
Copyrighl © IFAC Robol Control. Vienna. Austria. 1991

COMPUTATIONAL COMPLEXITY OF PATH PLANNING
ALGORITHMS BASED ON SAFE TRIANGLES AND

QUADTREE AS WORK SPACE REPRESENTATIONS:
A COMPARISONt

Xiaozhao Mao

Institute a/Control Engineering. Section Control Systems Theory and Robotics . Technical University Darmstadt.

Schlossgraben J. D-6JOO Darmstadt. Germany

Abstract. C?mput~tional complexity of tw.o path pl~nning approaches for a two-dimensional (2D)
work space IS conslde~ed: The approach uSing safe tnan~les and the approach based on quadtree. The
average cost of establishing work space representation, I.e. of building the safe triangles and the quad
tree resp~ctively, are esti.mated. Both approaches are simulated to plan paths for numerous work
spaces wIth obstacles whIch are generated at random. The results of the simulation are summarized 10
show the expected behavior of each approach. Comparison based on analyses and simulation is
presented.

Keywords. Computational complexity; path planning; robotics; space representation.

INTRODUCTION

Automatic planning of collision free paths among obstacles
is essential for autonomous mobile robots. The basis of path
planning is a work space representation describing the free
and/or the forbidden volume in the work space so that pos
sible paths are summed up into a graph. The finding of an
appropriate path is performed by searching the graph under
minimizing a given cost criterion. The efficiency of a path
planning al~orithm depends tightly upon the work space
representation it uses. It is of both theoretical and practical
interest to compare the efficiency of different algorithms in
order to disclose the advantages of one algorithm versus the
other.

In this paper the computational complexity of two path
planning approaches for 2D work space are compared: one
using safe triangles [Mao, 1990] and one based on quadtree
[Kambhampati and Davis, 1986; Soetadji, 1986]. Through
out the paper the following abbreviations are used:

QT:
QT-R:
Q:
FQ:
QTG
DS:
PDS:
ST:
ST-R:
STG:
C[x(·)]:
Cqt
Cst
N:
nj:
n:

quadtree;
QT- representation;
square in QT-R;
free square in QT-R;
search graph for QT-R;
distance segment;
passable DS;
safe triangle;
ST - representation;
search graph for ST-R;
complexity of operator x(·);
expected complexity of constructing QT-R;
expected complexity of constructing ST-R;
number of obstacles in work space;
number of edges of the i- th obstacle;
number of all obstacle edges.

Additional notations will be introduced in context.

In ST-R, the obstacles and the robot are described by con
vex polygons. The shortest line segment connecting two
obstacles is called distance segment DS between the ob
stacles. We consider only the DSs which are longer than the
minimum cross section of the robot and do not intersect any
obstacles. Moreover, if two DSs intersect each other, the
longer one is taken away from consideration. The remaining

tThis work was supported by DFG (Deutsche Forschungs
gemeinschaft)

277

DSs, called passable distance segments PDSs, allow the
robot to pass through safely between the corresponding
obstacles. For each PDS two STs, one on each side of the
PDS, are construc~ed, a~ illustrated in Fig. 1. Additionally,
a set of allowed onentatlOns for the robot, determined by
the length of the PDS, is related to the STs. These STs
enclose the safe positions for the robot before and after the
pas.sage, as long as its orientation stays in the allowed orien
tatIOn set. The search graph STG consists of all STs as
nodes. If two STs overlaps each other as well as their orien
tation sets, the corresponding nodes in STG are connected
by an arc.

In QT-R, the robot is considered to be a point. To describe
QT-R the layer concept suggested by Adolphs (1988) is
used. The work space is normalized to a lxl square which is
th~ layer 0 of QT. It is divided into 4 equal subsquares for
~ng layer 1 of Q! .. Each square Qj on layer j is checked to
indIcate whether It IS free or occupied by obstacles. If Qj is
par~ially ~ccupied, it is divi~ed into.4 equal subsquares
again which belong to layer) + 1, as Illustrated in Fig. 2.
This procedure continues until layer s, the minimum quanti
zation layer, is arrived at. The free squares FQs of all layers
b.uild the nodes. of.the search ~raph QTG. The arcs connec
ting the nodes indicate the nelghborhood of corresponding
FQs in the work space.

