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COMPUTATIONAL COMPLEXITY OF PATH PLANNING 
ALGORITHMS BASED ON SAFE TRIANGLES AND 

QUADTREE AS WORK SPACE REPRESENTATIONS: 
A COMPARISONt 
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Abstract. C?mput~tional complexity of tw.o path pl~nning approaches for a two-dimensional (2D) 
work space IS conslde~ed: The approach uSing safe tnan~les and the approach based on quadtree. The 
average cost of establishing work space representation, I.e. of building the safe triangles and the quad
tree resp~ctively, are esti.mated. Both approaches are simulated to plan paths for numerous work 
spaces wIth obstacles whIch are generated at random. The results of the simulation are summarized 10 
show the expected behavior of each approach. Comparison based on analyses and simulation is 
presented. 
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INTRODUCTION 

Automatic planning of collision free paths among obstacles 
is essential for autonomous mobile robots. The basis of path 
planning is a work space representation describing the free 
and/or the forbidden volume in the work space so that pos
sible paths are summed up into a graph. The finding of an 
appropriate path is performed by searching the graph under 
minimizing a given cost criterion. The efficiency of a path 
planning al~orithm depends tightly upon the work space 
representation it uses. It is of both theoretical and practical 
interest to compare the efficiency of different algorithms in 
order to disclose the advantages of one algorithm versus the 
other. 

In this paper the computational complexity of two path 
planning approaches for 2D work space are compared: one 
using safe triangles [Mao, 1990] and one based on quadtree 
[Kambhampati and Davis, 1986; Soetadji, 1986]. Through
out the paper the following abbreviations are used: 

QT: 
QT-R: 
Q: 
FQ: 
QTG 
DS: 
PDS: 
ST: 
ST-R: 
STG: 
C[x( · )]: 
Cqt 
Cst 
N: 
nj: 
n: 

quadtree; 
QT- representation; 
square in QT-R; 
free square in QT-R; 
search graph for QT-R; 
distance segment; 
passable DS; 
safe triangle; 
ST - representation; 
search graph for ST-R; 
complexity of operator x(·); 
expected complexity of constructing QT-R; 
expected complexity of constructing ST-R; 
number of obstacles in work space; 
number of edges of the i- th obstacle; 
number of all obstacle edges. 

Additional notations will be introduced in context. 

In ST-R, the obstacles and the robot are described by con
vex polygons. The shortest line segment connecting two 
obstacles is called distance segment DS between the ob
stacles. We consider only the DSs which are longer than the 
minimum cross section of the robot and do not intersect any 
obstacles. Moreover, if two DSs intersect each other, the 
longer one is taken away from consideration. The remaining 

tThis work was supported by DFG (Deutsche Forschungs
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DSs, called passable distance segments PDSs, allow the 
robot to pass through safely between the corresponding 
obstacles. For each PDS two STs, one on each side of the 
PDS, are construc~ed, a~ illustrated in Fig. 1. Additionally, 
a set of allowed onentatlOns for the robot, determined by 
the length of the PDS, is related to the STs. These STs 
enclose the safe positions for the robot before and after the 
pas.sage, as long as its orientation stays in the allowed orien
tatIOn set. The search graph STG consists of all STs as 
nodes. If two STs overlaps each other as well as their orien
tation sets, the corresponding nodes in STG are connected 
by an arc. 

In QT-R, the robot is considered to be a point. To describe 
QT-R the layer concept suggested by Adolphs (1988) is 
used. The work space is normalized to a lxl square which is 
th~ layer 0 of QT. It is divided into 4 equal subsquares for
~ng layer 1 of Q! .. Each square Qj on layer j is checked to 
indIcate whether It IS free or occupied by obstacles. If Qj is 
par~ially ~ccupied, it is divi~ed into.4 equal subsquares 
again which belong to layer) + 1, as Illustrated in Fig. 2. 
This procedure continues until layer s, the minimum quanti
zation layer, is arrived at. The free squares FQs of all layers 
b.uild the nodes. of.the search ~raph QTG. The arcs connec
ting the nodes indicate the nelghborhood of corresponding 
FQs in the work space. 

