CONTROL SYSTEMS

P. C. Parks 1 and J. Militzer2

Institut fur Regelungstechnik: Fachgebiet Regelsystemtheorie, Technische Hochschule,
Darmstadt, D-6JOO Darmstadt, FRG

Abstract. First, the cerebellar model articulation controller (CMAC), invented in
the early 1970s by J S Albus, and the associative memory system (AMS), developed for
learning control systems by H Tolle, E ErsU and J Militzer in the early 1980s, are
briefly described . The underlying mathematics of the AMS learning or training
algorithm is then given with a geometrical interpretation from which its convergence
properties may be deduced. These are illustrated for some simple cases.

The original algorithm devised by Albus is very simple to compute but is slow to
converge, and the second part of the paper investigates various methods of speeding up
the algorithm. From an application of these new algorithms to test cases one is
strongly recommended for further evaluation.

The results reported here are of relevance also to the topical and rapidly growing
field of neural computing.

INTRODUCTION

A special associative storage and retrieval
algorithm with a "generalising" property, called
the "Cerebellar Model Articulation Controller"
("C.M.A.C."), was first developed in the early
1910s by J S Albus as a simple model of the
cerebellar cortex of mammals and as a potential
controller for robots. The structure of the CMAC
used earlier ideas embodied in the "Perceptron" of
F Rosenblatt (Rosenblatt, 1961)

Further work on the CMAC concept to adapt it for
real-time learning control applications was
carried out in the early 1980s by H Tolle, E ErsO
and J Militzer and led to the so-called
"Associative Memory System" ("A.M.S."). Recent
advances in microelectronics and computing have
made these earlier ideas of learning and adaption
much more feasible and it is not surprising to
find that some working systems have now been
developed (ErsU, Mllitzer, 1984). A typical
learning control loop uses two AMS units as shown
in Fig 1. The AMS units are used to build a model
of the process as well as to store optimal control
strategies.

It is rather surprising to find that the basic
convergence properties of the CMAC algorithm were
not investigated by Albus himself - indeed in
Albus (1915) (p.299) he admitted that "at the
present time there exists no formal proof of
convergence of the procedure". This lack of a
proof continued until 1989 when the present

authors published a comprehensive investigation
(Parks and Militzer, 1989). In the present paper
we shall first summarise and illustrate these
results, omitting the heavy matrix algebra
involved. We shall then present some new results
concerning improvements to the original CMAC and
AMS learning algorithm. One of these improved
algorithms is recommended for further evaluation
in AMS units.

ASSOCIATIVE MEMORY SYSTEMS (AMS)

Learning control systems, which operate by
deducing future control actions from past
information and experience, need by their very
nature to store large quantities of past data.
This can be accomplished by a "look-up" table, but
at first sight the memory storage requirements
appear to be insuperable. It was the objective of
J S Albus, and those who followed him, to reduce
the storage requirements dramatically by assuming
that most input-output mappings of interest are
continuous functions and that consequently the
correct output or response at some point of the
input space can be approximated by "generalising"
the responses at closely neighbouring points, for
example by linear interpolation. Thus the AMS
algorithm spreads the magnitude of a given piece
~f data to be stored, between a fixed number, p,
~f different memory locations containing certain
numbers called "weights".

lDeutsche Forschungsgemeinschaft Guest Professor 1986/87, Oeutscher Akademischer
Austauschdienst Guest Professor 1988; Home address: Applied and Computational
Mathematics Group, Royal Military College of SCience, Shrivenham, Swindon, SN6 8LA,
England.

'Scientific Assistant, Present address: ISRA Systemtechnik GmbH, Mornegweg Str. 45A,
0-6100 Oarmstadt, Federal Republic of Germany.