Normally, the complexity of an algorithm is analyzed for
the worst case [Lee and Preparata, 1984]. In our case, how
ever, the worst case analysis seems to be unsuitable. In fact,
the worst case would mean for QT-R that all squares on all
layers are partially occupied. This would mean an unpass
able environment. Therefore the comparison is made for
expected behavior.

PDSs for the robot A STs for the robot A

Fig. 1 ST -R: an example

©1991 International Federation of Automatic Control (IFAC).
Posted under a CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Original publication in IFAC Proceedings Volumes (now IFAC-Papers online), https://doi.org/10.1016/S1474-6670(17)51069-1

~
: "'.;'/:' ;

. : ' /:
, '
, ,

: ;.. ~

~ >, ,",:

layer ,3 FOS I J"\ tn e OT

Fig . 2 Quadtree - layer concept

In addition to analytical discussions results of computer
simulations are presented to illustrate the efficiency of each
algorithm. The work spaces used by simulations were nor
malized to 1xl squares. The obstacles in a work space are
generated as follows :

3)

generate nmax~n points in the work space randomly;
divide the work space with randomly generated
straight lines into N subregions so that each sub region
contains at least 3 points.
for each subregion an obstacle is constructed by
building the convex hull of the points in the subregion
[Preparata and Hong, (1977)].

A rectangle of 0.08xO.05 was taken as the robot for ST-R.
The illustrations represent the average of simulation results
for numerous work spaces with same parameters labeled in
the figures. The simulations were run on a PC-AT /286. To
give a relative scale the CPU time t used by an operation is
converted to equivalent flops EF by the formula

EF =t/(t\,ector add iti on +ldot product)

COMPLEXITY OF ST - R

A ST-R is constructed in two steps: determining the PDSs
and building STs. The DS between two convex polygons
with nil and ni2 edges respectively can be determined in
O(nil +ni2) time [Gilbert and co-workers, 1988]. The total
number of edges considered while determining all N(N- 1)/2
DSs can be given by

N j- 1 N N j- 1
E [(j-l)nj+ E nil = E (j-1)nj+ E E nj

j=2 i=1 j=2 j=2 i=1

N N- 1
= E (j-l)nj + E (N- j)nj = (N-l)n.

j=2 j =1

Hence it is a O[(N- l)n] operator to determine all DSs. Che)
cking for intersections of DSs can be done in O(L·log2L)
time [Shamos, 1976] with

L =N(N- 1)/ 2,

N(~-1) N(~- 1) L . log2L = , log2

:::N(N- 1)(log2N- 1/ 2).

Whether a DS crosses at least one obstacle can be deter
mined in O(N) time, i.e. it is a O[N2(N- 1)/2] operator to
check all DSs. Summarizing, it turns out that PDSs can be
determined in

O[(N-l)n]+ O[N(N- 1)(log2N-l / 2)]+O[N2(N-l)/2]

time. The last two terms above corresl?ond to the worst case
where all DSs are passable. Since this IS unlikely in the

278

usual case N>3, the actual complexity will not be domi
nated by them. Indeed, the larger N is, the more possible it
is that a DS intersects either another DS or an obstacle and
hence is taken away. Figure 3 illustrates the avera~e time
Ldist used in simulation for determining PDSs. It IS linear
to nIN for constant N and quadratic to N for constant nIN,
what suggests the expected complexity of determining pbSs
to be

O(N2. nIN) =O(N· n) . (1)

The operator of building STs for a PDS is linear to N [Mao,
1990]. Since there can be at most N(N- 1)/2 PDSs, it will
take at most O[N2(N- 1)] time to building all STs. With the
same argument as above it is reasonable to assume that the
average number of STs is much less then N(N- 1) and hence
the expected complexity of building STs is lower then a
cubic function of N. The simulation confirms this assump
tion: The average time Ur taken by building STs is nearly
linear to N (Fig.4, Fig. 5). The average time Lst used by
constructing ST-R in simulation is presented in Fig. 5. It
shows that the expected complexity Cst of constructing ST
R can be estimated by

Cst =O(N· n) +O(N)

10 ~CP~U~(~'.~C)~ ______________________ E_F_(X_'O_O~O)

-e- "'.3
-b- "'.5
"""'*"" H·7

-a- N.10

"""*- "''"15

30

20

01~~~~0
3 8

nlN

EF (x'OOO) CPU (sec)
'O r--~-----------------------------,

I-e- nlN·3

I -b- n/N·.
8 r ___ n/N.5

I I -e- n/N·6

8i
!
i

.. L

J 1'0
!I ~~:::=~---+--~~ o~ 0
3 n ~

N

Fig. 3 Time for determ. PDS (Ldist)

(2)

CPU (sec) EF (1000)
8 .

