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Abstract. First, the cerebellar model articulation controller (CMAC), invented in 
the early 1970s by J S Albus, and the associative memory system (AMS), developed for 
learning control systems by H Tolle, E ErsU and J Militzer in the early 1980s, are 
briefly described . The underlying mathematics of the AMS learning or training 
algorithm is then given with a geometrical interpretation from which its convergence 
properties may be deduced. These are illustrated for some simple cases. 

The original algorithm devised by Albus is very simple to compute but is slow to 
converge, and the second part of the paper investigates various methods of speeding up 
the algorithm. From an application of these new algorithms to test cases one is 
strongly recommended for further evaluation. 

The results reported here are of relevance also to the topical and rapidly growing 
field of neural computing. 

INTRODUCTION 

A special associative storage and retrieval 
algorithm with a "generalising" property, called 
the "Cerebellar Model Articulation Controller" 
("C.M.A.C."), was first developed in the early 
1910s by J S Albus as a simple model of the 
cerebellar cortex of mammals and as a potential 
controller for robots. The structure of the CMAC 
used earlier ideas embodied in the "Perceptron" of 
F Rosenblatt (Rosenblatt, 1961) 

Further work on the CMAC concept to adapt it for 
real-time learning control applications was 
carried out in the early 1980s by H Tolle, E ErsO 
and J Militzer and led to the so-called 
"Associative Memory System" ("A.M.S."). Recent 
advances in microelectronics and computing have 
made these earlier ideas of learning and adaption 
much more feasible and it is not surprising to 
find that some working systems have now been 
developed (ErsU, Mllitzer, 1984). A typical 
learning control loop uses two AMS units as shown 
in Fig 1. The AMS units are used to build a model 
of the process as well as to store optimal control 
strategies. 

It is rather surprising to find that the basic 
convergence properties of the CMAC algorithm were 
not investigated by Albus himself - indeed in 
Albus (1915) (p.299) he admitted that "at the 
present time there exists no formal proof of 
convergence of the procedure". This lack of a 
proof continued until 1989 when the present 

authors published a comprehensive investigation 
(Parks and Militzer, 1989). In the present paper 
we shall first summarise and illustrate these 
results, omitting the heavy matrix algebra 
involved. We shall then present some new results 
concerning improvements to the original CMAC and 
AMS learning algorithm. One of these improved 
algorithms is recommended for further evaluation 
in AMS units. 

ASSOCIATIVE MEMORY SYSTEMS (AMS) 

Learning control systems, which operate by 
deducing future control actions from past 
information and experience, need by their very 
nature to store large quantities of past data. 
This can be accomplished by a "look-up" table, but 
at first sight the memory storage requirements 
appear to be insuperable. It was the objective of 
J S Albus, and those who followed him, to reduce 
the storage requirements dramatically by assuming 
that most input-output mappings of interest are 
continuous functions and that consequently the 
correct output or response at some point of the 
input space can be approximated by "generalising" 
the responses at closely neighbouring points, for 
example by linear interpolation. Thus the AMS 
algorithm spreads the magnitude of a given piece 
~f data to be stored, between a fixed number, p, 
~f different memory locations containing certain 
numbers called "weights". 
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Albus and his followers devised and used a 
learning or training procedure in which the 
individual weights are gradually adjusted to their 
correct values in an iterative procedure or 
~lgorithm. This procedure is based on the 
learning device invented by F Rosenblatt in the 
late 1950s called the "Perceptron". and can be 
traced back further to the book of 0 0 Hebb (Hebb. 
1949) which has given rise to the term "Hebbian 
learning". 

The learning process works as follows (see also 
Fig. 2):-

(i) at the kth step of the algorithm p weights 
~re selected for adjustment based on the input 
information; 

(ii) the existing values of the p weights are 
~dded together and then divided by p to form their 
average; 

(iii) this average is subtracted from the value 
~k which it is desired to store; 

(iv) the difference is added as a correction to 
each of the p chosen weights so as to update them. 

Mathematically we may write (see also Fig 2) 

r~::l- r:::j + i\ [~l- * r 1 ~:Ij (2.1) 

l~PI k l~pI k-l ; l; Jl~pI k-1 

Here xl '.X2' •...• xp • represent the values of the 
weights chosen from a total number of p weights 
(p«p). The suffixes k-l and k denote the p­
vectors formed by the x I at respectively the 
(k-l)th and kth steps or the learning algorithm. 