Normally, the complexity of an algorithm is analyzed for 
the worst case [Lee and Preparata, 1984]. In our case, how
ever, the worst case analysis seems to be unsuitable. In fact, 
the worst case would mean for QT-R that all squares on all 
layers are partially occupied. This would mean an unpass
able environment. Therefore the comparison is made for 
expected behavior. 

PDSs for the robot A STs for the robot A 

Fig. 1 ST -R: an example 
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Fig . 2 Quadtree - layer concept 

In addition to analytical discussions results of computer 
simulations are presented to illustrate the efficiency of each 
algorithm. The work spaces used by simulations were nor
malized to 1xl squares. The obstacles in a work space are 
generated as follows : 

3) 

generate nmax~n points in the work space randomly; 
divide the work space with randomly generated 
straight lines into N subregions so that each sub region 
contains at least 3 points. 
for each subregion an obstacle is constructed by 
building the convex hull of the points in the subregion 
[Preparata and Hong, (1977)]. 

A rectangle of 0.08xO.05 was taken as the robot for ST-R. 
The illustrations represent the average of simulation results 
for numerous work spaces with same parameters labeled in 
the figures. The simulations were run on a PC-AT /286. To 
give a relative scale the CPU time t used by an operation is 
converted to equivalent flops EF by the formula 

EF =t/(t\,ector add iti on +ldot product) 

COMPLEXITY OF ST - R 

A ST-R is constructed in two steps: determining the PDSs 
and building STs. The DS between two convex polygons 
with nil and ni2 edges respectively can be determined in 
O(nil +ni2) time [Gilbert and co-workers, 1988]. The total 
number of edges considered while determining all N(N- 1)/2 
DSs can be given by 

N j- 1 N N j- 1 
E [(j-l)nj+ E nil = E (j-1)nj+ E E nj 

j=2 i=1 j=2 j=2 i=1 

N N- 1 
= E (j-l)nj + E (N- j)nj = (N-l)n. 

j=2 j =1 

Hence it is a O[(N- l)n] operator to determine all DSs. Che)
cking for intersections of DSs can be done in O(L·log2L) 
time [Shamos, 1976] with 

L =N(N- 1)/ 2, 

N(~-1) N(~- 1) L . log2L = , log2 

:::N(N- 1)(log2N- 1/ 2). 

Whether a DS crosses at least one obstacle can be deter
mined in O(N) time, i.e. it is a O[N2(N- 1)/2] operator to 
check all DSs. Summarizing, it turns out that PDSs can be 
determined in 

O[(N-l)n]+ O[N(N- 1)(log2N-l / 2)]+O[N2(N-l)/2] 

time. The last two terms above corresl?ond to the worst case 
where all DSs are passable. Since this IS unlikely in the 
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usual case N>3, the actual complexity will not be domi
nated by them. Indeed, the larger N is, the more possible it 
is that a DS intersects either another DS or an obstacle and 
hence is taken away. Figure 3 illustrates the avera~e time 
Ldist used in simulation for determining PDSs. It IS linear 
to nIN for constant N and quadratic to N for constant nIN, 
what suggests the expected complexity of determining pbSs 
to be 

O(N2. nIN) =O(N· n) . (1) 

The operator of building STs for a PDS is linear to N [Mao, 
1990]. Since there can be at most N(N- 1)/2 PDSs, it will 
take at most O[N2(N- 1)] time to building all STs. With the 
same argument as above it is reasonable to assume that the 
average number of STs is much less then N(N- 1) and hence 
the expected complexity of building STs is lower then a 
cubic function of N. The simulation confirms this assump
tion: The average time Ur taken by building STs is nearly 
linear to N (Fig.4, Fig. 5). The average time Lst used by 
constructing ST-R in simulation is presented in Fig. 5. It 
shows that the expected complexity Cst of constructing ST
R can be estimated by 

Cst =O(N· n) +O(N) 
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COMPLEXITY OF QT - R 

For building a QT-R it is necessary to check whether a 
square Qj on laxer j is occupied by an obstacle. The 
efficiency of bUIlding QT-R depends directly on the check 
algorithm. In this paper the following check algorithm is 
used: 

if one obstacle edge intersects Qj 

than Qj is partially occupied; 

else if the center point of Qj is inside an obstacle 

than Qj is totally occupied; 

else Qj is free of obstacles. 