37i

©1989 International Federation of Automatic Control (IFAC).
Posted under a CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Original publication in IFAC Proceedings Volumes (now IFAC-Papers online), https://doi.org/10.1016/S1474-6670(17)52750-0

378 P. C. Parks and J. Militzer

Albus and his followers devised and used a
learning or training procedure in which the
individual weights are gradually adjusted to their
correct values in an iterative procedure or
~lgorithm. This procedure is based on the
learning device invented by F Rosenblatt in the
late 1950s called the "Perceptron". and can be
traced back further to the book of 0 0 Hebb (Hebb.
1949) which has given rise to the term "Hebbian
learning".

The learning process works as follows (see also
Fig. 2):-

(i) at the kth step of the algorithm p weights
~re selected for adjustment based on the input
information;

(ii) the existing values of the p weights are
~dded together and then divided by p to form their
average;

(iii) this average is subtracted from the value
~k which it is desired to store;

(iv) the difference is added as a correction to
each of the p chosen weights so as to update them.

Mathematically we may write (see also Fig 2)

r~::l- r:::j + i\ [~l- * r 1 ~:Ij (2.1)

l~PI k l~pI k-l ; l; Jl~pI k-1

Here xl '.X2' •...• xp • represent the values of the
weights chosen from a total number of p weights
(p«p). The suffixes k-l and k denote the p­
vectors formed by the x I at respectively the
(k-l)th and kth steps or the learning algorithm.

The algorithm (2.1) may be rewritten in a neater
vector form as

Xk - xk- 1 + ~k ak

~k - /Prk - a~ xk- 1

..,hich we shall call the "Albus learning

(2.2)

~lgor i thm" . Here xk- 1 and ~ are p-vectors
containing all the p ..,eights while ak is a unit
vector having entries of 1//P in the p places
corresponding to the integers 1 '.2'.3' •..•• p'
~ppearing in (2.1). and zeros elsewhere.

The Albus learning algorithm (2.2) has an
important geometrical interpretation (which was
crucial to the development of the convergence
theory in Parks and Militzer (1989». This is
that the point xk is the foot of the perpendicular
dropped from the point xk- 1 to the
(p-l)-dimensional hyperplane defined in
p-dimensional space by the equation

a~ x - /P i\ (2.3)

It is customary in practice to start the algorithm
..,ith all the p weights set to zero so that Xo-O.

CONVERGENCE PROPERTIES OF THE ALBUS
LEARNING ALGORITHM

We first note that the objective of the algorithm
is to find. if possible. a column p-vector x*.
say. such that

(3.1)

for each i-l.2.3 •...• N. If such an x* does not
exist then an approximate solution should be
found.

A more familiar form of the equations (3.1) is the
linear matrix equation

A x* - h (3.2)

where Nxp matrix A is composed of the row p­
vectors aI and h is the Nxl column vector with
elements 1P r i .

In discussing convergence of the Albus algorithm
the question of consistency or inconsistency of
the equations (3.1) or (3.2) is very important.
and in the case of inconsistency. which is quite
likely to arise due to measurement noise
distorting the values of rk• the form of training
procedure is also crucial. Here we distinguish
two forms of training:

(i) "cyclic training". in which the N equations
are considered one by one in a particular cyclic
order which is repeated many times. and

(ii) "random training". in which the equations are
chosen at random.

These two procedures thus involve a cyclic or a
random choice of the integer k appearing in the
Albus algorithm (2.2) from the set of integers
1.2.3 •...• N.

In Parks. Militzer (1989) it is shown that
provided the equations (3.1) or (3.2) are
consistent then the weights vector xk in the
algorithm (2.2) tends to a single fixed point x*
in the p-dimensional space as k+~. which mayor
may not depend on the starting point of the
algorithm Xo (which is usually but not always
zero). If xo.O x* will be independent of Xo if
the unit vectors ai used as the algorithm proceeds
"span" the vector Xa' i.e. if Xo can be expressed
as a linear combination of these a i . Otherwise x*
will depend on that part of Xo which lies in the
orthogonal complement of the space spanned by the
a i . Simple examples are given in Figs. 3(a) and
3{ b).