8 !

~ 25
I

i
i 20 ,
i
·h 5

= :----'O-~
-1 10

"---
2 : ----------~------~

~~--------~----------~----------4
~------~------~------~f

0 1 10
3 6

nlN

Fig. 4 Time for building STs (Ltr)

CPU (sec) ,-~~ ______________________ ~EF~I~Xl~0~00)80

15 -fr n/N-3

-8- n/N-. 50
--><- n/N-5

-& n/N-e

10 ·x · 40
Lt,

30

20

10

11 15
N

Fig. 5 Lst (-Ldist+Ltr)

COMPLEXITY OF QT - R

For building a QT-R it is necessary to check whether a
square Qj on laxer j is occupied by an obstacle. The
efficiency of bUIlding QT-R depends directly on the check
algorithm. In this paper the following check algorithm is
used:

if one obstacle edge intersects Qj

than Qj is partially occupied;

else if the center point of Qj is inside an obstacle

than Qj is totally occupied;

else Qj is free of obstacles.

The algorithm oonsists of two checks: intersect(e,Q) che
cking whether an obstacle edge e intersects a square Q, i.e.
whether e has at least one interior point of Q, and
inside(P,e) checking whether a point P is on the" inner"
side of e. The first check is carned out for obstacle edges one
by one until either an edge intersecting Q is encountered or
all edges are checked. The seoond check is activated only if
intersect(e,Q) is negative for all edges. In this case, if Q is
free , inside(P,e) will be performed for all obstacles, other
wise the number of obstacles checked by inside(P,e) depends
on the order of the obstacles at checking. Suppose that in
average N /2 obstacles are checked before the obstacle con
taining Q is enoountered and for each obstacle that does not
oontain Q the half of its edges are checked. The average
number of carrying out inside(P,e) equals
pin · n/ 4+(I-Pin)·n/ 2, pin being the probability that Q is
Inside an obstacle.

Let mj be the expected number of squares on layer j which
are partially occupied, kj and Kj the expected number of
carrying out intersect(e,Qj) and inside(P,e) respectively for
checking Qj, and pj the probability that e intersects Qj. The
expected oomplexlty CQt of oonstructing QT-R can be given
by

279

s
Cqt = . E mj-I ' {C[divide(Q)]+4kjC[intersect(e,Qj)]

)=1

with

divide(Q) : divide Q into 4 equal subsquares;

l110 = I ; mj =4p(j)mj _t. j~ 1;

n-l k-I n-I n(;\
kj= E [(I-pj) pjk]+(1-pj) n=~;

k=1 ~

p(j) =1- (l_pj)n;

Cj =(1- pj)n;

n/4~Kj ~n/2.

(3)

(4)

(5)

Apparently the factor in the braces of Eq. (3) is linear to n,
indIcating CQt is of O(n) for constant s. Simulation for s =7
shows that Lqt, the average time needed for oonstructing
QT-R, is nearly linear to njN for constant N and nearly
linear to N for constant n/N (Fig. 6). Hence,

CQt =O(N· n/N) =O(n) (6)

is a reasonable estimation of CQt for constant s. To reveal
the influence of s on CQt the number mj has to be enume
rated which depends on the probability Pj . Let qj be the
expected number of squares on layer j which are intersected
bye, Pj can be calculated by

po=l;

pj =qj/4mj-I =,.--=.. . - 1 1 (], PTf--h
.. qJ -1 P)- j ~ 1.

To estimate qj let I be the average length of e, and

'::~,..
. I

80

I J 200

40} • • I

20t--------'{~100
! oL--------------------------------- o
3 8

nl N

100 ,-C_PU_I_s._c.:...) ____________________ ...:E':'F-.:i.::.:Xl::.00:::::0)

i -(j- n / N-3

--l:r- n/ N-.
80 -

-4r.- n/ No5

-a- n/ Noe

80 -

40~
20 -

- 300

- 200

- 100

0.:...· ~----~------------~--------- O

" 15
N

Fig. 6 Time for constr. QT-R (Lqt)

(7)

be the relative length of e on layer j. If we ignore the zero
probability event that e just overlaps a dividing line, the
number of squares intersected by e is distributed in the
interval Ij

Ij = [int(ljy'Z/2), min(int(ljv'Z} +2, 2j
.1- 1)]

with int(x) as the smallest integer not less than x

int(x)-1 <x~int(x).