The algorithm (2.1) may be rewritten in a neater 
vector form as 

Xk - xk- 1 + ~k ak 

~k - /Prk - a~ xk- 1 

..,hich we shall call the "Albus learning 

(2.2) 

~lgor i thm" . Here xk- 1 and ~ are p-vectors 
containing all the p ..,eights while ak is a unit 
vector having entries of 1//P in the p places 
corresponding to the integers 1 '.2'.3' •..•• p' 
~ppearing in (2.1). and zeros elsewhere. 

The Albus learning algorithm (2.2) has an 
important geometrical interpretation (which was 
crucial to the development of the convergence 
theory in Parks and Militzer (1989». This is 
that the point xk is the foot of the perpendicular 
dropped from the point xk- 1 to the 
(p-l)-dimensional hyperplane defined in 
p-dimensional space by the equation 

a~ x - /P i\ (2.3) 

It is customary in practice to start the algorithm 
..,ith all the p weights set to zero so that Xo-O. 

CONVERGENCE PROPERTIES OF THE ALBUS 
LEARNING ALGORITHM 

We first note that the objective of the algorithm 
is to find. if possible. a column p-vector x*. 
say. such that 

(3.1) 

for each i-l.2.3 •...• N. If such an x* does not 
exist then an approximate solution should be 
found. 

A more familiar form of the equations (3.1) is the 
linear matrix equation 

A x* - h (3.2) 

where Nxp matrix A is composed of the row p­
vectors aI and h is the Nxl column vector with 
elements 1P r i . 

In discussing convergence of the Albus algorithm 
the question of consistency or inconsistency of 
the equations (3.1) or (3.2) is very important. 
and in the case of inconsistency. which is quite 
likely to arise due to measurement noise 
distorting the values of rk• the form of training 
procedure is also crucial. Here we distinguish 
two forms of training: 

(i) "cyclic training". in which the N equations 
are considered one by one in a particular cyclic 
order which is repeated many times. and 

(ii) "random training". in which the equations are 
chosen at random. 

These two procedures thus involve a cyclic or a 
random choice of the integer k appearing in the 
Albus algorithm (2.2) from the set of integers 
1.2.3 •...• N. 

In Parks. Militzer (1989) it is shown that 
provided the equations (3.1) or (3.2) are 
consistent then the weights vector xk in the 
algorithm (2.2) tends to a single fixed point x* 
in the p-dimensional space as k+~. which mayor 
may not depend on the starting point of the 
algorithm Xo (which is usually but not always 
zero). If xo.O x* will be independent of Xo if 
the unit vectors ai used as the algorithm proceeds 
"span" the vector Xa' i.e. if Xo can be expressed 
as a linear combination of these a i . Otherwise x* 
will depend on that part of Xo which lies in the 
orthogonal complement of the space spanned by the 
a i . Simple examples are given in Figs. 3(a) and 
3{ b). 

If the equations (3.1) and (3.2) are inconsistent 
then the behaviour of the xk as k+~ is more 
complicated and depends on the type of training 
employed. With cyclic training xk ends up 
describing an asymptotically stable "limit cycle" 
of N points ..,hich are approached by xk as k+~ as 
shown in Fig 3(c). On the other hand if random 
training is employed xk ends up describing a 
random motion confined. however. within what we 
have called a "minimal capture zone". A "capture 
zone" may first be defined as the union of N sets 
of pOints. each set lying in one of the N 
hyperplanes defined by (2.3) and such that it 
projects orthogonally into or onto each of the 
other N-l sets. A "minimal capture zone" is the 
smallest capture zone that can exist without 
losing the mutual orthogonal projection property. 
Fig 3(d) illustrates this concept and convergence 
to such a minimal capture zone. 