The algorithm oonsists of two checks: intersect(e,Q) che
cking whether an obstacle edge e intersects a square Q, i.e. 
whether e has at least one interior point of Q, and 
inside(P,e) checking whether a point P is on the" inner" 
side of e. The first check is carned out for obstacle edges one 
by one until either an edge intersecting Q is encountered or 
all edges are checked. The seoond check is activated only if 
intersect(e,Q) is negative for all edges. In this case, if Q is 
free , inside(P,e) will be performed for all obstacles, other
wise the number of obstacles checked by inside(P,e) depends 
on the order of the obstacles at checking. Suppose that in 
average N /2 obstacles are checked before the obstacle con
taining Q is enoountered and for each obstacle that does not 
oontain Q the half of its edges are checked. The average 
number of carrying out inside(P,e) equals 
pin · n/ 4+(I-Pin)·n/ 2, pin being the probability that Q is 
Inside an obstacle. 

Let mj be the expected number of squares on layer j which 
are partially occupied, kj and Kj the expected number of 
carrying out intersect(e,Qj) and inside(P,e) respectively for 
checking Qj, and pj the probability that e intersects Qj. The 
expected oomplexlty CQt of oonstructing QT-R can be given 
by 
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s 
Cqt = . E mj-I ' {C[divide(Q)]+4kjC[intersect(e,Qj)] 

)=1 

with 

divide(Q) : divide Q into 4 equal subsquares; 

l110 = I ; mj =4p(j)mj _t. j~ 1; 

n-l k-I n-I n(;\ 
kj= E [(I-pj) pjk]+(1-pj) n=~; 

k=1 ~ 

p(j) =1- (l_pj)n; 

Cj =(1- pj)n; 

n/4~Kj ~n/2. 

(3) 

(4) 

(5) 

Apparently the factor in the braces of Eq. (3) is linear to n, 
indIcating CQt is of O(n) for constant s. Simulation for s =7 
shows that Lqt, the average time needed for oonstructing 
QT-R, is nearly linear to njN for constant N and nearly 
linear to N for constant n/N (Fig. 6). Hence, 

CQt =O(N· n/N) =O(n) (6) 

is a reasonable estimation of CQt for constant s. To reveal 
the influence of s on CQt the number mj has to be enume
rated which depends on the probability Pj . Let qj be the 
expected number of squares on layer j which are intersected 
bye, Pj can be calculated by 

po=l; 

pj =qj/4mj-I =,.--=.. . - 1 1 (], PTf--h 
.. qJ -1 P )- j ~ 1. 

To estimate qj let I be the average length of e, and 
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be the relative length of e on layer j. If we ignore the zero 
probability event that e just overlaps a dividing line, the 
number of squares intersected by e is distributed in the 
interval Ij 

Ij = [int(ljy'Z/2), min(int(ljv'Z} +2, 2j 
.1- 1)] 

with int(x) as the smallest integer not less than x 

int(x)-1 <x~int(x). 

(8) 

In the following considerations we assume int(ljv'Z} ~ 2j·I-3. 
For simplicity the distribution is assumed to be uniform, i.e. 
the probability p(u,j) that e just intersects u squares on 
layer j is given by 

It follows 

qo = 1; 

<u = E [P(u,j).u] int(2
j
ly'1)iint(2

j
-
l
ly'1)+2 

u 

~ 2jly2+2j-11y2+3 
~ 2 j~ 1. 

It can be verified by using Eq. (7) and Eq. (10) that 

pj~I_(3/4)I/n. Using this relation in Eq. (4) yields: 

2000 mJ 

1500 

10 
....... m 

10 
j (layer number) 

Fig. 7 m j, k j and c j n on each layer 

CPU C •• c) EF bloo0) 
140r-~~------------------------~-' 

80 

80 

40 

20 

s 

Fig. 8 LQt depending on s (n/N-3) 

, 
"":, ""00 

i , 
,I, 

300 

(9) 

(to) 

280 

(11) 

Calculations with I and n as parameters point out that 
mj/mj_1 always approaches 2 as j increases. Figure 7 shows 
mj in comparison with k- and cjn for a work space with 15 
tnangular obstacles and \ =0.14: while ki and cjn tend to 
become constant, mj increases exponentIally. Accordingly, 
the time needed for constructing OT-R depends exponential
lyon s (Fig. 8). In the simulations s was set to be 7 if not 
said otherwise. 