(8)

In the following considerations we assume int(ljv'Z} ~ 2j·I-3.
For simplicity the distribution is assumed to be uniform, i.e.
the probability p(u,j) that e just intersects u squares on
layer j is given by

It follows

qo = 1;

<u = E [P(u,j).u] int(2
j
ly'1)iint(2

j
-
l
ly'1)+2

u

~ 2jly2+2j-11y2+3
~ 2 j~ 1.

It can be verified by using Eq. (7) and Eq. (10) that

pj~I_(3/4)I/n. Using this relation in Eq. (4) yields:

2000 mJ

1500

10
....... m

10
j (layer number)

Fig. 7 m j, k j and c j n on each layer

CPU C •• c) EF bloo0)
140r-~~------------------------~-'

80

80

40

20

s

Fig. 8 LQt depending on s (n/N-3)

,
"":, ""00

i ,
,I,

300

(9)

(to)

280

(11)

Calculations with I and n as parameters point out that
mj/mj_1 always approaches 2 as j increases. Figure 7 shows
mj in comparison with k- and cjn for a work space with 15
tnangular obstacles and \ =0.14: while ki and cjn tend to
become constant, mj increases exponentIally. Accordingly,
the time needed for constructing OT-R depends exponential
lyon s (Fig. 8). In the simulations s was set to be 7 if not
said otherwise.

COMPARISON

Work space representation
The complexity of constructing ST-R is O(N· n) +O(N) in
average, while that for OT-R is linear to n. This, however,
does not mean that constructing ST-R must take more time
than constructing OT-R. To the contrary, simulations d~
monstrate that ST-R needs essentially less time than OT-R
does (Fig. 5, Fig. 6). This is because huge number of squares
have to be treated during constructing OT-R and therefore
the coefficients of Eq. (3) dominate Cqt. Additionally, due
to its exponential dependence on s C,!£ is influenced sensi
tively by the number of layers in a 01.

Findpath
The findpath problem is solved by searching the graph with
a search algonthm. A comparison of searchmg time taken
by a search algorithm for different work space representa
tions, however, does not always say much about efficiency of
each work space representation, because search algorithm
behavior depends strongly on the structure of the search
graph, the start and goal positions, and the heuristic used at
searching which changes usually with the designer. Ther~
fore, the comparison is concentrated on the size of the
search graph, i.e. on the number of nodes in the graph as it
describes implicitly the potential complexity of searching.

Though both the average number of STs and that of FOs
increase somehow linearly to N (Fig. 9), the number of FOs
is much greater than that of STs. This indicates that OTG
is in general much greater than STG and hence much more
difficult to search. Indeed, while the well known A*-algo
rithm searches STG efficiently, it does not work well for
OTG because the OPEN-list grows quickly so that ordering
of it becomes tedious. To aVOid this difficulty Adolphs
(1988) suggested to use a controlled depth-first algorithm
for OTG. In this algorithm only the direct descendants of
the current node are considered for determining the next
node to be expanded at each search step, instead of consi
dering the whole OPEN-list as the A'-algorithm does
[Nilsson,1982]. In Fig. to the average time Lsrch used by
the A'-algorithm for STG and by the controlled depth-fIrSt
al~orithm for OTG, respectively, are illustrated. In contrast
with the nearly linear dependence of Lsrch on N for STG,
Lsrch for OTG scatters Irregularly as a local search algo
rithm usually behaves. It is shown that searching in STG
seems to take more time than searching in OTG as N in-

~ n
1400 r, --------------------------------~~ 80

I ~ numb., 01 sr,

1200 r -&- numbe, of Fa.

!
1000 ~

!
800-

800 C

400 -

I

200 ~

i

c 80
I

- 40

- 20

o f-' ~~~~ __ ~~ __ ~~ ______ ~ __ ~_'i 0

3 11 15
N

Fig. 9 number of safe regions

CPU (•• c) EF (x1000)
"I' ------------------------~~~

I -+ H03 -A- Hol5 ~ Nor ~ Ho1O --- H-115 J 20

n/N

Fig. 10a Search time Lsrch in STG

!