The convergence behaviour of the Albus algorithm 
is set out in detail in Table 1 and the various 
possibilities have been illustrated in Fig 3 for 
simple cases in which p-2. Fuller details with 
proofs based on matrix algebra will be found in 
Parks and Militzer (1989). 
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A COMPARISON OF 5 LEARNING ALGORITHMS 

In general. the main input to an AMS or CMAC unit 
consists of a real vector 8 (the "stimulus"). 
8ERn. which is first mapped as the internal 
"associati ve" vector I. However. for the following 
study it is sufficient to define the stimulus as a 
scalar integer variable s. The first mapping is 
gi ven by: 

I - I(s) 

al 

_ (al ••••• a p ) T 

t
.!... for s+1 S 

-IP 
o otherwise 

i S s+p (4.1) 

(A description of the general n-dimensional case 
is given for example in ErsU. Militzer (1982». 

The response r(s;k) of the memory unit at point s 
after k training steps is obtained as the average 
of the active weights. which are determined by the 
non-zero elements of I(s). giving the expression 

(4.2) 

The following five algorithms were investigated: 

Albus learning algorithm ("AL"). This is the 
basic learning algorithm as already defined in 
Eqn. (2.2). 

Moving average training ("AV"). In this 
algorithm. the value of a weight xi is calculated 
as the average of the corrections. that it would 
receive in the basic algorithm. 

For calculation of the averages. a "counter" 
vector c - (c 1 •...• c )T of same dimension is 
aSSigned to the weiggt vector x. Initial value is 
Co - o. 

The counters are updated to indicate how often 
each weight has been modified by the end of the 
kth training step. so that 

(4.3) 

as ;p ak contains ones in the positions of the 
active weights and zeros elsewhere. 

The weights themselves are adjusted as follows: 

with Ilk - ;p i\ - IT k xk- 1 • 

bk -
T 

(b 1k •·•· .bpk ) • (4.4) 

t" if aik-O. 
bik - C~k 

otherwise 

Note that: (i) random noise with zero mean. which 
frequently disturbs the training data rj in 
practical applications. can be filtered out; (ii) 
if the Eqns (3.2) are inconsistent. convergence is 
towards a single point. and not a limit cycle as 
is obtained with algorithm AL. 

Partially optimised steplength in the last 
perpendicular direction ("OS"). This algori thm 
applies corrections to the weight vector in the 
perpendicular direction I k• as the basic scheme AL 
does. However. the steplength Ilk is ~ot deSigned 
to reach exactly the kth hyperplane Ik x - ;p r k• 
but rather to minimise the sum of squared 
perpendiculars to the hyperplanes defined by the 
last t pieces of training data so that 

k 
It - I (13 Xk - ;p r j )' + minimum. 

j-k-l+l 
(4.5) 

where the optimization length 1 is a suitably 
chosen integer with 1S1Sk. The perpendicular 
distances are proportional to the response errors 
of the AMS. 

The weights are adjusted according to: 

(4.6) 

Note that the basic algorithm AL is a special case 
of this procedure with 1-1. 

Training at the point with maximum error ("ME"). 
This method applies the normal training procedure 
at that point in input space s . for which the 
desired response rj is currently reproduced with 
the largest error among a given number. 1 say. ot 
the latest pieces of data. The search length 1 is 
suitably chosen with 1S1Sk. 

The correction is then applied for the point Sm' 
say. where the largest error occurs. so that 

Xk - Xk- 1 + Ilk ~ 

Ilk - ;p rm - ~ xk- 1 

(4.9) 

Note that for 1-1 this procedure is also identical 
to algorithm AL. 

Partial Gram-Schmidt procedure ("GS"). The 
algorithm is designed to store new data without 
affecting the responses to a given number of 
former training points Sk-1+1 ••••• Sk-l. A Gram­
Schmidt orthogonalization is used to determine a 
correction direction dk which lies in the 
hyperplane spanned by the last 1 vectors 
I k- 1+1 •...• I k and is orthogonal. if possible. to 
all of these vectors except the last one I k. The 
new weight vector xk ls then given by the point of 
i~tersection between dk and the hyperplane 
Ikx - ;p r k. The "basis dimension" 1 is suitably 
chosen with 1St$k. 

The weights are adjusted as follows: 

(4.13) 

Note that (i) For 1-1 this procedure is identical 
to algorithm AL; (ii) if Eqns. (3.2) are 
consistent. e.g. n-l and the training data is not 
disturbed by noise and all N pieces of data are 
contained in a sequence of at most 1 consecutive 
training steps. the algorithm converges at or 
before the last step of that sequence. 