COMPARISON 

Work space representation 
The complexity of constructing ST-R is O(N· n) +O(N) in 
average, while that for OT-R is linear to n. This, however, 
does not mean that constructing ST-R must take more time 
than constructing OT-R. To the contrary, simulations d~ 
monstrate that ST-R needs essentially less time than OT-R 
does (Fig. 5, Fig. 6). This is because huge number of squares 
have to be treated during constructing OT-R and therefore 
the coefficients of Eq. (3) dominate Cqt. Additionally, due 
to its exponential dependence on s C,!£ is influenced sensi
tively by the number of layers in a 01. 

Findpath 
The findpath problem is solved by searching the graph with 
a search algonthm. A comparison of searchmg time taken 
by a search algorithm for different work space representa
tions, however, does not always say much about efficiency of 
each work space representation, because search algorithm 
behavior depends strongly on the structure of the search 
graph, the start and goal positions, and the heuristic used at 
searching which changes usually with the designer. Ther~ 
fore, the comparison is concentrated on the size of the 
search graph, i.e. on the number of nodes in the graph as it 
describes implicitly the potential complexity of searching. 

Though both the average number of STs and that of FOs 
increase somehow linearly to N (Fig. 9), the number of FOs 
is much greater than that of STs. This indicates that OTG 
is in general much greater than STG and hence much more 
difficult to search. Indeed, while the well known A*-algo
rithm searches STG efficiently, it does not work well for 
OTG because the OPEN-list grows quickly so that ordering 
of it becomes tedious. To aVOid this difficulty Adolphs 
(1988) suggested to use a controlled depth-first algorithm 
for OTG. In this algorithm only the direct descendants of 
the current node are considered for determining the next 
node to be expanded at each search step, instead of consi
dering the whole OPEN-list as the A'-algorithm does 
[Nilsson,1982]. In Fig. to the average time Lsrch used by 
the A'-algorithm for STG and by the controlled depth-fIrSt 
al~orithm for OTG, respectively, are illustrated. In contrast 
with the nearly linear dependence of Lsrch on N for STG, 
Lsrch for OTG scatters Irregularly as a local search algo
rithm usually behaves. It is shown that searching in STG 
seems to take more time than searching in OTG as N in-
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creases. This is because that, on the one hand, the robot was 
considered in QT·R as a point and hence the search problem 
was simplified by i~noring the effect of the robot extent. On 
the other hand, while the neighbors of a square in QT can 
be determined trivially in the layer concept [Adolphs, 1988], 
the connecting arcs in STG are more complicated to deter· 
mine since it has to be checked whether two STs as well as 
their orientation sets overlap each other. Therefore, to ex· 
pand a node in QTG is easier than that in STG. 

Remarks 
Since the findpath based on QT·R can only be carried out 
for point formed robot, it is necessary to grow the obstacles 
so that the robot can be treated as a point, before QT·R is 
constructed. This can be done by transform the work space 
into the C-space [Lozano-Perez, 1981, 1983]. However, since 
in general a convex polygon of ni edges becomes one of 
ni +no edges in C-space for a robot with no edges, the num
ber of total obstacle ed~es is increased to n + Nno after tranfr 
formation. This will raise Cqt as discussed before. In addi
tion, if the orientation change of the robot is taken into 
account by using o.slices [Lozano-Perez, 1983], the complexi
ty of both constructing QT·R and searching QTG willm· 
crease drastically because one QT for each o.slice has to be 
constructed and the QTG has to include FQs in all QTs. 

CONCLUSION 

Constructing ST·R and QT·R are both operations depen
ding not only on the numbers Nand n, but also on form and 
location of each obstacle. Hence their computational com
plexity is difficult to analyze. In this paper the expected 
complexity Cst and Cqt were considered. It was disclosed 
that Cst is linear to N· n and that Cqt is linear to nand 
exponential to s. A formula for calculating Cqt was 
established. 

Quantitative comparison based on simulations showed that 
in average ST·R might be more efficient than QT·R for path 
planning, especially when the orientation of the robot has to 
be considered. However, since ST·R is a rather conservative 
work space model, it does not work well in clustered work 
spaces where few STs overlap each other, while QT·R can 
always work by increasing the number of layers. 
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