I
1'0

1

i:

creases. This is because that, on the one hand, the robot was
considered in QT·R as a point and hence the search problem
was simplified by i~noring the effect of the robot extent. On
the other hand, while the neighbors of a square in QT can
be determined trivially in the layer concept [Adolphs, 1988],
the connecting arcs in STG are more complicated to deter·
mine since it has to be checked whether two STs as well as
their orientation sets overlap each other. Therefore, to ex·
pand a node in QTG is easier than that in STG.

Remarks
Since the findpath based on QT·R can only be carried out
for point formed robot, it is necessary to grow the obstacles
so that the robot can be treated as a point, before QT·R is
constructed. This can be done by transform the work space
into the C-space [Lozano-Perez, 1981, 1983]. However, since
in general a convex polygon of ni edges becomes one of
ni +no edges in C-space for a robot with no edges, the num
ber of total obstacle ed~es is increased to n + Nno after tranfr
formation. This will raise Cqt as discussed before. In addi
tion, if the orientation change of the robot is taken into
account by using o.slices [Lozano-Perez, 1983], the complexi
ty of both constructing QT·R and searching QTG willm·
crease drastically because one QT for each o.slice has to be
constructed and the QTG has to include FQs in all QTs.

CONCLUSION

Constructing ST·R and QT·R are both operations depen
ding not only on the numbers Nand n, but also on form and
location of each obstacle. Hence their computational com
plexity is difficult to analyze. In this paper the expected
complexity Cst and Cqt were considered. It was disclosed
that Cst is linear to N· n and that Cqt is linear to nand
exponential to s. A formula for calculating Cqt was
established.

Quantitative comparison based on simulations showed that
in average ST·R might be more efficient than QT·R for path
planning, especially when the orientation of the robot has to
be considered. However, since ST·R is a rather conservative
work space model, it does not work well in clustered work
spaces where few STs overlap each other, while QT·R can
always work by increasing the number of layers.

281

CPU (.. c) EF (x1000)
2.5~---------------=--'-'-'-c:..::.::.;

I
I

2 r
18

1.5

1
I -+-- N03 i
I -8- N"

I -+- N-r I
0.5 r -& N" 0 r

I -><- N", I
oL-----~-------------~' o

3 8
n/ N

Fig. 10b Search time Lsrch in QTG

REFERENCES

Adolphs, P. (1988). Umweltmodell und Bahn-plannung von
Robotersystemen im Raum. Internal Report, Inst. of
Control Eng., Techn. Uni. Darmstadt.

Gilbert, E.G., Johnson, D.W., and Keerthi, S.S. (1988). A
fast procedure for computing the distance between
complex objects in threC)-dimensional space. IEEE J . of
Robotics and Automation, vol. 4, no.2, pp. 193-203.

Kambhampati,S., and L.S.Davis. (1986). Multiresolution
path planning for mobile robots. IEEE J. of Robotics
and Automation, vol. RA· 2, no.3, pp. 135· 145.

Lee, D.T., and Preparata, F.P. (1984). Computational
geometry· A survey. IEEE Trans. on Computers, vol. C-
33, no. 12, pp. 1072-1101.

Lozano-Perez,T. (1981). Automatic planning of manipulator
transfer movement. IEEE Trans. on Systems. Man, and
Cybernetics, vol. SMC-ll, no.lO, {'p. 681·698

Lozano-Perez,T. (1983). Spatial plannmg: A configuration
pace approach. IEEE Trans. on Computers, vol. C· 32,
108· 120.

Mao, X. (1990). Concept of path planning with safe tri
angles as safe space representation. Preprints of
IMACS· IFAC Int. Symp. MIM· S2 90, Brussels, issue
no. n.c.5.

Nilsson,N.J . (1982). Search strategies for AI production
systems. In Principles of Artificial Intelhgence, Chapter
2. Springer Verlag. 53pp.

Prep~r~ta, F.P., an~ Hon~, S.1. (1977). Conyex hulls of
fmlte sets of pomters m two and three dimensions.
Commun, ACM, vol. 20, no. 2, pp. 87·93.

Shamos, M.1. (1976). Geometric intersection problems.
Proc. 17th IEEE Annu. Symp. on Found. Comput. Sci.,
pp. 2()8.215.

Soetadji,T. (1986). CubC)-based representa-tion of free space
for the navigation of an autonomous mobile robot. PrC)
prints of An Int. Conf. on Intelligent Autonomous -
Systems, Amsterdam, pp. 546· 561.