COMPUTATIONAL RESULTS 

The "target functions" used to generate the 
training data for the numerical experiments are 
defined for the N discrete argument values 
5-0.1 •..•• N-l. The functions are: 
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1. One period of a sine wave: 

fSINE(S) - sin(2n~) 
N-1 

(4.14) 

2. A composite function which has a discontinuous 
first derivative if it is defined for a real 
argument 5: 

fCOMP(s) - (exp(~)-61~-1 1'5) 
e'-12'5 N-1 N-1 (4.15) 

3. One period of a square wave:-

f RECT - {1 
-1 

for ~ 0.5 
N-1 

otherwise 
(4.16) 

The functions are numbered in order of increasing 
difficulty of learning. The square wave tests 
show that the algorithms can cope with 
discontinuous functions (which should however be 
an exception in practical applications). The 
training is performed either in a cyclic or in a 
random way. In the first case. one cycle consists 
of the N distinct pOints in order. starting with 
some arbitrary number soE[0.N-1) and jumping back 
through zero if necessary. i.e.: 

<Sj> - 5 0 .50 .1 •..•• N-1.0.1 •...• 5 0 -1 

This sequence <S > is then trained repeatedly. 
with the reprodudtion error being evaluated only 
at the end of a pass (k-N.2N.3N •..• ). 

In the second case. a pseudo random number 
generator is used to produce integers Sj uniformly 
distributed over the interval [0.N-1). The 
generator is started at k-O with an arbitrary 
initial seed ~o. The error is evaluated for 
k-N.2N.3N ••••• 

The desired responses used in the learning 
algorithms are either directly the target function 
values. i.e. 

(4.17) 

which is the undisturbed case. or they are 
disturbed by adding to the target function values 
some white noise with a Gaussian distribution. 
zero mean and standard deviation 0 so that 

The disturbances in general introduce 
inconsistencies in the Eqns. (3.2). 

(4.18) 

The experiments always start with all weights xi 
set equal to zero. In all experiments p-N'p-1. 
Fig. 4 gives an example how a memory response 
looks typically in different sections of the 
learning process. The accuracy of the memory 
response after k training steps is expressed by 
the root mean square error erms (k ) : 

N-1 
1 L (r(sik)-f.(s»2 
N 5-0 

j N-1 1. L (f.(S»2 
N 5-0 

1 OO~ (4.19) 

Learning in the CMAC or AMS has the properties 
that (i) in general the reproduction error erms(k) 
does not necessarily decrease monotonically and 
(ii) variations of minor experiment parameters 
such as So or ~o may result in substantial 
deviations in the learning process. This 
behaviour is illustrated by Figs. 5 and 6 for the 
cases of cyclic and random training. respectively. 

To obtain reliable experimental results despite 
these facts. a statistical method was applied. 
The errors listed in Table 2 are mean values of 25 
identical experiments. differing only in the cycle 
starting point So or the initial seed ~o for 
cyclic or random training. respectively. The mean 
values of the rms error defined by (4.19) are 
given for three values of k (the number of steps) 
equal to 50. 500 and 5000. 

The memory parameter p was chosen such that the 
error erms decreases most quickly for all 5 
algorithms on the average in a realistic test case 
(target function f SINE ' random training. no 
disturbances) . 

The mean execution times of the training 
algorithms t mean in Table 2 are in milliseconds 
and apply to a DEC PDP11/73 computer with a 
floating point accelerator. Because the 
computational burden of all five algorithms does 
not depend on the target function. the times are 
listed only for the first function f SINE ' 

SUMMARY OF PROPERTIES OF THE ALGORITHM 

Algorithm GS converges very quickly for 
undisturbed training data. especially when t is 
large and a high accuracy of the responses is 
required. The computational effort is enormous. 
for the training of a single piece of data usually 
takes more than one second when t-50. 

Algorithm ME shows good convergence for almost all 
the test problems. The initial convergence rate 
is especially high. sometimes higher than for the 
algorithm GS. For the undisturbed case. the best 
convergence is obtained for the largest values of 
t. However. a large t is not always beneficial 
with disturbed training data. The computational 
effort is moderate. increasing linearly with t. 

