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Abstract. Expert systems and neural networks are new tools for the control of fermentation 
processes . With expert systems the fermentation plant and the process itself is modelled via 
a generalized, qualitative system description based on the experience of human experts. On 
the other hand neural networks and interpolating associative memories can learn the process 
behaviour directly by process observation. The paper at hand reports, how both control 
techniques can be combined for purposes like process supervision, modelling and optimiza­
tion of biological plants. 
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INTRODUCTION 

The development and control of fermentation pro­
cesses makes the integration of some research disci­
plines necessary. Organisms and substrate composi­
tions are typically selected or modified by microbiolo­
gists. By empirical variation of environmental process 
parameters (e .g. temperature, ph, oxygen concentra­
tion) during some lab-scal~ fermentations the produc­
tivity of the process is improved. The optimized con­
ditions are then applied to the real production plant 
by utilization of some scale-up criteria. In most cases 
the production process itself is then controlled by hu­
man operators. In summary the control of biotechno­
logical processes is based on the knowledge of experts 
and human operators as well as on analysis and pro­
cessing of numerical data (fig . 1). 

For applications like process supervision and fault di­
agnosis of biological plants some expert systems were 
already developed [Halme, 1989). Expert systems can 
handle that knowledge which can be acquired by hu­
man experts, but this knowledge describes the con­
cious thinking and decisions only. Modelling problems 
arise in case of unconcious decisions or complex input­
output patterns. 

Here learning control systems are an interesting sys­
tem completion. Learning control loops can learn pro­
cess models and control strategies automatically by 
observation. For the representation of the process be­
haviour neurally inspired storage devices (neural nets, 
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interpolating associative memories) have been estab­
lished. The integration of expert systems and learning 
control techniques seems therefore promising, espe­
cially for intelligent control of fermentation processes. 
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Fig. 1: Knowledge sources and problem solving 
strategies for development and control of biopro­
cesses. 

LEARNING CONTROL OF BIO­
TECHNOLOGICAL PROCESSES 

Learning control has been developed in parallel to 
adaptive control systems and is advantageous espe­
cially in case of heavily nonlinear processes. Ba­
sic working mechanisms of learning control loops are 
briefly explained by describing the system LERNAS 
[Ersii and Tolle, 1984). Within LERNAS (fig. 2) a pre­
dictive process model as well as an optimized control 
strategy is generated in parallel to the real process. 
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Fig. 2: Basic structure of the learning control loop LERNAS [Ersii and Tolle, 1984] . 

Both model and controller are realized by a general 
mathematical mapping I --+ 0 : I E Rn, 0 E R m. 
The predictive process model is generated by storing 
the process reaction y( k + 1) as a function of the mea­
sured process inputs and outputs and some history of 
these values: 

[ 
Y:«k», Y:«k - 1), ... , Y:«k - O'» j ] --+ y(k + 1) . 
u k,u k-1), . . . ,u k-f3 

(1) 
An advantageous control strategy is generated by ap­
plying different control inputs to the predictive pro­
cess model and evaluating these results by a prese­
lected optimization criterion . The so selected optimal 
control input uopt(k) is then stored in a memory pre­
senting the controller in dependence of the considered 
process situation: 

[ 
wT(k~ yT(k - 1) , .. T yT(k - O') j ] --+ u(k) . (2) 

u (k-1), .. . , u (k-f3) 

For time-invariant processes the optimization becomes 
superfluous after sufficient training/optimization 
steps. Since the actual process situations are gener­
ated by chance, the memories must have the capabil­
ity to interpolate the output values for scattered input 
values. According to this special locally interpolating 
associative memories - partially neurally inspired -
have been generated [Tolle et al., 1988] . 

With LERNAS several investigations for the learning 
control of fermentation processes have been performed 
[Gehlen et al. , 1988]. However, biotechnological pro­
cesses show special properties, which motivate some 
fundamental extensions of the basic control structure. 

a) During batch or fed-batch fermentation the cell 
metabolism modifies due to variations of extracellu­
lar conditions. Several process phases (lag phase, ex­
ponential growth, etc.) can be distinguished . The 
design of submodels and control strategies adapted 
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to the special characteristics of each "physiological 
state" [Konstantinov and Yoshida, 1989] instead of a 
global process view is efficient. The physiological state 
concept in coordination with process representation 
in neural nets/ interpolating associative memories is 
meaningful, because net inputs and outputs are re­
duced to key variables of each phase only. This leads 
to better convergence properties and savings in mem­
ory effort . The detection of physiological states with 
rule-based expert systems is possible [Halme, 1989]. 

b) In most cases where a biological plant has to be con­
trolled the general process behaviour is known. Data 
of previous processes can serve as knowledge source, 
i.e. with this data predictive process models can be 
trained off-line in advance. With every process run 
the model is then further improved. Optimization of 
control strategies can be studied off-line, too. 

c) In principle process errors (defect of plant compo­
nents, contamination, etc.) can be detected with the 
help of a learned process model. However, an auto­
matic reaction on such faults is only possible, if similar 
defects have been trained before. This is unlikely in 
case of complex fermentation plants. For this reason 
knowledge based fault detection can be an effective 
supplementation to learning control. 

d) The variation of physical process parameters (tem­
perature, ph , etc.) has to be bounded to avoid irre­
versible damage of organisms and products, i.e. the 
automatic search for optimal environmental parame­
ters has to be limited by using the knowledge of ex­
perienced persons and process operators. 

The coordination of learning control by an expert sys­
tem is a powerful solution to include heuristic expert 
knowledge into a learning layer. This knowledge can 
be used for detection of process states, errors and 
physiological states. 
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Fig. 3: Architecture of the intelligent control system BioX with integrated learning control mechanisms. 