If the equations (3.1) and (3.2) are inconsistent
then the behaviour of the xk as k+~ is more
complicated and depends on the type of training
employed. With cyclic training xk ends up
describing an asymptotically stable "limit cycle"
of N points ..,hich are approached by xk as k+~ as
shown in Fig 3(c). On the other hand if random
training is employed xk ends up describing a
random motion confined. however. within what we
have called a "minimal capture zone". A "capture
zone" may first be defined as the union of N sets
of pOints. each set lying in one of the N
hyperplanes defined by (2.3) and such that it
projects orthogonally into or onto each of the
other N-l sets. A "minimal capture zone" is the
smallest capture zone that can exist without
losing the mutual orthogonal projection property.
Fig 3(d) illustrates this concept and convergence
to such a minimal capture zone.

The convergence behaviour of the Albus algorithm
is set out in detail in Table 1 and the various
possibilities have been illustrated in Fig 3 for
simple cases in which p-2. Fuller details with
proofs based on matrix algebra will be found in
Parks and Militzer (1989).

Associative Memory Storage for Learning Control Systems 379

A COMPARISON OF 5 LEARNING ALGORITHMS

In general. the main input to an AMS or CMAC unit
consists of a real vector 8 (the "stimulus").
8ERn. which is first mapped as the internal
"associati ve" vector I. However. for the following
study it is sufficient to define the stimulus as a
scalar integer variable s. The first mapping is
gi ven by:

I - I(s)

al

_ (al ••••• a p) T

t
.!... for s+1 S

-IP
o otherwise

i S s+p (4.1)

(A description of the general n-dimensional case
is given for example in ErsU. Militzer (1982».

The response r(s;k) of the memory unit at point s
after k training steps is obtained as the average
of the active weights. which are determined by the
non-zero elements of I(s). giving the expression

(4.2)

The following five algorithms were investigated:

Albus learning algorithm ("AL"). This is the
basic learning algorithm as already defined in
Eqn. (2.2).

Moving average training ("AV"). In this
algorithm. the value of a weight xi is calculated
as the average of the corrections. that it would
receive in the basic algorithm.

For calculation of the averages. a "counter"
vector c - (c 1 •...• c)T of same dimension is
aSSigned to the weiggt vector x. Initial value is
Co - o.

The counters are updated to indicate how often
each weight has been modified by the end of the
kth training step. so that

(4.3)

as ;p ak contains ones in the positions of the
active weights and zeros elsewhere.

The weights themselves are adjusted as follows:

with Ilk - ;p i\ - IT k xk- 1 •

bk -
T

(b 1k •·•· .bpk) • (4.4)

t" if aik-O.
bik - C~k

otherwise

Note that: (i) random noise with zero mean. which
frequently disturbs the training data rj in
practical applications. can be filtered out; (ii)
if the Eqns (3.2) are inconsistent. convergence is
towards a single point. and not a limit cycle as
is obtained with algorithm AL.

Partially optimised steplength in the last
perpendicular direction ("OS"). This algori thm
applies corrections to the weight vector in the
perpendicular direction I k• as the basic scheme AL
does. However. the steplength Ilk is ~ot deSigned
to reach exactly the kth hyperplane Ik x - ;p r k•
but rather to minimise the sum of squared
perpendiculars to the hyperplanes defined by the
last t pieces of training data so that

k
It - I (13 Xk - ;p r j)' + minimum.

j-k-l+l
(4.5)

where the optimization length 1 is a suitably
chosen integer with 1S1Sk. The perpendicular
distances are proportional to the response errors
of the AMS.

The weights are adjusted according to:

(4.6)

Note that the basic algorithm AL is a special case
of this procedure with 1-1.

Training at the point with maximum error ("ME").
This method applies the normal training procedure
at that point in input space s . for which the
desired response rj is currently reproduced with
the largest error among a given number. 1 say. ot
the latest pieces of data. The search length 1 is
suitably chosen with 1S1Sk.

The correction is then applied for the point Sm'
say. where the largest error occurs. so that

Xk - Xk- 1 + Ilk ~

Ilk - ;p rm - ~ xk- 1

(4.9)

Note that for 1-1 this procedure is also identical
to algorithm AL.