Algorithm OS is well-suited for disturbed smooth 
test functions. It is able to reach a high 
accuracy in these cases when t is large. In 
undisturbed cases the convergence is relatively 
slow and further slowed down by large values of t. 
The computational effort is higher than for 
algorithm ME. 

Algorithm AV converges initially faster than 
algorithm AL when cyclic training is used. but 
later on. convergence becomes very slow in the 
undisturbed tests. In the case of disturbed 
training data. the results obtained with algorithm 
AV are among the best . The computational effort 
is low and nearly the same as for AL. 

Interesting results can be expected when combining 
different algorithms. e.g. ME • AV or ME • GS. 
The final convergence of AV can probably be 
accelerated by limiting the counters such that 
c i S cmax holds for a predefined value cmax ' 
These ideas will be investigated further and 
reported in a future paper. 

At the present time we recommend use of the 
algorithm ME. because it achieves good convergence 
for a broad spectrum of test cases with moderate 
computational effort. 
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Case 
No. 

1. 

2. 

3. 

5. 

6. 

P. C. Parks and J. Militzer 

TABLE 1 

Various possibilities for the solution of the matrix equation (3.2) 

Relati ve si zes 
of p and N 

N<p 

N>p 

N>p 

and the consequences for the Albus learning algorithm (2.2) 

Rank R 
of A 

in <3.2) 

R-N 
(maximum 
possible) 

R-N-p 
(maximum 
possible) 

R-p 

R-p 
(maximum 
possi ble) 

R<min(N,p) 

R<min(N,p) 

Rank R' of 
augmented 

matrix [A.h] 
in <3.2) 

R'-R 
(the only 
possibility) 

R'-R 
(the only 
possibility) 

R'-R 

R '-R+1 

R'-R 

R '-R+1 

Intersection of 
hyperplanes 

defined by (2.3) 
with k - 1,2,3, ... N 

Intersection is 
hyperplane of 
dimension p-N. 

Intersection is 
hyperplane of 
dimension 0, i.e. 
a unique point. 

Redundant 
equations present 
in the set. 
Intersection is a 
unique point as in 
Case 2. 

Equations <3.2) 
inconsistent. No 
Single hyperplane 
of intersection 
exists. 

Redundant 
equations 
present in the 
set. Inter­
section is hyper­
plane of dim­
ensions p-R. 

Equations <3.2) 
inconsistent. 
No single hyper­
plane of inter­
section exists. 

Convergence properties of 
Albus Algorithm: 

Cyclic training Random training 

Converges to a single point which is 
unique if the starting point Xo is 
spanned by the unit vectors ai' but 
otherwise is dependent on Xc' 

Converges to this unique point from 
all starting points Xc' 

As in Case 2 

"Limit cycle" 
exists, depen­
dent on order or 
cyclic training, 
but not depend­
ent on xo 

As in Case 

"Limit cycle" 
exists. Shape 
dependent on 
order of cyclic 
training but 
independent of 
Xc' Location 
independent of 
Xo1f it is 
spanned by the 8i . 

Points given by 
algorithm (2.2) 
eventually lie in 
a "minimal capture 
zone" . 

POints gi ven by 
algorithm (2.2) 
eventually lie in 
a "minimal capture 
zone" . 
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TABLE 2 

target fun::tion c SINE target function = CaMP 
cyclic traininQ, no disturbancl!s random training, no disturbancl!s 

e rms eJms eJms t -ml!an eJms e_rms eJms 
Alg. p ~ k=50 k=500 k=5000 Cmsl Alg. ~ k=50 k=500 k=5000 