For these reasons an intelligent control system has 
been designed, which includes knowledge based and 
learning control algorithms. The basic architecture of 
this system is shown in fig . 3. 

BASIC SYSTEM DESIG N 

One main difference in known expert systems for con­
trol and supervision of ferm entation plants is the kind 
of knowledge representat ion . Most systems use pro­
duction rules for information storage. Uncertainties 
can be considered by introduction of certainty factors 
or by fuzzy approaches [Dohnal, 1985]. With qual­
itative techniques the gap between the exactness of 
numerical models and abstract system representation 
can be reduced . 

For detection and analysis of process states rule based 
systems are a powerful solution. For this reason the 
expert system layer of BioX has been implemented 
as a production system. Process errors are detected 
by processing of special features (symptoms, measur­
ing values, etc.). As the validation of errors can be 
a multistep procedure, hierarchies are allowed for the 
representation of faults . Results of one diagnostic step 
can serve another layer as a new feature. All diagnosis 
are treated uniformly as hypothesizes . 

Several inference procedures, like forward and back­
ward chaining and some special algorithms (e.g . " hy­
pothesize & test") have been implemented. A trans­
parent and efficient knowledge representation was pos­
sible by using frames . Special frame classes have been 
designed for storage of rules , hypothesizes , plant de­
scriptions, process errors , process phases , measuring 
and control values, etc . The whole rule based layer of 
BioX was implemented in LISP. 

Because the efficient implementation of (numerical) 
control algorithms is impossible while using LISP, al­
gorithmic parts of BioX have been written in C. All 
important procedures of the learning layer can be con­
trolled by the knowledge based procedures using a spe­
cial LISP-C-interface. Several control monitors have 
been designed for all system components . In sum­
mary BioX can be regarded as a toolbox, which can 
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be applied for the control of the most fermentation 
processes. 

APPLICATIONS 

An industrial relevant bioprocess, the production of 
O'-amylase with Bacillus subtilis , serves as test bed for 
control applications with BioX. All fermentations have 
been performed in a 19 I fermenter with a coupled 
flow injection analyzer for on-line-monitoring of 0'­

amylase. Temperature, ph, stirrer speed, p02, air-flow 
and CO2-fraction in the outlet are continuously mea­
sured with a sampling period of 1 minute. A complex 
medium was used leading to multiple growth phases 
and varying process behaviour. Three control appli­
cations with BioX are explained in detail: 

a) Classification of process phases: The classification 
is performed by the expert system layer. All relevant 
informations for characterization and description of 
one phase/ physiological state are summarized in one 
frame . In each classification step the actual and all 
possible successor phases are tested, for each phase 
several features (e.g . numerical, symbolic or trend 
values of CO2 and p02, etc.) are checked. The phase 
with maximum likelihood is activated . In case of 
phase changes special demon functions are activated. 
These demons control the behaviour of the learning 
control algorithms. In this way process models (Le. 
neural nets, interpolating memories), control strate­
gies and optimization procedures are (de- )activated. 
The classification approach explained here has been 
shown to be very robust during several fermentations. 

b) Learning of predictive process models: Three differ­
ent architectures of self interpolating memories have 
been compared, the first memory device used is the as­
sociative memory system AMS, which is an improved 
version of the CMAC memory [Albus, 1975]. The sec­
ond architecture uses a mathematical regression tech­
nique for interpolation. A detailled description of ar­
chitecture and modelling experiments with these lo­
cally interpolating memories is found in [Gehlen and 
Bettenhausen, 1990; Gehlen and Kreuzig, 1991] . For 
comparison a globally interpolating backpropagation 
net [Thibault and van Breusegem, 1991; Willis et al., 
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Fig. 4: Comparison between real (0) and predicted (0) C02-concentration in case of a) backpropagation 
net (1 hidden layer, 15 neurons, 500 training cycles), b) AMS-memory (16 active association cells, 20 
training cycles) . 

1991J was tested. All nets have been trained with data 
of 16 fermentation runs. 8 inputs (temperature, ph, 
CO2, p02, amylase of the actual sampling step and 
past values of temperature, ph, CO2) have been se­
lected , the values of CO2, p02 and amylase have been 
predicted with a time horizon of 30 minutes. Fig. 
4 shows the comparison between real and predicted 
C02-concentration in case of the backpropagation net 
and AMS for a previously unknown process. With all 
nets the prediction is possible, but the convergence of 
locally interpolating memories is much faster . 

c) Optimizing the process productivity: In each sam­
pling step a special optimization procedure (Hookes­
Jeeves) searches for the best setpoints of underlying 
PID controllers, the predicted process reaction is cal­
culated as explained before. The requirements of each 
phase/ physiological state can be taken into account 
using different optimization criteria, e.g. in the first 
growth phases the best environmental conditions for 
a maximum cell production, in the following phases 
conditions for a maximum production or product sta­
bilization are searched. In case of our process the 
on-line optimization of temperature and ph leads to 
an increase in productivity (shorter production timet 
higher final enzyme concentration) of more than 100 % 
in contrast to fermentations with constant set points. 

CONCLUSION 

In this paper architecture and realization of an in­
telligent control system for process supervision , fault 
diagnosis and optimization of biotechnological plants 
has been presented. Main feature of BioX is the co­
ordination of an expert system and learning control. 
The whole control system has been tested with a spe­
cial fermentation process, the production of a-amylase 
with B. subtilis. As BioX has been designed as a gen­
eral framework, the adaptation to other fermentation 
processes is easily possible. 
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