Partial Gram-Schmidt procedure ("GS"). The
algorithm is designed to store new data without
affecting the responses to a given number of
former training points Sk-1+1 ••••• Sk-l. A Gram­
Schmidt orthogonalization is used to determine a
correction direction dk which lies in the
hyperplane spanned by the last 1 vectors
I k- 1+1 •...• I k and is orthogonal. if possible. to
all of these vectors except the last one I k. The
new weight vector xk ls then given by the point of
i~tersection between dk and the hyperplane
Ikx - ;p r k. The "basis dimension" 1 is suitably
chosen with 1St$k.

The weights are adjusted as follows:

(4.13)

Note that (i) For 1-1 this procedure is identical
to algorithm AL; (ii) if Eqns. (3.2) are
consistent. e.g. n-l and the training data is not
disturbed by noise and all N pieces of data are
contained in a sequence of at most 1 consecutive
training steps. the algorithm converges at or
before the last step of that sequence.

COMPUTATIONAL RESULTS

The "target functions" used to generate the
training data for the numerical experiments are
defined for the N discrete argument values
5-0.1 •..•• N-l. The functions are:

380 P. C. Parks and J. Militzer

1. One period of a sine wave:

fSINE(S) - sin(2n~)
N-1

(4.14)

2. A composite function which has a discontinuous
first derivative if it is defined for a real
argument 5:

fCOMP(s) - (exp(~)-61~-1 1'5)
e'-12'5 N-1 N-1 (4.15)

3. One period of a square wave:-

f RECT - {1
-1

for ~ 0.5
N-1

otherwise
(4.16)

The functions are numbered in order of increasing
difficulty of learning. The square wave tests
show that the algorithms can cope with
discontinuous functions (which should however be
an exception in practical applications). The
training is performed either in a cyclic or in a
random way. In the first case. one cycle consists
of the N distinct pOints in order. starting with
some arbitrary number soE[0.N-1) and jumping back
through zero if necessary. i.e.:

<Sj> - 5 0 .50 .1 •..•• N-1.0.1 •...• 5 0 -1

This sequence <S > is then trained repeatedly.
with the reprodudtion error being evaluated only
at the end of a pass (k-N.2N.3N •..•).

In the second case. a pseudo random number
generator is used to produce integers Sj uniformly
distributed over the interval [0.N-1). The
generator is started at k-O with an arbitrary
initial seed ~o. The error is evaluated for
k-N.2N.3N •••••

The desired responses used in the learning
algorithms are either directly the target function
values. i.e.

(4.17)

which is the undisturbed case. or they are
disturbed by adding to the target function values
some white noise with a Gaussian distribution.
zero mean and standard deviation 0 so that

The disturbances in general introduce
inconsistencies in the Eqns. (3.2).

(4.18)

The experiments always start with all weights xi
set equal to zero. In all experiments p-N'p-1.
Fig. 4 gives an example how a memory response
looks typically in different sections of the
learning process. The accuracy of the memory
response after k training steps is expressed by
the root mean square error erms (k) :

N-1
1 L (r(sik)-f.(s»2
N 5-0

j N-1 1. L (f.(S»2
N 5-0

1 OO~ (4.19)

Learning in the CMAC or AMS has the properties
that (i) in general the reproduction error erms(k)
does not necessarily decrease monotonically and
(ii) variations of minor experiment parameters
such as So or ~o may result in substantial
deviations in the learning process. This
behaviour is illustrated by Figs. 5 and 6 for the
cases of cyclic and random training. respectively.

To obtain reliable experimental results despite
these facts. a statistical method was applied.
The errors listed in Table 2 are mean values of 25
identical experiments. differing only in the cycle
starting point So or the initial seed ~o for
cyclic or random training. respectively. The mean
values of the rms error defined by (4.19) are
given for three values of k (the number of steps)
equal to 50. 500 and 5000.

The memory parameter p was chosen such that the
error erms decreases most quickly for all 5
algorithms on the average in a realistic test case
(target function f SINE ' random training. no
disturbances) .