-------- -------- -------- -------- -------- --------
AL 10 68.'176% 2.0'16% 0.032% 0.78 AL 10 10.648% 1. '116% 0.136% 
AV 10 11.'108. 4.080% 2.5527. 0.88 AV 10 11. 1527. 5.5287. 4.004Y. 
OS 10 2 58.188% 1.400% 0.0'12% 1.96 OS 10 2 10.684% 2.016% 0.1407. 
OS 10 10 28.840% 1.544% 0.140% 6.30 OS 10 10 11.428% 2.628% 0.220% 
OS 10 50 2'1.3'16% 4.072% 1.920% 26.00 OS 10 50 11. 640'l. 4.440r. 0.8047. 
ME 10 10 14. '176% 0.196% 0.000% 3.11 ME 10 10 9.2047. 0.9327. 0.004% 
ME 10 50 3.868% 0.188% 0.000% 11.70 ME 10 50 6.7247. 0.376% 0.000r. 
ME 10 250 3.868% 0.188% 0.000% 57.69 ME 10 250 6.7247. 0.300% 0.000% 
SS 10 2 21. 7527. 0.000% 0.0007. 4.28 65 10 2 10.3527. 1. 524% 0.0527. 
65 10 10 10.7'16'1. 0.000'1. O.OOOX 40.60 65 10 10 7.028% 0.428'l. 0.000% 
SS 10 50 0.000% 0.000% 0.0007. 266.20 65 10 50 4.4447. 0.020% 0.0007. 

tuget function c SINE targl!t function = CaMP 
rando~ training, no disturbances random training, disturbed with SISMA .. 0.05 

AL 10 8.080% 1.4327. 0.048r. 0.78 AL 10 13.0687. 10.'1007. 9.2687. 
AV 10 '1.6527. 5.2047. 3.9127. 0.88 AV 10 11. 436% 5.624% 4.0127. 
OS 10 2 8.0327. 1. 416% 0.0767. 1.96 OS 10 2 12.7487. 10.156% 8.7847. 
OS 10 10 8.1407. 1.820% 0.116% 6.00 OS 10 10 12.4807. 6.7367. 5.824% 
OS 10 50 8.364% 3.204% 0.516% 26.12 OS 10 50 12.000% 5.428'l. 3.328% 
ME 10 10 5.648% 0.612% 0.000r. 3.18 ME 10 10 12.620% 10.368% 9.484% 
ME 10 50 3.672% 0.2567. 0.0007. 11.69 ME 10 50 12.5927. '1.576% 10.004% 
ME 10 250 3.6727. 0.212% 0.0007. 57.74 ME 10 250 12.592% 10.348% 11. 424% 
SS 10 2 6.'128% 1.0647. 0.000% 4.50 SS 10 2 14.248% 12.644% 10.8327. 
65 10 10 3.624% 0.256% 0.0007. 44.27 SS 10 10 13. 1767. 13.4287. 13.620% 
SS 10 50 1.660% 0.0007. 0.0007. 1000.22 SS 10 50 11. 612% 11.5167. 12.368% 

target function = SINE 
cyclic training, disturbed with SISMA = 0.05 

AL 10 6'1.012% 8.4527. 8.5287. 0.78 target function = RECT 
AV 10 12.1887. 4.292% 2.7401. 0.89 eycl i c training, no disturbances 
OS 10 2 58.1527. 5.4807. 6.7727. 2.05 eJms IJms e_rms 
OS 10 10 28.8527. 3.1921. 3.5487. 6.39 Alg. P R. k=50 k=500 k=5000 
OS 10 50 29.3807. 4.740% 3.280% 26. 10 -------- -------- --------
ME 10 10 17.140. 7.8921. 7.2041. 3.10 AL 10 68.736% 15.468% 3.736% 
HE 10 50 7.308% 7.3001. 7.628'l. 11.68 AV 10 24.'104% 21.1847. 1'1.9207. 
HE 10 250 7.3087. 8.4367. 8.8241. 57.70 OS 10 2 59.260% 14.940% 4.4527. 
SS 10 2 23.432% 10.4727. 7.516X 4.33 OS 10 10 35.884% 16.404'1. 6.684% 
SS 10 10 12.9207. 10.672X 7.4127. 40.89 OS 10 50 36.208% 22.212% 17.912% 

tar g et function .. SINE ME 10 10 24.656% 7.248% 0.000% 
~. 10 50 25.1087. 5.856% 0.000% random training, disturbed with SISMA • 0.05 ME 10 250 25.108% 5.8567. 0.000% 