The mean execution times of the training
algorithms t mean in Table 2 are in milliseconds
and apply to a DEC PDP11/73 computer with a
floating point accelerator. Because the
computational burden of all five algorithms does
not depend on the target function. the times are
listed only for the first function f SINE '

SUMMARY OF PROPERTIES OF THE ALGORITHM

Algorithm GS converges very quickly for
undisturbed training data. especially when t is
large and a high accuracy of the responses is
required. The computational effort is enormous.
for the training of a single piece of data usually
takes more than one second when t-50.

Algorithm ME shows good convergence for almost all
the test problems. The initial convergence rate
is especially high. sometimes higher than for the
algorithm GS. For the undisturbed case. the best
convergence is obtained for the largest values of
t. However. a large t is not always beneficial
with disturbed training data. The computational
effort is moderate. increasing linearly with t.

Algorithm OS is well-suited for disturbed smooth
test functions. It is able to reach a high
accuracy in these cases when t is large. In
undisturbed cases the convergence is relatively
slow and further slowed down by large values of t.
The computational effort is higher than for
algorithm ME.

Algorithm AV converges initially faster than
algorithm AL when cyclic training is used. but
later on. convergence becomes very slow in the
undisturbed tests. In the case of disturbed
training data. the results obtained with algorithm
AV are among the best . The computational effort
is low and nearly the same as for AL.

Interesting results can be expected when combining
different algorithms. e.g. ME • AV or ME • GS.
The final convergence of AV can probably be
accelerated by limiting the counters such that
c i S cmax holds for a predefined value cmax '
These ideas will be investigated further and
reported in a future paper.

At the present time we recommend use of the
algorithm ME. because it achieves good convergence
for a broad spectrum of test cases with moderate
computational effort.

Associative Memory Storage for Learning Control Systems

REFERENCES

Albus, J S, (1972). Theoretical and experimental
aspects of a cerebellar model, PhD Thesis,
University of Maryland, USA.

Albus, J S, (1975). A new approach to manipulator
control: the cerebellar model articulation
controller (CMAC), ASME Transactions Series
G, Journal of Dynamic Systems, Measurement
and Control, 97, 220-227.

Albus, J S, (1975). Data storage in the
cerebellar model articulation controller
(CMAC), AMSE Transactions Series G Journal of
Dynamic Systems, Measurement and Control, 97,
228-233.

Erse, E and Militzer, J, (1982). Software
implementation of a neuron-like associative
memory system for control applications,
Proc. 8th Int. Symposium ISMM, MIMI, Davos,
Switzerland.

Erse, E, (1983). On the application of
associative neural network models to
technical control problems, Proc. in Life
Sciences: Localization and orientation in
Biology and Engineering, (Ed.) Varja,
Schnltzler, Springer Verlag, Heidelberg.

Erse, E and Militzer, J, (1984). Real-time
implementation of an associative memory-based
learning control system for non-linear
multivariable processes, 1st Measurement and
Control Symposium on Applications of
Multivariable System Techniques, Plymouth,
UK, 109 119.

Erse, E and Tolle, H, (1984). A new concept for
learning control inspired by brain theory,
Proc. 9th World Congress of IFAC, Budapest,
Hungary, 1, 245-250.

Greville, T N E and Ben-Israel, A, (1974).
Generalised inverses - theory and
applications. Wiley Interscience, New York.

Hebb, D, (1949). Organization of behaviour,
Wiley, New York.

Kohonen, T, (1988). Self-organisation and
associative memory, (2nd edition), Springer
Verlag, Heidelberg.

Lancaster, P, (1969). Theory of Matrices,
Academic Press, New York, Chap. 2, 70.

Parks, P C and Militzer, J, (1989). Convergence
properties of associative memory storage for
learning control systems, "Avtomatyka i
Telemekhanika" (in Russian), 50 No. 2 (to
appear February 1989) English~ranslation :
Automation & Remote Control, Plenum Press,
New York (to appear).

Rosenblatt, F, (1961). Principles of
Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, Spartan Books, Washington
DC, USA

Rummelhart, D E, McClelland J L et aI, (1986).
Parallel distributed processing, M.I.T.
Press, Cambridge, Mass.

381

382

Case
No.

1.

2.

3.

5.

6.

P. C. Parks and J. Militzer

TABLE 1

Various possibilities for the solution of the matrix equation (3.2)

Relati ve si zes
of p and N

N<p

N>p

N>p

and the consequences for the Albus learning algorithm (2.2)

Rank R
of A

in <3.2)

R-N
(maximum
possible)

R-N-p
(maximum
possible)

R-p

R-p
(maximum
possi ble)

R<min(N,p)

R<min(N,p)

Rank R' of
augmented

matrix [A.h]
in <3.2)

R'-R
(the only
possibility)

R'-R
(the only
possibility)

R'-R

R '-R+1

R'-R

R '-R+1

Intersection of
hyperplanes

defined by (2.3)
with k - 1,2,3, ... N

Intersection is
hyperplane of
dimension p-N.

Intersection is
hyperplane of
dimension 0, i.e.
a unique point.

Redundant
equations present
in the set.
Intersection is a
unique point as in
Case 2.

Equations <3.2)
inconsistent. No
Single hyperplane
of intersection
exists.

Redundant
equations
present in the
set. Inter­
section is hyper­
plane of dim­
ensions p-R.

Equations <3.2)
inconsistent.
No single hyper­
plane of inter­
section exists.

Convergence properties of
Albus Algorithm:

Cyclic training Random training

Converges to a single point which is
unique if the starting point Xo is
spanned by the unit vectors ai' but
otherwise is dependent on Xc'

Converges to this unique point from
all starting points Xc'

As in Case 2

"Limit cycle"
exists, depen­
dent on order or
cyclic training,
but not depend­
ent on xo

As in Case

"Limit cycle"
exists. Shape
dependent on
order of cyclic
training but
independent of
Xc' Location
independent of
Xo1f it is
spanned by the 8i .

Points given by
algorithm (2.2)
eventually lie in
a "minimal capture
zone" .

POints gi ven by
algorithm (2.2)
eventually lie in
a "minimal capture
zone" .

Associative Memory Storage for Learning Control Systems 383

TABLE 2

target fun::tion c SINE target function = CaMP
cyclic traininQ, no disturbancl!s random training, no disturbancl!s

e rms eJms eJms t -ml!an eJms e_rms eJms
Alg. p ~ k=50 k=500 k=5000 Cmsl Alg. ~ k=50 k=500 k=5000

-------- -------- -------- -------- -------- --------
AL 10 68.'176% 2.0'16% 0.032% 0.78 AL 10 10.648% 1. '116% 0.136%
AV 10 11.'108. 4.080% 2.5527. 0.88 AV 10 11. 1527. 5.5287. 4.004Y.
OS 10 2 58.188% 1.400% 0.0'12% 1.96 OS 10 2 10.684% 2.016% 0.1407.
OS 10 10 28.840% 1.544% 0.140% 6.30 OS 10 10 11.428% 2.628% 0.220%
OS 10 50 2'1.3'16% 4.072% 1.920% 26.00 OS 10 50 11. 640'l. 4.440r. 0.8047.
ME 10 10 14. '176% 0.196% 0.000% 3.11 ME 10 10 9.2047. 0.9327. 0.004%
ME 10 50 3.868% 0.188% 0.000% 11.70 ME 10 50 6.7247. 0.376% 0.000r.
ME 10 250 3.868% 0.188% 0.000% 57.69 ME 10 250 6.7247. 0.300% 0.000%
SS 10 2 21. 7527. 0.000% 0.0007. 4.28 65 10 2 10.3527. 1. 524% 0.0527.
65 10 10 10.7'16'1. 0.000'1. O.OOOX 40.60 65 10 10 7.028% 0.428'l. 0.000%
SS 10 50 0.000% 0.000% 0.0007. 266.20 65 10 50 4.4447. 0.020% 0.0007.