AL 10 9.4127. 8.200% 7.036% 0.78 SS 10 2 29.7047. 1.508% 0.000% 
AV 10 10.028% 5.300% 3.992'l. 0.89 SS 10 10 22.800% 0.848% 0.000% 
OS 10 2 9.1527. 7.668% 6.6727. 1. 97 65 10 50 0.000% 0.000% 0.0007. 
OS 10 10 8.8167. 5.144% 4.4207. 6.03 targl!t functi on .. RECT 
OS 10 50 8.6927. 4.076% 2.480'l. 26.14 random training, no disturbance, 
ME 10 10 8.196'1. 7.680% 7.3927. 3.19 

3.980% ME 10 50 8.0127. 7.628% 8.008% 11.69 AL 10 30.156% 14.5007. 
HE 10 250 8.012% 7.6007. 8.3127. 57.72 AV 10 26.296% 22.432% 20.904% 

as 10 2 9.5887. 9.444Y. 8.224% 4.53 OS 10 2 29.6607. 14.4727. 4.1927. 

SS 10 10 9.084% 10.2087. 10.3367. 44.35 OS 10 10 27.336% 15.592'1. 5.596% 

65 10 50 7.764% 8.7367. 9.376% 1028.52 OS 10 50 25.616'1. 19.028% 9.5727. 
ME 10 10 26.116% 11.2241. 1.236% 
ME 10 50 24.2007. 7.808% 0.136'1. 

function .. CaMP ME 10 250 24.200% 6.844% 0.0047. hrget 
SS 10 2 29.828% 13.772% 2.3087. cyclic training, no disturbances 
SS 10 10 25.864% 8.464% 0.0047. 

'Jms eJms eJms SS 10 50 19.744% 0.7927. 0.000'l. 
Alg. ~ k=50 k=500 k=5000 

-------- -------- -------- target function " RECT 
AL 10 73.4087. 5.084% 0.3687. rando~ training, dilturbed with SI6MA • 0.05 

AV 10 12.096% 5.108% 3.2481. AL 10 30.156% 15.444X 6.568% 
OS 10 2 61.304X 3.396% 0.2167. AV 10 26.344% 22.388X 20.904% 
OS 10 10 30.728% 3.352y' 0.3487. OS 10 2 29.644'1. 15.336X 6.448% 
OS 10 50 31.244% '1.8127. 4.204% OS 10 10 27.304X 15.976% 6.440X 
ME 10 10 19.1607. 0.436% 0.000% OS 10 50 25.640% 19.036X 9.720'1. 
ME 10 50 5.756Y. 0.2527. O.OOOY. HE 10 10 27.184. 11. 940% 5.504% 
HE 10 250 5.756% 0.252% 0.0007. ME 10 50 24.716% 8.824% 5.564X 
SS 10 2 26.720% 0.1327. 0.000'l. HE 10 250 24.716Y. 7.576Y. 6.140% 
65 10 10 14.892'1. 0.008X 0.0007. SS 10 2 29.920% 15.224X 6.344Y. 
SS 10 50 0.000. 0.000. 0.0007. SS 10 10 26.2207. 10.728Y. 7.212. 
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Fig. 1 Learnin~ control loop with two 
AMS units 
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Fig. 2 Weight adjustment process 
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Fig. 3a.Conver~ence to Fig. 3b . x* dep-
unique x* endent on 

(p=N=R=R'=2) (p=2,N=R=R' =1 ) 
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Fig. 3c . Convergence 
to stable limit 
cycle 
(p=R=2 N=R'=3 
with cyclic 
training) 

Fig. 3d. Convergence 
t o minimal 
capture zone. 
(p=R=2 N=R'=3 
with random 
training) 

15 

"fSil'll 

IL---~---~r"r--:::-----;;:--~.-;,o. 

-2,0 

Fig. 4 Convergence of function to its desired 
form as the number k of Tar~et 
function (4.14), steps of the algorithm 
increases. Algorithm AL, cyclic 
tra1n1ng so~12, p = N+p-1 = 59, p= 10. 
No added n01se. 
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Fir,. 5 Evolution of the r eproduc tion error 
erms with k for cyclic training and 
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25 different starting points s . 
Algorithm AL, Target function ~4,14), 
p = N+p-1 = 59, p=10 . No added noise. 
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Fig. 6 Evolution of the reproduction error 
e with k for random training and 25 rms 
different initial seeds ~ , i.e. 25 
different random sequence~. Algorithm 
AL, Target function (4.14), 
p = N+p-1 = 59, p=10. No added noise. 