tuget function c SINE targl!t function = CaMP
rando~ training, no disturbances random training, disturbed with SISMA .. 0.05

AL 10 8.080% 1.4327. 0.048r. 0.78 AL 10 13.0687. 10.'1007. 9.2687.
AV 10 '1.6527. 5.2047. 3.9127. 0.88 AV 10 11. 436% 5.624% 4.0127.
OS 10 2 8.0327. 1. 416% 0.0767. 1.96 OS 10 2 12.7487. 10.156% 8.7847.
OS 10 10 8.1407. 1.820% 0.116% 6.00 OS 10 10 12.4807. 6.7367. 5.824%
OS 10 50 8.364% 3.204% 0.516% 26.12 OS 10 50 12.000% 5.428'l. 3.328%
ME 10 10 5.648% 0.612% 0.000r. 3.18 ME 10 10 12.620% 10.368% 9.484%
ME 10 50 3.672% 0.2567. 0.0007. 11.69 ME 10 50 12.5927. '1.576% 10.004%
ME 10 250 3.6727. 0.212% 0.0007. 57.74 ME 10 250 12.592% 10.348% 11. 424%
SS 10 2 6.'128% 1.0647. 0.000% 4.50 SS 10 2 14.248% 12.644% 10.8327.
65 10 10 3.624% 0.256% 0.0007. 44.27 SS 10 10 13. 1767. 13.4287. 13.620%
SS 10 50 1.660% 0.0007. 0.0007. 1000.22 SS 10 50 11. 612% 11.5167. 12.368%

target function = SINE
cyclic training, disturbed with SISMA = 0.05

AL 10 6'1.012% 8.4527. 8.5287. 0.78 target function = RECT
AV 10 12.1887. 4.292% 2.7401. 0.89 eycl i c training, no disturbances
OS 10 2 58.1527. 5.4807. 6.7727. 2.05 eJms IJms e_rms
OS 10 10 28.8527. 3.1921. 3.5487. 6.39 Alg. P R. k=50 k=500 k=5000
OS 10 50 29.3807. 4.740% 3.280% 26. 10 -------- -------- --------
ME 10 10 17.140. 7.8921. 7.2041. 3.10 AL 10 68.736% 15.468% 3.736%
HE 10 50 7.308% 7.3001. 7.628'l. 11.68 AV 10 24.'104% 21.1847. 1'1.9207.
HE 10 250 7.3087. 8.4367. 8.8241. 57.70 OS 10 2 59.260% 14.940% 4.4527.
SS 10 2 23.432% 10.4727. 7.516X 4.33 OS 10 10 35.884% 16.404'1. 6.684%
SS 10 10 12.9207. 10.672X 7.4127. 40.89 OS 10 50 36.208% 22.212% 17.912%

tar g et function .. SINE ME 10 10 24.656% 7.248% 0.000%
~. 10 50 25.1087. 5.856% 0.000% random training, disturbed with SISMA • 0.05 ME 10 250 25.108% 5.8567. 0.000%

AL 10 9.4127. 8.200% 7.036% 0.78 SS 10 2 29.7047. 1.508% 0.000%
AV 10 10.028% 5.300% 3.992'l. 0.89 SS 10 10 22.800% 0.848% 0.000%
OS 10 2 9.1527. 7.668% 6.6727. 1. 97 65 10 50 0.000% 0.000% 0.0007.
OS 10 10 8.8167. 5.144% 4.4207. 6.03 targl!t functi on .. RECT
OS 10 50 8.6927. 4.076% 2.480'l. 26.14 random training, no disturbance,
ME 10 10 8.196'1. 7.680% 7.3927. 3.19

3.980% ME 10 50 8.0127. 7.628% 8.008% 11.69 AL 10 30.156% 14.5007.
HE 10 250 8.012% 7.6007. 8.3127. 57.72 AV 10 26.296% 22.432% 20.904%

as 10 2 9.5887. 9.444Y. 8.224% 4.53 OS 10 2 29.6607. 14.4727. 4.1927.

SS 10 10 9.084% 10.2087. 10.3367. 44.35 OS 10 10 27.336% 15.592'1. 5.596%

65 10 50 7.764% 8.7367. 9.376% 1028.52 OS 10 50 25.616'1. 19.028% 9.5727.
ME 10 10 26.116% 11.2241. 1.236%
ME 10 50 24.2007. 7.808% 0.136'1.

function .. CaMP ME 10 250 24.200% 6.844% 0.0047. hrget
SS 10 2 29.828% 13.772% 2.3087. cyclic training, no disturbances
SS 10 10 25.864% 8.464% 0.0047.

'Jms eJms eJms SS 10 50 19.744% 0.7927. 0.000'l.
Alg. ~ k=50 k=500 k=5000

-------- -------- -------- target function " RECT
AL 10 73.4087. 5.084% 0.3687. rando~ training, dilturbed with SI6MA • 0.05

AV 10 12.096% 5.108% 3.2481. AL 10 30.156% 15.444X 6.568%
OS 10 2 61.304X 3.396% 0.2167. AV 10 26.344% 22.388X 20.904%
OS 10 10 30.728% 3.352y' 0.3487. OS 10 2 29.644'1. 15.336X 6.448%
OS 10 50 31.244% '1.8127. 4.204% OS 10 10 27.304X 15.976% 6.440X
ME 10 10 19.1607. 0.436% 0.000% OS 10 50 25.640% 19.036X 9.720'1.
ME 10 50 5.756Y. 0.2527. O.OOOY. HE 10 10 27.184. 11. 940% 5.504%
HE 10 250 5.756% 0.252% 0.0007. ME 10 50 24.716% 8.824% 5.564X
SS 10 2 26.720% 0.1327. 0.000'l. HE 10 250 24.716Y. 7.576Y. 6.140%
65 10 10 14.892'1. 0.008X 0.0007. SS 10 2 29.920% 15.224X 6.344Y.
SS 10 50 0.000. 0.000. 0.0007. SS 10 10 26.2207. 10.728Y. 7.212.

384 P. C. Parks and J. 1\.filitzer

FIGURES

• ~Ikl

"

Fig. 1 Learnin~ control loop with two
AMS units

Encoding
p of p

lp-pi

Q,

Fig. 2 Weight adjustment process

f " .*
~ !.

!. !.

"

Fig. 3a.Conver~ence to Fig. 3b . x* dep-
unique x* endent on

(p=N=R=R'=2) (p=2,N=R=R' =1)

rlkl·!

"

x 0

--~----------------~" ---=~------------------ "

Fig. 3c . Convergence
to stable limit
cycle
(p=R=2 N=R'=3
with cyclic
training)

Fig. 3d. Convergence
t o minimal
capture zone.
(p=R=2 N=R'=3
with random
training)

15

"fSil'll

IL---~---~r"r--:::-----;;:--~.-;,o.

-2,0

Fig. 4 Convergence of function to its desired
form as the number k of Tar~et
function (4.14), steps of the algorithm
increases. Algorithm AL, cyclic
tra1n1ng so~12, p = N+p-1 = 59, p= 10.
No added n01se.

I 0.2e

'rms

.1.

zone

0.20

0.15

0.10

0 . 05

1000. 2000 . 3000 . "000 . 5000 .

k-_

Fir,. 5 Evolution of the r eproduc tion error
erms with k for cyclic training and

0 . 25

0 . 20

o . 5

o . 0

O . O!5

25 different starting points s .
Algorithm AL, Target function ~4,14),
p = N+p-1 = 59, p=10 . No added noise.

1000 . 2000 . 3000 . "000 . 5000 .

k-_

Fig. 6 Evolution of the reproduction error
e with k for random training and 25 rms
different initial seeds ~ , i.e. 25
different random sequence~. Algorithm
AL, Target function (4.14),
p = N+p-1 = 59, p=10. No added noise.

